

Current Transducer HASS 50..600-S

For the electronic measurement of currents: DC, AC, pulsed, mixed, with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

All Data are given with a $\mathbf{R}_1 = 10 \text{ k}\Omega$

19

mΑ

I_{PN} = 50 .. 600 A

Electrical data

Primary r current	rms measurin	g range	Туре	
50	± 15	50	HASS 50-S	
100	± 30	00	HASS 100-S	
200	± 60	00	HASS 200-S	
300			HASS 300-S	
400			HASS 400-S	
500			HASS 500-S	
600	± 90	00	HASS 600-S	
V _{OUT}	Analog Output voltage	e @ I _P	$V_{OF} \pm (0.625. I)$	_P / I _{PN}) V
G_{TH}	Theoretical sensitivity		0.625	V/ I _{PN}
V_{REF}	Reference voltage 1)	Ouput voltage	2.5 ± 0.025	V
		Ouput impedance	typ. 200	Ω
		Load impedance	≥ 200	Ω
$R_{\scriptscriptstyle L}$	Load resistance		≥ 2	kΩ
R _{OUT}	Output internal resista	nce	< 5	Ω
C			= 4.7	nF
V c	Supply voltage (± 5 %) 2)	5	V

Accuracy - Dynamic performance data

Current consumption @ $V_c = 5V$

Χ	Accuracy 3) @ I _{PN} , T _A = 25°C		≤ ± 1	%
$\varepsilon_{\scriptscriptstyle L}$	Linearity error 0 I _{PN}		≤ ± 0.5	%
_	0 I _{PM}		≤ ± 1	%
TCV	Temperature coefficient of V _{OF}	(+25 +85°C)	≤ ± 0.4	mV/K
02	32	(-40 +25°C)	\leq ± 0.525	mV/K
TCV_{REF}	Temperature coefficient of V _{RFF}	(+25 +85°C)	\leq ± 0.01	%/K
INE.	I.C.	(-40 +25°C)	\leq ± 0.015	%/K
TCV/V_R	Temperature coefficient of $\mathbf{V}_{OF}/\mathbf{V}_{RF}$	F	≤ ± 0.15	mV/K
TCG	Temperature coefficient of G		≤ ±0.05% of reading//K	
\mathbf{V}_{OE}	Electrical offset voltage @ I _P = 0, T	₄ = 25°C	$V_{RFF} \pm 0.025$	V
V _{OM}	Magnetic offset voltage @ $I_P = 0$		IXEI	
0	after an overload of I _{PM}		$< \pm 0.4$	%
t _{ra}	Reaction time to 10 % of I _{PN} step		< 3	μs
t,	Response time to 90 % of I _{PN} step		< 5	μs
di/dt	di/dt accurately followed		> 100	A/µs
V _{no}	Output voltage noise (DC 10 kl	Hz)	< 20	mVpp
	(DC 1 MF	Hz)	< 40	mVpp
BW	Frequency bandwidth (- 3 dB) 4)		DC 50 kHz	8: 1997

Notes: $^{1)}$ It is possible to overdrive V_{REF} with an external reference voltage

between 1.5V - 2.8V providing its ability to sink or source approximately 5 mA.

Features

- · Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation test voltage 3300 V
- Low power consumption
- Single power supply + 5 V
- Fixed offset & Gain
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Easy installation
- · Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference
- Internal & external reference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Page 1/3

www.lem.com

²⁾Maximum supply voltage (not operating) < 6.5 V

³⁾Excluding Offset and Magnetic offset voltage

Current Transducer HASS 50..600-S

General data			
T _A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 40 + 85	°C
m	Mass	55	g
	Standards	EN 50178:1997	

Isolation characteristics

- $\mathbf{V}_{_{\mathrm{b}}}$ Rated isolation voltage rms with following conditions
 - -Over voltage category ${\rm I\hspace{-.1em}I\hspace{-.1em}I}$
 - -Pollution degree 2
 - -Heterogeneous field

	EN50178	IEC61010-1
Single insulation	300V	300V
Reinforced insulation	150V	150V

V _d	Rms voltage for AC isolation test, 50 Hz, 1 min	3.3	kV
V ຼ	Partial discharge extinction voltage rms @ 10 pC	> 1	kV
V _w	Impulse withstand voltage 1.2/50 μs	6	kV
dCp	Creepage distance	> 5.5	mm
dCl	Clearance distance	> 5.5	mm
CTI	Comparative Tracking Index (Group I)	> 600	V

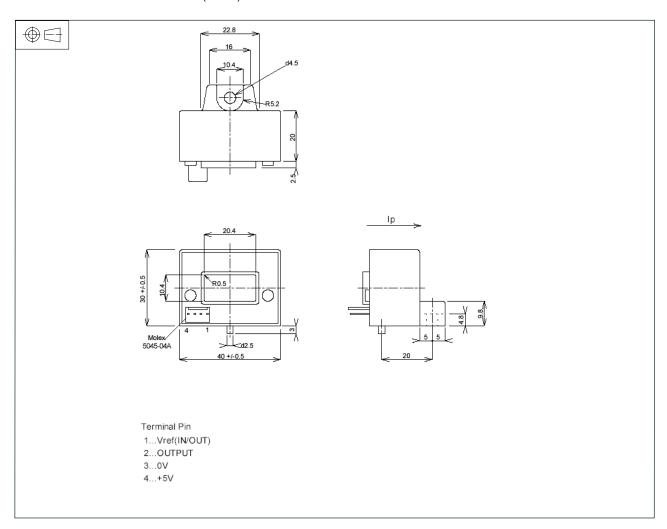
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

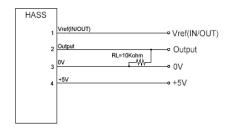
Caution, risk of electrical shock

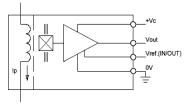
When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.


Main supply must be able to be disconnected.


Dimensions HASS 50..600-S (in mm)

Required Connection Circuit

Operation Principle

Mechanical characteristics

• General tolerance ± 0.5 mm

 Aperture for primary conductor 20.4x10.4x0.5mm

• Transducer fastening M4 • Recommended fastening torque <1.5N·m

 Connection of secondary Molex 5045-04A

Remarks

- Arrow indicates positive current flow direction.
- Temperature of the primary conductor should not exceed 100°C.

Page 3/3 www.lem.com

110512/12

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice.