

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

December 2009

SerDes FIN210AC

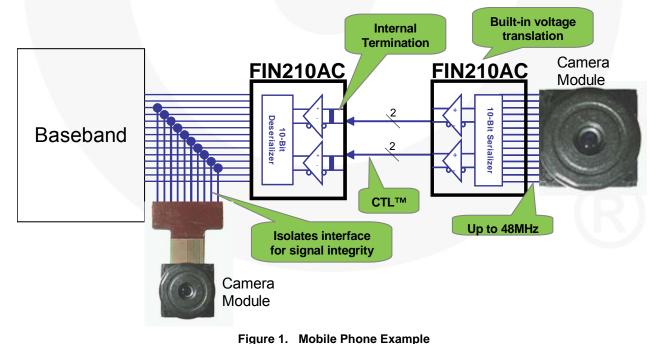
10-Bit Serializer / Deserializer Supporting Cameras and Small Displays up to 48MHz

Features

10-bit
48MHz
Camera or LCD
Microcontroller, RGB, YUV
m68 & i86
Yes
<10µA
2.8 to 3.6V
1.65 to 3.6V
15kV
32-Terminal MLP
42-Ball USS-BGA
FIN210ACMLX
FIN210ACGFX

Description

The FIN210AC µSerDes™ is a low-power serializer / deserializer optimized for use in cell phone displays and camera paths. The device reduces a 10-bit data path to four wires. For camera applications, an additional master clock can be passed in the opposite direction of data flow. The device utilizes Fairchild's proprietary ultra-low power, low-EMI technology.

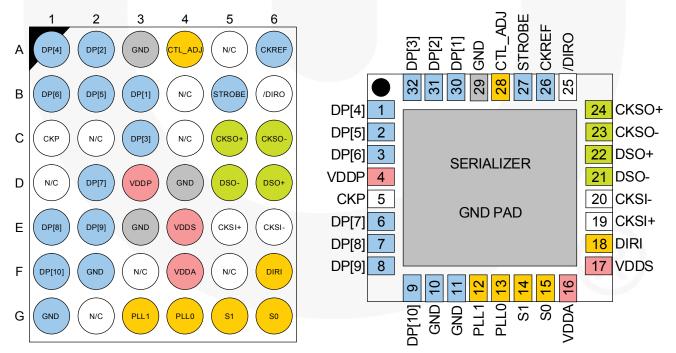

Applications

- Slider, Folder, & Clamshell Mobile Handsets
- Printers
- Security Cameras

Related Resources

 For samples and questions, please contact: Interface@fairchildsemi.com.

Typical Application


FIN210AC (Serializer DIRI=1) Pin Descriptions

Pin Name	Description					
DIDI	Control to determine equiplines or descriptions configuration	0				
DIRI	Control to determine serializer or deserializer configuration.	1	Serializer			
CTL_ADJ	Adjusts CTL drive to compensate for environmental conditions	0	Low drive (low power)			
CTL_AD0	and length.	1	High drive (high power	-)		
S0	Configure frequency range for the PLL.	S	ee Table 1 Serializer (D	IRI=1) Control Pin.		
S1	Configure frequency range for the PLL.	S	ee Table 1 Serializer (D	IRI=1) Control Pin.		
PLL0	Divide or adjust the serial frequency.	S	ee Table 1 Serializer (D	IRI=1) Control Pin.		
PLL1	Divide or adjust the serial frequency.	S	ee Table 1 Serializer (D	IRI=1) Control Pin.		
CKREF	LV-CMOS clock input and PLL reference.					
STROBE	LV-CMOS strobe input for latching data (DP [1:12]) into the seria	izer	on the rising edge.			
DP[1:10]	LV-CMOS parallel data input. (GND input if not used)					
CKSO+ / CKSO-	CTL Differential serializer output bit clock. CKSO+: Positive signa	ıl; C	KSO-: Negative signal.			
DSO+ / DSO-	CTL Differential serial output data signals. DSO+: Positive signal	DS	O-: Negative signal.			
CKSI+ / CKSI-	CTL Differential deserializer input bit clock. CKSI+: Positive signal; CKSI-: Negative signal.	N	o connect unless in "clo	ck pass-through" mode.		
CKP	LV-CMOS word clock output or Pixel clock output.	No	connect unless in "clo	ck pass-through" mode.		
/DIRO	LV-CMOS output, Inversion of DIRI in normal operation. Can be signal of the deserializer where the interface needs to be turned a			No connect if not used.		
VDDP	Power supply for parallel I/O. (All VDDP pins must be connected	to \	/DDP)			
VDDS	Power supply for serial I/O.					
VDDA	Power supply for core.					
GND	All GND pins must be connected to ground. BGA: all GND pads. grounded.	MLF	P: Pins 10, 11, 29, and 0	SND PAD must be		
N/C	No connect. (Do not connect to GND or VDD)					

Note:

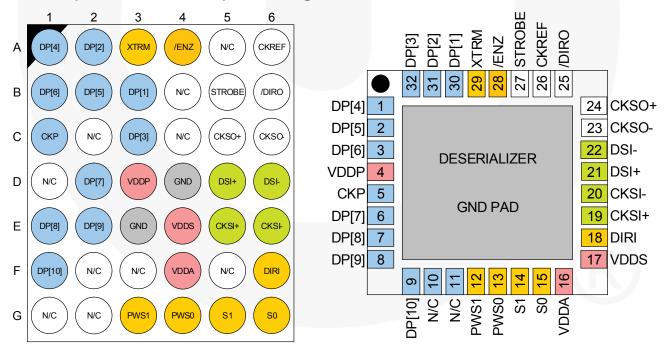
1. 0=GND; 1=VDDP

FIN210AC (Serializer DIRI=1) Pin Configurations

42-Ball BGA, 3.5 x 4.5mm, .5mm pitch (Top View)

32-pin MLP, 5 x 5mm, .5mm pitch (Top View) (Center pad must be grounded)

Figure 2. FIN210AC (Serializer DIRI=1) Pin Assignments (Top View)


FIN210AC (Deserializer DIRI=0) Pin Descriptions

Pin Name	Description					
DIRI	Control to determine serializer or deserializer configuration.	0 Deserializer				
Birti	Control to determine contained of decemanical configuration.	1 Serializer				
XTERM	Control to determine if using internal or external termination	Internal termination used				
XI LI (IVI	Control to determine if doing internal of external termination	External termination required on CKSI & DSI				
S0	Signals used to define the edge rate of parallel I/O.	See Table 2 Deserializer (DIRI=0) Control Pin.				
S1	Signals used to define the edge rate of parallel I/O.	See Table 2 Deserializer (DIRI=0) Control Pin.				
PWS0	Configure CKP pulse width.	See Table 2 Deserializer (DIRI=0) Control Pin.				
PWS1	Configure CKP pulse width.	See Table 2 Deserializer (DIRI=0) Control Pin.				
/ENZ	High-Z or known state outputs during power down	See Table 5 Deserializer (DIRI=0) Control Pin.				
DP[1:10]	LV-CMOS parallel data output. (N/C if not used)					
CKP	LV-CMOS word clock output or Pixel clock output.					
DSI+ / DSI-	CTL Differential serial input data signals. DSI+: Positive signal; D	SI-: Negative signal.				
CKSI+ / CKSI-	CTL Differential deserializer input bit clock. CKSI+: Positive signa	al; CKSI-: Negative signal.				
CKSO+ / CKSO-	CTL Differential serializer output bit clock. CKSO+: Positive signal; CKSO-: Negative signal.	No connect unless in "clock pass-through" mode.				
CKREF	LV-CMOS clock input and PLL reference.	No connect unless in "clock pass-through" mode.				
STROBE	LV-CMOS strobe input for latching data into the serializer.	No connect unless in "clock pass-through" mode.				
/DIRO	LV-CMOS Output. Inversion of DIRI in normal operation.	No connect if not used.				
VDDP	Power supply for parallel I/O. (All VDDP pins must be connected	to VDDP)				
VDDS	Power supply for serial I/O.					
VDDA	Power supply for core.					
GND	All GND pins must be connected to ground. BGA: all GND pads.	MLP: GND PAD must be grounded.				
N/C	No connect. BGA: G1, F2; MLP: 10, 11; (Do not connect to GND	or VDD)				

Note:

2. 0=GND; 1=VDDP

FIN210AC (Deserializer DIRI=0) Pin Configurations

42-Ball BGA, 3.5 x 4.5mm, .5mm pitch (Top View)

32-pin MLP, 5mm x 5mm, .5mm pitch (Top View) (Center pad must be grounded)

Figure 3. FIN210AC (Deserializer DIRI=0) Pin Assignments (Top View)

System Control Pin

Table 1. Serializer (DIRI=1) Control Pin

		Function					
Conditions	CKREF	STROBE	PLL Multiplier	PLL0	PLL1	S0	S1
	Sid	ow Frequencies					
Normal operation	5MHz to 15MHz	≤ CKREF (Up to 15MHz)	1	1	0	0	1
Supports spread spectrum on CKREF	5MHz to 14.2MHz	≤ CKREF (Up to 14.2MHz)	0.947	0	0	0	1
With a fixed CKREF input; STROBE can be 1/2 the speed	5MHz to 15MHz	≤ CKREF / 2 (Up to 7.5MHz)	2	0	1	0	1
With a fixed CKREF input; STROBE can be 1/3 the speed	5MHz to 15MHz	≤ CKREF / 3 (Up to 5MHz)	3	1	1	0	1
	Med	lium Frequencies					
Normal operation	10MHz to 30MHz	≤ CKREF (Up to 30MHz)	1	1	0	1	1
Supports spread spectrum on CKREF	10MHz to 28.4MHz	≤ CKREF (Up to 28.4MHz)	0.947	0	0	1	1
With a fixed CKREF input; STROBE can be 1/2 the speed	10MHz to 30MHz	≤ CKREF / 2 (Up to 15MHz)	2	0	1	1	1
With a fixed CKREF input; STROBE can be 1/3 the speed	10MHz to 30MHz	≤ CKREF / 3 (Up to 10MHz)	3	1	1	1	1
	Fa	st Frequencies					
Normal operation	18MHz to 48MHz	≤ CKREF (Up to 48MHz)	1	1	0	1	0
Supports spread spectrum on CKREF	18MHz to 45.4MHz	≤ CKREF (Up to 45.4MHz)	0.947	0	0	1	0
With a fixed CKREF input; STROBE can be 1/2 the speed	18MHz to 48MHz	≤ CKREF / 2 (Up to 24MHz)	2	0	1	1	0
With a fixed CKREF input; STROBE can be 1/3 the speed	18MHz to 48MHz	≤ CKREF / 3 (Up to 16MHz)	3	1	1	1	0
	Power-Down			Х	Х	0	0

Table 2. Deserializer (DIRI=0) PWS Control Pins (Pulse Width Examples)

CKP to STROBE	CKP F	Pulse Width Low	/ Time	Refei	rence	Con	trol Pin			
	CKREF=19.2 MHz	CKREF=26 MHz	CKREF=48 MHz	PLL Multiplier (Serializer)	Pwidth Multiplier	PWS0	PWS1			
	Serializer PLL Multiplier = 3									
Non-Inverted	78.1ns	57.7ns	31.2ns	3	6	0	0			
Inverted	78.1ns	57.7ns	31.2ns	3	6	1	0			
Non-Inverted	156.3ns	115.4ns	62.5ns	3	12	0	1			
Non-Inverted	208.3ns	153.8ns	83.3ns	3	16	1	1			
		Serializer P	LL Multiplier = 2	2						
Non-Inverted	52.1ns	38.5ns	20.8ns	2	6	0	0			
Inverted	52.1ns	38.5ns	20.8ns	2	6	1	0			
Non-Inverted	104.2ns	76.9ns	41.7ns	2	12	0	1			
Non-Inverted	138.9ns	102.6ns	55.6ns	2	16	1	1			
		Serializer P	LL Multiplier =	1						
Non-Inverted	26ns	19.2ns	10.4ns	1	6	0	0			
Inverted	26ns	19.2ns	10.4ns	1	6	1	0			
Non-Inverted	52.1ns	38.5ns	20.8ns	1	12	0	1			
Non-Inverted	69.4ns	51.3ns	27.8ns	1	16	1	1			
	Power-Down			Х	Х	0	0			

Table 3. Deserializer S0 & S1 Control Pins (Note: All edge rates are typical values.)

LVCMOS Output Edge Ra	S0	S1	
Slow Edge Rates	~7 - 8ns (C _L = 8pF)	0	1
Medium Edge Rates	~4 - 5ns (C _L = 8pF)	1	1
Fast Edge Rates	~2 - 3ns (C _L = 8pF)	1	0
Power Down		0	0

Pulse Width Calculations

CKP Pulse Width Low Time=(PLL Multiplier • Pwidth Multiplier) / (CKREF•12)

(1)

Example: CKREF=26MHz; PLL Multiplier=1; Pwidth Multiplier=6

CKP Pulse width=(1 • 6) / (26MHz • 12)=19.2ns

(2)

CKREF = Strobe 50% Duty Cycle

If CKREF = Strobe the below control states will provide a ~ 50% duty cycle pulse width output on CKP

Table 4. CKREF = Strobe 50% Duty Cycle

Ser	ializer	Deser	ializer
PLL0	PLL1	PWS0	PWS1
1	0	0	0

Power-Down States

When both S1 and S0 signals are 0, regardless of the state of the DIRI signal, the FIN210AC resets and powers down. The power-down mode shuts down all internal analog circuitry, disables the serial input and output of the device, and resets all internal digital logic. Table 5 indicates the state of the input states and output buffers in Power-Down mode.

Table 5. Power-Down

Signal Pins	DIRI=1 (Serializer)	DIRI=0 (Deserializer) /ENZ = 0	DIRI=0 (Deserializer) /ENZ = 1
DP[1:10]	Inputs Disabled	Outputs High-Z	Outputs Low
CKP	HIGH	High-Z	High
STROBE	Input Disabled	Input Disabled	Input Disabled
CKREF	Input Disabled	Input Disabled	Input Disabled
/DIRO	0	1	1

Clock Pass-Through Mode

Clock pass-through mode allows a harmonic rich clock source to be sent to the serializer in a CTL format to reduce the overall harmonic content of the phone, and can reduce the need for EMI filters. The Master Clock Pass through mode performs a translation to the clock in the CTL link, and does not serialize this signal. The following describes how to enable this functionality for an image sensor (See Figure 6).

Deserializer Configuration (DIRI=0)

- Connect CKREF(BGA pin A6) to GROUND
- 2. Connect master clock to STROBE (BGA pin B5)

Serializer Configuration (DIRI=1)

1. CKSI passes master clock to CKP output (BGA pin C1)

CKREF and STROBE Signals

Please note that there is a setup and hold time between STROBE and data that must be met as seen on the electrical characteristics section. The relationship between CKREF and STROBE can be synchronous or asynchronous depending on what is available in the system. It is suggested that if the signals are synchronous and in normal operation that CKREF is tied to STROBE as close to the chip as possible. If you are running an asynchronous or spread spectrum setup, please be aware this may result on cycle jitter on the CKP signal. They cycle jitter does not effect the output data and clock relationship, the display or end application should continue to work as normal.

PLL Note

Please note that the PLL ranges can overlap, power consumption can be reduced by selecting the operation in the lower end of the higher speed PLL range.

Application Diagrams

The following application diagrams illustrate the most typical applications for the FIN210 device. Specific configurations of the control pins may vary based on the needs of a given system. The following recommendations are valid for all of the applications shown.

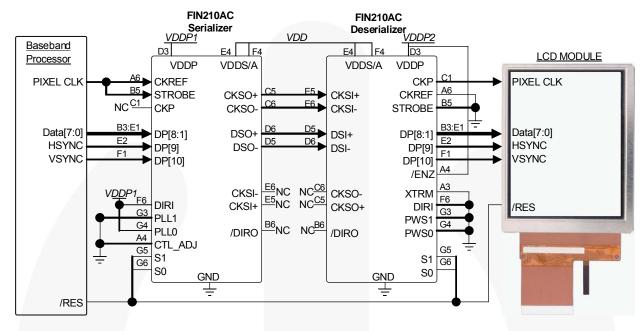


Figure 4. 8-Bit RGB Application (Example Shows BGA 42-Pin Package)

Serializer Configuration:

10MHz to 30MHz Frequency Range (S1=S0=1)

Normal Mode (PLL1=0; PLL0=1)

Deserializer Configuration:

- ~4 5ns output edge rates (S1=S0=1)
- ~50% CKP PW,(PWS1=PWS0=0)

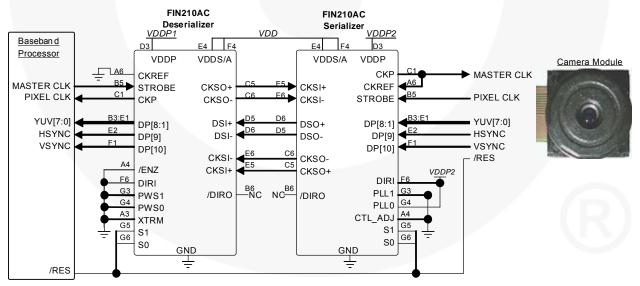


Figure 5. 8-Bit YUV 1.3MPixel CMOS Imager (Example Shows BGA 42-Pin Package)

Deserializer Configuration:

- ~2 3ns output edge rates (S1=0, S0=1)
- ~50% CKP PW,(PWS1=PWS0=0)

Serializer Configuration:

18MHz to 48MHz Frequency Range (S1=0, S0=1)

Normal Mode (PLL1=0, PLL0=1)

Application Diagrams (Continued)

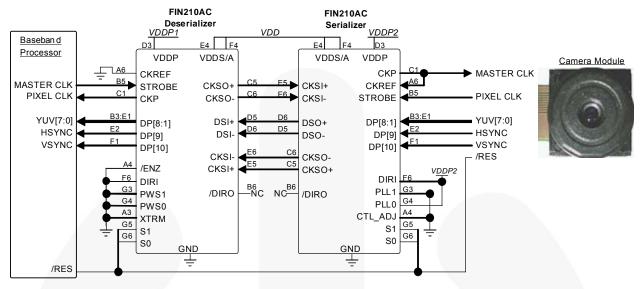


Figure 6. 8-Bit YUV 1.3MPixel CMOS Imager In Clock Pass-Through Mode

Serializer Configuration:

18MHz to 48MHz Frequency Range (S1=0, S0=1)

Normal Mode (PLL1=0; PLL0=1)

Master clock bypass mode.

Deserializer Configuration:

 \sim 2 – 3ns output edge rates (S1=0, S0=1)

~50% CKP PW,(PWS1=PWS0=0)

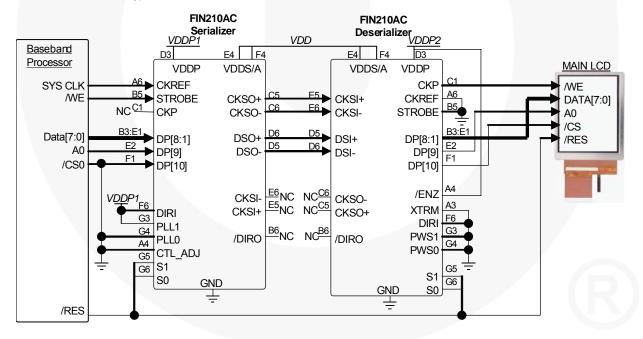


Figure 7. 8-Bit WRITE-Only Microcontroller Interface (Example Shows BGA 42-Pin Package)

Serializer Configuration:

18MHz to 48MHz Frequency Range (S1=0, S0=1)

CKREF is twice as fast STROBE (PLL1=1; PLL0=0)

CKREF=26MHz & STROBE Frequency=10 MHz

Deserializer Configuration:

~7 – 8ns output edge rates (S1=1, S0=0)

~50% CKP PW,(PWS1=PWS0=0)

Additional Application Information

Flex Cabling: The serial I/O information is transmitted at a high serial rate. Care must be taken implementing this serial I/O flex cable. The following best practices should be used when developing the flex cabling or Flex PCB.

- Keep all four differential Serial Wires the same length.
- Do not allow noisy signals over or near differential serial wires.
 Example: No LVCMOS traces over differential serial wires.
- Use only one ground plane or wire over the differential serial wires. Do not run ground over top and bottom.
- Design goal of 100Ω differential characteristic impedance.
- Do not place test points on differential serial wires.
- Use differential serial wires a minimum of 2cm away from the antenna.
- For additional applications notes or flex guidelines see your sales representative or contact Fairchild directly.
- For samples and questions, please contact: lnterface@fairchildsemi.com.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{DD}	Supply Voltage		-0.5V	+4.6	V
	All Input/Output Voltage		-0.5	V _{DD} +0.5	V
	CTL Output Short-Circuit Duration		Continuous		
T _{STG}	Storage Temperature Range		-65	+150	°C
T_J	Maximum Junction Temperature		+150		°C
TL	Lead Temperature (Soldering, four seconds)		+260		°C
	Human Bady Madel JESD22 A111	Serial I/O Pins to GND		12	
ESD	Human Body Model JESD22-A114	All Pins		8	kV
EOD	Charged Device Model, JESD22-C10	1		2	KV
	IEC61000-4-2			15	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{DDA}, V_{DDS}	Supply Voltage	2.8	3.6	V
V_{DDP}	Supply Voltage	1.65	3.60	V
T _A	Operating Temperature	-30	+70	°C
V_{DDA-PP}	Supply Noise Voltage	100		mV_{PP}

DC Electrical Characteristics

Values are provided for over-supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
LVCMOS I/	0		_	•	•		
V _{IH}	Input High Voltage			0.65xV _{DDP}		V_{DDP}	
V _{IL}	Input Low Voltage			GND		$0.35 \text{xV}_{\text{DDP}}$	V
	Output High Voltage		I _{OH} =-2.0mA, S1=0,S0=1				
V_{OH}			I _{OH} =-0.4mA, S1=1,S0=0	0.75xV _{DDP}		V_{DDP}	V
			I _{OH} =-1.0mA, S1=1,S0=1				
			I _{OL} =2.0mA, S1=0,S0=1				
V_{OL}	Output Low Voltage		I _{OL} =0.4mA, S1=1,S0=0	0		$0.25 \text{xV}_{\text{DDP}}$	V
			I _{OL} =1.0mA, S1=1,S0=1				
I _{IN}	Input Current		V _{IN} = 0V to 3.6V	-5.0		5.0	μΑ
DIFFERENT	ΓIAL I/O						
	Output HICH Source Current	\/ =1.0\/	CTL_ADJ=0	\	-4.1		mA
I _{ODH}	Output HIGH Source Current	V _{OS} =1.0V	CTL_ADJ=1		-5.3		IIIA
Iopl	Output LOW Sink Current	\/=1.0\/	CTL_ADJ=0		2.1		mA
IODL	Output LOW Sink Current	Output LOW Sink Current Vos=1.0V CTL_ADJ=1	CTL_ADJ=1		3.1		IIIA
V_{GO}	Input Voltage Ground Offset ⁽⁴⁾				0		V
R_{TRM}	CKC Internal Passiver Torreinstice Pasist		V _{ID} =50mV, V _{IC} =925mV	80	100	120	Ω
KTRM	CKS IIIlemai Keceivei Teiliillai	CKS Internal Receiver Termination Resistor		- 80	100	120	77
	DS Internal Receiver Termination	n Resistor	V _{ID} =50mV, V _{IC} =925mV	80	100	120	Ω
	Bo internal receiver reminate	71110313101	DIRI=0		100	120	32

Notes:

- Typical values are given for V_{DD}=2.775V and T_A=25°C. Positive current values refer to the current flowing into the device and negative values refer to the current flowing out of pins. Voltages are referenced to GROUND unless otherwise specified (except ΔV_{OD} and V_{OD}).
- 4. V_{GO} is the difference in device ground levels between the CTL driver and the CTL receiver.

Power Supply Currents

Symbol	Parameter	Test Conditions			Min.	Тур.	Max.	Unit
I _{DD_PD}	V _{DD} Power-Down Supply Current	S1=S0=0, All Inputs at GND or	VDD			0.1		μΑ
			S1=L	20MHz		9.5		mA
			S0=H	48MHz		15.5		mA
	Dynamic Serializer Power Supply Current CLP CKSI+/CKSI- Not Connected	S1=H	5MHz		7.5		mA	
IDD_SER1		S0=L	14MHz		12.5		mA	
			S1=H	8MHz		7.5		mA
			S0=H	28MHz		14.0		mA
			S1=L	20MHz		7.5		mA
		f -f DMC4-0	S0=H	48MHz		10.0		mA
	Dynamic Deserializer Power Supply	f _{CKREF} =f _{STRB} , PWS1=0, PWS0=1;	S1=H	5MHz		6.0		mA
I _{DD_DES1}	Current	CTL_ADJ=0; C _L =0pF;	S0=L	14MHz		7.0		mA
		CKSI+/CKSI- Not Connected	S1=H	8MHz		6.5		mA
			S0=H 28MHz		8.0		mA	

Pin Capacitance Tables

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
C _{IN} , C _{IO} , C _{IO-DIFF}	Capacitance of Input Only Signals; Parallel Port Pins DP[1:10]; Differential I/O	DIRI=1, S1=0, S0=0, V _{DD} =2.5V		2		pF

AC Electrical Characteristics

Values are provided for over-supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Uni
Serializer Ir	nput Operating Conditions						
			S1=0, S0=1	18		48	
f_{CKREF}	CKREF Clock Frequency (5MHz - ≤ 48MHz);	f _{CKREF} =f _{STRB}	S1=1, S0=0	5		15	MHz
	(ON 12 = 40N 12),		S1=1, S0=1	10		30	
			PLL1=0, PLL0=0			94.7	
f	Strobe Frequency Relative to	f _{CKREF} ≠ f _{STRB}	PLL1=0, PLL0=1			100	% o
f _{STRB}	CKREF Frequency	ICKREF ≠ ISTRB	PLL1=1, PLL0=0			50	f_{CKRI}
- 4			PLL1=1, PLL0=1			33 ¹ / ₃	
t _{CPWH}	CKREF DC	T=1/f _{CKREF}		0.2	0.5	0.8	Т
t _{CPWL}	CKREF DC	T=1/f _{CKREF}		0.2	0.5	0.8	Т
t _{CLKT}	LVCMOS Input Transition Time ⁽⁵⁾	10-90%				20	ns
t _{SPWH/L}	STROBE Pulse Width HIGH/LOW	T=1/f _{CKREF}		T x ⁴ / ₁₂		$T x^{8}/_{12}$	ns
t _{STC}	DP _(n) Setup to STROBE (DIRI=1, f=5MHz)	STROBE	Data	2.5			ns
t _{нтс}	DP _(n) Hold to STROBE (DIRI=1, f=5MHz)	STROBE DP[1:10]	Data	2.0			ns
Serializer A	C Electrical Characteristics	1					
t _{TCCD}	Transmitter Clock Input to Clock Output Delay ⁽⁶⁾	STROBE CKS- CKS+ Note: STROBE DIRI=1, fckref=fstrb	→ t _{RCCD}	19a+1.5		21a+6.5	ns
Phase Lock	Loop (PLL) AC Electrical Characteri	1					٦
t _{TPLLS0}	Serializer PLL Stabilization Time	CKREF Toggling and	Stable	200		600	μs
t _{TPLLD0}	PLL Disable Time Loss of Clock					30.0	μs
t _{TPLLD1}	PLL Power-Down Time					20.0	ns

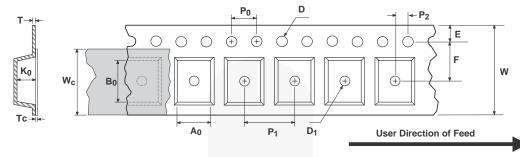
Continued on the following page...

AC Electrical Characteristics (Continued)

Values are provided for over-supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Test Conditions			Min.	Тур.	Max.	Unit
Deserializ	er AC Electrical Characteristics							ı
	Data Valid → ← t _{PDV}		PWS1	PWS0				
	CKP	f _{STRB} =f _{CKREF}	0	0	6a-3		6a+3	
t _{RCOL}	DP[1:10] Data	f _{STRB} =f _{CKREF}	0	1	6a-3		6a+3	ns
		f _{STRB} =.5x f _{CKREF}	1	0	12a-3		12a+3	
	trop	f _{STRB} =.5x f _{CKREF}	1	1	16a-3		16a+3	
t _{PDV}	CKP 50% T800H TROOL Setup: DIRI= 0, CKSI and DS are valid signals.	Data Valid to CKP F STROBE), C _L =5pF	IIGH (Risi	ng Edge	8a-3		8a+3	ns
t _{RFD}	Output Rise/Fall Time Data	C _L =8pF		0,S0=1 1,S0=0		3 8		ns
	(20% to 80%)			1,S0=1		5		
			S1=0),S0=1		2		
t _{RFC}	Output Rise/Fall Time CKP (20% to 80%)	C _L =8pF	S1=1,S0=0			7		ns
	(1=1,S0=1		4		

Notes:

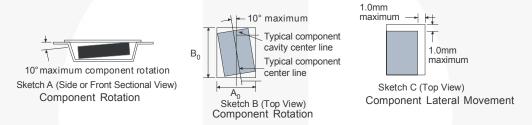

- 5. Parameter is characterized, but not production tested.
- 6. The average bit time "a" is a function of the serializer CKREF frequency; a=(1/f)/12.

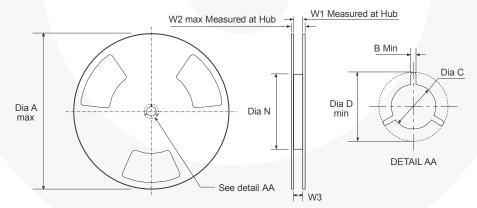
Logic Timing Controls

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{PHL_DIR} , t _{PLH_DIR}	Propagation Delay DIRI to /DIRO	DIRI L->H or H->L			17	ns
t _{PLZ} , t _{PHZ}	Propagation Delay DIRI to DP	DIRI L->H or H->L			25	ns
toisdes	Deserializer Disable Time: S0 or S1 LOW to DPTri-State; DIRI=0, tDISDES S1 or S0 DP Note: If S0(2) is transitioning, S1(1) must =0 for test to be valid.				25	ns
t _{DISSER}	Serializer Disable Time: S0 or S1 LOW to CKP HIGH	DIRI=1; S1(0) and S0(1)=H->L			25	ns

Tape and Reel Specifications

MLP Embossed Tape Dimensions

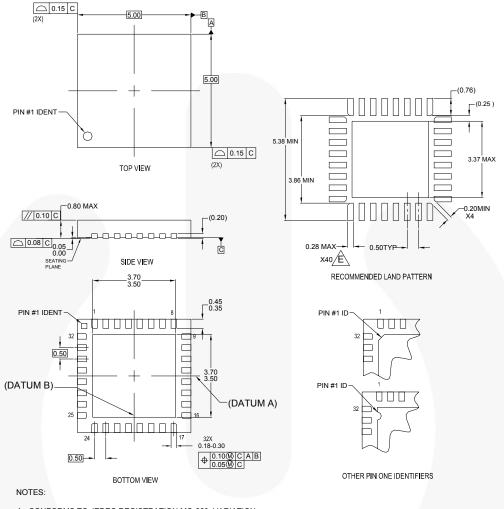



Package	A ₀ ±0.1	B ₀ ±0.1	D ±0.5	D ₁ Min.	E ±0.1	F ±0.1	K ₀ ±0.1	P₁ Typ.	P ₀ Typ.	P ₂ ±0.5	T Typ.	T _C ±0/05	W ±0.3	W _C Typ.
5 x 5	5.35	5.35	1.55	1.50	1.75	5.50	1.40	8.00	4.00	2.00	0.30	0.07	12.00	9.30
6 x 6	5.35	5.35	1.55	1.50	1.75	5.50	1.40	8.00	4.00	2.00	0.30	0.07	12.00	9.30

Notes:

 A_0 , B_0 , and K_0 dimensions are determined with respect to the EIA/JEDEC RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

MLP Shipping Reel Dimensions



Tape Width	Dia A Max.	Dim B Min.	Dia C +0.5/-0.2	Dia D Min.	Dim N Min.	Dim W1 +2.0/-0	Dim W2	Dim W3 (LSL-USL)
8	330.0	1.5	13.0	20.2	178.0.	8.4	14.4	7.9 ~ 10.4
12	330.0	1.5	13.0	20.2	178.0.	12.4	18.4	11.9 ~ 15.4
16	330.0	1.5	13.0	20.2	178.0.	16.4	22.4	15.9 ~ 19.4

Figure 8. MLP Tape and Reel

Physical Dimensions

- A. CONFORMS TO JEDEC REGISTRATION MO-220, VARIATION WHHD-4. THIS PACKAGE IS ALSO FOOTPRINT COMPATIBLE WITH WHHD-5.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- D. LAND PATTERN PER IPC SM-782.
- E. WIDTH REDUCED TO AVOID SOLDER BRIDGING.
- F. DIMENSIONS ARE NOT INCLUSIVE OF BURRS, MOLD FLASH, OR TIE BAR PROTRUSIONS.
- G. DRAWING FILENAME: MKT-MLP32Arev3.

Figure 9. 32-Lead, Molded Leadless Package (MLP)

Order Number	Operating Temperature Range	Package Description	Eco Status	Packing Method	
FIN210ACMLX	-30 to 70°C	32-Terminal Molded Leadless Package (MLP), Quad, JEDEC MO-220, 5mm Square	Green	Tape & Reel	

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Physical Dimensions (Continued) 3.50 2X (0.35)(0.5) -0.10 C (0.6)2.5 (0.75)**TERMINAL** 0000A1 CORNER 00000 INDEX AREA 00000 4.50 0000 3.0 0.5 0000 00000 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 0.5 Ø0.3±0.05 X42 **BOTTOM VIEW TOP VIEW** ⊕ Ø0.15(M) C A B ⊕ Ø0.05(M) C 0.89±0.082 ST (QA CONTROL VALUE) 1.00 MAX 0.45±0.05 ST 0.21±0.04 ST // 0.10 C C 0 0 0 (ST) 0.23±0.05 SEATING PLANE \bigcirc \bigcirc 0 0 0 0 0 0 0 NOTES: 0 0 0 0 0 A. CONFORMS TO JEDEC REGISTRATION MO-195, 00000 B. DIMENSIONS ARE IN MILLIMETERS. LAND PATTERN

C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

D. STATISTICAL TOLERANCING FOR REFERENCE REFER TO MAX DIMENSION FOR QA INSPECTION

E. LAND PATTERN RECOMENDATION PER IPC-7351 TABLE14-15 LAND PATTERN NAME PER TABLE 3-15: BGA50P+6X7-42

BGA42ArevB

RECOMMENDATION

Figure 10. 42-Ball, Ball Grid Array (BGA) Package

Note: Click here for tape and reel specifications, available at: http://www.fairchildsemi.com/products/analog/pdf/bga42_tr.pdf

Order Number	Operating Temperature Range	Package Description	© Eco Status	Packing Method
FIN210ACGFX	-30 to 70°C	42-Ball Ultra Small-Scale Ball Grid Array (USS-BGA), JEDEC MO-195, 3.5 x 4.5mm Wide, 0.5mm Ball Pitch	RoHS	Tape & Reel

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logi

CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
EZSWITCH™*

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®

FAST® FastvCore™ FETBench™ FlashWriter®* FPS™ F-PFS™ FRFET®

Global Power Resource

Green FPS™
Green FPS™ e-Series™
Gmax™

GTOTM
IntelliMAXTM
ISOPLANARTM
MegaBuckTM
MICROCOUPLERTM
MicroFETTM

MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®

PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET®

Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™
SmartMax™
SMART START™
SPM®
STEALTH™
SuperFET™

SUPERSOTM-8
SuperSOTM-8
SuperSOTM-8
SuperSOTM-8
SupreMOSTM
SyncFETTM
SyncFLockTM

SYSTEM®*
GENERAL
The Power Franchise®
the Lwer
franchise

SerDes
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 145

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative