

FSA5157 0.4 Ω Low Voltage SPDT Analog Switch

General Description

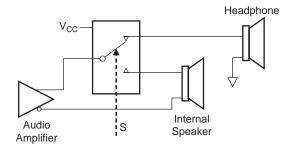
The FSA5157 is a low ON Resistance, low power Single Pole Double Throw (SPDT) analog switch. This product has been designed for switching audio signals in applications such as cell phones and portable media players. The ultra-low 0.4Ω impedance, sub $1\mu A$ current consumption, and 1.65V to 4.3V operating voltage range makes this product ideal for battery powered applications. The FSA5157 also features bi-directional operation and make-before-break functionality. This device is fully specified for operation at $1.8V,\,2.5V$ and 3.3V.

A growing number of applications require the voltage applied to the select input to be lower then the V_{CC} applied. Under this condition, most switches would typically consume over $100\mu A$ of current. This would be an unacceptable level for battery powered applications. The FSA5157 has been designed to minimize current consumption under this condition. The I_{CCT} is specified for $<12\mu A$ under a worse case condition of $V_{CC}=4.3V$ and $V_{IN}=1.8V.$

Features

- Typical 0.4Ω On Resistance (R_{ON}) for +2.7V supply
- FSA5157 features less than 12µA I_{CCT} current when S input is lower than V_{CC}
- 0.25Ω maximum R_{ON} flatness for +2.7V supply
- 1.0mm x 1.45mm 6-Lead Pb-Free MicroPak[™] package
- Broad V_{CC} operating range: 1.65V to 4.3V
- Low THD (0.02% typical for 32Ω load)
- High current handling capability (350mA continuous current under 3.3V supply)
- Control logic is 1.8V CMOS logic compatible

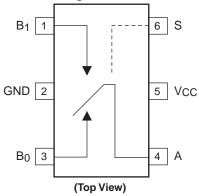
Applications

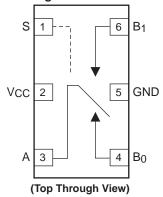

- Cellular phone
- PDA
- Portable Media Player

Ordering Information

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
FSA5157P6X	MAA06A	C57	Pb-Free 6-Lead SC70, EIAJ SC88, 1.25mm Wide	3K Units on Tape and Reel
FSA5157L6X	MAC06A	FT	Pb-Free 6-Lead MicroPak, 1.0mm Wide	5K Units on Tape and Reel

Pb-Free package per JEDEC J-STD-020B.


Applications Diagram


MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Analog Symbols

Pin Assignment for SC70

Pin Assignment for MicroPak

Truth Table/s

Control Input(s)	Function
L	B ₀ Connected to A
Н	B ₁ Connected to A

H = HIGH Logic Level L = LOW Logic Level

Pin Descriptions

Pin Names	Function
A, B ₀ , B ₁	Data Ports
S	Control Input

Absolute Maximum Ratings

(The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.)

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +4.6V
V _S	Switch Voltage ¹	$-0.5V$ to $V_{CC} + 0.3V$
V _{IN}	Input Voltage ¹	-0.5V to +4.6V
	Input Diode Current	−50 mA
	Switch Current	350 mA
	Peak Switch Current (Pulsed at 1 ms duration, <10% Duty Cycle)	500 mA
	Power Dissipation (P _D) SC70 6L Package MicroPak 6L Package	180 mW 180 mW
T _{STG}	Storage Temperature Range	–65°C to +150°C
TJ	Maximum Junction Temperature	+150°C
T _L	Lead Temperature Soldering, 10 seconds	+260°C
	ESD, Human Body Model	8000V

Recommended Operating Conditions

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	1.65V to 4.3V
V _{IN}	Control Input Voltage ²	0V to V _{CC}
V _{IN}	Switch Input Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C

Notes:

- 1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 2. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

(All typical values are @ 25°C unless otherwise specified)

				T _A =					
					+25°C		-40°C to	+85°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Units
V _{IH}	Input Voltage High		3.6 to 4.3				1.4		V
			2.7 to 3.6				1.3		1
			2.3 to 2.7				1.1		1
			1.65 to 1.95				0.9		1
V _{IL}	Input Voltage Low		3.6 to 4.3					0.7	V
			2.7 to 3.6					0.5	1
			2.3 to 2.7					0.4	
			1.65 to 1.95					0.4	1
I _{IN}	Control Input Leakage	$V_{IN} = 0V \text{ to } V_{CC}$	1.65 to 4.3				-0.5	0.5	μΑ
I _{NO(OFF)} , I _{NC(OFF)}	OFF-Leakage Current of Port B ₀ and B ₁	$A = 0.3V, V_{CC} - 0.3V, \\ B_0 \text{ or } B_1 = 0.3V, \\ V_{CC} - 0.3V \text{ or Floating}$	1.95 to 4.3	-10.0		10.0	-50.0	50.0	nA
I _{A(ON)}	ON Leakage Current of Port A	$A = 0.3V, V_{CC} - 0.3V, \\ B_0 \text{ or } B_1 = 0.3V, \\ V_{CC} - 0.3V \text{ or Floating}$	1.95 to 4.3	-20.0		20.0	-100	100	nA
R _{ON}	Switch On Resistance ³	I _{OUT} = 100 mA, B ₀ or B ₁ = 0V, 0.7V, 3.6V, 4.3V	4.3		0.36			0.6	Ω
		I _{OUT} = 100 mA, B ₀ or B ₁ = 0V, 0.7V, 2.0V, 2.7V	2.7		0.4			0.7	
		I _{OUT} = 100 mA, B ₀ or B ₁ = 0V, 0.7V, 2.0V, 2.3V	2.3		0.55			0.8	
		I _{OUT} = 100 mA, B ₀ or B ₁ = 0.7V	1.65		1.5	2.5		3.0	
ΔR _{ON}	On Resistance	I _{OUT} = 100 mA,	4.3		0.04			0.75	Ω
	Matching Between Channels ⁴	$B_0 \text{ or } B_1 = 0.7V$	2.7		0.06			0.13	
	Charmers		2.3		0.12			0.2	
			1.65		1.0				
R _{FLAT(ON)}	On Resistance	I _{OUT} = 100 mA,	4.3					0.25	Ω
	Flatness ⁵	B_0 or $B_1 = 0V$ to V_{CC}	2.7					0.25	1
			2.3					0.3	1
			1.65		0.3				1
I _{CC}	Quiescent Supply Current	$V_{IN} = 0V \text{ or } V_{CC}, I_{OUT} = 0$	4.3	-100.0	30.0	100.0	-500	500	nA
Ісст	Increase in I _{CC} per	V _{IN} = 1.8V	4.3		7.0	12.0		15.0	μΑ
	Control Input	V _{IN} = 2.6V	4.3		3.0	6.0		7.0	1

Notes:

- 3. On Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 4. ΔR_{ON} = R_{ONmax} R_{ONmin} measured at identical V_{CC} , temperature, and voltage.
- 5. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

AC Electrical Characteristics

(All typical values are @ 25°C unless otherwise specified)

						T _A =				
					+25°C		-40°C 1	:o +85°C		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Units	Figure
t _{ON}	Turn ON Time	$B_0 \text{ or } B_1 = 1.5V,$	3.6 to 4.3			55.0		60.0	ns	Figure 4
		$R_L = 50\Omega, C_L = 35 \text{ pF}$	2.7 to 3.6			60.0		65.0		
			2.3 to 2.7			65.0		70.0		
			1.65 to 1.95		70.0			90.0		
t _{OFF}	Turn OFF Time	$B_0 \text{ or } B_1 = 1.5V,$	3.6 to 4.3			30.0		35.0	ns	Figure 4
		$R_L = 50\Omega, C_L = 35 pF$	2.7 to 3.6			35.0		40.0		
			2.3 to 2.7			40.0		45.0		
			1.65 to 1.95		40.0			55.0		
t _{B-M}	Break-Before-Make	$B_0 \text{ or } B_1 = 1.5V,$	3.6 to 4.3				5.0		ns	Figure 5
	Time	$R_L = 50\Omega, C_L = 35 \text{ pF}$	2.7 to 3.6				5.0			
			2.3 to 2.7				5.0			
			1.65 to 1.95				5.0			
Q	Charge Injection	$C_L = 1.0 \text{ nF, } V_{GEN} = 0V,$ $R_{GEN} = 0\Omega$	3.6 to 4.3		6.0				pC	Figure 8
			2.7 to 3.6		6.0					
			2.3 to 2.7		6.0					
			1.65 to 1.95							
OIRR	OFF-Isolation	$f = 100kHz, R_L = 50\Omega, C_L$	3.6 to 4.3		-75.0				dB	Figure 6
		= 5 pF (Stray)	2.7 to 3.6		-75.0					
			2.3 to 2.7		-75.0					
			1.65 to 1.95		-75.0					
Xtalk	Crosstalk	$f = 100kHz, R_L = 50\Omega, C_L$	3.6 to 4.3		-75.0				dB	Figure 7
		= 5 pF (Stray)	2.7 to 3.6		-75.0					
			2.3 to 2.7		-75.0					
			1.65 to 1.95		-70.0					
BW	-3db Bandwidth	$R_L = 50\Omega$	1.65 to 4.3		80.0				MHz	Figure 10
THD	Total Harmonic		3.6 to 4.3						%	Figure 11
	Distortion	$R_L = 32\Omega$, $V_{IN} = 2V$ P.P, f = 20Hz to 20kHz	2.7 to 3.6		0.02					
		$R_L = 32\Omega, V_{IN} = 1.5V P.P,$ f = 20Hz to 20kHz	2.3 to 2.7		0.036					
		$R_L = 32\Omega, V_{IN} = 1.2V P.P,$ f = 20Hz to 20kHz	1.65 to 1.95		0.01					

Capacitance

				T _A =					
				+25°C		40°C to +85°C			
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Units
C _{IN}	Control Pin Input Capacitance	f = 1MHz (see Figure 9)	0.0		1.5				pF
C _{OFF}	B Port OFF Capacitance	f = 1MHz (see Figure 9)	4.5		21.0				pF
C _{ON}	A Port ON Capacitance	f = 1MHz (see Figure 9)	4.5		90.0				pF

5

Typical Characteristics

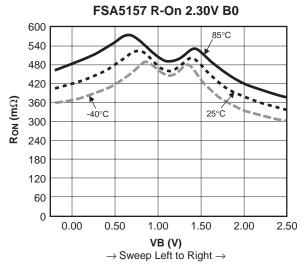


Figure 1. R_{ON} Switch On Resistance, $I_{ON} = 100 mA, V_{CC} = 2.3 V$

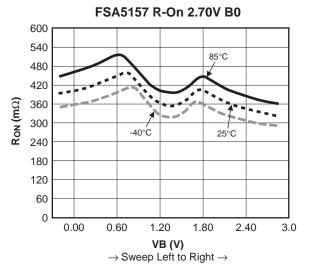


Figure 2. R_{ON} Switch On Resistance, $I_{ON} = 100 \text{mA}, V_{CC} = 2.7 \text{V}$

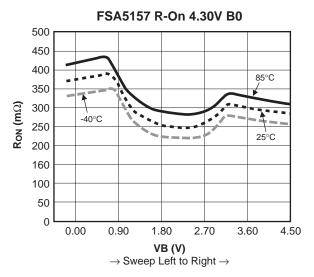
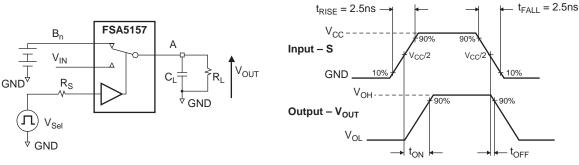
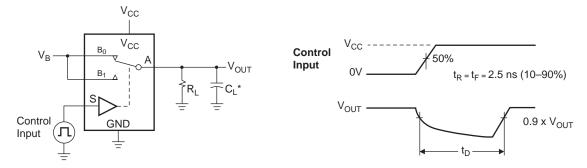



Figure 3. R_{ON} Switch On Resistance, $I_{ON} = 100 mA, V_{CC} = 4.3 V$

6


AC Loading and Waveforms

Notes:

- 1. R_L, R_S, and C_L are functions of application environment (See AC Electrical table for specific values).
- 2. C_L includes test fixture and stray capacitance.

Figure 4. Turn-On/Turn-Off Timing

*C_L includes fixture and stray capacitance

Figure 5. Break-Before-Make Timing

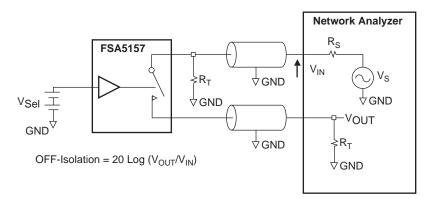


Figure 6. OFF Isolation

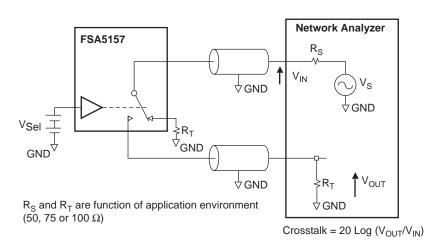


Figure 7. Non-Adjacent Channel-to-Channel Crosstalk

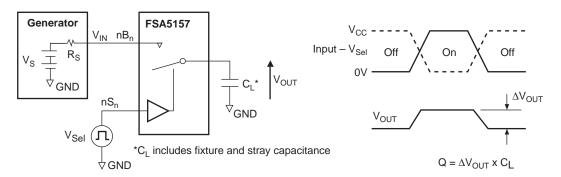


Figure 8. Charge Injection Test

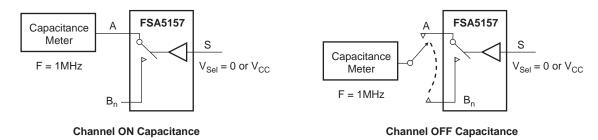


Figure 9. On/Off Capacitance Measurement Setup

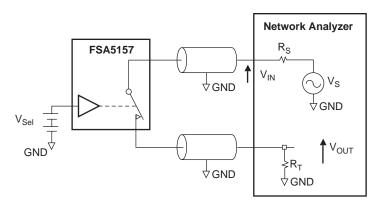
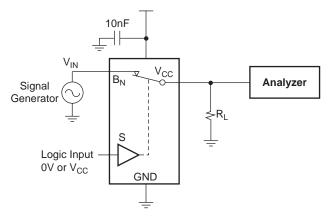
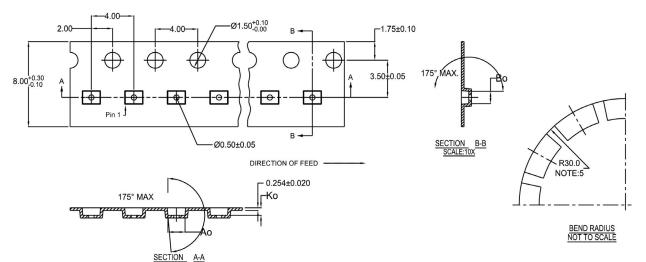
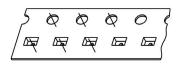


Figure 10. Bandwidth




Figure 11. Harmonic Distortion

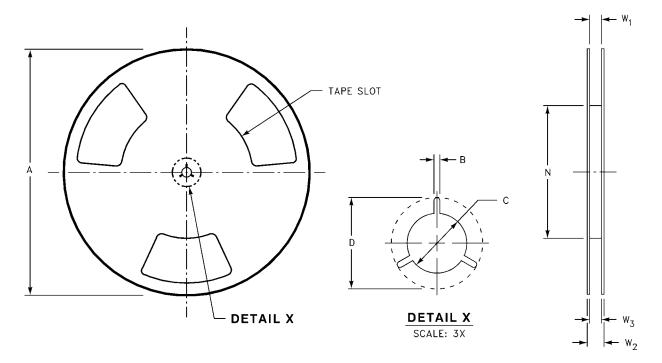
9


Tape Specification

Tape Format For Micropak 6

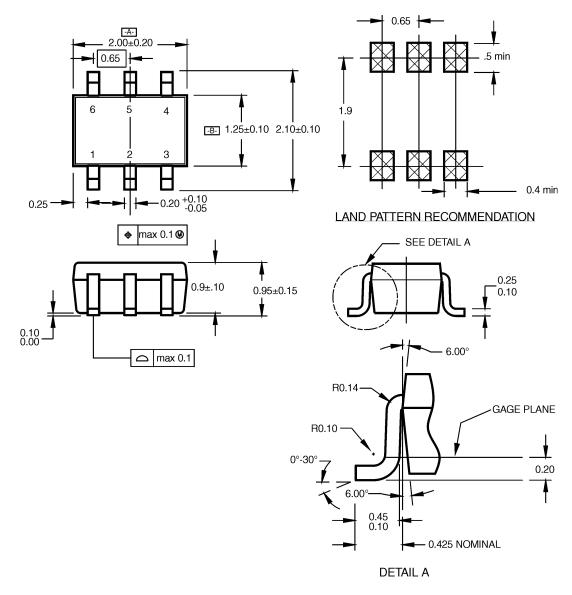
Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
	Leader (Start End)	125 (typ)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

10	300056	2.30±0.05	1.78±0.05	0.68 ± 0.05
8	300038	1.78±0.05	1.78±0.05	0.68 ± 0.05
6	300033	1.60 ± 0.05	1.15±0.05	0.70 ± 0.05



SCALE: 6X

NOTES: UNLESS OTHERWISE SPECIFIED

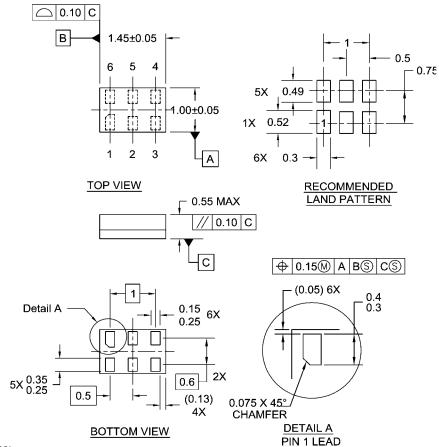

- 1. ACCUMULATED 50 SPROCKETS, SPROCKET HOLE PITCH IS 200.00 ±0.30MM
- 2. NO INDICATED CORNER RADIUS IS 0.127MM
- 3. CAMBER NOT TO EXCEED 1MM IN 100MM
- 4. SMALLEST ALLOWABLE BENDING RADIUS
- 5. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

Reel Dimensions for Micropack 6 inches (millimeters)

Tape Size	Α	В	С	D	N	W 1	W2	W3
8 mm	7.0 (177.8)	0.059 (1.50)	0.512 (13.00)	0.795 (20.20)	2.165 (55.00)	0.331 +0.059 / -0.000 (8.40 +1.50 / -0.00)		W1 + 0.078 / -0.039 (W1 + 2.00 / -1.00)

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:


A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88.

B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.

C. DIMENSIONS ARE IN MILLIMETERS.

MAA06ARevC

Pb-Free 6-Lead SC70, EIAJ SC88, 1.25mm Wide Package Number MAA06A

Notes:

- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

Pb-Free 6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TinyLogic [®]
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TINYOPTO™
CROSSVOLT™	GTO™ .	MICROWIRE™	Quiet Series™	TruTranslation™
DOME™	HiSeC™	MSX™	RapidConfigure™	UHC™
EcoSPARK™	I ² C TM	MSXPro™	RapidConnect™	UltraFET [®]
E ² CMOS TM	i-Lo™	OCX™	μSerDes™	UniFET™
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	VCX TM
FACT™	IntelliMAX™	OPTOLOGIC®	SILENT SWITCHER®	Wire™
FACT Quiet Serie		OPTOPLANAR™	SMART START™	
		PACMAN™	SPM™	
Across the board. Around the world. [™] The Power Franchise [®] Programmable Active Droop [™]		POP™	Stealth™	
		Power247™	SuperFET™	
riogiailillable A	clive Dioop	PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I17