
IMM

INFORMATICS AND MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Kgs. Lyngby - Denmark

2001-08-23
jla

LAGRANGEAN DUALITY APPLIED
ON VEHICLE ROUTING WITH TIME

WINDOWS
EXPERIMENTAL RESULTS

Brian Kallehauge
Jesper Larsen

Oli B.G. Madsen

TECHNICAL REPORT

IMM-TR-2001-9

IMM

LAGRANGEAN DUALITY APPLIED
ON VEHICLE ROUTING WITH TIME

WINDOWS
EXPERIMENTAL RESULTS

Brian Kallehauge
Jesper Larsen

Oli B.G. Madsen

TECHNICAL REPORT

IMM-TR-2001-9

IMM

Abstract

This paper presents the results of the application of a non-differentiable optimiza-
tion method in connection with the Vehicle Routing Problem with Time Windows
(VRPTW). The VRPTW is an extension of the Vehicle Routing Problem. In the
VRPTW the service at each customer must start within an associated time window.

The Shortest Path decomposition of the VRPTW by Lagrangian relaxation re-
quire the finding of the optimal Lagrangian multipliers. This problem is a convex
non-differentiable optimization problem. We propose a cutting-plane algorithm with
a trust-region stabilizing device for finding the optimal multipliers.

The cutting-plane algorithm with trust-region has been combined with a
Dantzig-Wolfe algorithm for finding integer solutions in a branch-and-bound scheme.
The root node of the branch-and-bound tree is solved by the cutting-plane algorithm
and, if an integer solution is not obtained, shifting to a Dantzig-Wolfe algorithm in
the tree nodes occurs. The combined cutting-plane and Dantzig-Wolfe algorithm
has been tested on the well-known Solomon VRPTW benchmark problems and a
range of extended Solomon problems created by Homberger.

We have succeeded in solving 14 previously unsolved Solomon problems and a
Homberger problem with 1000 customers, which is the largest problem ever solved
to optimality. The computational times were reduced significantly by the cutting-
plane algorithm in the root node compared to the Dantzig-Wolfe method due to
easier subproblems. It therefore seems very efficient to stabilize the dual variables.

KEYWORDS: Lagrangian relaxation, duality, non-differentiable optimization,
cutting plane method, trust region method, Vehicle Routing Problem with Time
Windows.

1 Introduction

Many companies are faced with problems regarding the transportation of people, goods or
information – commonly denoted routing problems. This is not restricted to the transport
sector itself but also other companies e.g. factories may have transport of parts to and
from different sites of the factory, and big companies may have internal mail deliveries.
These companies have to optimize transportation. As the world economy turns more and
more global, transportation will become even more important in the future.

Back in 1983 Bodin et al. reported that in 1980 approximately $400 billion were used
in distribution cost in the United States and in the United Kingdom the corresponding
figure was £15 billion. Halse (1992) reports from an article from the Danish newspaper
Berlingske Tidende that in 1989 76.5% of all the transportation of goods was done by
vehicles, which underlines the importance of routing and scheduling problems.

Fisher (1995) writes that a study from the National Council of Physical Distribution
estimates that transportation accounts for 15% of the U.S. gross national product (1978).
In Denmark the figures are 13% for 1981 and 15% for 1994 according to The Danish
Ministry of Transport (1998).

In a pure routing problem there is only a geographic component, more realistic routing
problems also include a scheduling part, that is, a time component.

The simplest routing problem is the Traveling Salesman Problem (or TSP). A number of
cities have to be visited by a salesman who has to return to the city where he started.

3

The route has to be constructed in order to minimize the distance to be traveled. In the
m-TSP problem, m salesmen have to cover the cities given. Each city must be visited by
exactly one salesman. Every salesman starts off from the same city (called the depot) and
must at the end of his journey return to this city again. We now want to minimize the
sum of the distances of the routes. Both the TSP and m-TSP problems are pure routing
problems in the sense defined above.

The Vehicle Routing Problem (or VRP) is the m-TSP where a demand is associated
with each city, and each vehicle have a certain capacity (not necessarily identical). Be
aware that during the later years a number of authors have “renamed” this problem the
Capacitated Vehicle Routing Problem (or CVRP). The sum of demands on a route can
not exceed the capacity of the vehicle assigned to this route. As in the m-TSP we want to
minimize the sum of distances of the routes. Note that the VRP is not purely geographic
since the demand may be constraining. The VRP is the basic model for a large number
of vehicle routing problems.

If we add a time window to each customer we get the Vehicle Routing Problem with Time
Windows (VRPTW). In addition to the capacity constraint, a vehicle now has to service
a customer within a certain time frame. The vehicle may arrive before the time window
“opens” but the customer can not be serviced until the time windows “opens”. It is not
allowed to arrive after the time window has “closed”.

These problems are all “hard” to solve (ie. the problems are NP-hard). For the VRPTW
exact solutions can be found within reasonable time for some instances up to about 100
customers. A review of exact methods for the VRPTW is given by Larsen (1999).

If the term “vehicle” is considered more loosely, numerous scheduling problems can also
be regarded as VRPTW. An example is that for a single machine, we want to schedule
a number of jobs where we know the flow time and the time to go from running one job
to the next one. This scheduling problem can be regarded as a VRPTW with a single
depot, single vehicle and the customers represents the jobs. The cost of changing from
one job to another is equal to the distance between the two customers. The time it takes
to perform the action is the service time of the job.

For a general and in-depth description of the field of routing and scheduling see Desrosiers,
Dumas, Solomon, and Soumis (1995), Breedam (1995) and Crainic and Laporte (1998).

2 The Vehicle Routing Problem with Time Windows

The VRPTW is given by a fleet of homogeneous vehicles (denoted V), a set of customers
C and a directed graph G. The graph consists of |C|+ 2 vertices, where the customers are
denoted 1, 2, . . . , n and the depot is represented by the vertex 0 (“the driving-out depot”)
and n+1 (“the returning depot”). The set of vertices, that is, 0, 1, . . . , n+1 is denoted N .
The set of arcs (denoted A) represents connections between the depot and the customers
and among the customers. No arc terminates in vertex 0, and no arc originates from
vertex n + 1. With each arc (i, j), where i 6= j, we associate a cost cij and a time tij ,
which may include service time at customer i.

Each vehicle has a capacity q and each customer i a demand di. Each customer i has a

4

time window [ai, bi]. A vehicle must arrive at the customer before bi. It can arrive before
ai but the customer will not be serviced before. The depot also has a time window [a0, b0]
(the time windows for both depots are assumed to be identical). [a0, b0] is called the
scheduling horizon. Vehicles may not leave the depot before a0 and must be back before
or at time bn+1.

It is assumed that q, ai, bi, di, cij are non-negative integers, while the tij ’s are assumed to
be positive integers. It is also assumed that the triangular inequality is satisfied for both
the cij’s and the tij ’s. It is possible to add a scalar to all transportations costs cij without
changing the optimal solution to VRPTW as the triangular inequality still holds.

The model contains two sets of decision variables x and s. For each arc (i, j), where
i 6= j, i 6= n + 1, j 6= 0, and each vehicle k we define xijk as

xijk =

{
0, if vehicle k does not drive from vertex i to vertex j
1, if vehicle k drives directly from vertex i to vertex j.

The decision variable sik is defined for each vertex i and each vehicle k and denotes the
time vehicle k starts to service customer i. In case the given vehicle k does not service
customer i sik does not mean anything. We assume a0 = 0 and therefore s0k = 0, for all
k.

We want to design a set of minimal cost routes, one for each vehicle, such that

• each customer is serviced exactly once,

• every route originates at vertex 0 and ends at vertex n + 1, and

• the time windows and capacity constraints are observed.

We can state the VRPTW mathematically as:

zV RPTW = minimize
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk (1)

subject to∑
k∈V

∑
j∈N

xijk = 1 ∀i ∈ C (2)

∑
i∈C

di

∑
j∈N

xijk ≤ q ∀k ∈ V (3)

∑
j∈N

x0jk = 1 ∀k ∈ V (4)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0 ∀h ∈ C, ∀k ∈ V (5)

∑
i∈N

xi,n+1,k = 1 ∀k ∈ V (6)

sik + tij − K(1 − xijk)≤ sjk

∀i, j ∈ N , ∀k ∈ V (7)

ai ≤ sik ≤ bi ∀i ∈ N , ∀k ∈ V (8)

xijk ∈ {0, 1} ∀i, j ∈ N , ∀k ∈ V. (9)

5

Constraints (2) states that each customer is visited exactly once, and (3) means that no
vehicle is loaded with more than it’s capacity allows it to. The next three equations (4), (5)
and (6) ensures that each vehicle leaves the depot 0, after arriving at a customer the
vehicle leaves again, and finally arrives at the depot n + 1. The inequalities (7) states
that a vehicle k can not arrive at j before sik + tij if it is traveling from i to j. Here K
is a large scalar. Finally constraints (8) ensures that time windows are observed, and (9)
are the integrality constraints. Note that an unused vehicle is modelled by driving the
“empty” route (0, n + 1).

If we remove the assignment constraints (2) the problem becomes an Elementary Shortest
Path Problem with Time Windows and Capacity Constraints (ESPPTWCC) for every
vehicle, that is, find the shortest path from the depot and back to the depot that does not
violate the time and capacity constraints and visits the customers on the route at most
one time. As all vehicles are identical all ESPPTWCC’s also become identical.

Using the column generation approach as introduced with the set partitioning problem
as the master problem, the subproblem becomes the following mathematical model:

minimize
∑
i∈N

∑
j∈N

ĉijxij (10)

subject to∑
i∈C

di

∑
j∈N

xij ≤ q (11)

∑
j∈N

x0j = 1 (12)

∑
i∈N

xih −
∑
j∈N

xhj = 0 ∀h ∈ C (13)

∑
i∈N

xi,n+1 = 1 (14)

si + tij − K(1 − xij)≤ sj ∀i, j ∈ N (15)

ai ≤ si ≤ bi ∀i ∈ N (16)

xij ∈ {0, 1} ∀i, j ∈ N . (17)

Constraints (11) are the capacity constraint, constrains (15) and (16) are time constraints,
while constraints (17) ensures integrality. The constraints (12), (13) and (14) are flow
constraints resulting in a path from the depot 0 and back to the depot n + 1. The ĉij

is the modified cost of using arc (i, j), where ĉij = cij − πi, where πi is the dual cost of
customer i. Note that while cij is a non-negative integer, ĉij can be any real number. As
we are now working with one route the index k for the vehicle has been removed.

As can be seen from the mathematical model above the subproblem is a shortest path
problem with time windows and capacity constraints, where each vertex can participate at
most once in the route. For this problem there is no known efficient algorithm, making the
problem unsolvable for practical purposes. Therefore some of the constraints are relaxed.
Cycles are allowed thereby changing the problem to the Shortest Path Problem with Time
Windows and Capacity Constraints (SPPTWCC). Even though there is a possibility for
negative cycles in the graph the time windows and the capacity constraints prohibits
infinite cycling. Note that capacity is accumulated every time the customer is serviced.

6

In order to build the SPPTWCC algorithm we have to make two assumptions:

1. Time is always increasing along the arcs, i.e. tij > 0.

2. Time and capacity are discretized.

The algorithm maintains a set of “shortest subpaths” defined by a list of labels. A label
is a state that contains a customer number, the current time t of arrival (at the given
customer) and the accumulated demand d:

(i, t, d).

The cost of the label is then defined as c(i, t, d). The algorithm is based on the following
simple extension of the dynamic programming behind the Dijkstra algorithm:

c(0, 0, 0) = 0

c(j, t, d) = min
i

{ĉij + c(i, t′, d′) | t′ + tij = t ∧ d′ + di = d}

States are treated in order of increasing time (t). Note that for each label i there may
now exist more than one state. An upper bound on the number of states is given by

Γ =
∑
i∈N

(bi − ai)(q − 1)

As this is the upper limit, many of these states might not be possible, and others will not
be considered as they are dominated by other states (see later).

In a straightforward implementation we maintain a set NPS of unprocessed states. Ini-
tially this set only has one member: the label (0, 0, 0). As long as there exist unprocessed
labels in the set the one with the lowest time is chosen and the algorithm tries to extend
this to the successors of the vertex. States at vertex n + 1 are not processed and are
therefore kept in a special set of “solutions”, from which the best one is returned as the
algorithm terminates. When a label has been processed it is removed from the set of
unprocessed labels. The algorithm is described in pseudo-code in figure 1.

In order to make the algorithm considerably more efficient we will (like in Dijkstra’s
algorithm) introduce a dominance criterion.

Assume that for a given vertex i we have two states (i, t1, d1) and (i, t2, d2) where
c(i, t1, d1) ≤ c(i, t2, d2), t1 ≤ t2 and d1 ≤ d2. Clearly as long as the extensions based
on (i, t2, d2) are valid the extensions based on (i, t1, d1) are also valid, and these will
always be lower in cost (or at least not higher). Therefore the label (i, t2, d2) can be
discarded. Formally we say that (i, t1, d1) dominates (i, t2, d2) (or (i, t1, d1) ≺ (j, t2, d2))
if and only if all of the following three conditions hold:

1. c(i, t1, d1) ≤ c(i, t2, d2).

2. t1 ≤ t2.

3. d1 ≤ d2.

Each time a new label is generated we have to check with the other labels at the same
vertex to see if the new label is dominated by some label or the new label dominates
another label.

7

〈 Initialization 〉
NPS= {(0, 0, 0)}
c(0, 0, 0) = 0

repeat
(i, t, d) = BestLabel(NPS)

for j := 1 to n + 1 do
if (i 6= j ∧ t + tij ≤ bj ∧ d + dj ≤ q) then

〈 Label feasible 〉
if c(j, max{t + tij , aj}, d + dj) > c(i, t, d) + ĉij then

〈 New label better 〉
InsertLabel(NPS, (j, max{t + tij , aj}, d + dj))
c(j, max{t + tij , aj}, d + dj) = c(i, t, d) + ĉij

until (i = n + 1)
return

Figure 1: The algorithm for finding the shortest path with time windows and capacity
constraints. BestLabel returns a label with vertex different from n + 1 and minimal
accumulated time if one exists. Otherwise a label with vertex n+1 is returned. InsertLabel
inserts the newly generated label in NPS possibly overwriting an old label if it already
exists.

3 Lagrangian Relaxation

We consider the Lagrangian relaxation of VRPTW with respect to the constraints (2),
by introducing a vector of Lagrange multipliers λ = (λ1, . . . , λn), where λi is associated
with the ith constraint in (2):

zD(λ) = minimize
subject to

(3)-(9)

∑
k∈V

∑
i∈N

∑
j∈N

cijxijk −
∑
i∈C

λi

(∑
k∈V

∑
j∈N

xijk − 1

)
. (18)

We will call (18) the Lagrange problem. The minimal value in the Lagrange problem
(18) is called the dual function and is denoted zD. The set of feasible solutions to the
Lagrange problem (18) defined by (3)-(9) is denoted P . P splits into |V | disjoint subsets,
i.e. P = P1 × P2 × · · · × P|V |, where each Pk is defined by (11)-(17) for a given k. The
Lagrange problem (18) therefore splits into |V | “simpler” problems, one for each vehicle:

zD(λ) =
∑
k∈V

zk(λ) +
∑
i∈C

λi, (19)

where

8

zk(λ) = minimize
subject to

(3)-(9)

∑
i∈N

∑
j∈N

(cij − λi)xijk, for k = 1, . . . , |V |. (20)

Each zk is determined by solving an ESPPTWCC on the graph G = (N ,A), but the cost
cij we previously assigned each arc (i, j) is modified, i.e. the ESPPTWCC is solved with
respect to the modified arc costs ĉij = cij − λi for all (i, j) ∈ A.

Since the set of feasible solutions to an ESPPTWCC is finite, we can consider each zk(λ) to
be determined by minimization over the set Pk of constrained shortest paths. For a given
vehicle k ∈ V we describe each such path p with the integer variables xijkp, (i, j) ∈ A.
Let ckp be the cost of path p for vehicle k and let aikp be the number of times customer i
is served by vehicle k on path p:

ckp =
∑
i∈N

∑
j∈N

cijxijkp, for p = 1, . . . , |Pk| and k = 1, . . . , |V |,

aikp =
∑
j∈N

xijkp, for i = 1, . . . , |N |, p = 1, . . . , |Pk| and k = 1, . . . , |V |,

then (20) is expressed as:

zk(λ) = minimize
p∈P k

ckp −
∑
i∈C

aikpλi, for k = 1, . . . , |V |. (21)

The fact that zD(λ) 6 zV RPTW , for λ ∈ R
n, provides us with lower bounds in a branch-

and-bound algorithm for the VRPTW. Clearly, we wish to find the best lower bound by
solving the Lagrangian dual problem:

zLD = maximize
λ∈Rn

zD(λ) (22)

= maximize
λ∈Rn

∑
k∈V

zk(λ) +
∑
i∈C

λi

where zk(λ) is given by (20) or (21).

Since each set Pk of feasible solutions to (21) is finite it allows us to express (22) as the
following linear program with many constraints or rows:

zLD = maximize
λ∈Rn

θ∈R

∑
k∈V

θk +
∑
i∈C

λi (23)

subject to

θk 6 ckp −
∑
i∈C

aikpλi for all p ∈ Pk and for all k ∈ V.

9

The LP dual of (23) is a linear program with many variables or columns:

zLD = minimize
∑
k∈V

∑
p∈Pk

ckpykp (24)

subject to∑
k∈V

∑
p∈Pk

aikpykp = 1 for all i ∈ C

∑
p∈Pk

ykp = 1 for all k ∈ V

ykp > 0 for all p ∈ Pk and for all k ∈ V.

Problem (24) with ykp required to be integral is equivalent with the original VRPTW
formulation (1)-(9). Problem (24) is the LP relaxation of the Dantzig-Wolfe decomposi-
tion obtained when any solution to the VRPTW is expressed as a non-negative convex
combination of constrained paths. The method of Desrochers, Desrosiers, and Solomon
(1992) can be characterized as column generation on the problem (24) and their formu-
lation of the VRPTW can therefore be viewed as a Dantzig-Wolfe decomposition of the
formulation (1)-(9).

If we consider the case where all vehicles are identical and therefore z1 = zk, for k =
2, . . . , |V |, we get

∑
k∈V zk(λ) = |V |z1(λ), which means the Lagrange problem (18) can be

expressed as:

zD(λ) = |V |

minimize

subject to
(11)-(17)

∑
i∈N

∑
j∈N

(cij − λi)xij


+

∑
i∈C

λi = |V |
(

minimize
p∈P

cp −
∑
i∈C

aipλi

)
+
∑
i∈C

λi

The Lagrangian dual problem is then:

zLD = maximize
λ∈Rn

|V |
(

minimize
p∈P

cp −
∑
i∈C

aipλi

)
+
∑
i∈C

λi,

and the corresponding linear program is:

zLD = maximize
λ∈Rn

θ∈R
|V |θ +

∑
i∈C

λi (25)

subject to

θ 6 cp −
∑
i∈C

aipλi for all p ∈ P,

for which we find the following LP dual:

zLD = minimize
∑
p∈P

cpyp (26)

subject to∑
p∈P

aipyp = 1 for all i ∈ C

∑
p∈P

yp = |V |

yp > 0 for all p ∈ P.

10

Desrochers, Desrosiers, and Solomon (1992) assumes a homogeneous fleet of vehicles and
therefore considers the set partitioning problem (26), but with out the constraint requiring
a fixed number of vehicles. This is equivalent with setting the cost of the “empty tour”
c0,n+1 = 0, and choosing an upper bound for the number of vehicles |V | in (26). The
“empty tour” is simply the tour directly from the source depot 0 to the sink depot
n + 1, which is included in the feasibility set (11)-(17) of the ESPPTWCC formulation.
Considering a free number of vehicles (25) can be expressed as:

zLD = maximize
λ∈Rn

∑
i∈C

λi (27)

subject to∑
i∈C

aipλi 6 cp for all p ∈ P,

Let x = {xijk|i = 0, . . . , n + 1, j = 0, . . . , n + 1 and k = 0, . . . , |V | − 1} and let xp, p ∈ P
denote a solution to the Lagrange problem. Clearly, xp is obtainable via the simpler
decomposed Lagrange problem (19).

Now consider the Lagrange function or Lagrangian:

L(λ, x) =
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk +
∑
i∈C

λi

(
1 −

∑
k∈V

∑
j∈N

xijk

)
. (28)

which for a fixed solution xp is an affine function in λ:

L(λ, xp) = 〈sp, λ〉 + cp (29)

where 〈·, ·〉 denotes the ordinary dot-product and sp = (s0,p, . . . , sn−1,p) ∈ R
n, where

sip = 1 −
∑
k∈V

∑
j∈N

xijkp = 1 −
∑
k∈V

aikp, (30)

and

cp =
∑
k∈V

∑
i∈N

∑
j∈N

cijxijkp =
∑
k∈V

ckp.

The dual function can then be expressed as:

zD(λ) = minimize
16p6|P |

L(λ, xp) (31)

which shows that the dual function zD (18) is the minimum of a finite number of affine
functions and is therefore piecewise affine and concave (Nemhauser and Wolsey 1988).

11

However, the function is nondifferentiable or nonsmooth at any λ ∈ R
n where the solution

of the Lagrange problem (18) is not unique. This corresponds to any subproblem (20) of
the decomposed Lagrange problem (19) having several shortest path solutions.

Several nonsmooth methods have already been applied to the dual problem (22), e.g.
subgradient methods and bundle methods (Kohl 1995, Kohl and Madsen 1997). Previ-
ous to Kallehauge (2000a) these methods did not seem to be competitive compared to
the Dantzig-Wolfe column generation method. In traditional Dantzig-Wolfe column gen-
eration the multipliers are not directly controlled but stabilizing techniques have been
proposed (e.g. du Merle, Villeneuve, Desrosiers, and Hansen 1999), but no applications
on VRPTW have been reported.

Remark 3.1 Maximizing (minimizing) a function given by the minimimum (maximum) of a
finite number of affine functions is called the maximin (minimax) problem. However, the number
of affine functions |P | of (31) is very large, but is bounded by 2|V ||N |2, since the number of x-
variables is |V ||N |2 and they are restricted to the values 0 or 1. �

The subdifferential of the dual function at λ is defined by the convex hull of the gradients
of the Lagrange functions that give the minimal value:

∂zD(λ) = conv{∇L(λ, xp) : L(λ, xp) = zD(λ)} (32)

= conv{sp : 〈sp, λ〉 + cp = zD(λ)}

Neame (1999) and Neame, Boland, and Ralph (2000) presents an outer approximation of
the subdifferential in connection with Lagrangian duality. First define an index set

PE(λ) = {p : 〈sp, λ〉 + cp 6 zD(λ) + E, E > 0}, (33)

which is the set of solutions to the Lagrange problem where the solution values are less or
equal to the dual function value plus a positive constant. Then the outer approximation
to the subdifferential is

∂EzD(λ) = conv{sp : p ∈ PE(λ)}. (34)

In fact we use at least one “optimal subgradient” corresponding to a shortest path solution
to the subproblem and then any “suboptimal subgradient” corresponding to a nondomi-
nated path with negative reduced cost at the sink node. This approach is equivalent with
“multiple pricing” in colum generation.

Now, since the Lagrange function is an affine function in λ for a fixed solution xp, we have

L(λ, xp) = zD(λp) + 〈sp, λ − λp〉 (35)

The algorith we now present for solving the dual problem is an extension of Kelley’s and
Cheney and Goldstein’s cutting-plane algorithm for convex minimization. The algorithm
is related to the method of Madsen (1975) in the sense that it solves the dual restricted

12

master subject to bounds on the dual variables and that these bounds are being ad-
justed automatically, depending on the ratio between the “nominal” decrease of the dual
restricted master. This type of method is called a trust region method, introduced by
Levenberg (1944) and Marquardt (1963) in connection with least squares calculations.
To stabilize the cutting plane algorithm we force the next iterate to be a priori in a box
centered at the current point which we refer to as the stability center. Instability refers
to if the current iterate is closer (with respect to some norm) to the solution than the
next iterate. In this way we stay within the framework of linear programming. We refer
to this box as the trust-region since we assume the cutting plane approximation of the
dual function is good within this region. For a recent presentation on ways to stabilize
the cutting-plane algorithm see Hiriart-Urruty and Lemaréchal (1993) chapter [XV]. The
algorithm presented in this paper is an extension of Algorithm 2.1.1 in Hiriart-Urruty and
Lemaréchal (1993) chapter [XV] in the sense that we update the trust-region size so that
∆ → 0 when u → |P |. We also use several subgradients in each iteration to speed up
convergence.

The algorithm is given the initial point λ1 (we have choosen 0) and the trust-region size ∆
(we have choosen 1). The first query point µ1 is equal to the trial point we have choosen.
Then we solve the corresponding SPPTWCC for the initial trial point and calculate
subgradients sp for p ∈ PE(µ1) (if µ1 = 0, then only the empty tour p is returned by the
subproblem and zp

D(µ1) = 0 and sp = 1)). The cutting plane model (36) is updated with
the initial information and in step 1 we compute the next query point µu+1 and the cutting
plane approximation of the dual function value ẑu

D(µu+1). In step 2 we check the stopping
criterion. In step 3 we compute the actual dual function value zD(µu+1) and calculate the
corresponding subgradients at the new query point. In step 4 we compare the decrease in
the dual function value with the decrease in the cutting plane approximation; the decrease
predicted by our cutting plane model. The approximation ratio is used as a measure of
how good the cutting plane approximation is, and we increase or decrease the trust-region
size according to this ratio.

Algorithm 1 (Cutting-Plane Algorithm with Trust-Region) Choose an initial point
λ1, a stopping tolerance δ > 0 and a trust-region size ∆ > 0. Initialize the iteration-
counter u = 1 and µ1 = λ1; compute zp

D(µ1) and sp, for all p ∈ PE(µ1).

STEP 1 (Master problem). Solve the following relaxation of the dual problem

ẑu
D(µ) = maximize θ (36)

subject to

θ 6 zp
D(µq) + 〈sp, µ − µq〉 for q = 1, . . . , u p = 1, . . . , |PE(µq)|

µ 6 λu + ∆

µ > λu − ∆

to get a solution µu+1 and compute

δu = ẑu
D(µu+1) − z1

D(λu)

STEP 2 (Stopping criterion). If δu 6 δ then stop.

STEP 3 (Local problem). Find a solution to the Lagrange problem to get zp
D(µu+1) and

sp, for all p ∈ PE(µu+1).

13

STEP 4 (Update). Compute the gain ratio ρ = (z1
D(µu+1) − z1

D(λu))/δu.
If ρ = 1 then ∆ = ∆ ∗ 2.
If ρ < 0 then ∆ = ∆/3.
If ρ > 0.01 then set λu+1 = µu+1 (ascent-step). Otherwise set λu+1 = λu (null-step).
Set u = u + 1 and go to step 1. �

Let B denote the basis of the constraint matrix of (26) and cBS the cost coefficients of
the basis variables yBS.

The traditional Dantzig-Wolfe column generation is as follows.

Algorithm 2 (Dantzig-Wolfe’s algorithm) The Dantzig-Wolfe master problem (26)
is initialized with a feasible basis. Initialize the column counter p = n and compute the
initial simplex multipliers π = cBSB−1.

STEP 1 (Subproblem). Compute a solution of SPPTWCC with respect to the modified
costs ĉij = cij − πi to obtain a candidate column yp+1 with reduced cost z̄p+1.

STEP 2 (Stopping criterion). If z̄p+1 > 0 then stop (all variables price out correctly).
Otherwise adjoin the column with negative reduced cost to the restricted master
problem.

STEP 3 (Master problem). Compute a solution of (26), i.e. determine a new basis and
calculate the new simplex multipliers π = cBSB−1 and go to step 1. �

Assume we have initialized (26) with the paths (0, i, n+1), ∀i ∈ C, and suppose cp = 10000
for p = 0, . . . , n − 1, then πi = 10000 for i ∈ C. Figure 2 illustrates the effect of the size
of the multipliers on the computational difficulty of the SPPTWCC subproblems. In
the Dantizig-Wolfe column genereration algorithm the multipliers are large, compared
to the optimlal level, in the beginning of the solution process, while the multipliers in
the cutting-plane algorithm are small. As would be expected the computational times
of solving the subproblems in the two algorithms are almost the same when the optimal
level is reached.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

ITER

T
IM

E

Dantzig−Wolfe decomposition
Cutting−plane with trust−region

Figure 2: Development of the computational time in the SPPTWCC subproblem against
the iteration number when solving the dual problem (22) for a 100 customer VRPTW
instance (R104.100).

14

Figure 3 illustrates the instability of the column generation algorithm compared to the
stabilized cutting-plane algorithm.

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14
x 10

4 Instability of Column Generation; R104

TIME

|X
−

X
*|

Dantzig−Wolfe’s Algorithm

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200
The Trust−Region Stabilizing Device; R104

TIME

|X
−

X
*|

Cutting−Plane Algorithm with Trust−Region

Figure 3: The Euclidian distance between the current dual variables and the optimum
dual variables.

We have observed the same behaviour as illustrated in figure 2 and 3 when solving several
other instances. In fact, the total computational time for solving the dual problems for
the R1 instances with 100 customers was decreased by a factor 6.

Cutting-plane Dantzig-Wolfe

Problem LBopt Iterations Seconds Iterations Seconds

R101 1631.15 131 17.43 22 1.08

R102 1466.60 135 83.03 41 38.31

R103 1206.31 301 227.69 50 557.97

R104 949.50 276 288.77 44 1408.69

R105 1346.14 150 40.61 23 2.94

R106 1226.44 214 106.81 41 465.41

R107 1051.84 381 295.69 44 3930.36

R108 907.16 307 434.43 48 3419.23

R109 1130.59 228 88.99 36 44.39

R110 1048.48 223 131.40 28 245.07

R111 1032.03 276 200.93 39 466.79

R112 919.19 213 261.73 34 2843.32

Total 2835 2177.51 661 13423.56

Table 1: Comparing the trust-region algorithm to Dantzig-Wolfe’s algorithm on R1 in-
stances with 100 customers.

In order to find primal solutions we have combined the trust-region algorithm with a
Dantzig-Wolfe algorithm embedded in a branch and bound scheme. The Dantzig-Wolfe
algorithm is developed in Larsen (1999), where it is noted that the solution of the root node
is a bottle-neck in the branch-and-bound procedure and the current work can be viewed

15

as an effort to attack this problem. The overall solution procedure can be described
as follows. First the dual problem is solved by the trust-region. If the dual optimum
corresponds to a feasible primal solution then we have found the solution of the VRPTW
instance. Else we add all the corresponding paths of the dual restricted master to the
Dantzig-Wolfe restricted master together with the initial basis. The initial constraint
matrix of the (primal) restricted master then consists of a feasible basis and all the paths
found by the dual algorithm. The Dantzig-Wolfe algorithm then proceeds with step 1-3
as described above.

4 Computational results

The method was tested on the Solomon (1987) instances. They are widely regarded as
the test set for the VRPTW.

Of the 80 Solomon type 1 problems solved to optimality 34 of the problems were solved
in the root node. The average relative dual gap, (IPopt − LBopt)/IPopt (where IPopt

denotes the optimal integer solution and LBopt denotes the optimal LP-relaxed solution),
for remaining 46 solved problems is 2.8%, which shows the quality of the lower bound
given by our decomposition. The relative dual gap for the groups R1, C1 and RC1 are
1.2%, 0.2% respectively 5.3%, which is an indication of why there are relatively more
unsolved problems in the RC1-set than in R1, and why the C1-set was the first set of
instances that was solved to optimality.

Of the 46 Solomon type 2 problems solved to optimality integer solutions are found in the
root node in 9 cases (among them all the C2-problems solved). The average relative gap
of the remaining solved instances is 5.8% which is more than a factor 2 higher than the
relative dual gap for the type 1 instances. The relative gap for the sets R2, C2 and RC2
are 2.6%, 2.9% respectively 14%. The reason why the average gap of the C2 instances is
higher than for the R2 instances is that we were able to solve more “difficult” instances
from the C2 set (all problems except C204.100 are solved to optimality) than in the R2
set (where we only have solved one instance with 100 customers (R201.100)). Among the
type 2 instances the RC set is again the most difficult e.g. the problem RC203.25 has a
dual gap of 40%.

In each section we give an overview of the solutions to the solved Solomon instances.
For every problem there is given a lower LP-bound for the VRPTW found by the trust-
region algorithm, the optimal primal IP value as found by the Dantzig-Wolfe algorithm
(plus Branch-and-Bound), number of vehicles, number of branch-and-bound nodes and
the number of valid inequalities used in the Dantzig-Wolfe algorithm. Then we give
the total number of call to the SPPTWCC routine made by the trust-region algorithm
and the Dantzig-Wolfe algorithm and finally the total running time in seconds on a HP
J7000 computer. For the linear programs CPLEX version 6.5.1 was used. Exceptions are
indicated by A, C and D. A problem marked with an ’A’ is solved on an HP J2240 and
with CPLEX 3.0, ’C’ that the maximum number of columns returned are 20 instead of
200 and finally for the problems marked ’D’ we use the method of column reduction from
Larsen (1999) after every third Branch-and-Bound node.

16

4.1 The R1 instances

Problem LBopt IPopt veh no VI iter Running time

R101.25 617.100 617.100 8 1 0 44 0.1

R101.50 1043.367 1044.000 12 1 2 73 0.7

R101.100A 1631.150 1637.700 20 15 9 229 35.6

R102.25 546.333 547.100 7 1 3 61 0.3

R102.50 909.000 909.000 11 1 0 135 3.5

R102.100 1466.600 1466.600 18 1 0 233 87.0

R103.25 454.600 454.600 5 1 0 58 0.4

R103.50 765.950 772.900 9 39 4 267 16.2

R103.100 1206.313 1208.700 14 49 2 662 418.9

R104.25 416.900 416.900 4 1 0 70 0.9

R104.50 616.500 625.400 6 173 4 690 302.4

R104.100

R105.25 530.500 530.500 6 1 0 44 0.1

R105.50 892.120 899.300 9 15 13 148 2.5

R105.100 1346.142 1355.300 15 87 24 519 115.2

R106.25 457.300 465.400 5 1 12 78 0.5

R106.50 791.367 793.000 8 1 7 128 4.5

R106.100 1226.440 1234.600 13 1399 10 3043 3452.1

R107.25 422.925 424.300 4 3 3 73 0.7

R107.50 704.438 711.100 7 55 1 354 28.9

R107.100 1051.842 1064.600 11 3317 9 7467 38772.2

R108.25 396.139 397.300 4 3 2 111 3.1

R108.50C 588.926 617.700 6 7213 17 16860 67361.9

R108.100

R109.25 441.300 441.300 5 1 0 26 0.1

R109.50 775.096 786.800 8 157 7 483 21.6

R109.100A 1130.587 1146.900 13 4005 29 8527 53100.3

R110.25 437.300 444.100 5 27 0 125 1.3

R110.50 692.577 697.000 7 5 3 117 5.7

R110.100CD 1048.482 1068.000 12 108024 8 1210273 664238.4

R111.25 423.788 428.800 4 5 3 82 0.7

R111.50 691.812 707.200 7 405 10 1032 189.4

R111.100CD 1032.028 1048.700 12 5945 5 66786 27328.5

R112.25 384.200 393.000 4 9 18 120 4.4

R112.50 607.219 630.200 6 9383 5 16092 39568.5

R112.100

Table 2: Solution overview for the R1 instances.

Figure 4 shows the solution to R110.100. Arcs to and from the depot are not drawn.
The box in the center represents the depot. Figure 5 is also the solution of R110.100 but
depicted with respect to time. As can be seen R110.100 has relatively wide time windows
and partly a common strip through the time windows, which is an important part of the
explanation for the very long running time. One of the three remaining unsolved problems
in the R1 set (R112.100) has to an even higher degree this band-structure in the time

17

windows. The two other unsolved instances R104.100 and R108.100 also have very wide
time windows (only 25% of the customers have restrictive time windows).

In figure 5 we have depicted the solution to R110 with 100 customers with respect to
time. Time in minutes is shown along the x-axis. On the y-axis the customer numbers
are given. The horizontal line segments indicate the time windows, and an open circle on
the start of a line segment indicates that the time window has been reduced. The sloping
links indicates driving.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

52

82 69

27

59

28

21

40

2

53

33

95

52

82 69

27

59

28

21

40

2

53

33

95

Figure 4: Geographic view of the solution to R110 with 100 customers. The cirkled
numbers indicate the first customer on each route.

18

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

52 25 88
18 77 106
83 21 97
8 61 138

46 93 150
45 29 189
17 51 189
60 130 201
89 128 211
82 28 91
47 34 116
19 53 108
11 33 152
64 46 165
49 93 132
36 41 178
48 125 192
69

12
142

70 21 198
30 28 123
51 66 119
81 87 110
79 58 135
3 106 135

77 65 200
50 105 152
27 156
31 24 85
88 24 133
7 66 105

62 25 164
63 34 112
90 76 123
32 116 175
10 101 156
59 17 123
99 38 137
5 20 107

84 68 143
61 59 102
16 54 105
85 74 117
37 117 160
97 122 153
13 70 208
28

8
79

12 38 97
76 36 119
29 37 98
78 43 158
34 100 143
24 118 190
54 121 168
80 69 198
68 82 198
21 37 96
72 22 110
75 46 101
56 81 188
23 36 155
67 43 150
39 33 186
25 47 186
55 70 189
4 71 195

40 51 128
73 60 105
74 73 195
22 59 144
41 44 159
15 30 154
43 115 158
42 25 172
58 79 210
2 20 89

57 78 133
87 84 111
94 88 121
96 119 160
6 54 153

53 62 137
26 117 156
33 24 179
9 53 150

35 50 178
71 57 106
65 49 170
66 77 179
20 109 152
1 130 201

95
14

83
92 18 181
98 32 93

100 28 195
14 32 137
38 42 145
86 79 118
44 31 138
91 130 194
93 41 199

Figure 5: The solution to R110 with 100 customers depicted with respect to time.

19

4.2 C1 instances

These problems are known to be the easiest to solve, but we have been able to reduce
the running times for instances with wide time windows (C103 and C104). Due to the
clustering of customers and the construction of the time windows most of the solutions
are obvious and could quickly be constructed by hand; one only has to use one vehicle for
each cluster.

The solution you would find manually would be identical or very close to the optimal solu-
tion for C101.100, C102.100, C105.100, C106.100, C107.100 and C108.100, see Kallehauge
(2000b) pp.185ff. for a graphical view of the solutions.

Problem LBopt IPopt veh no VI iter Running time

C101.25 191.300 191.300 3 1 0 30 0.1

C101.50 362.400 362.400 5 1 0 52 0.5

C101.100 827.300 827.300 10 1 0 113 6.6

C102.25 190.300 190.300 3 1 0 59 0.6

C102.50 361.400 361.400 5 1 0 54 1.5

C102.100 827.300 827.300 10 1 0 134 27.8

C103.25 190.300 190.300 3 1 0 61 1.7

C103.50 361.400 361.400 5 1 0 101 12.4

C103.100 826.300 826.300 10 1 0 202 135.8

C104.25 186.900 186.900 3 1 0 72 3.2

C104.50 357.250 358.000 5 1 2 162 63.8

C104.100 822.900 822.900 10 1 0 230 362.9

C105.25 191.300 191.300 3 1 0 34 0.1

C105.50 362.400 362.400 5 1 0 56 0.9

C105.100 827.300 827.300 10 1 0 91 10.6

C106.25 191.300 191.300 3 1 0 30 0.1

C106.50 362.400 362.400 5 1 0 50 0.5

C106.100 827.300 827.300 10 1 0 100 13.2

C107.25 191.300 191.300 3 1 0 41 0.2

C107.50 362.400 362.400 5 1 0 53 0.7

C107.100 827.300 827.300 10 1 0 101 16.7

C108.25 191.300 191.300 3 1 0 45 0.2

C108.50 362.400 362.400 5 1 0 56 1.1

C108.100 827.300 827.300 10 1 0 160 23.5

C109.25 191.300 191.300 3 1 0 59 0.6

C109.50 362.400 362.400 5 1 0 73 2.5

C109.100 825.640 827.300 10 1 3 161 30.5

Table 3: Solution overview for the C1 instances.

20

4.3 The RC1 instances

Problem LBopt IPopt veh no VI iter Running time

RC101.25 406.625 461.100 4 11 3 82 0.3

RC101.50 850.021 944.000 8 3 34 119 1.7

RC101.100 1584.094 1619.800 15 11 64 281 43.7

RC102.25 351.800 351.800 3 1 0 56 0.6

RC102.50 719.902 822.500 7 1685 6 3281 1029.8

RC102.100CD 1403.646 1457.500 14 15356 38 209876 27821.0

RC103.25 332.050 332.800 3 3 0 87 1.7

RC103.50 643.133 710.900 6 5 3 158 17.1

RC103.100CD 1218.495 1258.200 11 16455 39 251098 80650.6

RC104.25 305.825 306.600 3 7 0 110 2.6

RC104.50 543.750 545.800 5 27 0 254 103.0

RC104.100

RC105.25 410.950 411.300 4 3 0 94 0.9

RC105.50 754.443 855.300 8 157 5 595 35.0

RC105.100 1471.160 1513.700 15 43 33 444 122.3

RC106.25 342.829 345.500 3 15 1 119 61.5

RC106.50 664.433 723.200 6 21 10 195 8.6

RC106.100

RC107.25 298.300 298.300 3 1 0 53 1.5

RC107.50 591.477 642.700 6 79 2 454 77.6

RC107.100

RC108.25 293.791 294.500 3 1 4 60 35.5

RC108.50 538.957 598.100 6 9 2 166 80.6

RC108.100

Table 4: Solution overview for the RC1 instances.

Only four 100 customer instances remain unsolved within the RC1 instances. These
instances also have very wide time windows like the unsolved instances of the R1 instances.

4.4 The R2 instances

We have solved all 25 customer instances to optimality except R204.25. Furthermore we
have solved 3 50 customer instances and 1 instance with 100 customers, namely R201.100,
which is shown geographically in figure 6 and time-wise in figure 7. It should be noted
that the routes in figure 7 tend to break up in several parts, e.g. the route where customer
27 is the first to be serviced. The total service time for R201.100 is 1000, driving time
(accumulated sum of tij ’s) is 1143.2 and the waiting time is 4153.4. It could therefore be
argued how realistic this solution is. This is a very good illustration of one of the problem
using a purely geographic objective function for a “mixed” problem.

21

Problem LBopt IPopt veh no VI iter Running time

R201.25A 460.100 463.300 4 1 0 53 1.1

R201.50 788.425 791.900 6 3 0 180 9.2

R201.100A 1136.222 1143.200 8 265 1 1589 7969.6

R202.25 406.350 410.500 4 23 0 234 14.9

R202.50A 692.738 698.500 5 7 1 400 1707.7

R202.100

R203.25A 379.882 391.400 3 29 2 287 258.4

R203.50

R203.100

R204.25

R204.50

R204.100

R205.25A 381.283 393.000 3 11 6 172 18.2

R205.50 666.604 690.900 5 5282 6 86840 55507.5

R205.100

R206.25A 363.132 374.400 3 77 6 663 988.0

R206.50

R206.100

R207.25 347.592 361.600 3 273 9 1612 9269.2

R207.50

R207.100

R208.25D 318.105 330.900 1 20 8 902 23277.7

R208.50

R208.100

R209.25A 353.875 370.700 2 61 6 418 1976.1

R209.50

R209.100

R210.25A 395.844 404.600 3 59 4 520 2421.4

R210.50

R210.100

R211.25D 330.140 350.900 2 424 7 4481 28002.9

R211.50

R211.100

Table 5: Solution overview for the R2 instances.

22

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

5

52

95

33

72

27

28

42

5

52

95

33

72

27

28

42

Figure 6: Geographic view of the solution to R201 with 100 customers.

23

0 100 200 300 400 500 600 700 800 900 1000

5
34

209
83 96 249
45 189
82 162 289
47 85 250
36

41
208

49 501 540
46 515 628
48 773 906
52 174 299
69 162 293
30 259 354
90 392 487
10 577 632
20 581 666
66 592 693
32 660 777
70 788 968
1 707 848

95 92 231
59 229
92 181
98 183 306
14

32
243

38 302 405
44 233 340
16 272 373
61 290 377
86 388 465
85 376 461
99 333 432
94 436 503
6 415 514

53 414 489
33

45
200

65
49

188
71 268 367
9 400 497

51 348 453
81 411 456
79 388 465
78 384 499
34 529 614
35 686 813
68 637 752
77 817 952
72 208
39

33
224

67 294 401
23 206 325
75 236 345
22 409 494
41 396 511
56 585 692
74 681 802
4 678 801

55 620 739
25 817 956
24 704 847
80 839 968
27 104 255
31 152 275
63

34
191

64 214 333
11 206 325
19 269 378
62 163 302
88 279 388
7 331 410

18 377 434
8 404 481

84 436 511
17 733 870
91 739 866

100 798 965
93 811 969
60 721 862
89 755 920
28 114 255
12 228 345
29 190 313
76 290 373
50 547 642
3 527 584

54 641 734
26 588 667
42 172
15 175 300
2 143 282

73 308 399
21 214 331
40 360 437
87 420 447
57 421 530
43 620 705
37 606 693
97 612 673
96 607 690
13 690 827
58 849 980

Figure 7: The solution to R201 with 100 customers depicted with respect to time.

24

4.5 The C2 instances

Among the C2 instances we solved all but one instance. C204.100 is the most difficult
problem (due to its large time windows) and was not solved. We tried several times
to solve C204.100. But we stopped either due to an upper bound of 100000 columns
generated or that we ran out of memory. The problems are structually the same as the
C1 instances, but longer routes are allowed, which can be seen in the solution of C208.100
in figure 8. On figure 9 we can see that the time windows are almost constructed to fit
the geographical postition of the customers.

Problem LBopt IPopt veh no VI iter Running time

C201.25A 214.700 214.700 2 1 0 36 0.2

C201.50A 360.200 360.200 3 1 0 55 1.2

C201.100A 589.100 589.100 3 1 0 60 61.8

C202.25A 214.700 214.700 2 1 0 164 7.3

C202.50A 360.200 360.200 3 1 0 177 18.8

C202.100A 589.100 589.100 3 1 0 61 37.6

C203.25A 214.700 214.700 2 1 0 191 24.7

C203.50 359.800 359.800 3 1 0 272 167.1

C203.100 588.700 588.700 3 1 0 188 859.4

C204.25 211.004 213.100 1 4 0 268 424.3

C204.50 350.100 350.100 2 1 0 368 851.3

C204.100

C205.25A 212.050 214.700 2 2 0 116 3.4

C205.50 357.350 363.500 3 2 0 160 390.3

C205.100 586.400 586.400 3 9 0 94 31.4

C206.25A 197.700 214.700 2 1 5 198 11.5

C206.50A 344.200 359.800 3 3 4 568 1363.9

C206.100A 585.400 586.000 3 1 2 419 1976.1

C207.25 207.981 214.500 2 73 0 1066 825.8

C207.50A 356.269 359.600 3 1 10 500 925.4

C207.100A 581.969 585.800 3 1 6 664 5538.8

C208.25A 193.280 214.500 2 9 6 336 85.6

C208.50A 340.425 350.500 2 1 3 529 420.6

C208.100A 581.767 585.800 3 1 4 730 8347.3

Table 6: Solution overview for the C2 instances.

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

93

20

67

93

20

67

Figure 8: Geographic view of the solution to C208 with 100 customers.

26

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3390

93 648
5 655

75 655
2 660
1 711

99
167

807
100 262 902
97 357 997
92 454 1094
94 548 1188
95 641 1281
98 738 1378
7 833 1473
3 927 1567
4 1021 1661

89 1115 1755
91 1211 1851
88 1306 1946
86 1496 2136
84 1401 2041
83 1592 2232
82 1685 2325
85 1789 2429
76 1891 2531
71 1986 2626
70 2081 2721
73 2174 2814
80 2273 2913
79 2368 3008
81 2463 3103
78 2562 3202
77 2627 3267
96 2635 3275
87 2635 3275
90 2639 3279
20 650
22 652
24 655
27 657
30 703
29

158
798

6 257 897
32 353 993
33 445 1085
31 541 1181
35 636 1276
37 731 1371
38 823 1463
39 918 1558
36 1013 1653
34 1106 1746
28 1207 1847
26 1305 1945
23 1403 2043
18 1502 2142
17 2071 2711
19 1597 2237
16 1694 2334
14 1786 2426
12 1879 2519
15 1976 2616
13 2165 2805
25 2264 2904
9 2361 3001

11 2458 3098
10 2551 3191
8 2647 3287

21 2648 3288
67 652
63 654
62 658
74 659
72 708
61

161
801

64 253 893
66 348 988
69 440 1080
68 536 1176
65 631 1271
49 727 1367
55 825 1465
54 920 1560
53 1016 1656
56 1110 1750
58 1202 1842
60 1295 1935
59 1390 2030
57 1485 2125
40 1579 2219
44 1673 2313
46 1769 2409
45 1865 2505
51 1960 2600
50 2052 2692
52 2145 2785
47 2240 2880
42 2426 3066
41 2518 3158
43 2333 2973
48 2616 3256

Figure 9: The solution to C208 with 100 customers depicted with respect to time.

27

4.6 The RC2 instances

The RC2 instance were the computationally most difficult problems to solve. Two 25
customer problems are not solved yet (RC204.25 and RC208.25) and for the remaining
(solved) 25 customer instances the running time is very large compared to R2 and C2.
We have succeeded in solving one 100 customer problem, namely RC201.100, which is
shown in figure 10 and 11. For RC201.100 the total service time is 1000, the driving time
1261 and the waiting time 4243, that is, the same proportion as we saw in R201.100.

Problem LBopt IPopt veh no VI iter Running time

RC201.25 356.650 360.200 3 3 0 79 0.6

RC201.50 670.150 684.800 5 31 0 401 61.8

RC201.100CD 1240.398 1261.800 9 524 10 33610 35068.7

RC202.25A 290.408 338.000 3 117 6 1207 6351.7

RC202.50

RC202.100

RC203.25CD 214.475 356.400 2 12399 5 383930 213306.2

RC203.50

RC203.100

RC204.25

RC204.50

RC204.100

RC205.25 307.600 338.000 3 47 0 453 33.1

RC205.50

RC205.100

RC206.25 250.390 324.000 3 2465 8 27251 82384.9

RC206.50

RC206.100

RC207.25CD 217.965 298.300 3 13395 3 215695 221087.1

RC207.50

RC207.100

RC208.25

RC208.50

RC208.100

Table 7: Solution overview for the RC2 instances.

28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

72

90

92

81

5

65

82

14

69

72

90

92

81

5

65

82

14

69

Figure 10: Geographic view of the solution to RC201 with 100 customers.

29

0 100 200 300 400 500 600 700 800 900 960

72 60 180
36

43
163

39 64 184
42

33
153

44 217 337
41 376 496
38 278 398
40 329 449
43 574 694
35 657 777
37 557 677
54 601 721
90 359 479
92 134
95 100 220
63

39
159

33 80 200
28 149 269
27 146 266
29 194 314
31 165 285
30 246 366
62 167 287
67 268 388
71 241 361
94 392 512
96 562 682
93 808 928
81 355 475
61 258 378
68 612 732
5 73 193

45
37

157
2 152 272
6 388 508
7 300 420
8 367 487

46 489 609
3 471 591
1 673 793
4 644 764

100 810 930
70 810 930
65 131
59

42
162

75 232 352
23 201 321
21 215 335
18 335 455
19 254 374
49 440 560
22 375 495
20 537 657
56 557 677
66 566 686
82 152 272
52 175 295
83 105 225
64 191 311
51 326 446
76 268 388
85 344 464
84 395 515
50 507 627
34 487 607
32 621 741
26 529 649
89 713 833
48 732 852
24 681 801
91 719 839
80 822 942
14

35
155

47 105 225
16 255 375
15 174 294
12 223 343
11 195 315
9 371 491

99 308 428
57 397 517
86 349 469
87 359 479
97 547 667
10 519 639
17 703 823
13 653 773
74 645 765
58 782 902
77 764 884
25 784 904
69 157 277
98 172 292
88 260 380
53 375 495
73 286 406
79 352 472
78 365 485
60 694 814
55 599 719

Figure 11: The solution to RC201 with 100 customers depicted with respect to time.

30

4.7 The Homberger instances

We have solved 9 problems from the Homberger testsets Homberger, among them prob-
lems with 400 and 1000 customers. In 8 of the problems the customers are grouped (C-
instances), while we succeeded in solving a 200 customer problem where the customers
are randomly located.

Problem LBopt IPopt veh no VI iter Running time

R1 2 1.200 4654.900 4667.200 23 469 21 1549 5198.2

C1 2 1.200 2698.600 2698.600 20 1 0 251 114.6

C1 2 2.200 2682.187 2694.300 20 95 6 1121 4695.6

C1 2 5.200 2694.900 2694.900 20 1 0 235 118.3

C1 2 6.200 2694.900 2694.900 20 1 0 341 159.1

C1 2 7.200 2694.900 2694.900 20 1 0 304 179.2

C1 2 8.200 2667.870 2684.000 20 129 13 1032 2048.7

C1 4 1.400 7138.767 7138.800 40 1 1 17527 9233.2

C110 1.1000 42444.400 42444.800 100 3 2 1141 42359.1

Table 8: Overview of the solved Homberger instances.

4.8 An instance with 1000 customers

The solution to an instance with 1000 customers is shown in figure 12. The objective value
is 42444.8 and the solution needed 100 vehicles. The trust-region algorithm solved the root
node in 849 iterations in 17523 seconds. The Dantzig-Wolfe algorithm used 292 master
iterations, returning at most 200 columns for every call of the SPPTWCC subproblem
and used a total of 24836 seconds to find the optimal solution. 2 valid inequalities were
introduced and we needed one branching operation (branching on arcs), so a total of 3
branch-and-bound-nodes were necessary.

---------- Statistics

This program ran on serv3 ().

Total execution time 24836.17 seconds

(Solving root 23245.11 seconds)

Time used in separation 34.25 seconds

Cuts generated 2

Accumulated time used in calls of SPPTWCC 870.12 seconds

Time used in largest single SPPTWCC call 9.41 seconds

Branching nodes examined 3 (Veh 0, Arc 1, TW 0)

(hereof 0 where not feasible)

No of calls to SPPTW 292, Routes generated 53294

Max no of columns selected per SPPTW 200

No of multiple customers deleted explicitly 0

IP value 424448

RP value 424446.833

LP value 424444.000

Total CPLEX optimize time 23872.30 Biggest 1000.05

Total branching time 23.49 Biggest 23.49

Table 9: Program output for solving C110 1.1000.

In table 9 one can see that the main part of the running time is used in the LP-solver

31

(23872 seconds of a total of 24836 seconds). It is characteristic for problems with more
than 100 customers that the relative amount of time used in the LP-solver in many cases
is larger than the time used in the shortest path routine (see Kallehauge 2000b p.82).

Figure 12: The solution to C110 1.1000.

5 Conclusion

The algorithm has been tested on the well-known Solomon VRPTW benchmark problems
and a range of extended Solomon problems created by Homberger. We have succeeded
in solving several previously unsolved Solomon problems and a Homberger problem with
1000 customers, which is the largest problem ever solved to optimality. The computa-
tional times were reduced significantly by the trust-region method in the root node of
the branch-and-bound tree compared to the traditional Dantzig-Wolfe algorithm due to
easier subproblems. It therefore seems very efficient to stabilize the dual variables even

32

with a simple and problem independent trust-region scheme.

Acknowledgement

Algorithm 1 is joint work with Kaj Madsen, Informatics and Mathematical Modelling,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.

References

Bodin, L., B. Golden, A. Assad, and M. Ball (1983). Routing and Scheduling of Vehicles
and Crews - The State of Art. Computers & Operations Research 10, 62 – 212.

Breedam, A. V. (1995). Vehicle Routing: Bridging the gap between theory and practice.
Belgian Journal of Operations Research, Statistics and Computer Science 35, 63 –
80.

Cheney, E. W. and A. A. Goldstein (1959). Newton’s Method for Convex Programming
and Tchebycheff Approximation. Numerische Mathematik 1, 253–268.

Crainic, T. G. and G. Laporte (1998). Fleet Management and Logistics. Dordrecht, The
Netherlands: Kluwer.

Desrochers, M., J. Desrosiers, and M. Solomon (1992). A New Optimization Algorithm
for the Vehicle Routing Problem with Time Windows. Operations Research 40, 342
– 354.

Desrosiers, J., Y. Dumas, M. M. Solomon, and F. Soumis (1995). Time Constrained
Routing and Scheduling. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L.
Nemhauser (Eds.), Network Routing, Volume 8 of Handbooks in Operations Research
and Management Science, pp. 35 – 139. Amsterdam, The Netherlands: North-
Holland.

du Merle, O., D. Villeneuve, J. Desrosiers, and P. Hansen (1999). Stabilized column
generation. Discrete Mathematics 194, 229–237.

Fisher, M. (1995). Vehicle Routing. In M. O. Ball, T. L. Magnanti, C. L. Monma,
and G. L. Nemhauser (Eds.), Network Routing, Volume 8 of Handbooks in Opera-
tions Research and Management Science, pp. 1 – 79. Amsterdam, The Netherlands:
North-Holland.

Halse, K. (1992). Modeling and Solving Complex Vehicle Routing Problems. Ph. D.
thesis, Department of Mathematical Modelling, Technical University of Denmark.

Hiriart-Urruty, J.-B. and C. Lemaréchal (1993). Convex Analysis and Minimization
Algorithms I-II, Volume 305-306 of Grundlehren der matematischen Wissenschaften.
Berlin Heidelberg: Springer-Verlag.

Homberger, J. (2000). Extended solomon’s vrptw instances. Available on the web at
www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm.

Kallehauge, B. (2000a). Lagrangean Duality and Non-differentiable Optimization - Ap-
plied on Routing with Time Windows. Master’s thesis, Department of Mathematical
Modelling, Technical University of Denmark. IMM-EKS-2000-13, [in Danish].

Kallehauge, B. (2000b). Solutions to the Solomon Instances for VRPTW. Supplemen-
tary report for Masters Thesis no. 13, [in Danish].

33

Kelley, J. E. (1960). The cutting-plane method for solving convex programs. Journal
of SIAM 8, 703–712.

Kohl, N. (1995). Exact methods for Time Constained Routing and Related Scheduling
Problems. Ph. D. thesis, Department of Mathematical Modelling, Technical Univer-
sity of Denmark. IMM-PHD-1995-16.

Kohl, N. and O. B. G. Madsen (1997). An Optimization Algorithm for the Vehicle
Routing Problem with Time Windows based on Lagrangean Relaxation. Operations
Research 45, 395 – 406.

Larsen, J. (1999). Parallellization of the Vehicle Routing Problem with Time Windows.
Ph. D. thesis, Department of Mathematical Modelling, Technical University of Den-
mark. IMM-PHD-1999-62.

Levenberg, K. (1944). A method for the solution of certain problems in least squares.
Quart. Appl. Math. 2, 164–168.

Madsen, K. (1975). An algorithm for Minimax Solution of Overdetermined Systems
of Non-linear Equations. Journal of the Institute of Mathematics and Its Applica-
tions 16, 321–328.

Marquardt, D. (1963). An algorithm for Least Squares Estimation on Nonlinear Pa-
rameters. SIAM J. Appl. Math. 11, 431–441.

Neame, P., N. Boland, and D. Ralph (2000). An outer approximate subdifferential
method for piecewise affine optimization. Mathematical Programming 87, 57 – 86.

Neame, P. J. (1999). Nonsmooth Dual Methods in Integer Programming. Ph. D. thesis,
Department of Mathematics and Statistics, The University of Melbourne.

Nemhauser, G. L. and L. A. Wolsey (1988). Integer and Combinatorial Optimization.
New York: Wiley.

Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints. Operations Research 35, 254 – 265.

The Danish Ministry of Transport (1998, January). Trafikredegørelse 1997. [in danish].

34

