

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

October 2006

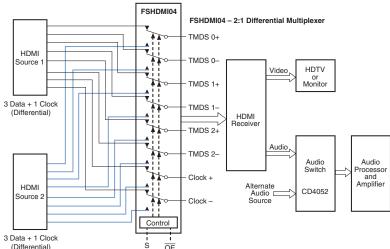
FSHDMI04 Wide-Bandwidth Differential Signaling HDMI Switch

Features

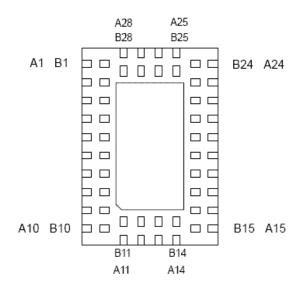
- · 1.65 Gbps throughput
- · 8kV ESD protection
- -26dB non-adjacent channel crosstalk at 825MHz
- · Isolation ground between channels
- Low skew
 - Inter-pair skew <150ps
 - Intra-pair skew <90ps
- · Fast turn on/off time
- Low power consumption (1µA maximun)
- · Control input: TTL compatible

Applications

UXGA and 1080p DVI and HDMI video source selection


General Description

The FSHDMI04 is a wide bandwidth switch for routing HDMI Link Data and Clock signals. This device supports data rates up to 1.65Gbps per channel for UXGA resolution. It can also be used to switch TMDS-based DVI digital video streams. Possible applications include LCD TV, DVD, Set-Top Box, notebook computers and other designs with multiple digital video interfaces. The FSHDMI04 switch allows the passage of HDMI link signals with low non-adjacent channel crosstalk and superior OFF-Isolation. This performance is critical to minimize ghost images between active video sources in video applications. The wide bandwidth of this switch allows the high speed differential signal to pass through the switch with minimal additive skew and phase jitter.


Ordering Information

Order Number	Package Number	Package Description
FSHDMI04QSPX	MQA48A	48-Lead Quarter Size Very Small Outline Package (QVSOP), JEDEC MO-154, 0.150inches Wide
FSHDMI04MTDX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
FSHDMI04BQX (Preliminary)	MLP56	56-Lead Molded Leadless Package (MLP), 5x7mm Wide

Applications Diagram

Pin Assignments

Pin	Function	Pin	Function	Pin	Function
A1	NC	A21	C1-	B13	NC
A2	2C0-	A22	C1+	B14	C3-
A3	1C1+	A23	VCC	B15	GND
A4	1 C1-	A24	NC	B16	C3+
A5	2C1-	A25	GND	B17	vcc
A6	GND	A26	VCC	B18	GND
A7	1C2+	A27	Vcc	B19	NC
A8	1C2-	A28	GND	B20	NC
A9	GND	B1	2C0+	B21	GND
A10	NC	B2	1 C 0-	B22	GND
A11	2C3-	B3	GND	B23	C0-
A12	GND	B4	2C1+	B24	GND
A13	VCC	B5	NC	B25	C0+
A14	GND	B6	NC	B26	NC
A15	NC	B7	2C2+	B27	NC
A16	GND	B8	2C2-	B28	1C0+
A17	C2-	B9	103+		
A18	C2+	B10	2C3+		
A19	OE	B11	1C3-		
A20	8	B12	NC		

Figure 1. MLP Pin Assignments

Pin Assignments

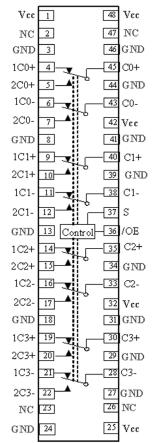


Figure 2. QVSOP and TSSOP Pin Assignments

Truth Table

S	ŌE	Function
Х	Н	Disconnected
L	L	$1C_n = C_n$
Н	L	2 C _n = C _n

Pin Descriptions

Pin Name	Description
ŌĒ	Bus Switch Enable
S	Select Input
1C _n , 2C _n , C0 _n , C1 _n , C2 _n , C3 _n	Data Ports

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

Symbol	Parameter	Rating
V _{CC}	Supple Voltage	-0.5V to +4.6V
V _S	DC Switch Voltage	-0.5V to V _{CC} $+0.05$
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5V to +4.6V
I _{IK}	DC Input Diode Current	–50 mA
I _{OUT}	DC Output Sink Current	128 mA
T _{STG}	Storage Temperature Range	−65°C to +150°C
	ESD, Human Body Model	8,000V

Recommended Operating Conditions⁽²⁾

Symbol	Parameter	Rating
V _{CC}	Power Supply Operating	3.0V to 3.6V
V _{IN}	Control Input Voltage	0V to V _{CC}
	Switch Input Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to 85°C

DC Electrical Characteristics

All typical values are for V_{CC} = 3.3V @ 25°C unless otherwise specified.

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			
Symbol	Parameter	Conditions	$V_{CC}(V)$	Min.	Тур.	Max.	Units
V _{IK}	Clamp Diode Voltage	I _{IN} = -18mA	3.0			-1.2	V
V _{IH}	Input Voltage HIGH		3.0-3.6	2.0			V
V _{IL}	Input Voltage LOW		3.0–3.6			0.8	V
I _{IN}	Control Input Leakage	V _{IN} = 0 to V _{CC}	3.6			±1.0	μΑ
I _{OZ}	OFF-STATE Leakage	$0 \le nC_n, C_n \le V_{CC}$	3.6			±1.0	μΑ
R _{ON}	Switch On Resistance ⁽³⁾	$V_{IN} = V_{CC} - 0.6 \text{ to } V_{CC},$ $I_{ON} = 10\text{mA}$	3.0		12.0	19.0	Ω
R _{ON(FLAT)}	Switch On Resistance Flatness ⁽⁴⁾	$V_{IN} = V_{CC} - 0.6 \text{ to } V_{CC},$ $I_{ON} = 10\text{mA}$	3.0		1.0		Ω
I _{CC}	Quiescent Supply Current	$V_{IN} = 0$ or V_{CC} , $I_{OUT} = 0$	3.6			1.0	μΑ

Notes

- 1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 2. Unused control inputs must be held HIGH or LOW. They may not float.
- 3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.
- 4. Flatness is defined as the difference between the maximum and minimum value on resistance over the specified range of conditions.

AC Electrical Characteristics

All typical values are for V_{CC} = 3.3V @ 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	T _A =-40°C to +85°C			Figure	
				Min.	Тур.	Max.	Units	Number
t _{ON}	Turn ON Time S, OE-to-Output	$V_{IN} = V_{CC} - 0.5,$ $R_{PU} = 50\Omega, C_L = 5pF$	3.0 to 3.6		4.0	6.0	ns	Figure 7 Figure 8
t _{OFF}	Turn OFF Time S, OE-to-Output	$V_{IN} = V_{CC} - 0.5,$ $R_{PU} = 50\Omega, C_L = 5pF$	3.0 to 3.6		2.0	4.0	ns	Figure 7 Figure 8
t _{BBM}	Break-Before-Make Time	$V_{IN} = V_{CC} - 0.5,$ $R_{PU} = 20\Omega, C_L = 5pF$	3.0 to 3.6		3.0			Figure 14
t _{PD} (t _{PLH} , t _{PHL})	Switch Propagation Delay	$R_{PU} = 50\Omega$, $C_L = 5pF$	3.0 to 3.6			250	ps	Figure 7 Figure 13
T _{JITTER}	Total Jitter (DJ + RJ)	f = 165MHz Clock with	3.0 to 3.6		55.0		ps	Figure 7
T _{RATIO}	Duty Cycle Ratio	50% Duty Cycle, RPU = 50Ω, C_L = 5pF			50.0		%	
T _{SK1}	Intra-Pair Skew C _n + to C _n - ⁽⁵⁾	f = 1.65Gbps, 2^{23} -1 PRBS R _{PU} = 50Ω, C _L = 5pF	3.0 to 3.6		55.0	90.0	ps	Figure 7 Figure 13
T _{SK2}	Inter-Pair Skew ⁽⁵⁾ (Between any two switch paths)	f = 1.65Gbps, 2^{23} -1 PRBS R _{PU} = 50Ω, C _L = 5pF	3.0 to 3.6		90.0	150.0	ps	Figure 7 Figure 13
O _{IRR}	OFF-Isolation	$R_T = 50\Omega$, $f = 370MHz$	3.0 to 3.6		-35.0		dB	Figure 9
		$R_T = 50\Omega$, $f = 825MHz$	3.0 to 3.6		-25.0			
Xtalk Non-Adjacent Channel	$R_T = 50\Omega$, $f = 370MHz$	3.0 to 3.6		-30.0		dB	Figure 10	
	Crosstalk	$R_T = 50\Omega$, $f = 825MHz$	3.0 to 3.6		-26.0			_
f _{MAX}	Maximum Throughput		3.3		1.65		Gbps	

Notes:

5. Guaranteed by characteristics and design.

Capacitance

	T _A = -40°0		40°C to	+85°C		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} = 0V		1.1		pF
C _{ON}	nC _n ON Capacitance	V _{CC} = 3.3V		6.0		pF
C _{OFF}	Port C _n OFF Capacitance	V _{CC} = 3.3V		2.5		pF

Typical Characteristics

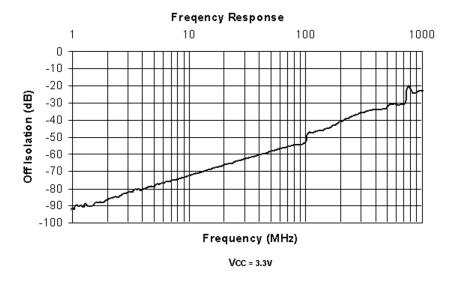


Figure 3. Off- Isolation, $V_{CC} = 3.3V$

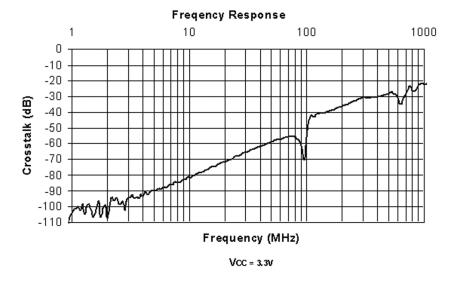


Figure 4. Crosstalk, V_{CC} =3.3CV

Test Diagrams

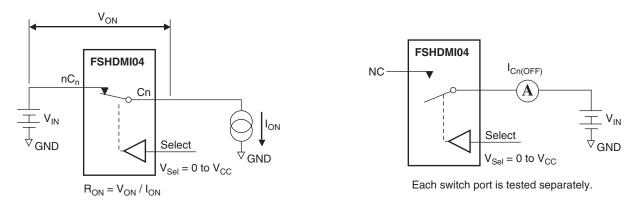
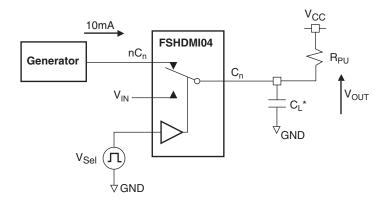
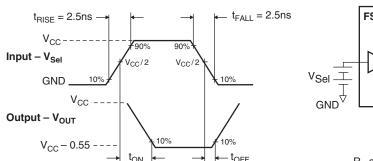
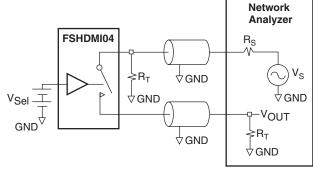



Figure 5. On Resistance


Figure 6. OFF Leakage



 R_{PU} and C_L are functions of application environment (see AC/DC Tables for values of C_L and $R_{PU})$ $^{\star}C_L$ includes fixture and stray capacitance

Figure 7. AC Test Circuit Load

Test Diagrams (Continued)

 $\rm R_S$ and $\rm R_T$ are functions of the application environment (see AC/DC Tables for values of $\rm R_T)$

OFF-Isolation = 20 Log (V_{OUT}/V_{IN})

Figure 8. Turn ON / Turn OFF Waveforms

Figure 9. Channel OFF-Isolation

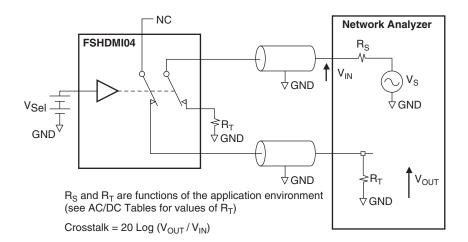


Figure 10. Non-adjacent Channel-to-Channel Crosstalk

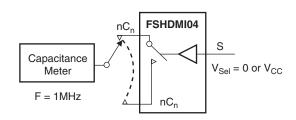


Figure 11. Channel OFF-Capacitance

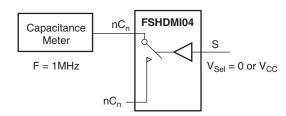


Figure 12. Channel ON-Capacitance

Test Diagrams (Continued)

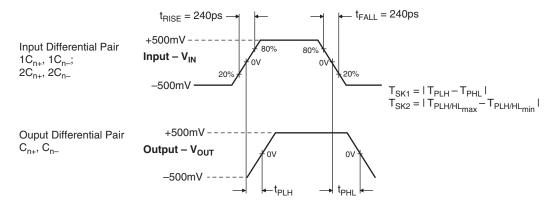
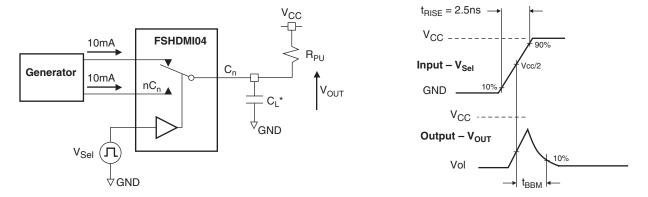
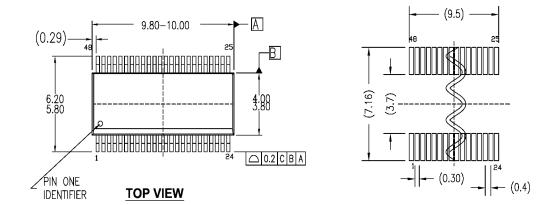
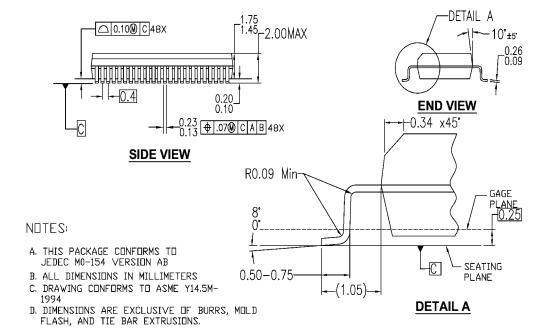



Figure 13. Intra- and Inter-Pair Skew, t_{PD}



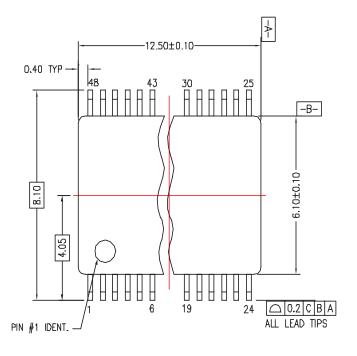
 $\rm R_{PU}$ and $\rm C_L$ are functions of application environment (see AC/DC Tables for values of $\rm C_L$ and $\rm R_{PU})$ *C_L includes fixture and stray capacitance

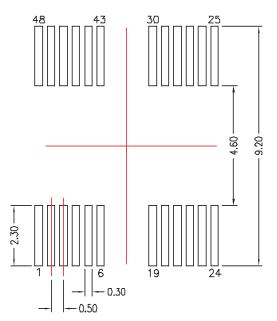

Figure 14. Break-Before-Make

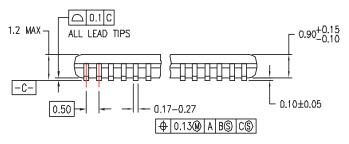
Physical Dimensions

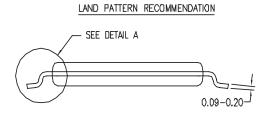
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

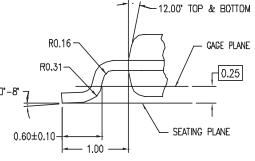



MQA48AREVA


Figure 15. 48-Lead Quarter Size Very Small Outline Package (QVSOP), JEDEC MO-154, 0.150inches Wide


Physical Dimensions (Continued)

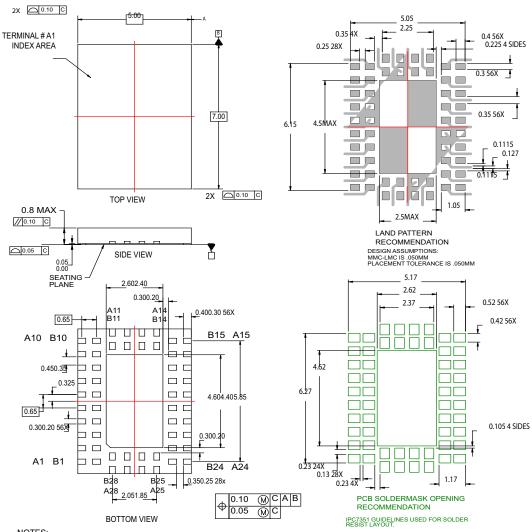
Dimensions are in millimeters unless otherwise noted.



DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ED, DATE 4/97.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.


DETAIL A

MTD48REVC

Figure 16. 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

NOTES:

- A. NOT CURRENTLY REGISTERED WITH
- ANY STANDARDS BODY.

 B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER
- D. PRELIMINARY DRAWING SUBJECT TO REVISION.

MLP56Arev2

Figure 17. 56-Lead Molded Leadless Package (MLP) 5x7mm

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER®
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I ² C™	PACMAN™	SuperFET™
$CROSSVOLT^{TM}$	i-Lo™	POP™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench [®]	TCM™
FACT™	MICROCOUPLER™	QFET [®]	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
Across the board. A	round the world.™	μSerDes™	TruTranslation™
The Power Franchis	se [®]	ScalarPump™	UHC™

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFET™ UltraFET® VCX™ Wire™

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I20

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FSHDMI04MTDX