② 国でA Electronic Circuit Breaker ESS20-0...

Description

Electronic circuit breaker type ESS20-0.. is designed to ensure **selective** disconnection of individual loads in systems which are powered by a DC 24 V switch-mode power supply.

DC 24 V power supplies, which are widely used in industry today, will shut down the output in the event of an overload with the result that one faulty load in the system can lead to complete disconnection of all loads. As well as an unidentified failure this also means stoppage of the whole system.

Through **selective** disconnection the ESS20-0.. responds much faster to overload or short circuit conditions than the switch-mode power supply. This is achieved by a combination of active current limitation and well-proven circuit breaker technology including physical isolation. The ESS20-0.. limits the highest possible current to 1.8 or 1.5 times the selected rated current of the circuit breaker. Thus it is possible to switch on capacitive loads of up to 75,000 μF lamp loads, but they are disconnected only in the event of an overload or short circuit.

For optimal adjustment to the application conditions the current rating of the ESS20-0.. can be selected in fixed values from 0.5 A...10 A and in adjustable variants 1 A/2 A or 3 A/6 A. Failure and status indication are provided by a bicolour LED and an integral signal contact.

The ESS20-0.. features a width of only 12.5 mm and can be plugged into the E-T-A power distribution socket Module 17plus and SVSxx (for ESS20-003) ensuring ease of installation and saving space in control cabinets.

US patent number: US 6,490,141 B2

Features

- Selective load protection with physical isolation in the event of a fault.
- All types of loads can be connected (small DC motors etc. on request)
- Active current limitation (1.8 or 1.5 times rated current I_N = 8 A or 10 A) for safe connection of capacitive loads up to 75,000 μF and on overload/short circuit.
- Electronic trip characteristic.
- Reliable overload disconnection with 1.1 x I_N plus, even with long load lines or small cable cross sections (see table 2).
- Selectable current ratings (fixed values 0.5 A...10 A or two steps: 1 A/2 A or 3 A/6 A).
- Manual ON/OFF button (push-push actuation).
- Clear status and failure indication.
- Width per unit only 12.5 mm.
- Plug-in mounting utilising power distribution system Module 17plus or SVSxx (for ESS20-003), see product group 7.

Approvals

Authority	Norm	Voltage ratings	Current ratings
VDE	EN 60934	DC 32 V	0.5 A10 A
UL	UL 1077	DC 28 V	0.5 A10 A

Notes

- The user should ensure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESS20 used.
- Automatic start-up of machinery after shut down must be prevented (Machinery Directive 98/37/EG and EN 60204-1). In the event of a short circuit or overload the load circuit will be disconnected electronically by the ESS20.

i ecnnicai	data (T _{ambient}	= 25 °C, operating vol	tage U _S = DC 24 V)

Operating data					
Operating voltage U _S	DC 24 V (1832 V)				
Current rating I _N	fixed current ratings: 0.5 A, 1 A, 2 A, 3 A, 4 A, 6 A, 8 A, 10 A switchable: 1 A/2 A or 3 A/6 A				
Power consumption	typically 13 mA				
Trip current (bimetal)	typically 0.3 A (only in the event of a failure, before physical isolation				
Status indication by means of	Bicolour LED: Green: unit is ON, power-MOSFET is switched on Orange: in the event of overload or short circuit until physical isolation LED not lighted: push button in OFF position potential-free signal contact (change over contact) OFF-position of push button				
Reverse polarity protection of U _S	internal bimetal (fail-safe element) trips, push button moves into OFF position				
Load circuit					
Load output	Power-MOSFET switching output (high side switch)				
Max. data of load with side-by-side mounting	see table 1				
Voltage drop at I _N	see table 1				
Overload disconnection	typically 1.1 x I _N (1.051.35 x I _N)				
Short-circuit current I _K	typically 1.8 x I _N / active current limitation				
Trip time for physical isolation for electronic disconnection	see time/current characteristics typically 5 sec at $I_{load} > 1.1 \times I_{load} > 1.8 \times I_{load} > 1.8 \times I_{load} > 1.5 \times I_{$				
Temperature disconnection	internal temperature monitoring with physical isolation				
Low voltage monitoring load output	OFF at U_S < 7 V ON at U_S >16 V				
Starting delay t _{start}	typically 0.3 sec after every switch-on and after applying $\ensuremath{\text{U}_{\text{S}}}$				
Disconnection of load circuit					
Free-wheeling circuit	external free-wheeling diode recommended with inductive load				

②EFA Electronic Circuit Breaker ESS20-0...

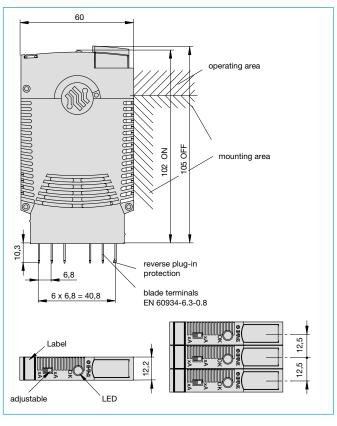
Technical data ($T_{ambient} = 25 \, ^{\circ}C$, operating voltage $U_{S} = DC \, 24 \, V$)

Fault indication, signal o	utput
Fault indications	potential-free auxiliary contact change-over (SC-SO / SC-SI) simultaneously with physical isolation max. DC 30 V / 0.5 A, min. 10 V / 10 mA
Signal output ESS20-001 (single signalisation N/O)	blue push button in ON position: signal contact SC-SI is closed blue push button in OFF position: signal contact SC-SI is open
Signal output ESS20-003 (group signalisation N/C)	blue push button in ON position: signal contact SC-SO is closed (SC-SI is copen) blue push button in OFF position: signal contact SC-SO is open (SC-SI is closed)
Visual indication	LED lighted in ORANGE (until physical isolation)
General data	
Backup fuse for ESS20-0.	.not required because of the integral redundant fail-safe element (thermal E-T-A circuit breaker) push button in OFF position when fail-safe element has tripped.
Blade terminals	6.3 mm to EN 60934-6.3-0.8
Housing material	plastics material
Mounting of housing	plug-in mounting utilising power distribution system Module 17plus or SVSxx
Ambient temperature	0+50 °C (without condensation, see EN 60204-1)
Storage temperature	-20+70 °C
Humidity	96 hrs/95 % RH/40 °C to IEC 60068-2-78, test Cab. climate class 3K3 to EN 60721
Vibration	3 g, test to IEC 60068-2-6 test Fc
Degree of protection	housing: IP30 DIN 40050 terminals: IP00 DIN 40050
EMC (EMC directive, CE logo)	emission: EN 61000-6-3 susceptibility: EN 61000-6-2
Insulation co-ordination (IEC 60934)	0.5 kV/2 pollution degree 2 re-inforced insulation in operating area
Dielectric strength operating area installation area load circuit-signal contact	<u> </u>
Insulation resistance (OFF condition)	$>$ 100 M Ω (DC 500 V) [LINE (+) – LOAD (+)]
Approvals	CE logo UL 1077, File E67320 Supplementary Protectors for use in Electrical Equipment IEC/EN 60934 (fixed current ratings)
Dimensions (W x H x D)	12.5 x 105 x 60 mm
Mass	approx. 65 g

Table 1: voltage drop, current limitation, max. load current

current rating I _N	typically voltage drop U _{ON} at I _N	active current max. load current limitation (typically) max. load current 100 % ON duty		
			T _U = 40 °C	T _U = 50 °C
0.5 A	100 m V	1.8 x I _N	0.5 A	0.5 A
1 A	140 mV	1.8 x I _N	1 A	1 A
2 A	180 mv	1.8 x I _N	2 A	2 A
3 A	140 mV	1.8 x I _N	3 A	3 A
4 A	190 mV	1.8 x I _N	4 A	4 A
6 A	280 mV	1.8 x I _N	6 A	5 A
8 A	220 mV	1.5 x I _N	8 A	7 A
10 A	280 mV	1.5 x I _N	10 A	9 A
1 A/2 A	140 mV/280 mV	1.8 x I _N	1 A/2 A	1 A/2 A
3 A/6 A	140 mV/280 mV	1.8 x I _N	3 A/6 A	3 A/5 A

Attention: when mounted side-by-side without convection the ESS20-0.. should not carry more than 80 % of its rated load with 100 % ON duty because of the integral thermal circuit breaker.


Ordering information

ype No	o
SS20	Electronic Circuit Breaker with current limitation (e.g. typically
	1.8 times rated current or 1.5 x I _N , see table 1)
	Version
	with physical isolation in the event of a failure
	Control input
	 without control input
	Signal output
	signal contact N/O (single signalisation)
	2 signal contact N/C (single signalisation)
	3 signal contact changeover (group signalisation)
	Operating voltage
	DC 24 V rated voltage DC 24 V
	Current rating
	0.5 A
	<u>1 A</u>
	<u>2 A</u>
	<u>3 A</u>
	4 A
	<u>6 A</u>
	8 A
	10 A
	1 A/2 A (selectable)
	3 A/6 A (selectable)
SS20 -	- 0 0 3 - DC 24 V - 3 A/6 A ordering example
.0020 -	(recommended type)
	(recommended type)

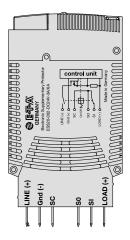
Preferred types

Preferred types	Standard current ratings (A)									
	0.5	1	2	3	4	6	8	10	1/2	3/6
ESS20-003-DC24V	х	х	х	х	х	х	х	х	х	х
ESS20-001-DC24V	х	х	х	х	х	х	х	х	х	х

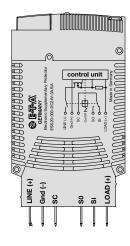
Dimensions

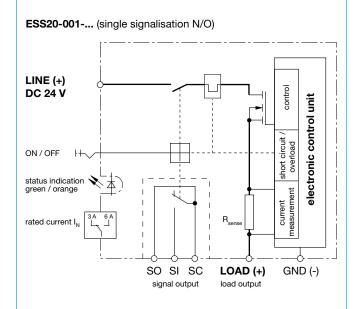
This is a metric design and millimeter dimensions take precedence ($\frac{mm}{inch}$)

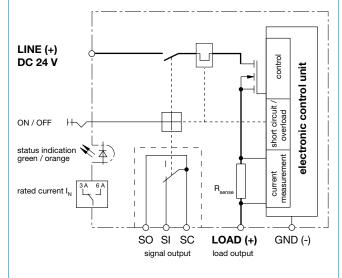
2015/16

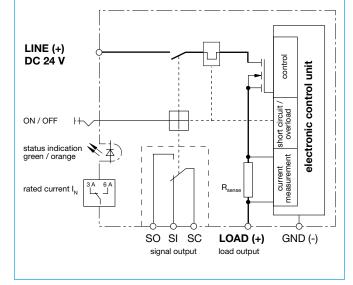

© ছিন্দিঐ Electronic Circuit Breaker ESS20-0...

Terminal wiring diagrams (e. g. adjustable 3 A/6 A)

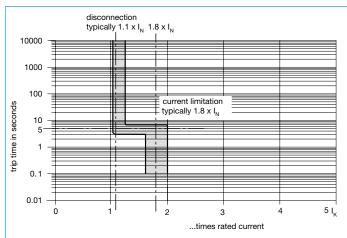

ESS20-001-...


ESS20-002-...


ESS20-003- ...


Basic circuit diagrams (e. g. adjustable 3 A/6 A)

ESS20-002-... (single signalisation N/C)



ESS20-003- ... (group signalisation with change over)

② 国子科 Electronic Circuit Breaker ESS20-0...

Time/Current characteristic curve (T_A = 25 °C)

*1) current limitation typically 1.8 x I_N times rated current at $I_N = 0.5$ A...6 A current limitation typically 1.5 x I_N times rated current at $I_N = 8$ A...10 A

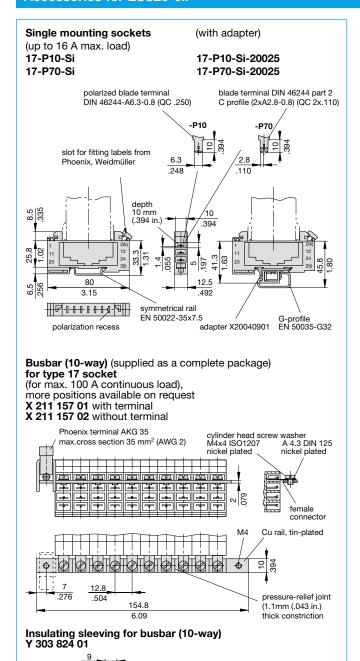
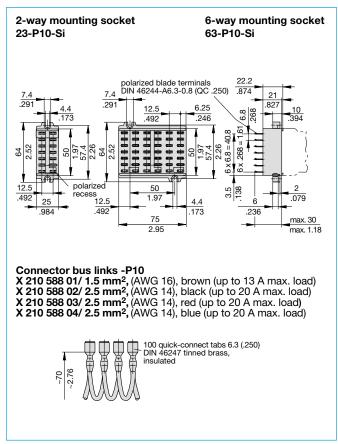

- The trip time is typically 5 s in the range between 1.1 and 1.8 x I_N^{*1}).
- Electronic current limitation starts at typically 1.8 x I_N*1) which means that under all overload conditions (independent of the power supply and the resistance of the load circuit) the max. overload until disconnection will not exceed 1.8 x I_N*1) times the current rating. Trip time is between 100 ms (short circuit current I_K) and 5 sec (at overload with high line attenuation).
- Without the current limitation activated at typically 1.8 x I_N*1) a considerably higher overload current would flow in the event of an overload or short circuit.
- After detection of an overload or short circuit the LED changes colour from GREEN to ORANGE. The LED will no longer be lighted after the circuit breaker has tripped.
- Resetting the circuit breaker is not possible before the integral bimetal has cooled down (approx. 10 sec).

Table 2: Reliable trip of ESS20

Reliable trip of	of ESS20 wit	h different	cable lengtl	hs and cross	sections			
Resistivity of copper $_0 = 0.0178$ (Ohm x mm ²) /	m							
U _S = DC 19.2 V (= 80 % v. 24 V)	voltage drop of ESS20 and tolerance of trip point (typically 1.1 x $I_N = 1.05$ 1.35 x I_N) have been taken into account.							
ESS20-selected rating I _N (in A) →	3	6						
e. g. trip current $I_{ab} = 1.25 \times I_N$ (in A) \rightarrow	3.75	7.5	→ ESS2	0 trips after	35 s			
R_{max} in Ohm = (U _S / I _{ab}) - 0.050 \rightarrow	5.07	2.51						
The ESS20 re	liably trips t	rom 0 Ohm	to max. cir	cuitry resist	ance R _{max}			
Cable cross section A in mm ² →	0.14	0.25	0.34	0.5	0.75	1	1.5	
cable length L in meter (= single length)			cable resi	istance in O	nm = (R ₀ x 2	x L) / A		
5	1.27	0.71	0.52	0.36	0.24	0.18	0.12	
10	2.54	1.42	1.05	0.71	0.47	0.36	0.24	
15	3.81	2.14	1.57	1.07	0.71	0.53	0.36	
20	5.09	2.85	2.09	1.42	0.95	0.71	0.47	
25	6.36	3.56	2.62	1.78	1.19	0.89	0.59	
30	7.63	4.27	3.14	2.14	1.42	1.07	0.71	
35	8.90	4.98	3.66	2.49	1.66	1.25	0.83	
40	10.17	5.70	4.19	2.85	1.90	1.42	0.95	
45	11.44	6.41	4.71	3.20	2.14	1.60	1.07	
50	12.71	7.12	5.24	3.56	2.37	1.78	1.19	
75	19.07	10.68	7.85	5.34	3.56	2.67	1.78	
100	25.34	14.24	10.47	7.12	4.75	3.56	2.37	
125	31.79	17.80	13.09	8.90	5.93	4.45	2.97	
150	38.14	21.36	15.71	10.68	7.12	5.34	3.56	
175	44.50	24.92	18.32	12.46	8.31	6.23	4.15	
200	50.86	28.48	20.94	14.24	9.49	7.12	4.75	
225	57.21	32.04	23.56	16.02	10.68	8.01	5.34	
250	63.57	35.60	26.18	17.80	11.87	8.90	5.93	
Example 1:	max. lenç	ax. length at 1.5 mm² and 3 A → 214 m						
Example 2:	max. length at 1.5 mm ² and 6 A \rightarrow 106 m							
Example 3:	R1 = 40	mixed wiring: R1 = 40 m in 1.5 mm ² and R2 = 5 m in 0.25 mm ² : (Control cabinet – sensor/actuator level) R1 = 0.95 Ohm, R2 = 0.71 Ohm						
	· ·	1 + R2) = 1.		c. 10101j 111	3.00 011111,	5.7 1 0		


②巨小A Electronic Circuit Breaker ESS20-0...

Accessories for ESS20-0..

This is a metric design and millimeter dimensions take precedence ($\frac{mm}{inch}$)

All dimensions without tolerances are for reference only. In the interest of improved design, performance and cost effectiveness the right to make changes in these specifications without notice is reserved. Product markings may not be exactly as the ordering codes. Errors and omissions excepted.

Dimensions

❷ ETA Electronic Circuit Breaker ESS20-0...