16 Channel High Voltage Analog Switch

Features

- ► HVCMOS® technology for high performance
- ▶ 220V operating conditions
- Output on-resistance typically 22Ω
- 5.0V and 12.0V CMOS logic compatibility
- Very low quiescent current consumption (10μA)
- -45dB min off isolation at 7.5MHz
- Low parasitic capacitance
- Excellent noise immunity
- Flexible high voltage supplies

General Description

The Supertex HV20822 is a 220V, 16-channel, high-voltage analog switch integrated circuit (IC) configured as 2 sets of 8 single pole single throw analog switches. It is intended for use in applications requiring high voltage switching controlled by low voltage control signals such as ultrasound imaging and printers. The 2 sets of 8 analog switches are controlled by 2 input logic controls, $D_{\rm IN}1$ and $D_{\rm IN}2$. A logic high on $D_{\rm IN}1$ will turn ON switches 0 to 7 and a logic high on $D_{\rm IN}2$ will turn ON switches 8 to 15.

Ordering Information

V V	Device	Package Options				
V _{PP} - V _{NN}	Device	48-Lead LQFP/TQFP (1.4mm)				
220V	HV20822	HV20822FG/ HV20822FG-G				

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

V _{DD} Logic power supply voltage	-0.5V to +15V
V _{PP} - V _{NN} Supply voltage	+225V
V _{PP} Positive high voltage supply	-0.5V to V _{NN} +225V
V _{NN} Negative high voltage supply	+0.5V to -225V
Logic input voltages	-0.5V to V _{DD} +0.3V
V _{SIG} Analog Signal Range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0A
Storage temperature	-65°C to +150°C
Power dissipation: 48-lead LQFP/TQFP (1.4mm)	1.0W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Operating Conditions

Symbol	Parameter	Value
V _{PP}	Positive high voltage supply ¹	+50V to +110V
V _{NN}	Negative high voltage supply ¹	-10V to V _{PP} -220V
V _{DD}	Logic power supply voltage ¹	4.75V to +12.6V
V _{IH}	High-level input voltage	V _{DD} -1.0V to V _{DD}
V _{IL}	Low-level input voltage	0V to 1.0V
V _{SIG}	Analog signal voltage peak-to-peak ²	V _{NN} +10V to V _{PP} -10V
T _A	Operating free air-temperature	0°C to 70°C

Notes:

DC Electrical Characteristics

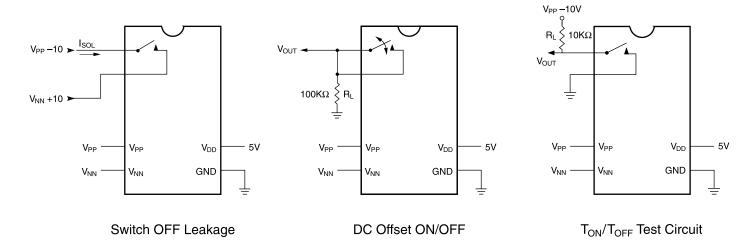
(Over recommended operating conditions unless otherwise specified)

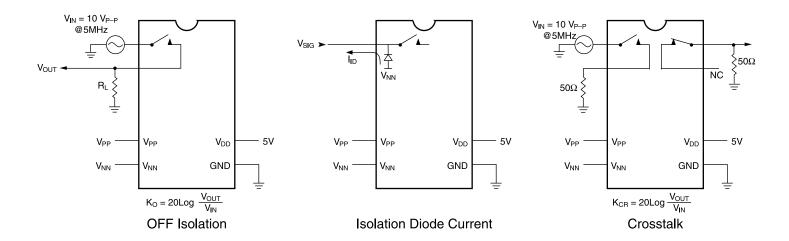
Characteristics	Sym	0°C		+25°C		+70°C		Units	Test Conditions		
Characteristics	Sylli	min	max	min	typ	max	min	max	Office	rest Conditions	
Small Signal Switch (ON) Resistance	R _{ONS}		30		26	32		40		$V_{SIG} = 0V, I_{SIG} = 5mA,$ $V_{PP} = 50V, V_{NN} = -170V$	
			25		22	27		35	Ω	$V_{SIG} = 0V, I_{SIG} = 200mA,$ $V_{PP} = 50V, V_{NN} = -170V$	
			15		22	27		30	32	$V_{SIG} = 0V, I_{SIG} = 5mA,$ $V_{PP} = 110V, V_{NN} = -110V$	
			20		18	22		25		$V_{SIG} = 0V, I_{SIG} = 200mA,$ $V_{PP} = 110V, V_{NN} = -110V$	
Small Signal Switch (ON) Resistance Matching	ΔR_{ONS}		20		5.0	20		20	%	$V_{SIG} = 0V, I_{SIG} = 5mA,$ $V_{PP} = 110V, V_{NN} = -110V$	
Large Signal Switch (ON) Resistance	R _{ONL}				15				Ω	$V_{SIG} = 0V$, $I_{SIG} = 1.0A$	
Switch Off Leakage Per Switch	I _{SOL}		5.0		1.0	10		15	μΑ	$V_{SIG} = V_{PP}$ -10V and V_{NN} +10V	
DC Offset Switch OFF		300			100	300		300		$R_L = 100 K \Omega$	
DC Offset Switch ON		500			100	500		500	mV	$R_L = 100 K \Omega$	
Pos. HV Supply Current	I _{PPQ}				10	50				All SWs OFF	
Neg. HV Supply Current	I _{NNQ}				-10	-50			μΑ	All SWs OFF	
Pos. HV Supply Current	I _{PPQ}				10	50				All SWs ON, I _{SW} = 5 mA	
Neg. HV Supply Current	I _{NNQ}				-10	-50				All SWs ON, I _{SW} = 5 mA	
Switch Output Peak Current			3.0		3.0	2.0		2.0	А	V _{SIG} duty cycle ≤ 0.1%	
Output Switch Frequency	f _{SW}					50			KHz	Duty Cycle = 50%	
I _{PP} Supply Current	I _{PP}		8.1			8.8		10		$V_{PP} = 50V$, $V_{NN} = -170V$, ALL SWs	
I _{NN} Supply Current	I _{NN}		-8.1			-8.8		-10	m _A	turning ON and OFF at 50KHz	
I _{PP} Supply Current	I _{PP}		5			6.3		6.9	''''`	$V_{PP} = 110V, V_{NN} = -110V, All SWs$	
I _{NN} Supply Current	I _{NN}		- 5			-6.3		-6.9		turning ON and OFF at 50kHz	
Logic Supply Quiescent Current	I _{DDQ}		10			10		10	μΑ	All logic states are at DC	
Logic Supply Average Current	I _{DD}		2.0			2.0		2.0	mA	$D_{IN}1 = D_{IN}2 = 3MHz$, $\overline{LE} = high$	

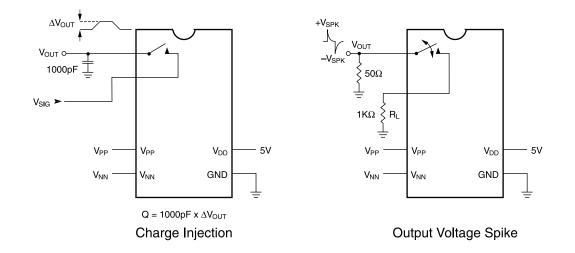
¹ Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.

² $\rm V_{SIG}$ must be $\rm V_{NN} \le \rm V_{SIG} \le \rm V_{PP}$ or floating during power up/down transition.

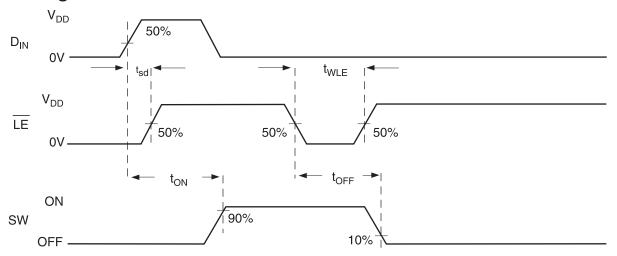
AC Electrical Characteristics (Over recommended operating conditions unless otherwise specified)

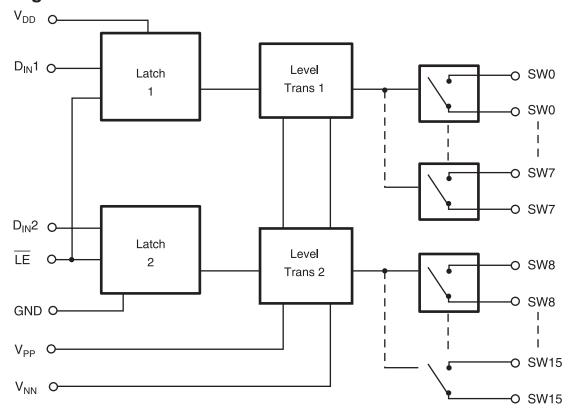

Characteristics	Sym	0°C		+25°C			+70°C		Units	Test Conditions
Characteristics		min	max	min	typ	max	min	max	Units	rest Conditions
Time to Turn OFF V _{SIG} *	t _{SIG(OFF)}	0		0			0		ns	
Time Width of LE	t _{WLE}	150		150			150		ns	
Time Width of D _{IN}	t _{WDIN}	150		150			150		ns	
Set Up Time Before LE Rises	t _{SD}	150		150			150		ns	
Turn On Time	t _{ON}		2.0			2.0		2.0	μs	$V_{SIG}=V_{PP}$ - 10V, $R_{LOAD}=10K\Omega$
Turn Off Time	t _{OFF}		2.0			2.0		2.0	μs	$V_{SIG}=V_{PP}$ - 10V, $R_{LOAD}=10K\Omega$
Off Isolation	ко	-30		-30	-33		-30		dB	f = 5.0MHz, 1KΩ/15pF Load
		-45		-45	-50		-45		dB	$f = 7.5MHz, R_{LOAD} = 50\Omega$
Switch Crosstalk	K _{CR}	-45		-45			- 45		dB	$f = 5.0MHz, R_{LOAD} = 50\Omega$
Off Capacitance Switch to GND	C _{GS(OFF)}	5.0	17	5.0	12	17	5.0	17	pF	V _{SIG} = 0V, 1MHz
On Capacitance Switch to GND	C _{GS(ON)}	25	50	25	38	50	25	50	pF	V _{SIG} = 0V, 1MHz
Output Voltage Spike	+V _{SPK}				4.0				V	
	-V _{SPK}				-4.0					


^{*}Time required for analog signal to turn off before output switch turns off.

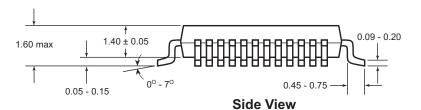

Truth Table

D _{IN} 2	D _{IN} 1	ĪĒ.	SW0 to SW7	SW8 to SW15		
L	L	L	OFF	OFF		
L	Н	L	ON	OFF		
Н	L	L	OFF	ON		
Н	Н	L	ON	ON		
Х	Х	Н	HOLD PREVIOUS STATE			


Test Circuits



Logic Timing Waveform



Block Diagram

48-Lead LQFP/ TQFP(1.4mm) Package (FG)

9.00 ± 0.20 7.00 ± 0.20 9.00 ± 0.20 7.00 ± 0.20 7.00 ± 0.20 7.00 ± 0.20 7.00 ± 0.20 7.00 ± 0.20 7.00 ± 0.20 Top View

Linear dimensions in millimeters.

Angular dimensions in degrees

- ① Pin 1 identifier located within the area indicated
- ② Corner shape may differ from drawing.

Pin Configuration

HV20822 48-Lead LQFP/TQFP (1.4mm)

Pin	Function	Pin	Function
1	V_{NN}	25	SW10
2	N/C	26	SW10
3	V_{PP}	27	SW9
4	N/C	28	SW9
5	D _{IN} 1	29	SW8
6	LE	30	SW8
7	D _{IN} 2	31	SW7
8	N/C	32	SW7
9	N/C	33	SW6
10	V_{DD}	34	SW6
11	GND	35	SW5
12	N/C	36	SW5
13	N/C	37	SW4
14	SW15	38	N/C
15	SW15	39	SW4
16	SW14	40	N/C
17	SW14	41	SW3
18	SW13	42	SW3
19	SW13	43	SW2
20	SW12	44	SW2
21	SW12	45	SW1
22	SW11	46	SW1
23	SW11	47	SW0
24	N/C	48	SW0

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.