

MMIC VCO with Half Frequency Output, 8.45 GHz to 9.30 GHz

HMC1160 Data Sheet

FEATURES

Dual output: $f_0 = 8.45$ GHz to 9.3 GHz $f_0/2 = 4.225 \text{ GHz to } 4.65 \text{ GHz}$

Pout: 12 dBm

Phase noise: -116 dBc/Hz at 100 kHz No external resonator needed

RoHS compliant, 5 mm × 5 mm SMT package: 25 mm²

APPLICATIONS

Point to point and multipoint radio Test equipment and industrial controls **VSAT**

GENERAL DESCRIPTION

The HMC1160 is a MMIC voltage controlled oscillator that integrates a resonator, a negative resistance device, and a varactor diode, and features a half frequency output.

Because of the monolithic construction of the oscillator, output power and phase noise performance are excellent over temperature.

FUNCTIONAL BLOCK DIAGRAM

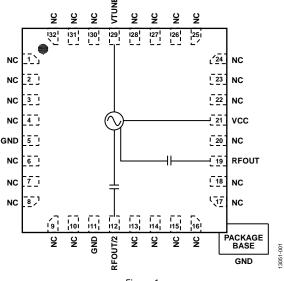


Figure 1.

Power output is 12 dBm typical from a 5 V supply voltage. The voltage controlled oscillator is housed in a RoHS compliant SMT package and requires no external matching components.

HMC1160* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits <a> □

• EV1HMC1160LP5 Evaluation Board

Documentation <a>□

Data Sheet

• HMC1160: MMIC VCO with Half Frequency Output, 8.45 GHz to 9.30 GHz Data Sheet

Design Resources -

- HMC1160 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

Discussions <a>□

View all HMC1160 EngineerZone Discussions

Sample and Buy 🖳

Visit the product page to see pricing options

Technical Support <a> Image: Decided to the content of the content

Submit a technical question or find your regional support number

^{*} This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

TABLE OF CONTENTS

reatures	J
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	4
ESD Caution	4
Pin Configuration and Function Descriptions	5

Interface Schematics	6
Typical Performance Characteristics	7
Evaluation Printed Circuit Board (PCB)	9
Bill of Materials	9
Packaging and Ordering Information	0
Outline Dimensions	0
Ordering Guide1	0

REVISION HISTORY

5/15-v00.0814 to Rev. A

This Hittite Microwave Products data sheet has been reformatted to meet the styles and standards of Analog Devices, Inc.

•	· ·
Updated Format	Universal
Added Interface Schematics Section, Re-	numbered Figures
Sequentially	6
Reordered Figure Sequence, Typical Per	formance
Characteristics Section	
Deleted Figure: Frequency vs. Tuning Vo	oltage, T = 25°C,
Renumbered Figures Sequentially	7
Deleted Typical Applications Circuit	9
Changes to Ordering Guide	11

Data Sheet HMC1160

SPECIFICATIONS

 T_{A} = -40°C to +85°C, V_{CC} = 5 V, unless otherwise noted.

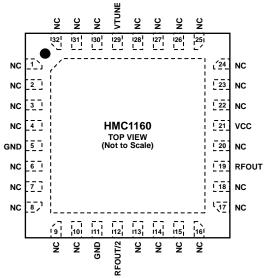
Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY					
Range					
fo	8.45		9.3	GHz	
f _O /2	4.225		4.65	GHz	
Drift Rate		0.74		MHz/°C	
Pulling		4.5		MHz p-p	Pulling into a 2.0:1 VSWR
Pushing		5.5		MHz/V	At VTUNE = 5 V
POWER OUTPUT					
RFOUT	9		17	dBm	
RFOUT/2	0		8	dBm	
Supply Current (Icc)		240		mA	$V_{CC} = 4.75 \text{ V}$
	195	260	325	mA	$V_{CC} = 5.00 \text{ V}$
		275		mA	$V_{CC} = 5.25 \text{ V}$
HARMONICS, SUBHARMONICS					
1/2		37		dBc	
Second		18		dBc	
Third		30		dBc	
TUNING					
Voltage (VTUNE)	2		13	V	
Sensitivity	40		250	MHz/V	
Tune Port Leakage Current			10	μΑ	VTUNE = 13 V
OUTPUT RETURN LOSS		2		dB	
SSB PHASE NOISE					
10 kHz Offset		-90	-85	dBc/Hz	
100 kHz Offset		-116	-110	dBc/Hz	

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Dating
Parameter	Rating
Vcc	5.5 V dc
VTUNE	0 V to 15 V
Temperature	
Operating	-40°C to +85°C
Storage	−65°C to +150°C
Nominal Junction (To Maintain	135°C
1 million hours MTTF)	
Nominal Junction (T = 85° C)	125°C
Maximum Reflow Temperature	260°C
(MSL3 Rating)	
Thermal Resistance (Junction to	31°C/W
Ground Paddle)	
ESD Sensitivity (Human Body	Class 1A
Model)	


Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

- NOTES

 1. NC = NO CONNECT. HOWEVER, THESE PINS MAY BE
 CONNECTED TO RF/OC GROUND WITHOUT AFFECTING
 THE PERFORMANCE OF THE DEVICE.
 2. THE EXPOSED PAD MUST BE CONNECTED TO RF/DC GROUND.

Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1 to 4, 6 to 10, 13 to 18, 20, 22 to 28, 30 to 32	NC	No Connect. However, these pins can be connected to RF/dc ground without affecting the performance of the device.
12	RFOUT/2	Half Frequency Output. This pin is ac-coupled.
19	RFOUT	RF Output. This pin is ac-coupled.
21	V_{CC}	Supply Voltage (5 V).
29	VTUNE	Control Voltage and Modulation Input. The modulation bandwidth is dependent on the drive source impedance.
5, 11	GND	Ground. These pins must be connected to RF/dc ground.
	EP	Exposed Paddle. The package bottom has an exposed metal paddle that must be connected to RF/dc ground.

INTERFACE SCHEMATICS

Figure 3. RFOUT/2 Interface

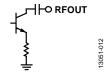


Figure 4. RFOUT Interface

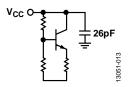


Figure 5. V_{CC} Interface

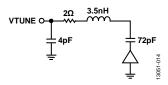


Figure 6. VTUNE Interface

Figure 7. GND Interface

Data Sheet HMC1160

TYPICAL PERFORMANCE CHARACTERISTICS

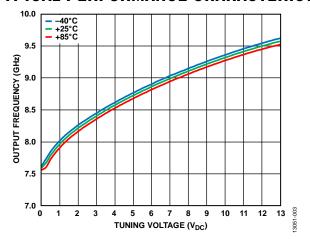


Figure 8. Frequency vs. Tuning Voltage

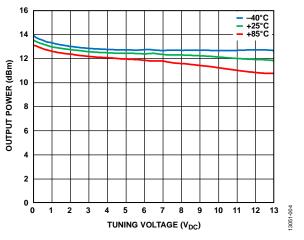


Figure 9. Output Power vs. Tuning Voltage

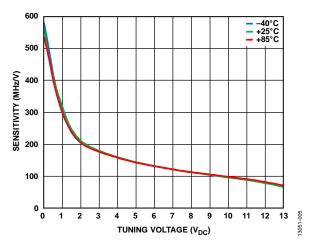


Figure 10. Sensitivity vs. Tuning Voltage

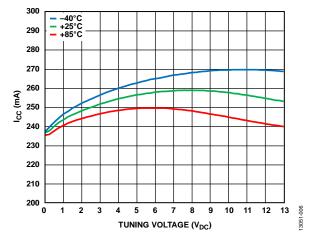


Figure 11. Supply Current (Icc) vs. Tuning Voltage

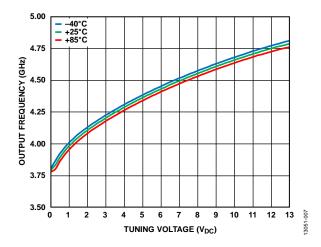


Figure 12. RFOUT/2 Output Frequency vs. Tuning Voltage

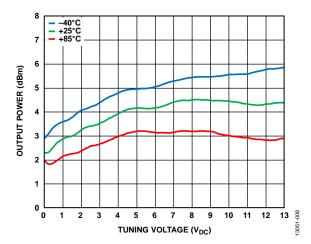


Figure 13. RFOUT/2 Output Power vs. Tuning Voltage

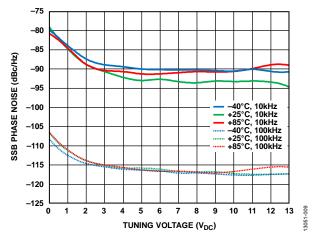


Figure 14. SSB Phase Noise vs. Tuning Voltage

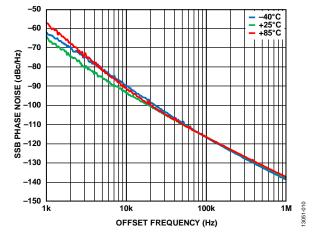


Figure 15. SSB Phase Noise at VTUNE = 5 V

Data Sheet HMC1160

EVALUATION PRINTED CIRCUIT BOARD (PCB)

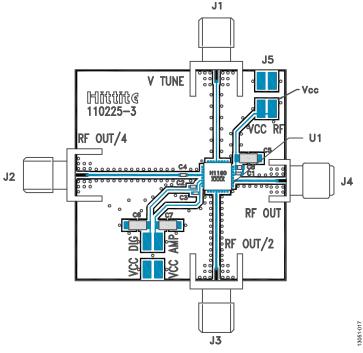


Figure 16. Evaluation Board

The circuit board used in an application uses RF circuit design techniques. Ensure that signal lines have 50 Ω impedance and that the package ground leads and backside ground paddle are connected directly to the ground plane.

Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in 16 is available from Analog Devices, Inc., upon request.

BILL OF MATERIALS

Table 4. Bill of Materials EV1HMC1160LP5

Item	Description
J1 to J4	PCB mount SMA RF connector
J5, J6	2 mm dc header
C1 to C3	100 pF capacitor, 0402 package
C4	1000 pF capacitor, 0402 package
C5 to C7	2.2 μF tantalum capacitor
C8	0.01 μF capacitor, 0603 package
U1	HMC1160 VCO
PCB ¹	110225 evaluation board ²

¹ Circuit board material is Rogers 4350.

² Reference this number when ordering the complete evaluation PCB.

PACKAGING AND ORDERING INFORMATION

OUTLINE DIMENSIONS

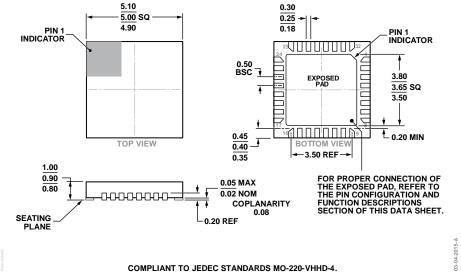


Figure 17. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad
(HCP-32-1)
Dimensions shown in millimeters

ORDERING GUIDE

7.1.5 <u>-</u> 1.11.1.5 <u>-</u>						
Model ¹	Temperature Range	MSL Rating ²	Package Description	Package Option	Qty.	Brand ³
HMC1160LP5E	−40°C to +85°C	MSL3	32-Lead LFCSP_VQ	HCP-32-1		H1160 XXXX
HMC1160LP5ETR	−40°C to +85°C	MSL3	32-Lead LFCSP_VQ, 7"Tape and Reel	HCP-32-1	500	$\frac{\text{H}1160}{\text{XXXX}}$
EV1HMC1160LP5			Evaluation Board			

¹ The HMC1160LP5E and HMC1160LP5ETR are RoHS compliant parts.

² See the Absolute Maximum Ratings section, Table 2.

³ XXXX is a placeholder for the 4-digit lot number.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

HMC1160LP5E EV1HMC1160LP5 HMC1160LP5ETR