

STFH12N150K5

N-channel 1500 V, 1.6 Ω typ.,7 A MDmesh™ K5 Power MOSFET in a TO-220FP wide creepage package

Datasheet - preliminary data

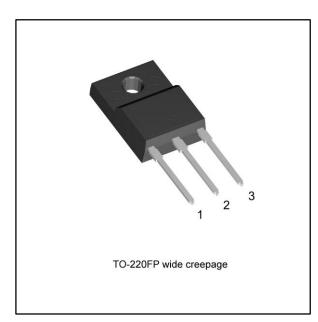
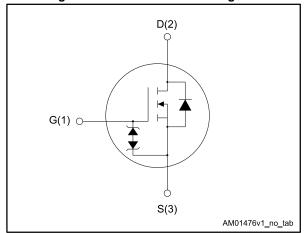



Figure 1: Internal schematic diagram

Features

	Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
ĺ	STFH12N150K5	1500 V	1.9 Ω	7 A	40 W

- Industry's lowest R_{DS(on)} * area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected
- Wide creepage distance of 4.25 mm between the pins

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

The TO-220FP wide creepage package provides increased surface insulation for Power MOSFETs to prevent failure due to arcing, which can occur in polluted environments.

Table 1: Device summary

Order code		Marking	Package	Packing
	STFH12N150K5	12N150K5	TO-220FP wide creepage	Tube

July 2016 DocID029581 Rev 2 1/13

Contents STFH12N150K5

Contents

1	Electric	al ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	TO-220 wide creepage package information	10
5	Revisio	n history	12

STFH12N150K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter Parameter		Unit
V _G s	Gate-source voltage		V
I _D	Drain current at T _C = 25 °C	7	Α
ΙD	Drain current at T _C = 100 °C	4	Α
I _{DM} ⁽¹⁾	I _{DM} ⁽¹⁾ Drain current (pulsed)		Α
P _{TOT}	Total dissipation at T _C = 25 °C	40	W
dv/dt (2)	Peak diode recovery voltage slope		V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_c = 25 °C)		V
Tj	Operating junction temperature range		°C
T _{stg}	Storage temperature range	150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value Unit		
R _{thj-case}	Thermal resistance junction-case	3.1	°C/W	
R _{thj-amb}	Thermal resistance junction-amb	62.5	°C/W	

Table 4: Avalanche characteristics

Symbol	Symbol Parameter			
I _{AR}	I _{AR} Max current during repetitive or single pulse avalanche			
E _{AS} Single pulse avalanche energy		900	mJ	

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \le 7 \text{ A, di/dt} \le 100 \text{ A/}\mu\text{s, V}_{Peak} \le V_{(BR)DSS}$

 $^{^{(3)}}V_{DS} \le 1200 \ V$

Electrical characteristics STFH12N150K5

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1500			٧
7		V _{GS} = 0 V, V _{DS} = 1500 V			1	μΑ
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 1500 \text{ V},$ Tc=125 °C ⁽¹⁾			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0$, $V_{GS} = \pm 20 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)} Static drain-source on- resistance		V _{GS} = 10 V, I _D = 3.5 A		1.6	1.9	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1360	1	pF
Coss	Output capacitance	V _{GS} = 0 V, V _{DS} = 100 V,f = 1MHz	-	80	ı	pF
Crss	Reverse transfer capacitance	V65 - 0 V, V25 - 100 V,1 - 111112	-	0.7	ı	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 V to 1200 V, V _{GS} = 0 V	-	82	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related		-	32	ı	pF
R_{G}	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	3	•	Ω
Qg	Total gate charge	V _{DD} = 1200V, I _D = 7 A	-	47	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	8	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16: "Test circuit for gate charge behavior")	-	32	-	nC

Notes:

⁽¹⁾Defined by design, not subject to production test.

⁽¹⁾Time related is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS.

 $^{^{(2)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as Coss when VDS increases from 0 to 80% VDSS.

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 750 \text{ V}, I_D = 3.5 \text{ A}, R_G = 4.7 \Omega$	-	25	-	ns
tr	Rise time	V _{GS} = 10 V		8	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 18: "Unclamped inductive load test circuit")	-	90	-	ns
tf	Fall time		-	37	-	ns

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		7	Α
I _{SDM}	Source-drain current (pulsed)		-		28	Α
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 7 A, V _{GS} = 0 V	ı		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 7 A, V _{DD} = 60 V	1	302		ns
Qrr	Reverse recovery charge	di/dt = 100 A/μs, (see Figure 17: "Test circuit for	-	3.71		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	24.6		Α
t _{rr}	Reverse recovery time	I _{SD} = 7 A,V _{DD} = 60 V	-	432		ns
Qrr	Reverse recovery charge	di/dt = 100 A/µs, Tj = 150 °C		4.71		μC
I _{RRM}	Reverse recovery current	(see Figure 17: "Test circuit for inductive load switching and diode recovery times")	1	21.8		А

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V(BR)GSO	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30		-	V

The built-in back-to-back Zener diodes have been specifically designed to enhance the ESD capability of the device. The Zener voltage is appropriate for efficient and cost-effective intervention to protect the device integrity. These integrated Zener diodes thus eliminate the need for external components.

⁽¹⁾Pulsed: pulse duration = 300µs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area GADG220720160951SOA Operation in this area is limited by R_{DS(on)} 10 t_p= 10µs t_p= 100µs 10⁰ t_p= 1ms T≤150 °C T_c= 25°C t_p= 10ms single pulse 10⁻¹ $\overline{V}_{DS}(V)$ 10⁰ 10² 10³

Figure 4: Output characteristics

ID GIPG170620151039MT

(A)

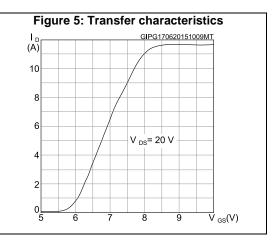
V_{GS} = 10 V

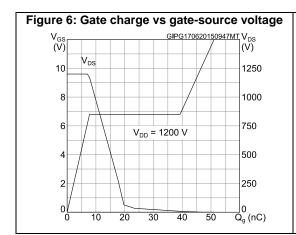
V_{GS} = 9 V

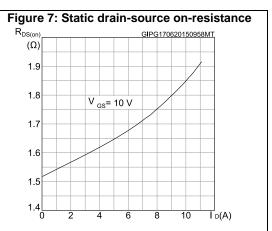
V_{GS} = 8 V

V_{GS} = 6 V

O


4


8


12

16

V_{DS}(V)

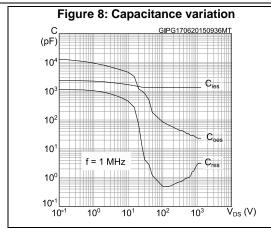


Figure 9: Output capacitance stored energy

Eoss GIPG170620150751MT

30

20

10

0 300 600 900 1200 V_{DS} (V)

Figure 10: Normalized gate threshold voltage vs temperature

V_{GS(th)}

(norm.)

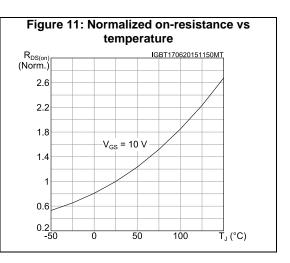
1.2

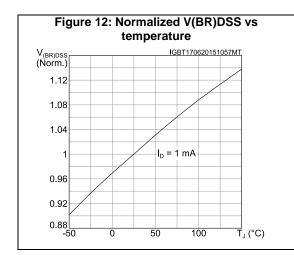
1

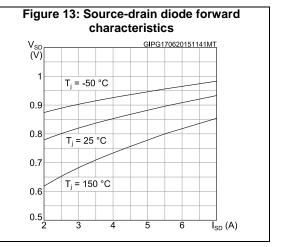
0.8

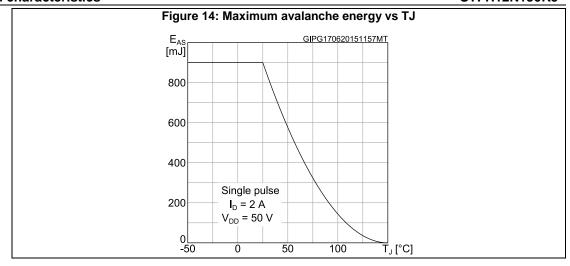
0.6

0.4


0.2


-50


0


50

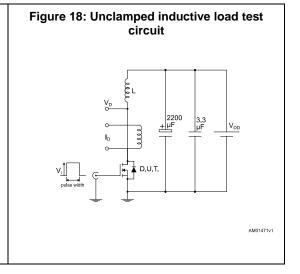
100 T_j (°C)

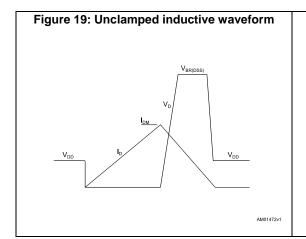
STFH12N150K5 Test circuits

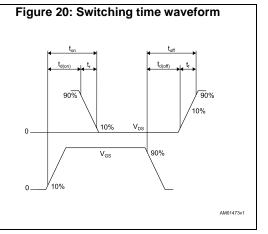
3 Test circuits

Figure 15: Test circuit for resistive load switching times

Figure 16: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


VGS 1 kΩ VGB


12 V 47 kΩ VGB

AM01466v1

Figure 17: Test circuit for inductive load switching and diode recovery times

Package information 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 TO-220 wide creepage package information

57 D 14 G1 G Ε

Figure 21: TO-220FP wide creepage package outline

Table 10: TO-220FP wide creepage package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.60	4.70	4.80
В	2.50	2.60	2.70
D	2.49	2.59	2.69
Е	0.46		0.59
F	0.76		0.89
F1	0.96		1.25
F2	1.11		1.40
G	8.40	8.50	8.60
G1	4.15	4.25	4.35
Н	10.90	11.00	11.10
L2	15.25	15.40	15.55
L3	28.70	29.00	29.30
L4	10.00	10.20	10.40
L5	2.55	2.70	2.85
L6	16.00	16.10	16.20
L7	9.05	9.15	9.25
Dia	3.00	3.10	3.20

Revision history STFH12N150K5

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
20-Jul-2016	1	First release.
22-Jul-2016	2	Updated Figure 2: "Safe operating area".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved