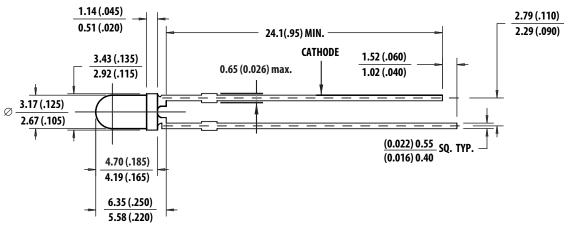
HLMP-1301, HLMP-1401, HLMP-1503, HLMP-K401, HLMP-K600

T-1 (3 mm) Diffused LED Lamps

Data Sheet


Description

This family of T-1 lamps is widely used in general-purpose indicator applications. Diffusants, tints, and optical design are balanced to yield superior light output and wide viewing angles. Several intensity choices are available in each color for increased design flexibility.

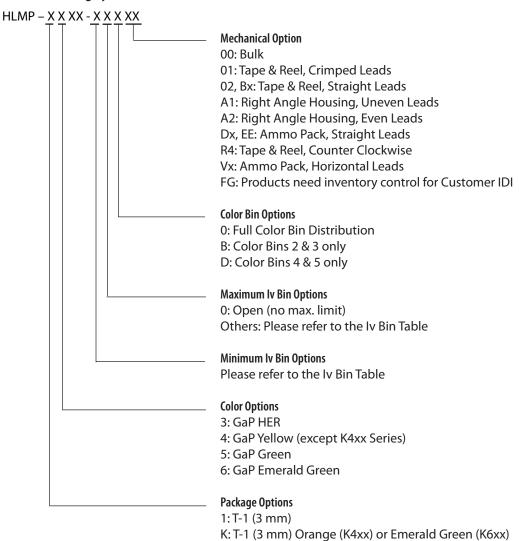
Features

- High intensity
- Choice of 4 bright colors:
 - High Efficiency Red
 - Orange
 - Yellow
 - High Performance Green
- Popular T-1 diameter package
- Selected minimum intensities
- Wide viewing angle
- General purpose leads
- Reliable and rugged
- Available on tape and reel

Package Dimensions

Notes:

- 1. All dimensions are in mm (inches).
- 2. An epoxy meniscus may extend about 1 mm (0.040") down the leads.
- 3. For PCB hole recommendations, see the Precautions section.


Selection Guide

			Luminous Intensity Iv (mcd) at 10 mA		
Material	Color	Part Number	Min.	Max.	
GaAsP on GaP	Red	HLMP-1301	3.4	-	
		HLMP-1301-E00xx	3.4	-	
		HLMP-1301-FG0xx	5.4	17.2	
		HLMP-1301-G00xx	8.6	_	
		HLMP-1301-GH0xx	8.6	27.6	
	Yellow	HLMP-1401	2.2	_	
		HLMP-1401-D00xx	3.6	_	
		HLMP-1401-E00xx	5.7	_	
		HLMP-1401-EF0xx	5.7	18.4	
		HLMP-1401-EFBxx	5.7	18.4	
	Orange	HLMP-K401	2.1	_	
		HLMP-K401-E00xx	3.4	_	
		HLMP-K401-EF0xx	3.4	10.8	
		HLMP-K401-FGDxx	5.4	17.2	
GaP	Green	HLMP-1503	1.0	_	
		HLMP-1503-C00xx	2.6	_	
		HLMP-1503-D00xx	4.2	_	
		HLMP-1503-DE0xx	4.2	13.4	
		HLMP-1503-DEDxx	4.2	13.4	
	Emerald Green ^[1]	HLMP-K600	1.0	-	

Note:

1. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation....

Part Numbering System

Absolute Maximum Ratings at $T_A = 25$ °C

Parameter	HER/Orange	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ^[1]	25	20	25	mA
DC Current ^[2]	30	20	30	mA
Reverse Voltage (IR = 100 μA)	5	5	5	V
Transient Forward Current ^[4] (10 µsec Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	°C
Operating Temperature Range	-40 to +100	-40 to +100	-20 to +100	°C
Storage Temperature Range	-40 to +100	-40 to +100	-40 to +100	°C

Notes:

- 1. See Figure 5 (HER/Orange), 10 (Yellow), or 15 (Green/Emerald Green) to establish pulsed operating conditions.
- 2. For Red, Orange, and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.2 mA/°C.
- 3. For Red, Orange, and Green series derate power linearly from 25°C at 1.8 mW/°C. For Yellow series derate power linearly from 50°C at 1.6 mW/°C.
- 4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $T_A = 25\ ^{\circ}C$

201/2 Luminous Intensity Points All	Symbol	Description	Device HLMP-	Min.	Тур.	Max.	Units	Test Conditions
Orange February Season	2θ ¹ / ₂		All		60		Deg.	
Yellow 583 Green 565	λρεΑΚ	Peak Wavelength	High Efficiency Red		635		nm	Measurement at Peak
Ad Dominant Wavelength High Efficiency Red 626 nm See Note 2			Orange		600			
Emerald Green 558 See Note 2			Yellow		583			
λd Dominant Wavelength High Efficiency Red Orange 602 Yellow 585 Green 569 Emerald Green 569 602 Yellow 585 SES Green 569 Emerald Green 560 569 Emerald Green 560 100 mm 100 mm <td< td=""><td></td><td></td><td>Green</td><td></td><td>565</td><td></td><td></td><td></td></td<>			Green		565			
Orange 602 Yellow 585 Green 569 Emerald Green 560 Migh Efficiency Red 40 Yellow 36 Green 28 Emerald Green 24 To Speed of Response High Efficiency Red Orange 280 Yellow 90 Green 500 Emerald Green 3100 Orange 4 Orange 4 Orange 4 Orange 4 Yellow 500 Emerald Green 3100 Orange 4 Yellow 15 Green 18 Emerald Green 35 Orange 18 Emerald Green 18 Orange 4 Yellow 15 Orange 20 Orange 20 Orange 35 Orange 4 Orange 4 Orange 50 Orange 380 Orange 4 Orange 380 Orange 500 Orange			Emerald Green		558			
Yellow 585 Green 569 Emerald Green 560 Emerald Green 560 Emerald Green 560 Aλ1/2 Spectral Line Halfwidth High Efficiency Red Yellow 36 Green 28 Emerald Green 24 T _S Speed of Response High Efficiency Red Yellow 90 Green 500 Emerald Green 3100 Green 500 Emerald Green 11 pF V _F = 0; Orange 4 f = 1 MHz Yellow 15 Green 18 Emerald Green 35 Green 18 Emerald Green 35 Forward Voltage HER/Orange 1.5 1.9 2.4 V Forward Voltage HER/Orange 1.5 2.0 2.4 Green 1.5 2.1 2.7 Emerald Green 1.5 2.1 2.7 Femerald Green 1.5 2.1 2.7 V _R Reverse Breakdown Voltage All 5.0 V I _R = 100 μA Thy Luminous Efficacy High Efficiency Red Orange 380 watt Yellow 500 Green 595 Yellow 500 Green 595 Yellow 500 Yellow 500 Yellow 500 Yellow 500 Green 595 Yellow 500 Green 595 Yellow 500 Yel	λ_{d}	Dominant Wavelength	High Efficiency Red		626		nm	See Note 2
Green Find			Orange		602			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Yellow		585			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Green		569			
Yellow 36 Green 28 Emerald Green 24			Emerald Green		560			
Green 28 Emerald Green 24	$\Delta \lambda^{1/2}$	Spectral Line Halfwidth	High Efficiency Red		40		nm	
Emerald Green 24			Yellow		36			
Total Part Forward Voltage High Efficiency Red Forward Voltage High Efficiency Red Forward See Note 3			Green		28			
Orange			Emerald Green		24			
Yellow 90	τ_{S}	Speed of Response	High Efficiency Red		90		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Orange		280			
Emerald Green 3100			Yellow		90			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Green		500			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Emerald Green		3100			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	Capacitance	High Efficiency Red		11		pF	$V_F = 0;$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Orange		4			f = 1 MHz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Yellow		15			
RθJ-PIN Thermal Resistance All 290 °C/W Junction to Cathode Lead VF Forward Voltage HER/Orange Yellow 1.5 2.0 2.4 Green 1.5 2.1 2.7 Emerald Green 1.5 2.1 2.7 2.7 Emerald Green V $I_F = 10 \text{ mA}$ VR Reverse Breakdown Voltage All S.0 V IR = 100 μA ηV Luminous Efficacy High Efficiency Red Yellow Green 145 Jumens See Note 3 Orange Yellow Green 500 Green 595			Green		18			
$V_F \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Emerald Green		35			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R\theta_{J\text{-PIN}}$	Thermal Resistance	All		290		°C/W	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _F	Forward Voltage	HER/Orange	1.5	1.9	2.4	V	$I_F = 10 \text{ mA}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Yellow	1.5	2.0	2.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Green	1.5	2.1	2.7		
ηV Luminous Efficacy High Efficiency Red 145 lumens See Note 3 Orange 380 watt Yellow 500 Green 595			Emerald Green		2.1	2.7		
Orange 380 watt Yellow 500 Green 595	V _R	Reverse Breakdown Voltage	All	5.0			V	Ι _R = 100 μΑ
Yellow 500 Green 595	ηV	Luminous Efficacy	High Efficiency Red		145		lumens	See Note 3
Green 595			Orange		380		watt	
			Yellow		500			
Emerald Green 655			Green		595			
			Emerald Green		655			

Notes

- 1. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 2. The dominant wavelength, λ_{dr} is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device
- 3. Radiant intensity, l_e , in watts/steradian, may be found from the equation $l_e = l_v/\eta_v$, where l_v is the luminous intensity in candelas and ηv is the luminous efficacy in lumens/watt.

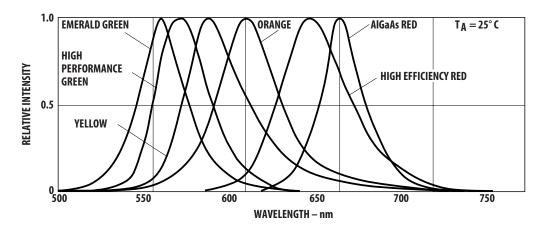


Figure 1. Relative intensity vs. wavelength

T-1 High Efficiency Red, Orange Diffused Lamps

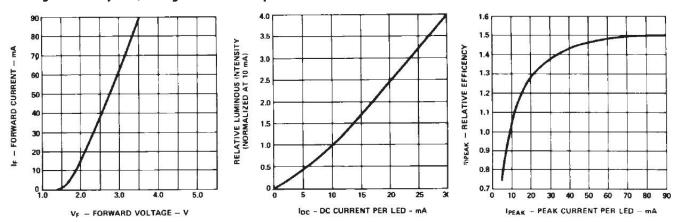


Figure 2. Forward current vs. forward voltage characteristics

Figure 3. Relative luminous intensity vs. DC forward current

Figure 4. Relative efficiency (luminous intensity per unit current) vs. peak LED current

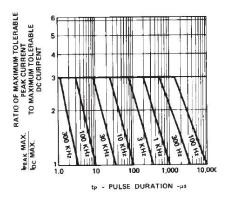


Figure 5. Maximum tolerable peak current vs. pulse duration. (I_{DC} MAX as per MAX ratings)

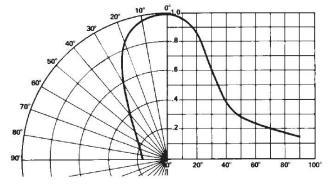
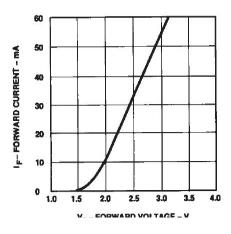



Figure 6. Relative luminous intensity vs. angular displacement

T-1 Yellow Diffused Lamps

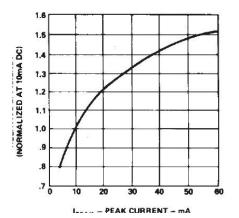
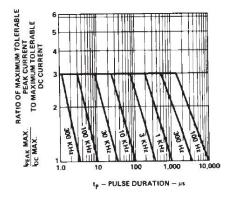



Figure 7. Forward current vs. forward voltage characteristics

Figure 8. Relative luminous intensity vs. forward current

Figure 9. Relative efficiency (luminous intensity per unit current) vs. peak current

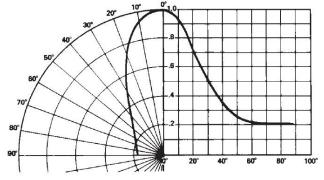


Figure 10. Maximum tolerable peak current vs. pulse duration. (I_{DC} MAX as per MAX ratings)

Figure 11. Relative luminous intensity vs. angular displacement

T-1 Green/Emerald Green Diffused Lamps

Figure 12. Forward current vs. forward voltage characteristics

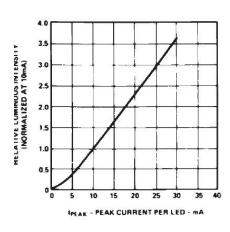
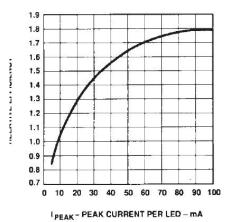



Figure 13. Relative luminous intensity vs. forward current

PEAK-PEAK GONNENT PER CED-IIIA

Figure 14. Relative efficiency (luminous intensity per unit vurrent) vs. peak LED current

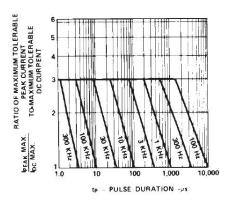


Figure 15. Maximum tolerable peak current vs. pulse duration. (I_{DC} MAX as per MAX ratings)

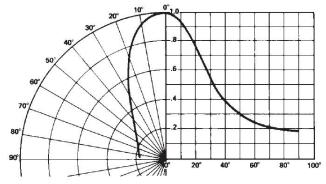


Figure 16. Relative luminous intensity vs. angular displacement

Intensity Bin Limits

D 2.4 E 3.8 F 6.1 G 9.7 H 15.5 I 24.8 J 39.6 K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 V 4900.0 V 4900.0 X 10200.0 Y 14800.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	Max. 3.8 6.1 9.7 15.5 24.8 39.6 63.4 101.5 162.4 234.6 340.0 540.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 14800.0 21400.0
E 3.8 F 6.1 G 9.7 H 15.5 I 24.8 J 39.6 K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	6.1 9.7 15.5 24.8 39.6 63.4 101.5 162.4 234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0 14800.0
F 6.1 G 9.7 H 15.5 I 24.8 J 39.6 K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	9.7 15.5 24.8 39.6 63.4 101.5 162.4 234.6 340.0 540.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0
G 9.7 H 15.5 I 24.8 J 39.6 K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	15.5 24.8 39.6 63.4 101.5 162.4 234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0 14800.0
H 15.5 I 24.8 J 39.6 K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	24.8 39.6 63.4 101.5 162.4 234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0 14800.0
I 24.8 J 39.6 K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	39.6 63.4 101.5 162.4 234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 7100.0 10200.0 14800.0
J 39.6 K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	63.4 101.5 162.4 234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 4900.0 10200.0 14800.0
K 63.4 L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	101.5 162.4 234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 7100.0 10200.0
L 101.5 M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	162.4 234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 7100.0 10200.0
M 162.4 N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	234.6 340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 7100.0 10200.0 14800.0
N 234.6 O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	340.0 540.0 850.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0 14800.0
O 340.0 P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	540.0 850.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0
P 540.0 Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	850.0 1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0
Q 850.0 R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	1200.0 1700.0 2400.0 3400.0 4900.0 7100.0 10200.0
R 1200.0 S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	1700.0 2400.0 3400.0 4900.0 7100.0 10200.0
S 1700.0 T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	2400.0 3400.0 4900.0 7100.0 10200.0
T 2400.0 U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	3400.0 4900.0 7100.0 10200.0 14800.0
U 3400.0 V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	4900.0 7100.0 10200.0 14800.0
V 4900.0 W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	7100.0 10200.0 14800.0
W 7100.0 X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	10200.0 14800.0
X 10200.0 Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	14800.0
Y 14800.0 Z 21400.0 C 2.5 D 4.0 E 6.5	
Z 21400.0 C 2.5 D 4.0 E 6.5	21/100 (
C 2.5 D 4.0 E 6.5	21700.0
D 4.0 E 6.5	30900.0
E 6.5	4.0
	6.5
_	10.3
F 10.3	16.6
G 16.6	26.5
H 26.5	42.3
1 42.3	67.7
J 67.7	108.2
K 108.2	173.2
ow L 173.2	250.0
M 250.0	360.0
N 360.0	510.0
O 510.0	800.0
P 800.0	1250.0
Q 1250.0	1800.0
R 1800.0	2900.0
S 2900.0	4700.0
T 4700.0	7200.0
U 7200.0	11700.0
V 11700.0	18000.0
W 18000.0	

Intensity Bin Limits, continued

		Intensi	ty Range (mcd)
Color	Bin	Min.	Max.
	А	1.1	1.8
	В	1.8	2.9
	С	2.9	4.7
	D	4.7	7.6
	E	7.6	12.0
	F	12.0	19.1
	G	19.1	30.7
	Н	30.7	49.1
	1	49.1	78.5
	J	78.5	125.7
Green/	K	125.7	201.1
Emerald Green	L	201.1	289.0
	M	289.0	417.0
	N	417.0	680.0
	0	680.0	1100.0
	Р	1100.0	1800.0
	Q	1800.0	2700.0
	R	2700.0	4300.0
	S	4300.0	6800.0
	Т	6800.0	10800.0
	U	10800.0	16000.0
	V	16000.0	25000.0
	W	25000.0	40000.0

Maximum tolerance for each bin limit is \pm 18%.

Color Categories

		Lambda (nm)		
Color	Category #	Min.	Max.	
	9	522.5	555.5	
Emerald Green	8	555.5	558.5	
	7	558.5	561.5	
	6	561.5	564.5	
	6	561.5	564.5	
	5	564.5	567.5	
Green	4	567.5	570.5	
	3	570.5	573.5	
	2	573.5	576.5	
	1	582.0	584.5	
	3	584.5	587.0	
Yellow	2	587.0	589.5	
	4	589.5	592.0	
	5	592.0	593.0	
	1	597.0	599.5	
	2	599.5	602.0	
	3	602.0	604.5	
Orange	4	604.5	607.5	
	5	607.5	610.5	
	6	610.5	613.5	
	7	613.5	616.5	
	8	616.5	619.5	

Tolerance for each bin limit is \pm 0.5 nm.

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment 500 pcs/bag
01	Tape & Reel, crimped leads, minimum increment 1800 pcs/bag
02	Tape & Reel, straight leads, minimum increment 1800 pcs/bag
A1	Right Angle Housing, uneven leads, minimum increment 500 pcs/bag
A2	Right Angle Housing, even leads, minimum increment 500 pcs/bag
BG	Tape & Reel, straight leads in 2K increment
ВЈ	Tape & Reel, straight leads in 2K increment
DD	Ammo Pack, straight leads in 2K increment
DJ	Ammo Pack, straight leads in 2K increment
EE	Ammo Pack, straight leads in 5K increment
R4	Tape & Reel, straight leads, counter clockwise, anode lead leaving the reel first
VA	Ammo Pack, horizontal leads in 2K increment
VB	Ammo Pack, horizontal leads in 2K increment
FG	Inventory Control for Customer IDI

Note: All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representative for further clarification or information.

Precautions

Lead Forming

- The leads of an LED lamp may be preformed or cut to length before they are inserted and soldered into the PC board.
- If forming a lead is required before it is soldered, then take care to avoid any excessive mechanical stress induced to the LED package. Otherwise, cut the LED leads to length after soldering at room temperature. The solder joint formed will absorb the mechanical stress of the lead cutting from traveling to the LED chip die attach and wirebond.
- It is recommended that tooling be made precisely and the leads cut to length, rather than relying on your hand.

Soldering Conditions

- Care must be taken during PCB assembly and soldering process to prevent damage to LED component.
- The closest an LED is allowed to be soldered on board is 1.59 mm below the body (encapsulant epoxy) for those parts without standoff.
- Recommended soldering conditions:

	Wave Soldering	Manual Solder Dipping
Pre-heat Temperature	105 °C Max.	-
Pre-heat Time	30 sec Max.	-
Peak Temperature	250 °C Max.	260 °C Max.
Dwell Time	3 sec Max.	5 sec Max.

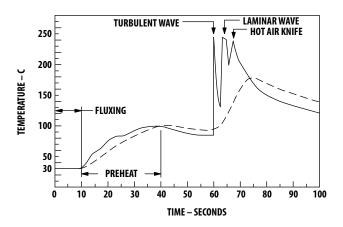


Figure 17. Recommended wave soldering profile

- The wave soldering parameter must be set and maintained according to the recommended temperature and dwell time in the solder wave. Customer is advised to periodically check the soldering profile to ensure the soldering profile used always conforms to recommended soldering condition.
- If necessary, use a fixture during soldering process to hold the LED component in the proper orientation with respect to the PCB.
- Proper handling is a must to avoid excessive thermal stresses to LED components when heated. Therefore, the soldered PCB must be allowed to cool to room temperature, 25 °C, before handling.
- To ensure solderability, pay special attention to board fabrication, solder masking, surface plating and lead hole size and component orientation.
- Here are the recommended PC board plated throughhole sizes for LED component leads:

	LED Component	Diagonal	Plated Through-
	Lead Size		Hole Diameter
Lead size (typ.)	0.45 × 0.45 mm	0.636 mm	0.98 to 1.08 mm
	(0.018 × 0.018 in.)	(0.025 in)	(0.039 to 0.043 in)
Dambar shear-	0.65 mm	0.919 mm	
off area (max.)	(0.026 in)	(0.036 in)	
Lead size (typ.)	0.50 × 0.50 mm	0.707 mm	1.05 to 1.15 mm
	(0.020 × 0.020 in.)	(0.028 in)	(0.041 to 0.045 in)
Dambar shear-	0.70 mm	0.99 mm	_
off area (max.)	(0.028 in)	(0.039 in)	

Note: Refer to application note AN1027 for more information on soldering LED components.

BOTTOM SIDE
OF PC BOARD

TOP SIDE OF
PC BOARD

CONVEYOR SPEED = 1.83 M/MIN (6 FT/MIN)
PREHEAT SETTING = 150C (100C PCB)
SOLDER WAVE TEMPERATURE = 245C
AIR KNIFE AIR TEMPERATURE = 390C
AIR KNIFE DISTANCE = 1.91 mm (0.25 IN.)
AIR KNIFE ANGLE = 40
SOLDER: SN63; FLUX: RMA

NOTE: ALLOW FOR BOARDS TO BE SUFFICIENTLY COOLED BEFORE EXERTING MECHANICAL FORCE.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Avago Technologies:

<u>HLMP-1301-E00A1</u> <u>HLMP-1301-E00A2</u> <u>HLMP-1301-G0000</u> <u>HLMP-1301-G00A1</u> <u>HLMP-1301-GH000</u> <u>HLMP-1401-D00A2</u> <u>HLMP-1503-C00A2</u> <u>HLMP-1503-C00A2</u> <u>HLMP-1503-C00A2</u>