

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

HEF4069UB-Q100

Hex inverter

Rev. 2 — 9 September 2014

Product data sheet

1. General description

The HEF4069UB-Q100 is a general-purpose hex inverter. Each inverter has a single stage.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD} , V_{SS} , or another input.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

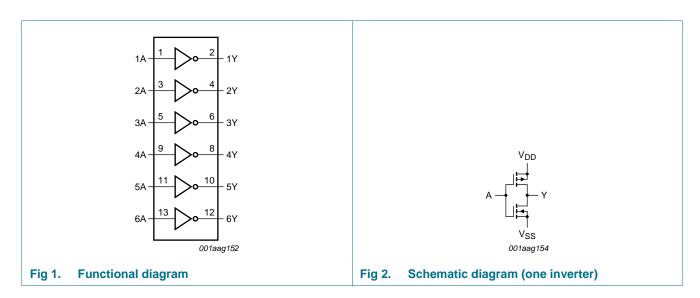
2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - \bullet MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Complies with JEDEC standard JESD 13-B

3. Applications

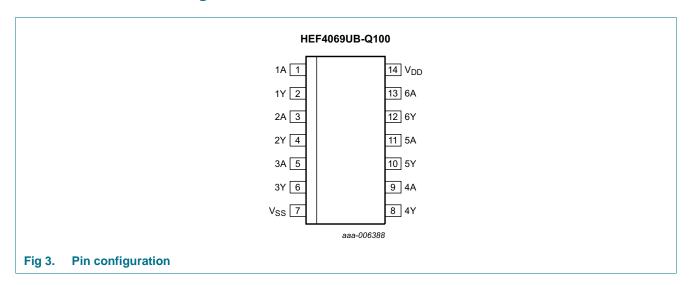
Oscillator

4. Ordering information


Table 1. Ordering information

All types operate from -40 °C to +125 °C.

Type number	Package	ackage							
	Name	Description	Version						
HEF4069UBT-Q100	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1						
HEF4069UBTT-Q100	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1						



5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1A to 6A	1, 3, 5, 9, 11, 13	input
1Y to 6Y	2, 4, 6, 8, 10, 12	output
V_{SS}	7	ground (0 V)
V_{DD}	14	supply voltage

HEF4069UB_Q100

All information provided in this document is subject to legal disclaimers.

7. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit	
V_{DD}	supply voltage			-0.5	+18	V	
I _{IK}	input clamping current	nt $V_I < -0.5 \text{ V or } V_I > V_{DD} + 0.5 \text{ V}$		-	±10	mA	
VI	input voltage			-0.5	V _{DD} + 0.5	V	
I _{OK}	output clamping current	utput clamping current $V_O < -0.5 \text{ V or } V_O > V_{DD} + 0.5 \text{ V}$		-	±10	mA	
I _{I/O}	input/output current			-	±10	mA	
I _{DD}	supply current			-	50	mA	
T _{stg}	storage temperature			-65	+150	°C	
T _{amb}	ambient temperature			-40	+125	°C	
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$					
		SO14	<u>[1]</u>	-	500	mW	
		TSSOP14	[2]	-	500	mW	
Р	power dissipation	per output		-	100	mW	

^[1] For SO14 packages: above T_{amb} = 70 °C, P_{tot} derates linearly with 8 mW/K.

8. Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
VI	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C

^[2] For TSSOP14 packages: above T_{amb} = 60 °C, P_{tot} derates linearly with 5.5 mW/K.

9. Static characteristics

Table 5. Static characteristics

 $V_{SS} = 0$ V; $V_I = V_{SS}$ or V_{DD} ; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	–40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	T _{amb} = +125 °C		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V _{IH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	4	-	4	-	4	-	4	-	V
	input voltage		10 V	8	-	8	-	8	-	8	-	V
			15 V	12.5	-	12.5	-	12.5	-	12.5	-	V
V _{IL}	LOW-level	$ I_{O} < 1 \mu A$	5 V	-	1	-	1	-	1	-	1	V
	input voltage		10 V	-	2	-	2	-	2	-	2	V
			15 V	-	2.5	-	2.5	-	2.5	-	2.5	V
V _{OH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V _{OL}	LOW-level	$ I_{O} < 1 \mu A$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
	output voltage		10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level	$V_0 = 2.5 \text{ V}$	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
	output current	V _O = 4.6 V	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		$V_0 = 9.5 \text{ V}$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		V _O = 13.5 V	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
I _{OL}	LOW-level	$V_0 = 0.4 \text{ V}$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
	output current	$V_0 = 0.5 \text{ V}$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		V _O = 1.5 V	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
I _I	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μА
I _{DD}	supply current	all valid input	5 V	-	0.25	-	0.25	-	7.5	-	7.5	μА
		combinations;	10 V	-	0.5	-	0.5	-	15.0	-	15.0	μА
		$I_O = 0 A$	15 V	-	1.0	-	1.0	-	30.0	-	30.0	μА
C _I	input capacitance	digital inputs		-	-	-	7.5	-	-	-	-	pF

10. Dynamic characteristics

Table 6. Dynamic characteristics

 $T_{amb} = 25$ °C; for waveforms see <u>Figure 4</u>; for test circuit see <u>Figure 5</u>.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula[1]	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW	nA to nY	5 V	18 ns + (0.55 ns/pF)C _L	-	45	90	ns
	propagation delay		10 V	9 ns + (0.23 ns/pF)C _L	-	20	40	ns
			15 V	7 ns + (0.16 ns/pF)C _L	-	15	25	ns
t _{PLH}	LOW to HIGH	nA to nY	5 V	13 ns + (0.55 ns/pF)C _L	-	40	80	ns
	propagation delay		10 V	9 ns + (0.23 ns/pF)C _L	-	20	40	ns
		15 V	7 ns + (0.16 ns/pF)C _L	-	15	30	ns	
t _{THL}	HIGH to LOW output	output nY	5 V	10 ns + (1.00 ns/pF)C _L	-	60	120	ns
	transition time		10 V	9 ns + (0.42 ns/pF)C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF)C _L	-	20	40	ns
t _{TLH}	LOW to HIGH output	output nY	5 V	10 ns + (1.00 ns/pF)C _L	-	60	120	ns
	transition time		10 V	9 ns + (0.42 ns/pF)C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF)C _L	-	20	40	ns

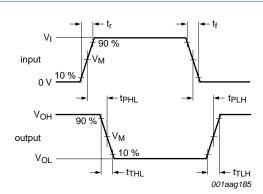
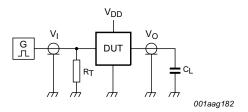

^[1] The typical value of the propagation delay and output transition time can be calculated with the extrapolation formula (C_L in pF).

Table 7. Dynamic power dissipation

 $V_{SS} = 0 \ V; \ t_f = t_f \le 20 \ ns; \ T_{amb} = 25 \ ^{\circ}C.$

Symbol	Parameter	V_{DD}	Typical formula	Where
P_D	dynamic power dissipation	5 V	$P_D = 600 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2 (\mu W)$	f_i = input frequency in MHz;
		10 V	$P_D = 4000 \times f_i + \Sigma(f_o \times C_L) \times V_{DD}^2 (\mu W)$	f _o = output frequency in MHz;
		15 V	$P_D = 22000 \times f_i + \Sigma(f_o \times C_L) \times V_{DD}^2 (\mu W)$	C_L = output load capacitance in pF;
				$\Sigma(f_0 \times C_L)$ = sum of the outputs;
				V _{DD} = supply voltage in V.


11. Waveforms

Measurement points: $V_M = 0.5V_{DD}$.

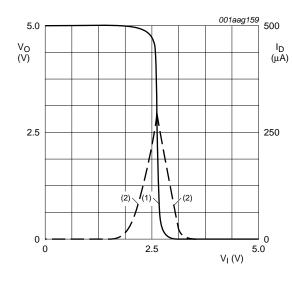
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 4. Propagation delay and transition times

Definitions for test circuit:

C_L = load capacitance including jig and probe capacitance;

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator;


For test data, refer to Table 8.

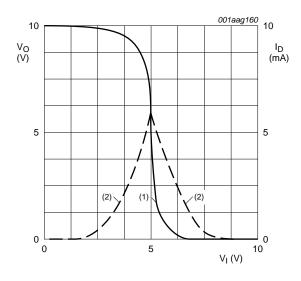
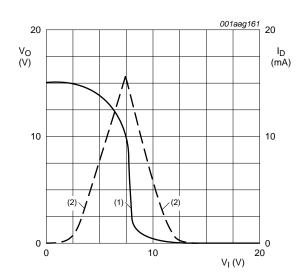

Fig 5. Test circuit for measuring switching times

Table 8. Test data

Supply voltage	Input	Load	
V_{DD}	V _I	t _r , t _f	C _L
5 V to 15 V	V_{SS} or V_{DD}	≤ 20 ns	50 pF


11.1 Transfer characteristics

a.
$$V_{DD} = 5 \text{ V}$$
; $I_{O} = 0 \text{ A}$

- c. $V_{DD} = 15 \text{ V}$; $I_{O} = 0 \text{ A}$
- (1) $V_O = \text{output voltage}$.
- (2) $I_D = drain current$.

Fig 6. Typical transfer characteristics

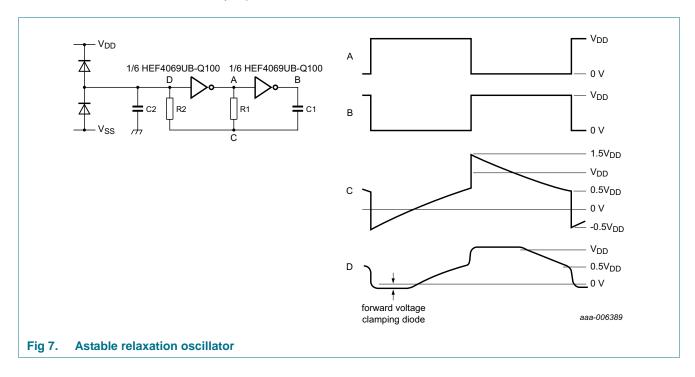
12. Application information

Some examples of applications for the HEF4069UB-Q100.

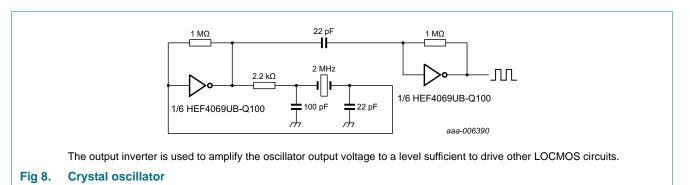
<u>Figure 7</u> shows an astable relaxation oscillator using two HEF4069UB-Q100 inverters and 2 BAW62 diodes. The oscillation frequency is mainly determined by R1 \times C1, provided R1 << R2 and R2 \times C2 << R1 \times C1.

The function of R2 is to minimize the influence of the forward voltage across the protection diodes on the frequency; C2 is a stray (parasitic) capacitance.

The period T_p is given by $T_p = T_1 + T_2$,


where:

$$T_1 = R1C1In \frac{V_{DD} + V_{ST}}{V_{ST}}$$


$$T_2 = RICIIn \frac{2V_{DD} - V_{ST}}{V_{DD} - V_{ST}}$$

 V_{ST} = the signal threshold level of the inverter.

The period is fairly independent of V_{DD} , V_{ST} and temperature. The duty factor, however, is influenced by V_{ST} .

<u>Figure 8</u> shows a crystal oscillator for frequencies up to 10 MHz using two HEF4069UB-Q100 inverters. The second inverter amplifies the oscillator output voltage to a level sufficient to drive other Local Oxidation CMOS (LOCMOS) circuits.

<u>Figure 9</u> and <u>Figure 10</u> show voltage gain and supply current. <u>Figure 11</u> shows the test set-up and an example of an analog amplifier using one HEF4069UB-Q100.

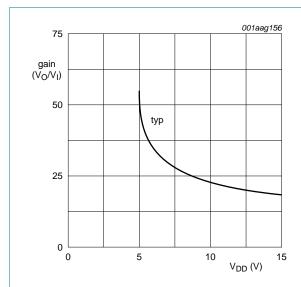
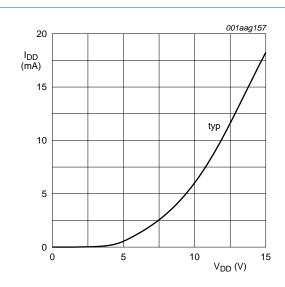
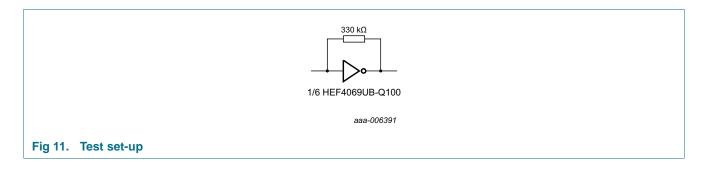
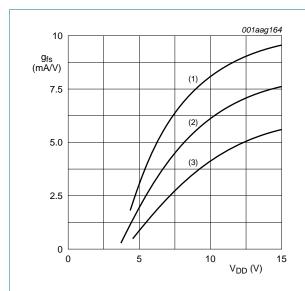


Fig 9. Typical voltage gain as a function of supply voltage


Fig 10. Typical supply current as a function of supply voltage

HEF4069UB_Q100

All information provided in this document is subject to legal disclaimers.

Figure 12 shows typical forward transconductance and Figure 13 shows the test set-up.

- (1) Average +2 σ ; where: ' σ ' is the standard deviation.
- (2) Average.
- (3) Average -2σ ; where: ' σ ' is the standard deviation.

Fig 12. Typical forward transconductance as a function of supply voltage at $T_{amb} = 25 \, ^{\circ}\text{C}$

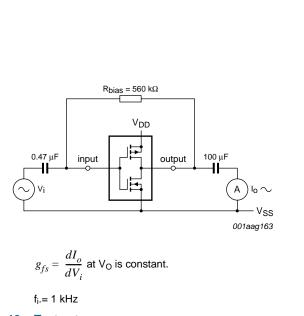
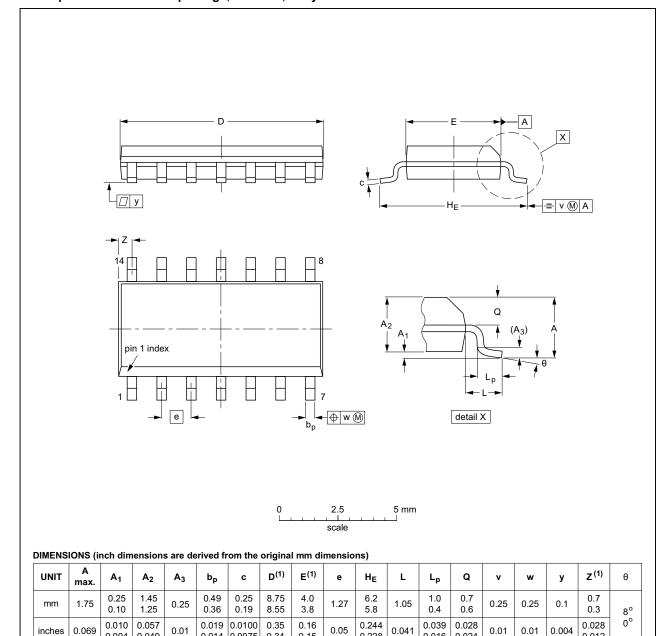



Fig 13. Test set-up

13. Package outline

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014 0.0075

0.34

0.15

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	135UE DATE	
SOT108-1	076E06	MS-012			99-12-27 03-02-19	

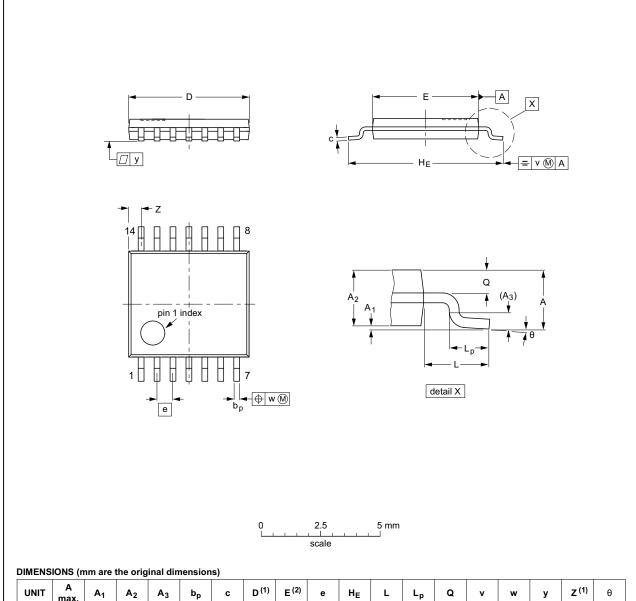
0.228

0.016

0.024

Fig 14. Package outline SOT108-1 (SO14)

0.004


0.049

HEF4069UB_Q100

All information provided in this document is subject to legal disclaimers.

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

UNIT	A max.	A ₁	A ₂	A ₃	b _p	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

JEDEC		DDO IDOTION	. ISSUE DATE
JEDEC	JEITA	PROJECTION	1
MO-153			-99-12-27 03-02-18
	MO-153	MO-153	MO-153

Fig 15. Package outline SOT402-1 (TSSOP14)

HEF4069UB_Q100

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 9. Abbreviations

Acronym	Description
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
MIL	Military

15. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4069UB_Q100 v.2	20140909	Product data sheet	-	HEF4069UB_Q100 v.1
Modifications:	Section 2: ESD protection: MIL-STD-833 changed to MIL-STD883			
HEF4069UB_Q100 v.1	20130228	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or

Suitability for use in automotive applications — This NXP

safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

HEF4069UB_Q100

HEF4069UB-Q100

Hex inverter

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information 1
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning
6.2	Pin description 2
7	Limiting values 3
8	Recommended operating conditions 3
9	Static characteristics 4
10	Dynamic characteristics 5
11	Waveforms 6
11.1	Transfer characteristics 7
12	Application information 8
13	Package outline
14	Abbreviations
15	Revision history
16	Legal information 14
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 15
17	Contact information
1Ω	Contents 16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

HEF4069UBT-Q100J HEF4069UBTT-Q100J