AC/DC Digital Power Controller for High Power Factor Dimmable LED Drivers

1.0 Features

- Isolated/non-isolated offline 120V_{AC}/230V_{AC} LED driver up to 12W output power
- Wide line frequency ranges (from 45Hz to 66Hz)
- Meets IEC61000-3-2 requirement
- Total harmonic distortion < 15% with PF > 0.95
- Wide dimmer compatibility
 - » Leading-edge dimmer
 - » Trailing-edge dimmer
 - » Digital dimmer
 - » Occupancy sensors and timers
- Under 20% output ripple current
- Wide dimming range from 1% to 100%
- Flickerless[™] LED dimming
- Resonant control to achieve high efficiency (typical > 85% without dimmer)
- Over-temperature LED current foldback
- Small solution size
 - » Two-stage topology enables small-size input and output filter capacitors
 - » 200kHz maximum switching frequency enables small transformer
 - » Intelligent dimmer interface eliminates dedicated high-power bleeder
- Primary-side sensing eliminates the need for opto-isolator feedback
- Tight LED current regulation (± 5%)
- Fast start-up (< 0.5s without dimmer)
- Supports hot-plug LED module (Zhaga)
- Compatible with NEMA SSL6 dimming curve standard
- Supports wide LED output voltage range
- Multiple protection features:
 - » LED open-circuit and short-circuit protection
 - » Over-current and over-temperature protection
 - » Current sense resistor short-circuit protection
 - » AC line over-voltage/-frequency protection

2.0 Description

The iW3616 is a two-stage, high-performance AC/DC offline power supply controller for dimmable LED luminaires. It applies advanced digital control technology to detect the dimmer type and phase, which provides dynamic impedance to interface the dimmer and control the LED brightness at the same time. The iW3616 uses iWatt's unique digital Flickerless™ technology to eliminate visible flicker in the entire dimming range and minimize low frequency output ripple current.

With advanced dimmer detection technology, the iW3616 can operate with most wall dimmers including leading-edge dimmers (R-type or R-L type) and trailing-edge dimmers (R-C type). In addition, the iW3616's cycle-by-cycle waveform analysis technology allows fast dimmer setting response. When no dimmer is on the line, the iW3616 optimizes the power factor and minimizes the current harmonic distortion to the AC line.

The iW3616 operates the main power converter that delivers constant current to the LED load in quasi-resonant mode to provide high power efficiency and minimize electro-magnetic interference (EMI). It uses iWatt's patented PrimAccurate™ primary-side sensing technology to achieve excellent LED current regulation under different AC line and LED load voltages, without using a secondary-side feedback circuit and eliminating the need for an opto-coupler.

The iW3616 minimizes the external components count by simplifying the EMI filter with iWatt's EZ-EMI® technology. The intelligent dimmer detection technology eliminates the need for a high-power bleeder. Additionally, the digital control loop of the iW3616 maintains stable overall operating conditions without the need for loop compensation components.

3.0 Applications

- Dimmable LED retrofit lamps up to 12W
- Dimmable LED ballast and luminaires up to 12W

AC/DC Digital Power Controller for High Power Factor Dimmable LED Drivers

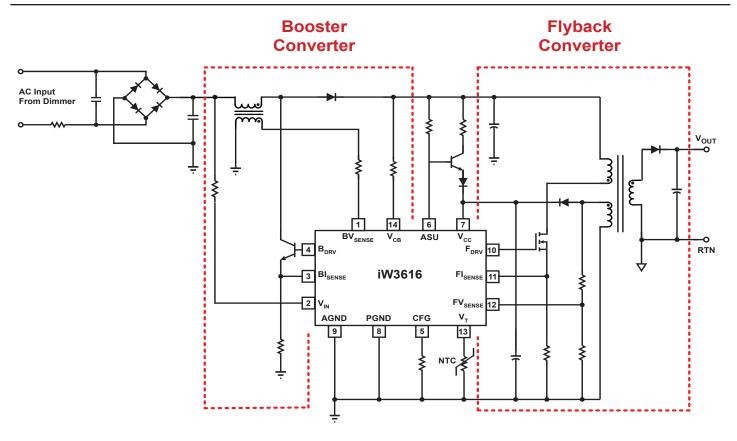


Figure 3.1: iW3616 Simplified Schematic

AC/DC Digital Power Controller for High Power Factor Dimmable LED Drivers

4.0 Pinout Description

iW3616						
1	BV _{SENSE}	v _{CB}	14			
2	V _{IN}	v_{T}	13			
3	BI _{SENSE}	FV _{SENSE}	12			
4	B _{DRV}	FISENSE	11			
5	CFG	F_{DRV}	10			
6	ASU	AGND	9			
7	v _{cc}	PGND	8			

Pin#	Name	Type	Pin Description
1	BV _{SENSE}	Analog Input	Boost inductor voltage feedback input
2	V_{iN}	Analog Input	Rectified AC line voltage input
3	BI _{SENSE}	Analog Input	Boost current sense input
4	B _{DRV}	Output	Base drive output for boost BJT
5	CFG	Analog In/Out	Driver parameter configuration pin and auxiliary driver
6	ASU	Output	Active start-up and bleeder control
7	V _{cc}	Power	Power supply for control logic and voltage sense for power-on reset circuit
8	PGND	Ground	Power ground
9	AGND	Ground	Signal ground. It should be connected to the power ground on PCB.
10	F _{DRV}	Output	Gate drive output for flyback MOSFET
11	FI _{SENSE}	Analog Input	Flyback current sense (used for cycle-by-cycle peak current control and limit)
12	FV _{SENSE}	Analog Input	Flyback voltage sense (used for primary-side regulation and ZVS)
13	V_{T}	Analog Input	External power limit shutdown control and external over-temperature power derating
14	V _{CB}	Analog Input	Boost output voltage feedback input

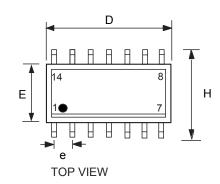
AC/DC Digital Power Controller for High Power Factor Dimmable LED Drivers

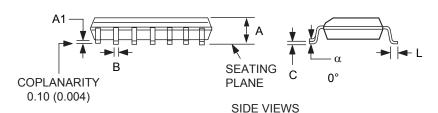
5.0 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage if exceeded. For maximum safe operating conditions, refer to iW3616 Datasheet for more information.

Parameter	Symbol	Value	Units
DC supply voltage range (pin 7, I _{CC} = 20mA max)	V _{CC}	-0.3 to 18	V
DC supply current at V _{CC} pin	I _{cc}	20	mA
F _{DRV} output (pin 10)		-0.3 to 18	V
B _{DRV} output (pin 4)		-0.3 to 4.0	V
CFG input (pin 5)		-0.3 to 4.0	V
CFG output (pin 5)		-0.3 to 18	V
FV _{SENSE} input (pin 12, I ≤ 10mA)		-0.7 to 4.0	V
BV _{SENSE} input (pin 1, I ≤ 3mA)		-0.7 to 4.0	V
V _{IN} input (pin 2)		-0.3 to 18	V
V _{CB} input (pin 14)		-0.3 to 18	V
FI _{SENSE} input (pin 11)		-0.3 to 4.0	V
BI _{SENSE} input (pin 3)		-0.3 to 4.0	V
ASU output (pin 6)		-0.3 to 18	V
V _⊤ input (pin 13)		-0.3 to 4.0	V
Power dissipation at T _A ≤ 25°C		900	mW
Maximum junction temperature	T _{J MAX}	150	°C
Storage temperature	T _{STG}	-65 to 150	°C
Lead temperature during IR reflow for ≤ 15 seconds	T _{LEAD}	260	°C
Thermal Resistance Junction-to-PCB Board Surface Temperature	Ψ _{JB} (Note 1)	45	°C/W
ESD rating per JEDEC JESD22-A114		2,000	V
Latch-up test per JEDEC 78		±100	mA

Notes:


Note 1. Ψ_{JB} [Psi Junction to Board] provides an estimation of the die junction temperature relative to the PCB surface temperature. This data is measured at the ground pin (pin 8 and pin 9) without using any thermal adhesives.


AC/DC Digital Power Controller for High Power Factor Dimmable LED Drivers

6.0 Physical Dimensions

14-Lead SOIC Package

Symbol Inches Millimeters MIN MAX MIN MAX Α 0.053 0.069 1.35 1.75 0.004 Α1 0.010 0.10 0.25 В 0.013 0.020 0.33 0.51 С 0.007 0.010 0.19 0.25 D 0.337 0.344 8.55 8.75 Ε 0.150 0.157 3.80 4.00 0.050 BSC 1.27 BSC е Н 0.228 0.244 5.80 6.20 Ν 0.086 0.094 2.18 2.39 Μ 0.126 3.00 0.118 3.20 L 0.016 0.050 0.40 1.27 0° 8° ٥° 8° α

Figure 6.1: Physical dimensions, 14-lead SOIC package

Compliant to JEDEC Standard MS12F

Controlling dimensions are in inches; millimeter dimensions are for reference only

This product is RoHS compliant and Halide free.

Soldering Temperature Resistance:

- [a] Package is IPC/JEDEC Std 020D Moisture Sensitivity Level 1
- [b] Package exceeds JEDEC Std No. 22-A111 for Solder Immersion Resistance; package can withstand 10 s immersion < 270°C</p>

Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per end. Dimension E does not include interlead flash or protrusion. Interlead flash or

7.0 Ordering Information

Part Number	Options	Package	Description
iW3616-00	120V _{AC} Input	SOIC-14	Tape & Reel ¹
iW3616-01	230V _{AC} Input	SOIC-14	Tape & Reel ¹

Note 1: Tape & Reel packing quantity is 2,500/reel.

AC/DC Digital Power Controller for High Power Factor Dimmable LED Drivers

Trademark Information

© 2012 iWatt Inc. All rights reserved. iWatt, BroadLED, *EZ-EMI*, Flickerless, Intelligent AC-DC and LED Power, and PrimAccurate are trademarks of iWatt Inc. All other trademarks and registered trademarks are the property of their respective owners.

Contact Information

Web: https://www.iwatt.com
E-mail: info@iwatt.com
Phone: +1 (408) 374-4200
Fax: +1 (408) 341-0455

iWatt Inc.

675 Campbell Technology Parkway, Suite 150

Campbell, CA 95008

Disclaimer and Legal Notices

iWatt reserves the right to make changes to its products and to discontinue products without notice. The applications information, schematic diagrams, and other reference information included herein is provided as a design aid only and are therefore provided as-is. iWatt makes no warranties with respect to this information and disclaims any implied warranties of merchantability or non-infringement of third-party intellectual property rights.

This product is covered by the following patents: 6,385,059; 6,370,039; 6,862,198; 6,900,995; 6,956,750; 6,990,900; 7,443,700; 7,505,287; 7,589,983; 6,972,969; 7,724,547; 7,876,582; 7,880,447; 7,974,109; 8,018,743; 8,049,481; 7,936,132; 7,433,211; 6,944,034. A full list of iWatt patents can be found at www.iwatt.com.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

IWATT SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR OTHER CRITICAL APPLICATIONS.

Inclusion of iWatt products in critical applications is understood to be fully at the risk of the customer. Questions concerning potential risk applications should be directed to iWatt Inc.

iWatt semiconductors are typically used in power supplies in which high voltages are present during operation. High-voltage safety precautions should be observed in design and operation to minimize the chance of injury.