

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at
www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

FSA832 — USB 2.0 High-Speed (480 Mbps) Charger Detection IC with Isolation Switch

Features

USB Detection	USB Battery Charging Rev. 1.2 Supports Data Contact Detect (DCD) Dead Battery Provision (DBP) with 30-Minute Timer
Proprietary Charger and Other Detection	2.7 V / 2.0 V on DP/DM DP/DM Floating PS/2 Port Detection
Switch Type	Isolation Switch Closes for Charging Downstream Port (CDP) Standard Downstream Port (SDP)
V _{BUS}	28 V Over-Voltage Tolerance -2 V Under-Voltage Tolerance
Package	10-Lead MicroPak™ 1.6 x 2.1 mm, 0.5 mm Pitch
Ordering Information	FSA832L10X

Description

The FSA832 is a charger detection IC with an integrated isolation switch for use with micro/mini USB port. The FSA832 detects USB battery chargers and is compliant with USB Battery Charging Specification, Rev 1.2 (BC1.2).

The FSA832 also detects proprietary chargers that pull the USB data lines HIGH (2.7 V / 2.0 V), floating data lines, and PS/2 ports. The device determines if a charger, either through a Dedicated Charging Port (DCP) or Charging Downstream Port (CDP), is connected or if a typical PC host, a Standard Downstream Port (SDP), is connected. The FSA832 conforms to all the constraints for the Dead Battery Provision (DBP) within the BC1.2 specification, including a 30-minute timer that cannot exceed 45 minutes per BC1.2.

Applications

- MP3, Mobile Internet Device (MID), Cell Phone, PDA, Digital Camera, Notebook, and Netbook

Typical Application

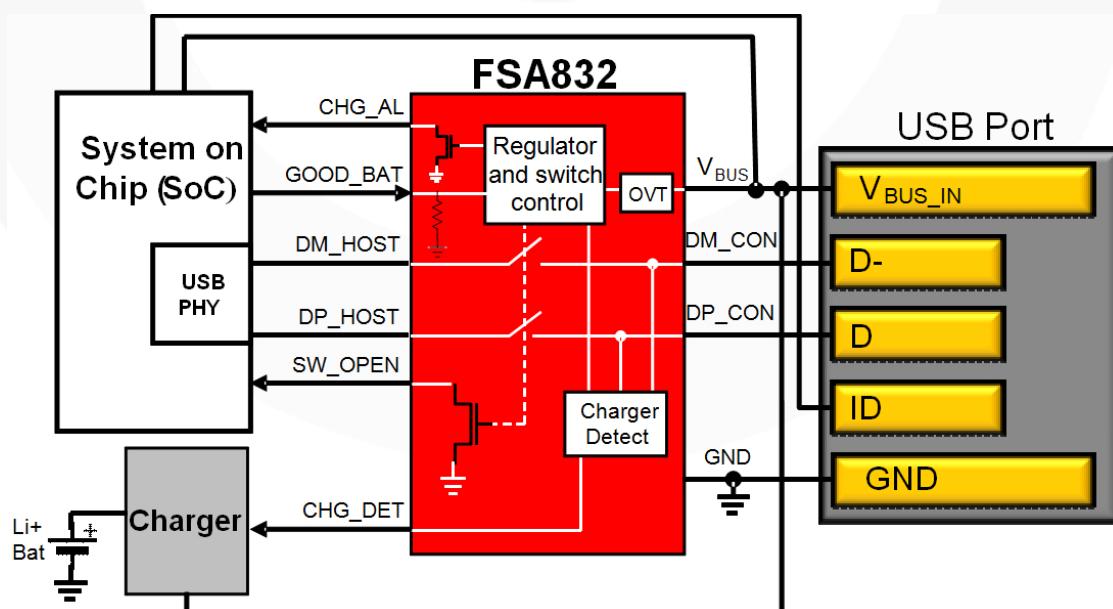


Figure 1. Mobile Phone Example

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package Description	Packing Method
FSA832L10X	-40 to 85°C	ZY	10-Lead, MicroPak™ 1.6 x 2.1 mm, 0.5 mm Pitch	Tape & Reel

Pin Configurations

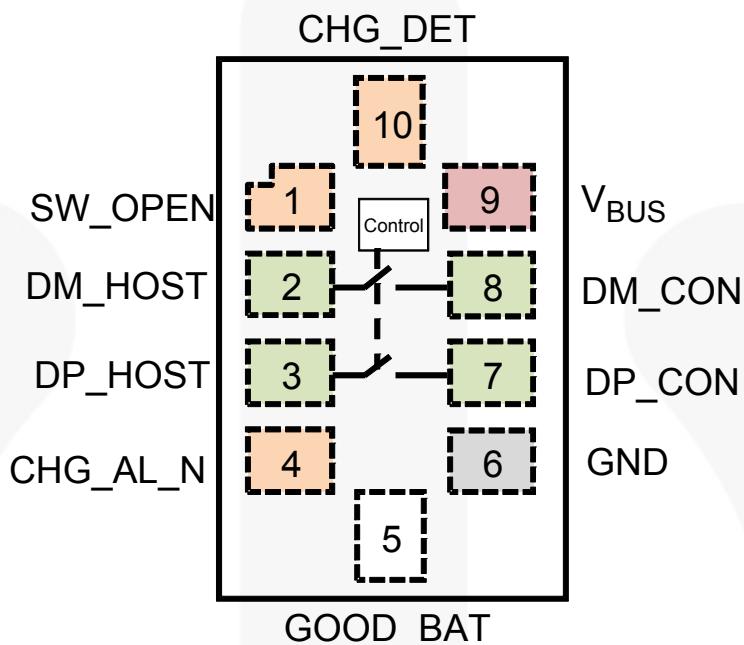


Figure 2. Pin Assignments (Top View)

Pin Descriptions

Name	Pin #	Description
USB Interface		
DP_HOST	3	D+ signal connected to the resident USB transceiver on the phone.
DM_HOST	2	D- signal connected to the resident USB transceiver on the phone.
Connector Interface		
V _{BUS}	9	Input voltage supply pin to be connected to the V _{BUS} pin of the USB connector.
GND	6	Ground
DP_CON	7	Connected to the USB connector D+ pin
DM_CON	8	Connected to the USB connector D- pin
Status Outputs		
CHG_DET	10	CMOS push/pull output connected to charger IC to indicate if a charger has been detected (LOW=charger not detected; HIGH=proprietary charger, DCP, or CDP charger detected).
SW_OPEN	1	Open-drain output pin; requires pull-up resistor to I/O voltage supply (LOW=switch closed; Hi-Z=switch open).
CHG_AL_N	4	CMOS open-drain output pin (LOW=V _{BUS} is valid and charge is allowed to be drawn from V _{BUS} ; Hi-Z=V _{BUS} is not at a valid voltage).
Input Pin		
GOOD_BAT	5	Input that indicates if the battery is a good battery or a dead battery (V _{IL} =dead battery; V _{IH} =good battery).

Note:

1. Output voltage conditions are LOW = V_{OL} and HIGH = V_{OH}.

Table 1. Functionality

Device Detected	GOOD_BAT	SW_OP_EN	CHG_AL_N	CHG_DET	DP_HOST	DM_HOST	DP_CON	DM_CON
DCP	X	Hi-Z	LOW	HIGH	Hi-Z	Hi-Z	$V_{DP_SRC}^{(2)}$	Hi-Z ⁽²⁾
Proprietary Charger	X	Hi-Z	LOW	HIGH	Hi-Z	Hi-Z	Hi-Z	Hi-Z
CDP	HIGH	LOW	LOW	HIGH	DP_CON	DM_CON	DP_HOST	DM_HOST
CDP	LOW	Hi-Z	LOW	HIGH	Hi-Z	Hi-Z	V_{DP_SRC}	Hi-Z
PS/2 Ports ⁽³⁾	X	Hi-Z	LOW	LOW	Hi-Z	Hi-Z	Hi-Z	Hi-Z
SDP	HIGH	LOW	LOW	LOW	DP_CON	DM_CON	DP_HOST	DM_HOST
SDP	LOW	Hi-Z	LOW	LOW	Hi-Z	Hi-Z	V_{DP_SRC}	Hi-Z
SDP, CDP, or DCP plugged in and after 30-minute timer expires	LOW	Hi-Z	Hi-Z	LOW	Hi-Z	Hi-Z	Hi-Z	Hi-Z
$V_{BUS} < V_{BUS} >$ V_{BUS} valid operation prior to completing detection of SDP, CDP, or DCP. Upon detection, all outputs switch as in rows above.	X	Hi-Z	Hi-Z	Hi-Z to LOW	Hi-Z	Hi-Z	Hi-Z	Hi-Z

Note:

2. Hi-Z is the internal state of DM_CON. Since a DCP has been detected, DM_CON is shorted to DP_CON externally and DM_CON is shorted to V_{DP_SRC} . V_{DP_SRC} is not put on DP_CON for proprietary chargers.
3. DP_CON and DM_CON are pulled to V_{BUS} through a resistor by the PS/2 port when it is connected to the FSA832.

Functional Description

Data Contact Detect (DCD)

DCD relies on the D+ and D- lines being present. DCD waits until the internal timeout t_{DCD_TOUT} has expired in the following cases:

- If a charger does not have a D+ pin on the USB connector;
- If the D+ pin is not shorted to D- pin on the connector;
- If D+ is pulled up to a supply; or
- If D+ does not have a sufficient path to ground to defeat a pull-up IDP_SRC (I_{DP_SRC}) current source.

The FSA832 proceeds with charger detection even though it is unlikely that a charger is present. If there is no charge, the algorithm reports an SDP and closes the switch. If a device is pulling D+ HIGH, this voltage presents itself to the USB transceiver or Physical Layer Interface (PHY) block within a System on Chip (SoC) after the switch is closed.

If the DCD timeout is insufficient and the PHY block is so equipped, DCD and the charging algorithm can be repeated in the PHY block. The stipulation is that the total time from V_{BUS} valid to USB transceiver connection with a 1.5 kΩ pull-up to 3.3 V must be one (1) second, per USB 2.0 standards, provided the portable device does not have a dead battery.

CHG_AL_N Output and Output Timing

CHG_AL_N output indicates that charge is allowed to be drawn from V_{BUS} when CHG_AL_N is LOW. When the FSA832 first powers up and prior to detection, the CHG_AL_N pin can follow V_{BUS} up to 28 V, which is the

absolute maximum V_{BUS} voltage allowed. Whenever V_{BUS} is at GND, the FSA832 is completely off and the switches and all I/Os are in the Hi-Z state. When V_{BUS} climbs above the valid V_{BUS} threshold, detection occurs automatically and CHG_DET, SW_OPEN, and CHG_AL_N all simultaneously switch to the states indicated in Table 1 if GOOD_BAT is HIGH (see *Dead Battery Provision description* for GOOD_BAT = LOW).

Dead Battery Provision

BC1.2 and USB 2.0 allow a portable device (defined as a device with a battery) with a dead battery to take a maximum of 100 mA from the USB V_{BUS} line for a maximum of 45 minutes as long as the portable device forces the D+ line to V_{DP_SRC} . The FSA832 starts detection when V_{BUS} crosses the V_{BUSVLD} threshold and, if it detects a CDP or SDP and GOOD_BAT is HIGH, automatically closes the switch and does not force the DP_CON pin to V_{DP_SRC} .

Once charger detection is complete, the FSA832 starts a 30-minute timer and forces the DP_CON pin to V_{DP_SRC} until the timer elapses. During the 30-minute period; if GOOD_BAT is LOW, V_{DP_SRC} is applied to DP_CON and the D+/D- switches are opened. If GOOD_BAT is HIGH, V_{DP_SRC} is not applied to DP_CON and the D+/D- switches are closed. If GOOD_BAT is LOW when the 30-minute timer expires; regardless of whether a proprietary charger, SDP, CDP, or DCP was previously detected; the FSA832 removes V_{DP_SRC} from DP_CON and forces CHG_DET LOW and CHG_AL_N to Hi-Z (SW_OPEN remains in Hi-Z). To exit this fault condition, remove V_{BUS} , wait for all the V_{BUS} Printed Circuit Board

(PCB) capacitance to discharge, and re-apply V_{BUS} . Table 1 provides the functionality of the pins when the timer expires.

When $GOOD_BAT$ is HIGH and the battery is removed from the portable device while V_{BUS} is valid, bringing $GOOD_BAT$ LOW; the FSA832 opens the isolation switches on DP_CON and DM_CON and forces the DP_CON pin to V_{DP_SRC} . In this scenario, the timer generally expires because the SoC does not have a supply to bring $GOOD_BAT$ HIGH unless the battery that was removed is re-inserted within 30 minutes after the USB plug is inserted.

If an SDP or CDP is inserted with $GOOD_BAT$ HIGH during the 30-minute timer; then $GOOD_BAT$ changes to LOW, SW_OPEN changes to Hi-Z, and the counter continues counting until the 30 minutes expires. If $GOOD_BAT$ then returns to HIGH, SW_OPEN changes to LOW and finishes out the 30-minute time.

$GOOD_BAT$ has an internal pull-down resistor to ensure it is LOW when the SoC is powered down. This input is designed to have very V_{IH} interface with low-voltage SoCs driven with 1.2 V supplies. $GOOD_BAT$ can be connected to the processor supply voltage because the processor should wake up whenever V_{BUS} is turned on.

Proprietary Chargers

Chargers pulling the USB data line DM_CON HIGH to 2.0 V or 2.7 V and data line DP_CON HIGH to 2.0 V or 2.7 V are detected by the FSA832 and reported proprietary chargers with a higher charge current allowed. Other chargers that float the DP/DM lines are also detected as a proprietary by means of float detection. This allows a proprietary charger with floating DP/DM to benefit from higher charge current.

PS/2 Port

Mice and keyboards utilizing the PS/2 port interface pull the clock and data pins of the PS/2 connector HIGH to V_{BUS} through a resistive pull-up. When the PS/2 device is adapted to a USB interface, the clock and data pins are translated to the DP_CON and DM_CON lines of the USB connector, respectively.

The benefit of detecting the PS/2 port as a separate device is the ability to limit the current that can be drawn from the bus, thus protecting the PS/2 port. Once the PS/2 port is detected, the DP_HOST and DM_HOST switches remain open to protect the USB PHY connected to DP_HOST and DM_HOST from voltages as high as V_{BUS} .

Ground Drops

When a DCP is detected, V_{DP_SRC} is forced on DP_CON provided $GOOD_BAT$ is HIGH or $GOOD_BAT$ is LOW and the DBP timer has not expired. When ~ 1.5 A is flowing into V_{BUS} and GND lines of the USB cable, the current can create substantial ground drops that lift the ground of the portable device. This drop adds to the voltage at the DP_CON pin as seen from the DCP D+ pin. For the maximum ground drop of 375 mV specified in the BC1.2 specification and for the maximum V_{DP_SRC} of 0.7 V; the voltage as seen by the DCP would be 1.075 V. Smart DCPs that rely on this voltage detection to determine attach and detach detection need to take this into account.

V_{BUS} Tolerance

When V_{BUS} rises, an internal Power-On Reset (POR) detects this voltage and prepares the FSA832 for charger detection.

V_{BUS} voltages up to 28 V can be tolerated by the V_{BUS} pin. V_{BUS} can tolerate voltages up to -2 V for cases where a charger is plugged in backwards.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{BUS}	Voltage from USB Connector		-2	28	V
V_{SW}	USB Switch I/O Voltage (DP_CON, DM_CON, DP_HOST, DM_HOST)		-0.5	6.0	V
I_{SW}	USB Switch Current (DP_CON to DP_HOST, DM_CON to DM_HOST)		-30	+30	mA
$V_{I/O}$	Voltage from GOOD_BAT, CHG_AL_N, CHG_DET and SW_OPEN I/Os		-0.5	6.0	V
V_{CA}	Voltage from CHG_AL_N Output		-0.5	28.0	V
$I_{I/O}$	CHG_AL_N, CHG_DET and SW_OPEN Outputs Sink/Source Current		-5	+5	mA
T_{STG}	Storage Temperature Range		-65	+150	°C
T_J	Maximum Junction Temperature			+150	°C
T_L	Lead Temperature (Soldering, 10 Seconds)			+260	°C
ESD	IEC 61000-4-2 System	USB Pins (DP_CON, DM_CON, V_{BUS})	Air Gap	15	kV
			Contact	8	
	Human Body Model, JEDEC JESD22-A114	All Pins		6	
	Charged Device Model, JEDEC JESD22-C101	All Pins		1	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{BUS}	V_{BUS} Input HIGH Voltage	4	6	V
V_{SW}	Switch I/O Voltage for USB Path	0	3.6	V
T_A	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

Unless otherwise indicated, V_{BUS} =4 V to 6 V and T_A =−40 to +85°C. Typical values are at T_A =25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Status Outputs						
V_{OHCD}	Output HIGH Voltage (CHG_DET)	$I_{OH}=-2$ mA	2.0			V
V_{OL}	Output LOW Voltage (CHG_DET, CHG_AL_N, SW_OPEN)	$I_{OL}=2$ mA		0.4		V
t_{DIFF}	Skew Between Any Output (CHG_DET, CHG_AL_N, SW_OPEN) Switching Relative to Other Outputs Switching	$I_{I/O}=\pm 2$ mA, CHG_AL_N=20 kΩ to 5 V, SW_OPEN=10 kΩ to 1.8 V		100		ns
V_{BUS} Pin						
V_{BUSVLD}	V_{BUS} Valid Detection Threshold ⁽⁴⁾		0.8		4.0	V
I_{BUSIN}	V_{BUS} Input Leakage	$V_{BUS}=0$ V to 0.8 V		3		μA
$I_{VBUSACT}$	V_{BUS} Active Mode Average Current	USB Path Active, USB Switch Closed After Charger Detection		250		μA
t_{OUT}	Time from V_{BUS} Valid Asserted to CHG_DET, CHG_AL_N and SW_OPEN Outputs Valid for BC1.2 Standard Accessory Detection (SDP, DCP, or CDP)	DP_CON Pulled Down to GND with 15 kΩ; All Voltages Forced on V_{BUS} , DP_CON, DM_CON, and GND simultaneously		250		ms
Switch Characteristics						
I_{OFF}	Power Off Leakage Current	USB Path $V_{BUS}=0$ V, $V_{SW}=0$ V or 3.6 V, Figure 4			10	μA
R_{ONUSB}	High-Speed USB Range Switch On Resistance ⁽⁴⁾	$V_{DP_CON} / V_{DM_CON}=0$ V, 0.4 V; $I_{ON}=8$ mA; Figure 3; $V_{BUS}=4$ V to 6 V		4.5	6.0	Ω
Control Input						
V_{IH}	Input HIGH Voltage (GOOD_BAT)		1.1			V
V_{IL}	Input LOW Voltage (GOOD_BAT)				0.5	V
R_{PD}	Pull-Down Resistance (GOOD_BAT)		1			MΩ
I_{IN}	Input Leakage Current (GOOD_BAT)	$V_{BUS}=5$ V, GOOD_BAT=0 V to 4.4 V			10	μA
I_{IOFF}	Off-State Leakage Current (GOOD_BAT)	$V_{BUS}=0$ V, GOOD_BAT=0 V to 4.4 V			10	μA
t_{DBP}	Dead Battery Provision (DBP) Timer		15	30	45	min
t_{GB}	Time from GOOD_BAT Asserted to SW_OPEN De-Asserted, Switches Closed and Meet the R_{ONUSB} Specification				30	ms
t_{DB}	Time from GOOD_BAT De-asserted to SW_OPEN Asserted, Switches Opened				65	ms
Battery Charger Detection Parameters from BC1.2 Specification						
V_{DAT_REF}	Data Detect Voltage		0.25		0.40	V
V_{DM_SRC}	D- Source Voltage ⁽⁵⁾		0.5		0.7	V
V_{DP_SRC}	D+ Source Voltage ⁽⁵⁾		0.5		0.7	V
V_{LGC}	Logic Threshold		0.8		2.0	V
I_{DM_SINK}	D- Sink Current		25		175	μA
I_{DP_SINK}	D+ Sink Current		25		175	μA
I_{DP_SRC}	Data Contact Detect Current Source		7		13	μA

Continued on the following page...

DC Electrical Characteristics

Unless otherwise indicated, $V_{BUS}=4$ V to 6 V and $T_A=-40$ to $+85^\circ C$. Typical values are at $T_A=25^\circ C$ unless otherwise specified.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
t_{DCD_DBNC}	Data Contact Detect Debounce		10			ms
t_{DCD_TOUT}	Time for DCD to Timeout		300	450	900	ms
t_{VDPSRC_ON}	D+ Voltage Source On Time		40			ms
t_{VDMSRC_ON}	D- Voltage Source On Time		40			ms

Notes:

- Guaranteed by characterization; not production tested.
- The voltage source, V_{DP_SRC} / V_{DM_SRC} , is able to source at least 250 μA when the output voltage is in the specified range. This voltage source should not pull DP_CON / DM_CON below 2.2 V when DP_CON / DM_CON is pulled to a voltage of 3.0 V minimum or 3.6 V maximum with a resistance of 900 Ω minimum or 1575 Ω maximum.

AC Electrical Characteristics

Unless otherwise specified, values are at $T_A=-40$ to $+85^\circ C$; all typical values are for $V_{CC}=3.3$ V at $T_A=25^\circ C$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit	Figure
Xtalk	Active Channel Crosstalk, DP_COM to DM_CON ⁽⁶⁾	$F=1$ MHz, $R_T=50$ Ω , $C_L=0$ pF		-78		dB	Figure 6
		$F=240$ MHz, $R_T=50$ Ω , $C_L=0$ pF					
O _{IRR}	Off Isolation Rejection Ratio, DM_HOST to DM_CON, DP_HOST to DP_CON ⁽⁶⁾	$f=1$ MHz, $R_T=50$ Ω , $C_L=0$ pF		-84		dB	Figure 5
		$f=240$ MHz, $R_T=50$ Ω , $C_L=0$ pF					
BW	Bandwidth of Switch ⁽⁶⁾	$R_T=50$ Ω		1.5		GHz	Figure 5

Note:

- Guaranteed by characterization; not production tested.

Capacitance

Unless otherwise specified, values are at $T_A=-40$ to $+85^\circ C$.

Symbol	Parameter	Condition	Typical	Unit	Figure
C_{OFF}	DP_CON, DM_CON Off Capacitance ⁽⁷⁾	$V_{BIAS}=0.2$ V, $f=1$ MHz	3.2	pF	Figure 7
C_{ON}	DP_CON, DM_CON On Capacitance ⁽⁷⁾	$V_{BIAS}=0.2$ V, $f=1$ MHz	5.8	pF	Figure 8

Note:

- Guaranteed by characterization; not production tested.

Test Diagrams

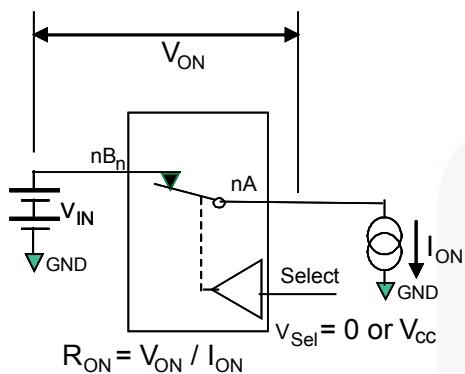
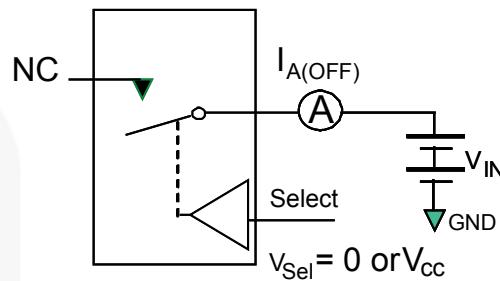



Figure 3. On Resistance

**Each switch port is tested separately.

Figure 4. Off Leakage

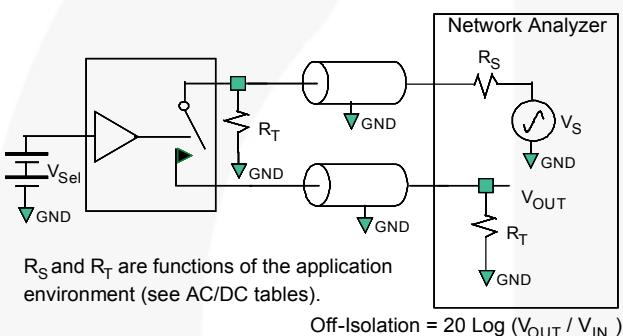


Figure 5. Channel Off Isolation

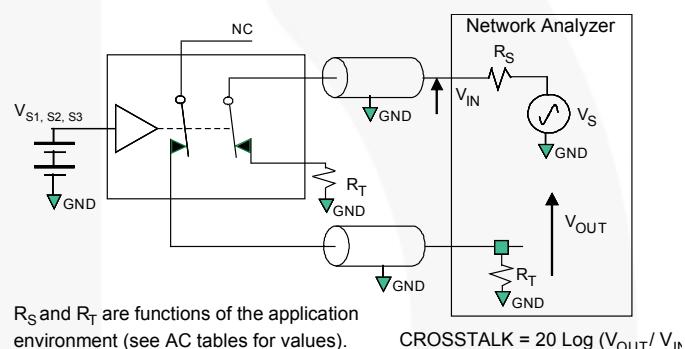


Figure 6. Active Channel Crosstalk

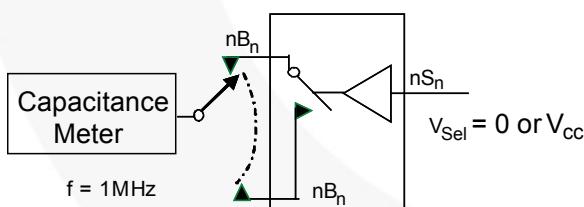


Figure 7. Channel Off Capacitance

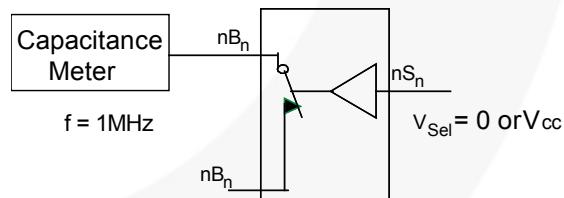
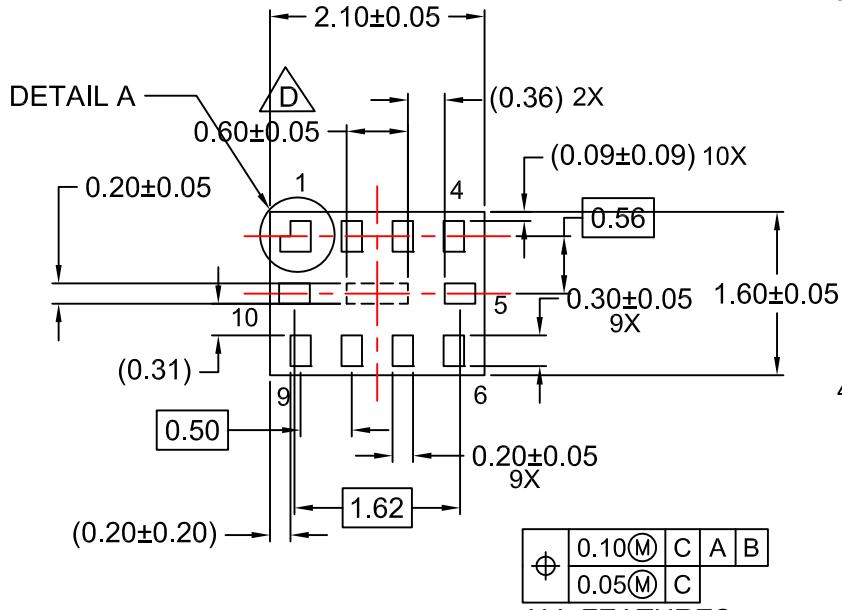
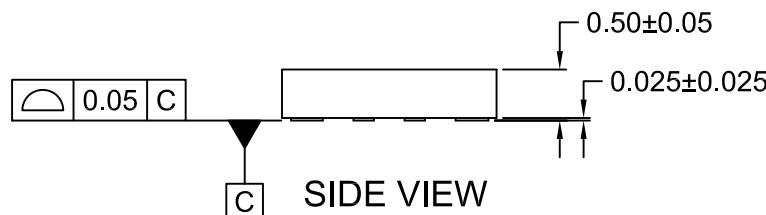
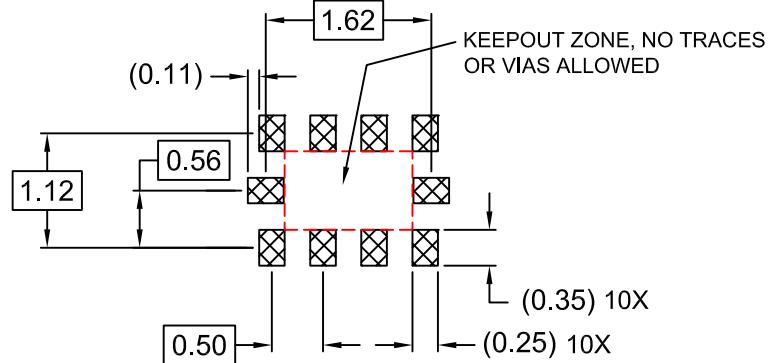
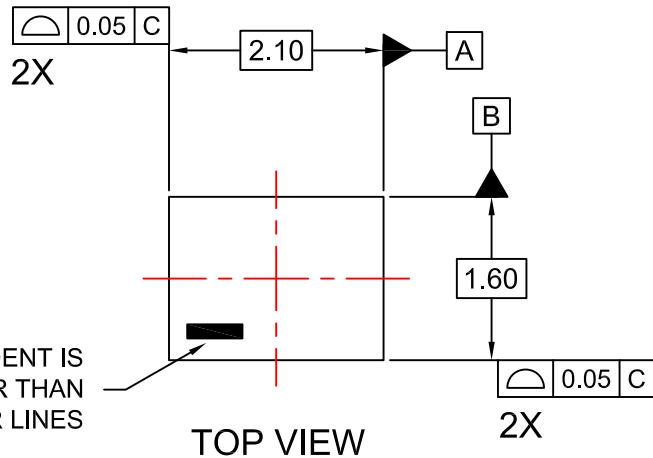
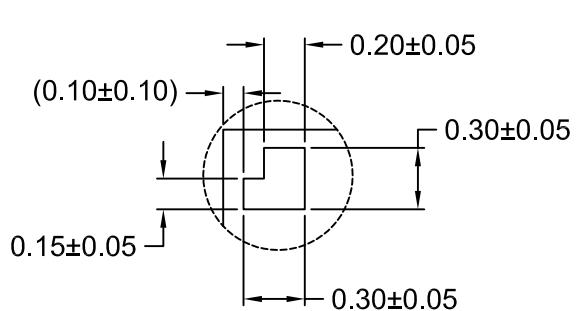







Figure 8. Channel On Capacitance

BOTTOM VIEW

DETAIL A 2X SCALE

NOTES:

- A. PACKAGE CONFORMS TO JEDEC REGISTRATION MO-255, VARIATION UABD .
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. PRESENCE OF CENTER PAD IS PACKAGE SUPPLIER DEPENDENT. IF PRESENT IT IS NOT INTENDED TO BE SOLDERED AND HAS A BLACK OXIDE FINISH.
- E. DRAWING FILENAME: MKT-MAC10Arev6.
- F. DIMENSIONS WITHIN () ARE UNCONTROLLED

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative