

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

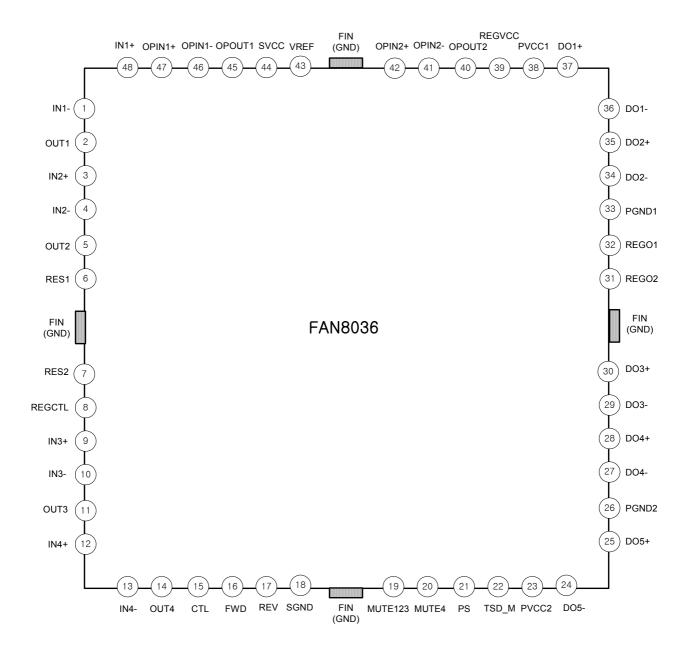
FAN80365-CH Motor Driver + 2-Regulator

Features

- 4-CH Balanced Transformerless (BTL) Driver
- 1-CH (Forward Reverse) Control DC Motor Driver
- Operating Supply Voltage $(4.5V \sim 13.2V)$
- Built in Thermal Shut Down Circuit (TSD)
- Built in Channel Mute Circuit
- Built in Power Save Mode Circuit
- · Built in TSD Monitor Circuit
- Built in 2 Regulators
- · Built in 2-OP AMPs

Description

The FAN8036 is a monolithic integrated circuit suitable for a 5-CH motor driver which drives the tracking actuator, focus actuator, sled motor, spindle motor, and tray motor of the CDP/CAR-CD/DVDP systems.

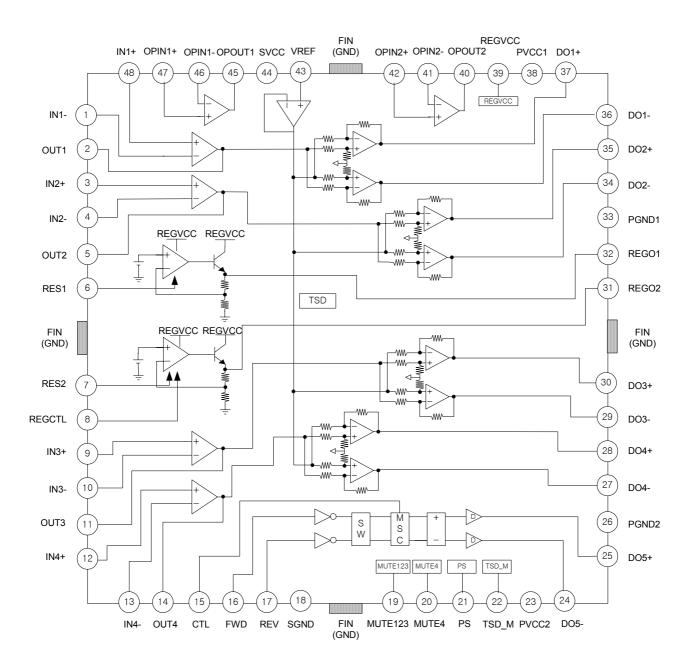

Typical Application

- · Compact Disk Player
- · Video Compact Disk Player
- Car Compact Disk Player
- · Digital Video Disk Player

Ordering Information

Device Package		Operating Temperature
FAN8036L	48-QFPH-1414	-35°C ~ +85°C
FAN8036_NL	48-QFPH-1414	-35°C ~ +85°C

Pin Assignments


Pin Definitions

Pin Number	Pin Name	I/O	Pin Function Descrition
1	IN1-	I	CH1 OP-AMP Input (-)
2	OUT1	0	CH1 OP-AMP Output
3	IN2+	I	CH2 OP-AMP Input (+)
4	IN2-	I	CH2 OP-AMP Input (-)
5	OUT2	0	CH2 OP-AMP Output
6	RES1	I	Regulator1 Reset
7	RES2	I	Regulator2 Reset
8	REGCTL	1	Regulator2 Control Voltage
9	IN3+	I	CH3 OP-AMP Input (+)
10	IN3-	I	CH3 OP-AMP Input (–)
11	OUT3	0	CH3 OP-AMP Output
12	IN4+	I	CH4 OP-AMP Input (+)
13	IN4-	I	CH4 OP-AMP Input (-)
14	OUT4	0	CH4 OP-AMP Output
15	CTL	I	CH5 Motor Speed Control
16	FWD	I	CH5 Forward Input
17	REV	I	CH5 Reverse Input
18	SGND	-	Signal Ground
19	MUTE123	I	Mute for CH1,2,3
20	MUTE4	I	Mute for CH4
21	PS	I	Power Save
22	TSD-M	0	TSD Monitor
23	PVCC2	-	Power Supply Voltage 2 (for CH3,CH4,CH5)
24	DO5-	0	CH5 Drive Ouptut (–)
25	DO5+	0	CH5 Drive Output (+)
26	PGND2	-	Power Ground 2 (for CH3,CH4,CH5)
27	DO4-	0	CH4 Drive Ouptut (–)
28	DO4+	0	CH4 Drive Output (+)
29	DO3-	0	CH3 Drive Ouptut (–)
30	DO3+	0	CH3 Drive Output (+)
31	REGO2	0	Regulator2 Ouptut
32	REGO1	0	Regulator1 Ouptut

Pin Definitions (Continued)

Pin Number	Pin Name	I/O	Pin Function Descrition
33	PGND1	-	Power Ground 1 (for CH1, CH2)
34	DO2-	0	CH2 Drive Ouptut (–)
35	DO2+	0	CH2 Drive Output (+)
36	DO1-	0	CH1 Drive Ouptut (–)
37	DO1+	0	CH1 Drive Output (+)
38	PVCC1	-	Power Supply Voltage 1 (for CH1, CH2)
39	REGVCC	-	Regulator Supply Voltage(Regulator1,2)
40	OPOUT2	0	Normal OP-AMP2 Output
41	OPIN2-	I	Normal OP-AMP2 Input (–)
42	OPIN2+	I	Normal OP-AMP2 Input (+)
43	VREF	I	Bias Voltage Input
44	SVCC	-	Signal & OPAMPs Supply Voltage
45	OPOUT1	0	Normal OP-AMP1 Output
46	OPIN1-	I	Normal OP-AMP1 Input (–)
47	OPIN1+	I	Normal OP-AMP1 Input (+)
48	IN1+	ı	CH1 OP-AMP Intput (+)

Internal Block Diagram

Equivalent Circuits

Description	Pin No	Internal Circuit
BTL INPUT & OP AMP1 INPUT	48,3,9,12,47 1,4,10,13,46	VCC VCC VCC VCC 2K 2K 2K 10 (1) (4) (9) (12) (46)
OP AMP2 INPUT	41,42	$\begin{array}{c c} VCC & VCC \\ \hline & 5K \\ \geqslant & 5K \\ \hline & \end{array}$
VREF	43	VCC VCC VCC
BTL OP AMP OUT OP AMP1 OUT	2,5,11,14,45	VCC VCC 2 (5) 11 (14) 45

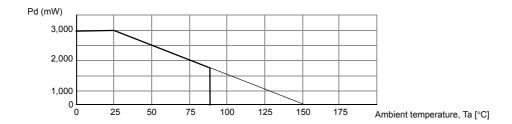
Equivalent Circuits (Continued)

Description	Pin No	Internal Circuit
OP AMP2 OUT	40	VCC VCC
MUTE123,4	19,20	VCC 20K \$ 50K \$ 50
CTL	15	VCC 1K W 39K
TSD-M	22	(22) W 20k

Equivalent Circuits (Continued)

Description	Pin No	Internal Circuit
PS	21	VCC 100k 50K 50K 50K
FWD,REV	16,17	VCC 30K 30K 30K 30K 30K 30K
BTL CH1,2,3,4 OUTPUT	27,28,29,30, 34,35,36,37	freewheeling diode vcc vcc vcc vcc vcc vcc vcc vcc vcc vc
BTL CH5 OUTPUT	24,25	freewheeling diode vcc vcc vcc vcc vcc vcc ook freewheeling diode vcc vcc vcc vcc ook freewheeling diode

Equivalent Circuits (Continued)


Description	Pin No	Internal Circuit
REGO1,2	31,32	39 REGVCC 10K \$\begin{array}{cccccccccccccccccccccccccccccccccccc
RES1,2	6,7	© 50K
REGCTL	8	8 2K ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Value	Unit
Mariana na Canada Valta na	SVCC _{MAX}	18	V
	PVCC1	18	V
Maximum Supply Voltage	PVCC2	18	V
	REGVCC	18	V
Power Dissipation	PD	3 ^{note}	W
Operating Temperature	Topr	−35 ~ +85	°C
Storge Temperature	TSTG	−55 ~ +150	°C
Maximum Output Current	IOMAX	1	Α

Note:

- 1. When mounted on the PCB of which size is $114mm \times 76mm \times 1.6mm$.
- 2. Power dissipation is derated with the rate of -24mW/°C for TA≥25°C.
- 3. Do not exceed PD and SOA.

Recommended Operating Conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating Supply Voltage	SVcc	4.5	-	13.2	V
	PVcc1	SVcc	-	13.2	V
Operating Supply Voltage	PVcc2	SVcc	-	13.2	V
	REGVcc	7	-	13.2	V

Electrical Characteristics

(SVCC =5V, PVCC1 = PVCC2 = 8V, TA = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Quiescent Circuit Current	Icc	Under no-load	-	20	-	mA
Power Save On Current	IPS*note1	Under no-load	-	-	1	mA
Power Save On Voltage	VPSON	Pin21 = Variation	-	-	0.5	V
Power Save Off Voltage	VPSOFF	Pin21 = Variation	2	-	-	V
Mute123 On Voltage	VMON123	Pin19 = Variation	-	-	0.5	V
Mute123 Off Voltage	VMOFF123	Pin19 = Variation	2	-	-	V
Mute4 On Voltage	VMON4	Pin20 = Variation	-	-	0.5	V
Mute4 Off Voltage	VMOFF4	Pin20 = Variation	2	-	-	V
BTL DRIVER CIRCUIT			•			
Output Offset Voltage	Voo	V _{IN} = 2.5V	-100	-	+100	mV
Maximum Output Voltage1	Vом1	$R_L = 10\Omega$, CH1,2	4.5	6.0	-	V
Maximum Output Voltage2	V _{OM2}	$R_L = 18\Omega, CH3,4,5$	5.5	6.5	-	V
Closed-loop Voltage Gain	AVF	VIN = 0.1Vrms	16.8	18	19.2	dB
Ripple Rejection Ratio*note2	RR	V _{IN} = 0.1Vrms, f = 120Hz	-	60	-	dB
Slew Rate*note2	SR	Square, Vout = 4Vp-p	1	2	-	V/μs
INPUT OPAMP CIRCUIT				•	•	
Input Offset Voltage1	VOF1	-	-10	-	+10	mV
Input Bias Current1	I _{B1}	-	-	-	400	nA
High Level Output Voltage1	Voн1	-	4.4	4.7	-	V
Low Level Output Voltage1	VOL1	-	-	0.2	0.5	V
Output Sink Current1	ISINK1	$R_L = 50\Omega$	1	2	-	mA
Output Source Current1	Isou1	$R_L = 50\Omega$	1	2	-	mA
Common Mode Input Range1*note2	Vicm1	-	-0.3	-	4.0	V
Open Loop Voltage Gain1*note2	GVO1	VIN = -75dB	-	80	-	dB
Ripple Rejection Ratio1*note2	RR1	V _{IN} = -20dB, f = 120Hz	-	65	-	dB
Common Mode Rejection Ratio1*note2	CMRR1	VIN = -20dB	-	80	-	dB
Slew Rate1*note2	SR1	Square, Vout = 3Vp-p	-	1.5	-	V/μs

Note:

^{1.} When the voltage at pin 39 goes below 0.5V, the power save circuit makes the main bias current sources stop operating. As a result, the whole circuits are disable. (The whole circuits mean the driver circuit, the input OP amp circuit, and the normal OP amp circuit.)

^{2.} Guaranteed field.(No EDS/Final test)

Electrical Characteristics (Continued)

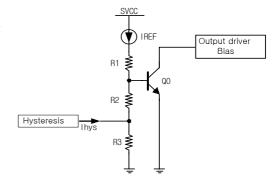
(SVCC = 5V, PVCC1 = PVCC2 = 8V, TA = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
NORMAL OP AMP CIRCUIT 1			1		I	I
Input Offset Voltage 2	VoF2	-	-10	-	+10	mV
Input Bias Current 2	I _{B2}	-	-	-	400	nA
High Level Output Voltage 2	VOH2	-	4.4	4.7	-	V
Low Level Output Voltage 2	V _{OL2}	-	-	0.2	0.5	V
Output Sink Current 2	ISINK2	RL= 50Ω	2	4	-	mA
Output Source Current 2	ISOU2	R _L = 50Ω	2	4	-	mA
Common Mode Input Range 2*note	Vicm2	-	-0.3	-	4.0	V
Open Loop Voltage Gain 2*note	G _{VO2}	V _{IN} = -75dB	-	80	-	dB
Ripple Rejection Ratio 2*note	RR2	V _{IN} = -20dB, f = 120Hz	-	65	-	dB
Common Mode Rejection Ratio 2*note	CMRR2	V _{IN} = -20dB	-	80	-	dB
Slew Rate 2*note	SR2	Square, Vout = 3Vp-p	-	1.5	-	V/μs
NORMAL OP AMP CIRCUIT 2			1		I	I
Input Offset Voltage 3	Vo _{F3}	-	-15	-	+15	mV
Input Bias Current 3	lB3	-	-	-	400	nA
High Level Output Voltage 3	Voн3	-	3	3.8	-	V
Low Level Output Voltage 3	VOL3	-	-	1.0	1.5	V
Output Sink Current 3	ISINK3	$R_L = 50\Omega$	10	-	-	mA
Output Source Current 3	Isou3	$RL = 50\Omega$	10	-	-	mA
Open Loop Voltage Gain 3 ^{*note}	G _{VO3}	V _{IN} = -75dB	-	80	-	dB
Ripple Rejection Ratio 3*note	RR3	V _{IN} = -20dB, f = 120Hz	-	65	-	dB
Common Mode Rejection Ratio 3*note	CMRR3	V _{IN} = -20dB	-	80	-	dB
Slew Rate 3*note	SR3	Square, Vout = 3Vp-p	-	1.5	-	V/μs
TRAY DRIVE CIRTUIT			11		I.	I
Input High Level Voltage	VIH	-	2	-	-	V
Input Low Level Voltage	VIL	-	-	-	0.5	V
Output Voltage 1	Vo1	PV _{CC2} = 8V, V _{CTL} = 3V, R _L = 45Ω	-	6	-	V
Output Voltage 2	V _{O2}	$PV_{CC2} = 8V, V_{CTL} = 1.5V,$ RL = 10Ω	-	3	-	٧
Output Load Regulation	ΔVRL	V _{CTL} =3V, I _L =100mA → 400mA	-	300	700	mV
Output Offset Voltage 1	V001	V _{IN} = 5V, 5V	-40	-	+40	mV
Output Offset Voltage 2	V002	V _{IN} = 0V, 0V	-40	-	+40	mV

Note: Guaranteed field.(No EDS/Final test)

Electrical Characteristics (Continued)

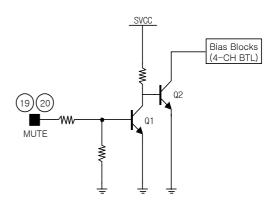
(SVCC = 5V, PVCC1 = PVCC2 = 8V, TA = 25°C, unless otherwise specified)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
REGULATOR1 CIRCUIT(REGVCC=8V)					
Load regulation	Δ VRL1	IL=0→□200mA	-80	0	0	mV
Line regulation	ΔVcc1	IL=200mA,V=7V→□9V	-20	0	+30	mV
Regulator output voltage 1	VREG1	IL=100mA	4.75	5.0	5.25	V
Regulator reset on voltage 1	Reson1	Pin6=Variation	-	-	0.5	V
Regulator reset off voltage 1	Resoff1	Pin6=Variation	2	-	SVCC	V
Ripple Rejection 1*note	RR1	Vin=1Vp-p, f=120Hz	-	55	-	dB
REGULATOR2 CIRCUIT(REGVCC=8V)					
Load regulation	Δ VRL2	IL=0→□200mA	-80	0	0	mV
Line regulation	ΔVCC2	IL=200mA,V=7V→□9V	-20	0	+30	mV
Regulator output voltage 2 range	VREG2R	IL=100mA	1.5	-	4.5	V
Regulator output voltage 2	VREG2	IL=100mA,VREGCTL=0V	1.482	1.56	1.638	V
Regulator output voltage 2	VREG2	IL=100mA,VREGCTL=1.9V	3.135	3.3	3.465	V
Regulator reset on voltage 2	Reson2	Pin7=Variation	-	-	0.5	V
Regulator reset off voltage 2	Resoff2	Pin7=Variation	2	1	SVCC	V
Control Gain	GREGCTL	-	0.75	0.95	1.15	V/V
Ripple Rejection 2*note	RR2	Vin=1Vp-p, f=120Hz	-	55	-	dB

Note: Guaranteed field.(No EDS/Final test)

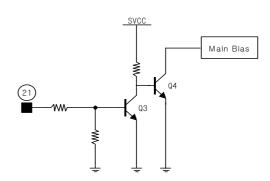
Application Information

1. Thermal Shutdown


• The TSD circuit is activated at the junction temperature of 160°C and deactivated at 135°C with the hysteresis of 25°C. During the thermal shutdown, the TSD circuit keeps all the output driver off.

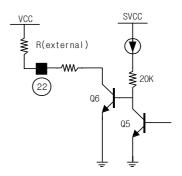
2. CH Mute Function

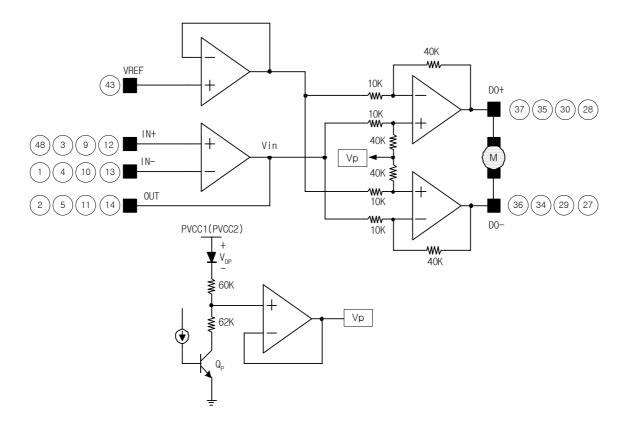
- When the mute pin is high, the TR Q1 is on and Q2 is off, so the bias circuit is enabled. When the mute pin is low (GND), the TR Q1 is off and Q2 is on, so the bias circuit is disabled.
- During the mute on state, all the circuit blocks except for the variable regulator remain off, and the low power quiescent state is established.
- · Truth table is as follows;


Pin 19, 20	Mute
High	Mute-Off
Low	Mute-On

3. Power Save Function

- When the pin21 is high, the TR Q3 becomes on and Q4 off, so the bias circuit is enabled. When the pin21 is low (GND), the TR Q3 becomes off and Q4 is on, so the bias circuit is disabled.
- During the power save on state, this function keeps all the circuit blocks off, and the low power quiescent state is established.
- Truth table is as follows;


Pin21	Power Save
High	Power Save Off
Low	Power Save On

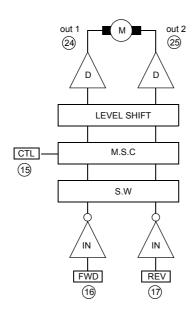

4. TDS Monitor Function

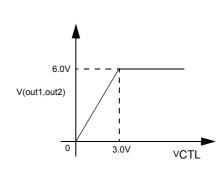
- Pin 22 is TSD monitor pin, which detects the state of the TSD block and generates the TSD-monitor signal.
- In the normal state Q5 is on, and Q6 is off. When the TSD block is activated Q5 becomes off, and thus the voltage of pin22 keeps low.
- Truth table is as follows;

TSD	Pin22
TSD Off	High
TSD On	Low

5. Focus, Tracking Actuator, Spindle, Sled Motor Drive Part

- The Vref at pin 43 is for eliminating the dc components from the input signals and can set by an exteranl circuit.
- The voltage gain from Vin to output is as follows;

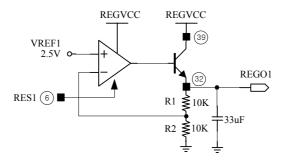

$$\label{eq:Vin} \begin{split} &\text{Vin} = \text{Vref} + \Delta \text{V} \\ &\text{DOP} = \text{V}_{\text{D}} + 4\Delta \text{V} \\ &\text{DON} = \text{V}_{\text{D}} - 4\Delta \text{V} \\ &\text{Vout} = \text{DOP} - \text{DON} = 8\Delta \text{V} \\ &\text{Gain} = 20 \text{log} \frac{\text{Vout}}{\Delta \text{V}} = 20 \text{log8} = 18 \text{dB} \end{split}$$


- Where ΔV means just ac component.
- The total input to output voltage gain is the sum of the input OP amp network gain and 18dB.
- The output stage is the balanced transformerless (BTL) driver.
- The bias voltage Vp is expressed as;

$$V_{P} = (PVCC1 - V_{DP} - V_{CESAT}Q_{P}) \times \frac{62k}{60k + 62k} + V_{CESAT}Q_{P}$$

$$= \frac{PVCC1 - V_{DP} - V_{CESAT}Q_{P}}{1.97} + V_{CESAT}Q_{P} \qquad (1)$$

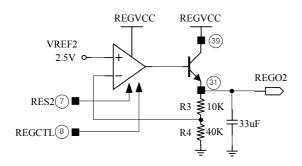
6. Tray, Changer, panel Motor Drive Part

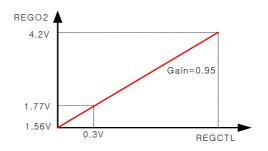


Rotational direction control
 The forward and reverse rotational direction is controlled by FWD (pin16) and REV (pin17) and the input conditions are as follows;

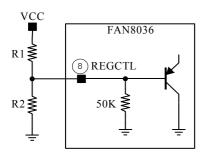
INF	PUT		OUTPUT	
FWD	REV	OUT 1	OUT 2	State
Н	Н	Vp	Vp	Brake
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
L	L	-	-	Hign impedance

- Where Vp(Power reference voltage) is approximately 3.75V at PVCC2=8V according to equation (1).
- Motor speed control (When SVCC=5V, PVCC2=8V)
 - The maximum torque is obtained when the pin15(CTL) is open.
 - If the voltage of the pin15 (CTL) is 0V, the motor will not operate.
 - When the control voltage (pin15) is between 0 and 3.0V, the differential output voltage V(out1,out2) is about two times of control voltage. The output gain is 6dB.
 - When the control voltage is greater than 3.0V, the output voltage is saturated at the 6.0V because of the output swing limitation.


7. Regulator1 Part

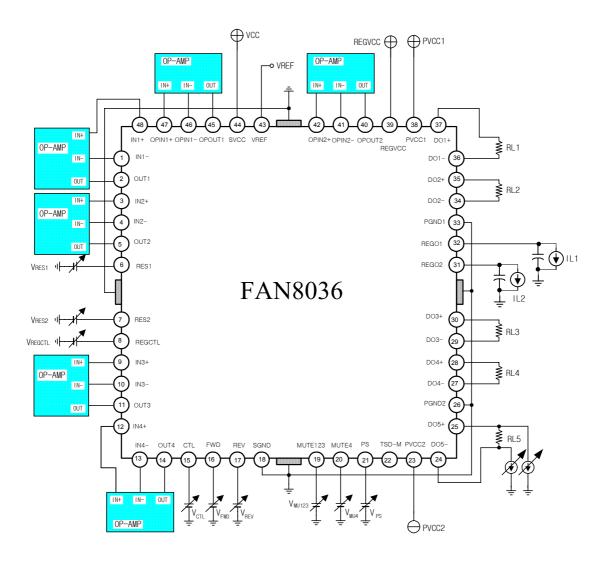


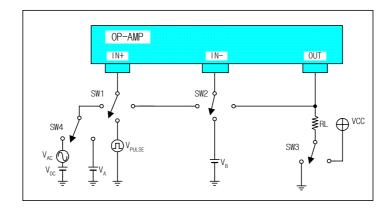
- The output voltage of the regulator1 is fixed to 5V.When power save on or TSD on, regulator1 is disabled.
- Truth table is as follows;


RES1(Pin6)	REGO1	
HIGH	Active	
LOW	Deactive	

8. Regulator2 Part

- The output of the regulator2 is variable.
- The input impedance of the REGCTL pin is $50k\Omega$.
- The REGCTL input circuit is as follows;

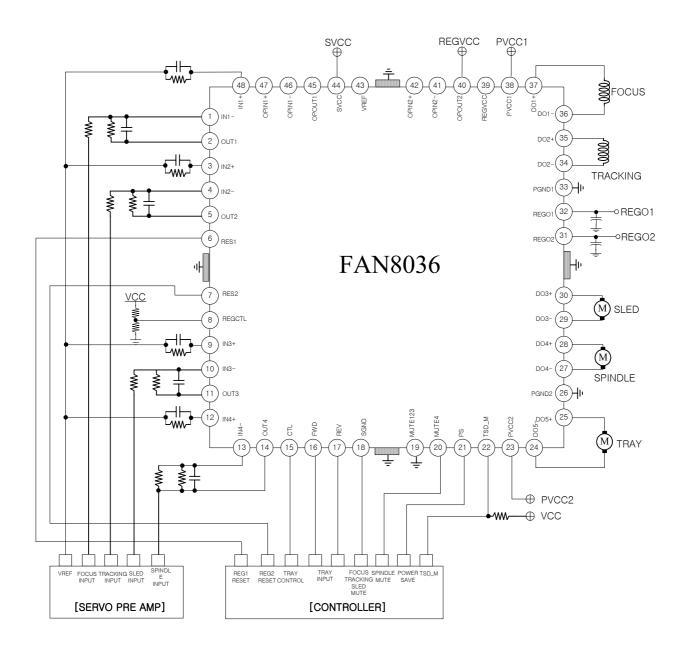

• The output voltage(VREGO2) is decided as follows;


$$VREGO2 = (1.56V + V_{REGCTL}) \times 0.95$$

- When the REGCTL pin is connect to the ground or open, the regulator output voltage becomsel.56V.
- When power save on or TSD on, regulator2 is disabled.
- Truth table is as follows;

RES2(Pin7)	REGO2	
HIGH	Active	
LOW	Deactive	

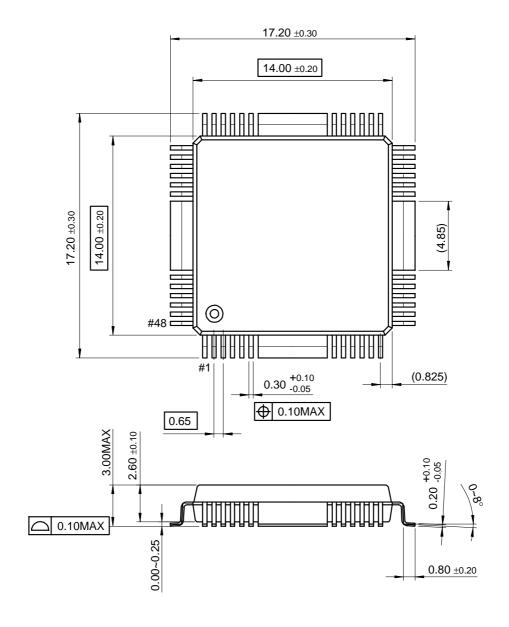
Test Circuits


Typical Application Circuits 1

[Voltage control mode]

Typical Application Circuits 2

[Differential PWM control mode]


Notes:

Radiation pin is connected to the internal GND of the package.

Mechanical Dimensions

Package

48-QFPH-1414

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative