

LOGIC LEVEL TRIAC

Gate Trigger Current

1 Amp < 10 mA

Off-State Voltage

On-State Current

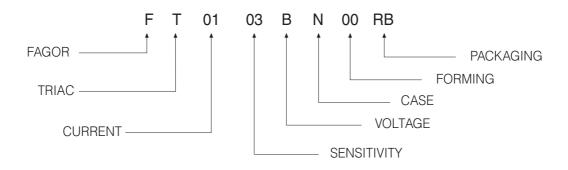
200 V ÷ 600 V

These parts are intended for general purpose AC switching applications with highly inductive loads.

Absolute Maximum Ratings, according to IEC publication No. 134

SYMBOL	PARAMETER	CONDITIONS	Value	Unit
I _{T(RMS)}	RMS On-state Current (full sine wave)	All Conduction Angle, T _C = 95 °C	1	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 60 Hz (t = 16.7 ms)	8.5	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 50 Hz (t = 20 ms)	8	А
l ² t	Fusing Current	tp = 10 ms, Half Cycle	0.32	A ² s
I _{GM}	Peak Gate Current	20 μs max. T _j =125 °C	1	А
$P_{G(AV)}$	Average Gate Power Dissipation	T _j =125 °C	0.1	W
dI/dt	Critical rate of rise of on-state current	$I_G = 2x I_{GT}, t_r \le 100 \text{ns}$	20	A/µs
		f= 120 Hz, T _j =125 °C		
T _j	Operating Temperature		(-40 + 125)	°C
T_{stg}	Storage Temperature		(-40 + 150)	°C
$T_{\sf sld}$	Soldering Temperature	10s max	260	°C

SYMBOL	PARAMETER		Unit		
STIVIDOL	TAHAWETEN	В	D	М	
V_{DRM}	Repetitive Peak Off State	200	400	600	V
V_{RRM}	Voltage				


LOGIC LEVEL TRIAC

Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS		Quadrant		SENSITIVITY			Unit	
STIVIDOL	IAIIAIVILILII	CONDITIONS)	Quadrant		03	05	07	09	
I _{GT} ⁽¹⁾	Gate Trigger Current	$V_D = 12 V_{DC}, R_L = 33 \Omega,$	$T_j = 25 ^{\circ}C$	Q1÷Q3	MAX	3	5	5	10	mA
				Q4	MAX	5	5	7	10	mA
V _{GT}	Gate Trigger Voltage	$V_D = 12 V_{DC}, R_L = 33 \Omega,$	$T_j = 25 ^{\circ}C$	Q1÷Q3	MAX	1.3			V	
				Q1÷Q4	MAX		1.	.3		V
V_{GD}	Gate Non Trigger Voltage	$V_D = V_{DRM}, R_L = 3.3 \text{ K}\Omega,$	$T_j = 125 ^{\circ}\text{C}$	Q1÷Q3	MIN	0.2			V	
				Q1÷Q4	MIN	0.2		V		
I _H ⁽²⁾	Holding Current	$I_T = 50$ mA, Gate open,	$T_j = 25 ^{\circ}C$		MAX	7	10	10	10	mA
I _L	Latching Current	$I_G = 1.2 I_{GT}, T_j = 25 ^{\circ}\text{C}$		Q1,Q3	MAX					mA
				Q1,Q3,Q4	MAX	7	10	10	15	mA
				Q2	MAX	15	20	20	25	mA
dV/dt (2)	Critical Rate of Voltage Rise	$V_D = 0.67 \times V_{DRM}$, Gate open			MIN	10	20	20	50	V/µs
		$T_j = 125 ^{\circ}\text{C}$								
(dl/dt)c (2)	Critical Rate of Current Rise	$(dv/dt)c = 0.1 V/\mu s$	$T_j = 125 ^{\circ}C$		MIN	1.2	1.8	1.8	2.5	A/ms
		$(dv/dt)c = 10 V/\mu s$	$T_j = 125 ^{\circ}\text{C}$		MIN	0.6	0.9	0.9	1.5	A/ms
		without snubber $T_j = 125 ^{\circ}\text{C}$			MIN	·				
V _{TM} ⁽²⁾	On-state Voltage	$I_T = 1.1 \text{ Amp, tp} = 380 \mu\text{s, } T_j = 25 ^{\circ}\text{C}$			MAX	1.5		V		
V_{to} (2)	Threshold Voltage	$T_j = 125 ^{\circ}\text{C}$			MAX	0.95		V		
r _d ⁽²⁾	Dynamic resistance	T _j = 125 °C			MAX			m Ω		
I _{DRM} /I _{RRM}	Off-State Leakage Current	$V_D = V_{DRM}$,	$T_j = 125 ^{\circ}\text{C}$		MAX		0.	.5		mA
		$V_R = V_{RRM}$,	$T_j = 25 ^{\circ}C$		MAX		5	5		μΑ
R _{th(j-c)}	Thermal Resistance Junction-Case	for AC 360° conduction angle				80		°C/W		
R _{th(j-a)}	Thermal Resistance Junction-Ambient	$S = 5 \text{cm}^2$					6	0		°C/W

⁽¹⁾ Minimum I_{GT} is guaranted at 5% of I_{GT} max.

PART NUMBER INFORMATION

⁽²⁾ For either polarity of electrode MT2 voltage with reference to electrode MT1.

Fig. 1: Maximum power dissipation versus RMS on-state curren (full cycle).

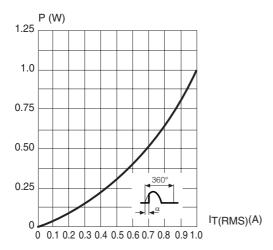


Fig. 3: Relative variation of thermal impedance versus pulse duration.

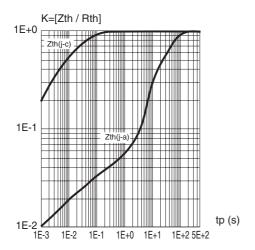
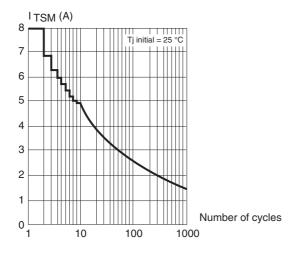



Fig. 5: Surge peak on-state current versus number of cycles

LOGIC LEVEL TRIAC

Fig. 2: RMS on-state current versus case temperature (full cycle).

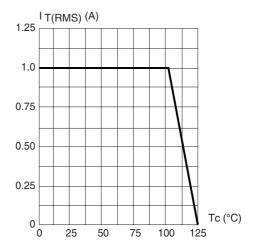


Fig. 4: On-state characteristics (maximum values)

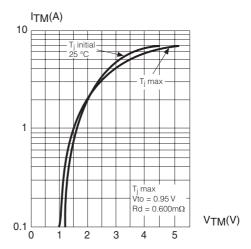
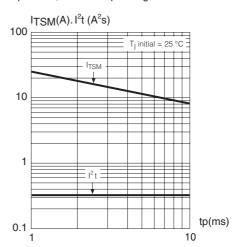



Fig. 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<10ms, and corresponding value of I²t.

LOGIC LEVEL TRIAC

Fig. 7: Relative variation of gate trigger current, holding current and latching versus junction temperature (typical values)

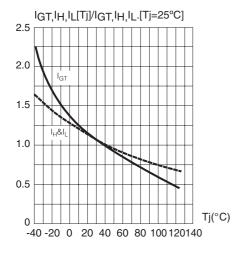


Fig. 8: Relative variation of critical rate of decrease of main current versus junction temperature

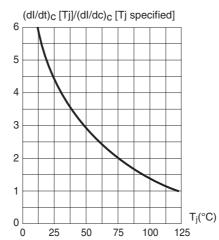
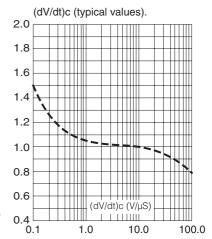
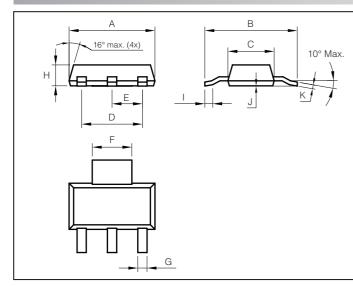
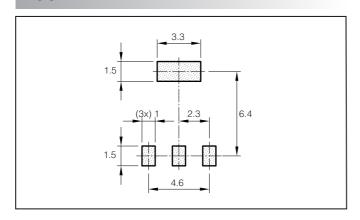




Fig. 9: Relative variation of critical rate of decrease of main current versus

PACKAGE MECHANICAL DATA


SOT223 (Plastic)

	DIMENSIONS						
REF.	Milimeters						
	Min.	Тур.	Max.				
Α	6.30	6.50	6.70				
В	6.70	7.00	7.30				
С	3.30	3.50	3.70				
D	ı	4.60	-				
Е	1	2.30	-				
F	2.95	3.00	3.15				
G	0.65	0.70	0.85				
Η	1.50	1.60	1.70				
	0.50	0.60	0.70				
J	ı	0.02	0.05				
K	0.25	0.30	0.35				

Weight: 0.11 g

FOOT PRINT

