

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

June 2001 Revised August 2003

FIN1047

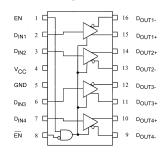
3.3V LVDS 4-Bit Flow-Through High Speed Differential Driver

General Description

This quad driver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350mV which provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed transfer of clock and data.

The FIN1047 can be paired with its companion receiver, the FIN1048, or any other LVDS receiver.

Features


- Greater than 400Mbs data rate
- Flow-through pinout simplifies PCB layout
- 3.3V power supply operation
- 0.4 ns maximum differential pulse skew
- 1.7 ns maximum propagation delay
- Low power dissipation
- Power-Off protection
- Meets or exceeds the TIA/EIA-644 LVDS standard
- Pin compatible with equivalent RS-422 and LVPECL devices
- 16-Lead SOIC and TSSOP packages save space

Ordering Code:

Order Number	Package Number	Package Description			
FIN1047M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
FIN1047MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

	Inputs	Outputs			
EN	EN	D _{IN}	D _{OUT+}	D_{OUT^-}	
Н	L or OPEN	Н	Н	L	
Н	L or OPEN	L	L	Н	
Н	L or OPEN	OPEN	L	Н	
Х	Н	Х	Z	Z	
L or OPEN	Х	Х	Z	Z	

H = HIGH Logic Level L = LOW Logic Level

X = Don't Care Z = High Impedance

Pin Descriptions

Pin Name	Description		
D _{IN1} , D _{IN2} , D _{IN3} , D _{IN4}	LVTTL Data Inputs		
D _{OUT1+} , D _{OUT2+} , D _{OUT3+} , D _{OUT4+}	Non-Inverting Driver Outputs		
D _{OUT1-} , D _{OUT2-} , D _{OUT3-} , D _{OUT4-}	Inverting Driver Outputs		
EN	Driver Enable Pin		
ĒN	Inverting Driver Enable Pin		
V _{CC}	Power Supply		
GND	Ground		

Absolute Maximum Ratings(Note 1)

 $\label{eq:supply Voltage VCC} \begin{array}{ll} \text{Supply Voltage (V}_{\text{CC}}) & -0.5 \text{V to } +4.6 \text{V} \\ \text{DC Input Voltage (V}_{\text{IN}}) & -0.5 \text{V to } +6 \text{V} \\ \end{array}$

Lead Temperature (T_L) 260°C

(Soldering, 10 seconds)

ESD (Human Body Model) \geq 9000V ESD (Machine Model) \geq 1200V

Recommended Operating Conditions

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Units
V _{OD}	Output Differential Voltage		250	340	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	$R_L = 100\Omega$, Driver Enabled,		1.4	25	mV
Vos	Offset Voltage	See Figure 1	1.125	1.25	1.375	V
ΔV _{OS}	Offset Magnitude Change from Differential LOW-to-HIGH			1.2	25	mV
V _{OH}	HIGH Output Voltage	$V_{IN} = V_{CC}$		1.4	1.6	V
V _{OL}	LOW Output Voltage	$V_{IN} = 0V$	0.9	1.05		V
l _{OFF}	Power Off Output Current	V _{CC} = 0V, V _{OUT} = 0V or 3.6V	-20		20	μΑ
los	Short Circuit Output Current	V _{OUT} = 0V, Driver Enabled V _{OD} = 0V, Driver Enabled		-3 -3.5	-6 -6	mA
V _{IH}	Input HIGH Voltage		2.0		V _{CC} + 1.0	V
V _{IL}	Input LOW Voltage (Note 3)		GND		0.8	V
I _{IN}	Input Current	V _{IN} = 0V or V _{CC}	-20		20	μА
l _{OZ}	Disabled Output Leakage Current	V _{OUT} = 0V or 4.6V	-20		20	μΑ
I _{I(OFF)}	Power-Off Input Current	$V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$	-20		20	μΑ
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA	-1.5	-0.7		V
I _{cc}	Power Supply Current	No Load, $V_{IN} = 0V$ or V_{CC} , Driver Enabled		5	8	
		$R_L = 100 \Omega$, Driver Disabled		1.7	4	mA
		R_L = 100 Ω,V_{IN} = 0V or $V_{CC},Driver$ Enabled		16	22	
I _{PU/PD}	Output Power Up/Power Down High Z Leakage Current	V _{CC} = 0V or 1.5V	-20		20	μА

Note 2: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Note 3: For transient conditions when $t \leq 5 ns$ and $I_{IN} \leq -100$ mA, $V_{ILmin} = -1.0 V.$

AC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 4)	Max	Units
t _{PLHD}	Differential Propagation Delay		0.6	1.1	1.7	ns
	LOW-to-HIGH		0.0	1.1	1.7	115
t _{PHLD}	Differential Propagation Delay		0.6	1.2	1.7	ns
	HIGH-to-LOW		0.0	1.2	1.7	115
t _{TLHD}	Differential Output Rise Time (20% to 80%)	$R_L = 100 \Omega, C_L = 10 pF,$	0.4		1.2	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	See Figure 2 (Note 8), and Figure 3	0.4		1.2	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}				0.4	ns
t _{SK(LH)}	Channel-to-Channel Skew			0.05	0.3	ns
t _{SK(HL)}	(Note 5)			0.03	0.5	113
t _{SK(PP)}	Part-to-Part Skew (Note 6)				1.0	ns
f _{MAX}	Maximum Frequency (Note 7)	$R_L = 100\Omega$, See Figure 6 (Note 8)	200	250		MHz
t _{ZHD}	Differential Output Enable Time from Z to HIGH			1.7	5.0	ns
t _{ZLD}	Differential Output Enable Time from Z to LOW	$R_L = 100\Omega, C_L = 10 pF,$		1.7	5.0	ns
t _{HZD}	Differential Output Disable Time from HIGH to Z	See Figure 4 (Note 8), and Figure 5		2.7	5.0	ns
t _{LZD}	Differential Output Disable Time from LOW to Z	1		2.7	5.0	ns
C _{IN}	Input Capacitance			4.2		pF
C _{OUT}	Output Capacitance			5.2		pF

Note 4: All typical values are at $T_A = 25$ °C and with $V_{CC} = 3.3$ V.

Note 5: $t_{SK(LH)}$, $t_{SK(HL)}$ is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction

Note 6: t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

 $\textbf{Note 7:} \ \textbf{f}_{MAX} \ \text{criteria: Input} \ \textbf{t}_{R} = \textbf{t}_{F} < \textbf{1ns, 0V to 3V, 50\%} \ \textbf{Duty Cycle; Output V}_{OD} > \textbf{250 mv, 45\% to 55\%} \ \textbf{Duty Cycle; all switching in phase channels.}$

Note 8: Test Circuits in Figures 2, 4, 6 are simplified representations of test fixture and DUT loading.

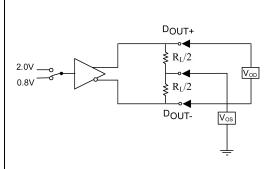
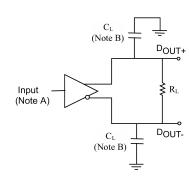



FIGURE 1. Differential Driver DC Test Circuit

 $\label{eq:Note A: All input pulses have frequency = 10 MHz, t_R or $t_F = 1$ ns. \\ \begin{tabular}{ll} Note B: C_L includes all fixture and instrumentation capacitance \end{tabular}$

FIGURE 2. Differential Driver Propagation Delay and Transition Time Test Circuit

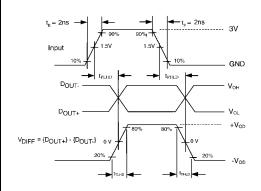
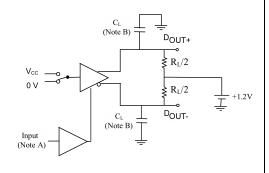



FIGURE 3. AC Waveforms

Note B: All input pulses have the frequency = 10 MHz, t_R or t_F = 1 ns

Note A: C_L includes all fixture and instrumentation capacitance

FIGURE 4. Differential Driver Enable and Disable Test Circuit

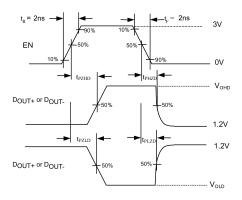


FIGURE 5. Enable and Disable AC Waveforms

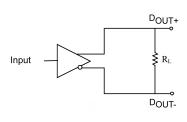
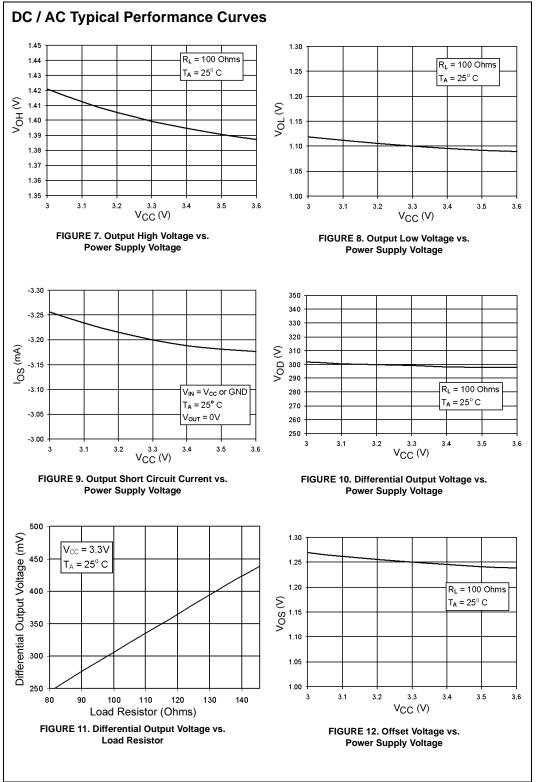
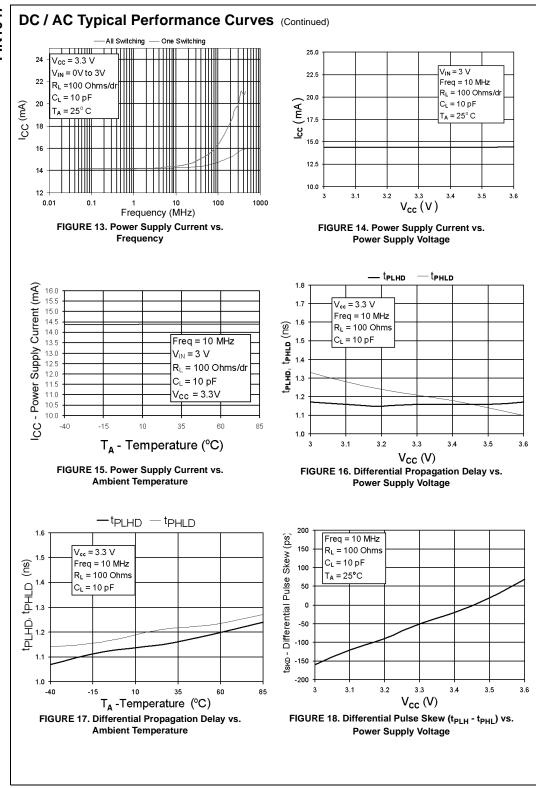




FIGURE 6. f_{MAX} Test Circuit

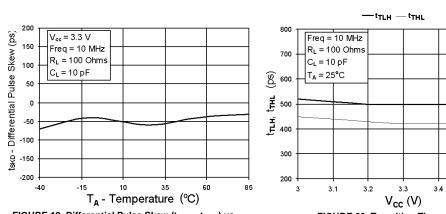


FIGURE 19. Differential Pulse Skew (t_{PLH} - t_{PHL}) vs. Ambient Temperature

DC / AC Typical Performance Curves (Continued)

FIGURE 20. Transition Time vs. Power Supply Voltage

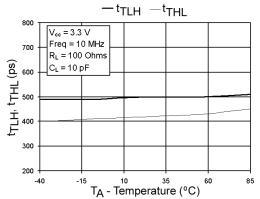
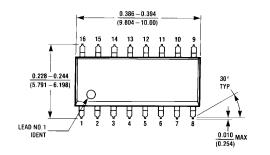
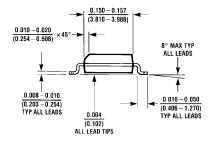
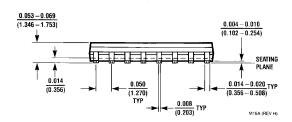
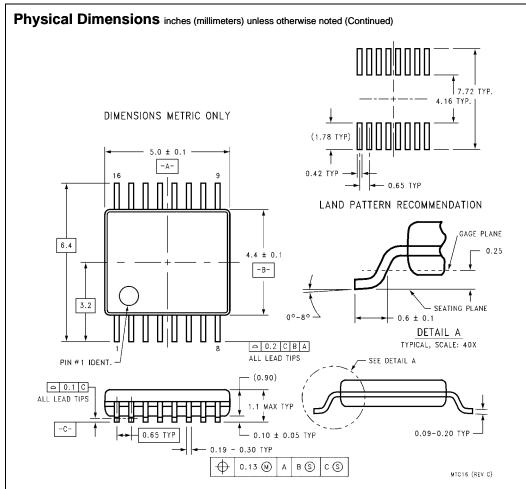





FIGURE 21. Transition Time vs. Ambient Temperature


Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FIN1047MTCX FIN1047MTC FIN1047MX