intel.

Intel® 82599 10 GbE Controller

Datasheet

PRODUCT FEATURES

General

Serial Flash Interface

4-wire SPI EEPROM Interface

Configurable LED operation for software or OEM customization
of LED displays

Protected EEPROM space for private configuration

Device disable capability

Package Size - 25 mm x 25 mm

Networking

Complies with the 10 Gb/s and 1 Gb/s Ethernet/802.3ap (KX/
KX4/KR) specification

Complies with the 10 Gb/s Ethernet/802.3ae (XAUI)
specification

Complies with the 1000BASE-BX specification

Complies with the IEEE 802.3x 100BASE-TX specification
Support for jumbo frames of up to 15.5 KB

Auto negotiation Clause 73 for supported mode

CX4 per 802.3ak

Flow control support: send/receive pause frames and receive
FIFO thresholds

Statistics for management and RMON

802.1q VLAN support

TCP segmentation offload: up to 256 KB

IPv6 support for IP/TCP and IP/UDP receive checksum offload
Fragmented UDP checksum offload for packet reassembly
Message Signaled Interrupts (MSI)

Message Signaled Interrupts (MSI-X)

Interrupt throttling control to limit maximum interrupt rate
and improve CPU usage

Receive packet split header

Multiple receive queues (Flow Director) 16 x 8 and 32 x 4
128 transmit queues

Receive header replication

Dynamic interrupt moderation

DCA support

TCP timer interrupts

NO snoop

Relaxed ordering

Support for 64 virtual machines per port (64 VMs x 2 queues)
Suppor§ for Data Center Bridging (DCB)(802.1Qaz, 802.1Qbb,
802.1p

Host Interface

B PCle Base Specification 2.0 (2.5GT/s) or (5GT/s)

B Bus width — x1, x2, x4, x8

B 64-bit address support for systems using more than 4 GB of
physical memory

MAC FUNCTIONS

B Descriptor ring management hardware for transmit and
receive

B ACPI register set and power down functionality supporting
DO and D3 states

B A mechanism for delaying/reducing transmit interrupts

B Software-controlled global reset bit (resets everything
except the configuration registers)

B Eight Software-Definable Pins (SDP) per port

B Four of the SDP pins can be configured as general-purpose
interrupts

® Wake up

H Ipv6 wake-up filters

B Configurable flexible filter (through EEPROM)

B LAN function disable capability

B Programmable memory transmit buffers (160 KB/port)

B Default configuration by EEPROM for all LEDs for pre-driver
functionality

B Support for SR-10V

Manageability

Eight VLAN L2 filters

16 flex L3 port filters

Four Flexible TCO filters

Four L3 address filters (IPv4)

Advanced pass through-compatible management packet
transmit/receive support

SMBus interface to an external manageability controller
NC-SI interface to an external manageability controller
Four L3 address filters (IPv6)

Four L2 address filters

322429-007

Revision Number: 2.6
December 2010

®
l n tel Intel® 82599 10 GbE Controller — Copyright

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® 82599 10 GbE Controller may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call in North America 1-800-548-4725, Europe 44-0-1793-431-155, France 44-0-1793-421-777, Germany 44-0-1793-421-333, other Countries 708-
296-9333.

Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2010, Intel Corporation. All Rights Reserved.

Revision History/Contents — Intel® 82599 10 GbE Controller

Rev Date Notes
0.5 May 2008 Initial release (Intel Confidential). This release contains advanced information.
0.6 Oct 2008 Updated to reflect developments, corrections.
0.75 Feb 2009 Major update (all sections) - reflects latest device developments and corrections.
0.76 March 2009 Updated the following sections: Programming Interface, Manageability, NVM, Initialization, Power Management,
and Interconnects.
1.0 March 2009 Major update (all sections) - reflects latest device developments and corrections.
1.5 May 2009 Major update (all sections) - reflects latest device developments and corrections.
1.9 June 2009 Minor update (all sections) - reflects latest device developments and corrections.
2.0 July 2009 Initial release (Intel Public).
2.01 July 2009 Added x8 lane note to Section 1.2.1.
= Changed jumbo frame size from KB to bytes (all occurrences).
= Changed “XTAL_25_MODE” to “RSVDAC6_VCC".
= Updated section 2.1.4 (changed type from T/s to O).
= Added F20 and H7 to the table in section 2.1.12.
- Changed “OSC_FREQ_SEL” to “RSVDAC6_VCC”.
= Corrected PCle versions to “PCle V2.0 (2.5GT/s or 5GT/s)”.
= Updated the table in section 3.2.7.2.1 (added text to the vendor ID column).
= Updated the jumbo frame calculations in sections 3.7.7.3.3, 3.7.7.3.4, and 3.7.7.3.5.
= Added section 4.6.13 “Alternate MAC Address Support”.
= Updated section 5.2.2 “Auxiliary Power Usage”.
= Added text to section 6.3.6 “Alternate Ethernet MAC Address - Word Address 0x37".
= Updated Table 6.1 (added /1 to row 4).
= Updated section 6.4.5.8.
= Added L34TIMIR register name to the Queue Enable bit in section 8.2.3.7.19.
= Corrected the D10GMP and LMS bit descriptions in section 8.2.3.22.19.
= Corrected the LP AN page D low bit description in section 8.2.3.22.23.
= Updated the PRDC bit description is section 8.2.3.23.75.
21 October 2009 = Changed the bit length (31 to 8 to 31 to 0) to the table heading in section 8.2.3.25.12.
= Updated the Restart_AN bit description in section 8.2.3.23.22.
= Corrected the bit 8 description in section 9.3.7.1.4.
= Updated section 10.2.2.2.4 (bits RAGEN and TFOENODX; read/write value).
= Added text “Jumbo packets above 2 KB . . . to Filtering exceptions in section 10.3.1.
= Correct the Buffer Length (byte 1) description in section 10.5.3.8.2.
= Changed the title of table 11.6, 11.7, and 11.8.
= Changed Watts to mW in the Power row of table 11.6.
* Updated the power values in table 11.7 and 11.8.
= Updated the mechanical package drawing in section 11.5.4.
= Added power summary table (table 11.6).
= Updated section 1.2.1, 3.1.4.5.3, 5.2.5.3.2 (note), and 6.4.5.2.2 (bit descriptions).
= Updated bit descriptions for MRQE, RRM, TDRM, and PRDC.
= Updated tables in sections 10.3.1, 10.5.1.13.1, and 10.5.2.1.5.
= Added Single Port Power table (table 11.8)
= Added SFI optics references.
= Changed the bit name in section 5.3.1 from APM Wake Up (APM) to APM Enable (APME).

ntel.

Intel® 82599 10 GbE Controller — Revision History/Contents

2.2

January 2010

Updated BX4 spec reference (changed 1000BASE-BX4 to 10GBASE-BX4).

Added jumbo frame KB value to note after Table 1.2.

Added new section 1.6.2 “Byte Count™.

Added BX4 and CX4 references.

Updated the note in section 2.1.8.

Updated pin name (SDPO_6) in section 2.1.10.

Updated section 3.1.4.5.3 (Relaxed Ordering); last paragraph.

Added BX4 info to section 3.7.

Added new BX4 section (3.7.1.5).

Updated section 3.7.4.4 (link speed).

Updated section 3.7.7.3.3 and 3.7.7.3.5 (jJumbo frame values).

Added note after table 3.27 (IPG pacing feature).

Added VFLR note after table 4.6.

Added BX4 reference to section 4.6.4.2.

Added IPG pacing feature note at the end of section 4.6.11.4.

Added jumbo frame value to section 4.6.11.4 and table 4.9 (KB value).

Changed the bit name in section 5.3.1 from APM Wake Up (APM) to APM Enable (APME).
Updated the note in section 5.2.5.3.2 (DMA completions).

Changed GIO Master Disable to PCle Master Disable (throughout entire EAS).

Changed GIO Master Enable Status to PCle Master Enable Status (throughout entire EAS).
Updated bullet list in section 5.3.1 and added WKEN bit note at the end of section 5.3.1.
Swapped fields “Possible Len/LLC/SNAP Header” and “Possible VLAN Tag” in sections 5.3.3.1.4. through
5.3.3.1.7 and sections 5.3.3.2.1 and 5.3.3.2.2.

Updated section 6.3.5.4 (changed GIO to PCle; bit 3 description).

Changed the default setting for CDQMH in section 6.3.6.5 to 0x1404.

Updated section 6.3.5.22 (MSIX and CDO bit definitions).

Removed old 6.3.6.7 section title (Spare 0/1 - Offset 0x05).

Added 5-tuple note to section 7.1.2.5.

Removed sub-bullet under 4-bit RSS Type field in section 7.1.2.8.

Removed TcplPV6EX, IPv6EX and UdplIPV6E info from section 7.1.2.8.1. Updated TCP segment bullet and IPv4
packet sub-bullet in section 7.1.2.8.1.

Updated table 7.10 (Destination Address/Port and Source Address/Port; first row).

Changed RXCTL to DCA_RXCTL[n] under table 7.15 (Packet Buffer Address (64) paragraph).
Changed descriptors per queue value from 64 to 40 in section 7.2.3.3.

Updated figure 7.39 (changed BCN to transmit rate scheduler).

Updated SecTag bullet description in section 7.8.4.

Updated the APME bit description in section 8.2.3.2.9.

Updated the MRQE bit description in section 8.2.3.7.12.

Added a note to the Queue Enable bit description in section 8.2.3.7.19.

Removed the note from section 8.2.3.8.5.

Changed GIO to PCle in section 8.2.2.1.1 (bit 2 description).

Updated the RRM bit description in section 8.2.2.11.1.

Updated SECTX_OFF_DIS and ECC_TXERR bit descriptions in section 8.2.2.13.2.

Updated SECRX_OFF_DIS and ECC_RXERR bit descriptions in section 8.2.2.13.7.

Added a note to the KX_support bit description in section 8.2.2.23.22.

Updated the PRDC bit description in section 8.2.2.24.75.

Updated bit 4 description (WKEN) in section 8.2.2.25.1.

Added a VF Mailbox note to section 8.3.5.1.5.

Changed RW to RO in section 9.3.10.13 title.

Updated the Filters table in section 10.3.1.

Added note to section 10.5.1.13.1 (TCO Mode reference).

Updated the TCO Mode table in section 10.5.2.1.4.

Updated section 11.3.1.1 (rise time relationships).

Added Single Port Power table (Table 11.8)

Changed all SFI Optics references to unconditional text (now exposed to external customers).
Added single port power numbers (table 11.8).

Added BX4 to section 11.4.4.

Changed crystal load capacitance to 27 pF.

2.3

April 2010

Updated section 3.7.7.1.4 (changed TXOFF to TC_XON).

Changed VMBMEM to VFMBMEM.

Updated section 5.3.2 (last paragraph).

Added a note after the table in section 6.4.2.3.

Updated section 8.2.3.5.13 - changed VT31 to VT32.

Changed all occurances of SPD to SDP in section 8.2.3.1.4.

Updated the TC_XON field description.

Updated Table 9.6 - Address Space (low register for 64-bit memory BARs) description.
Added recommended and minimum EEPROM sizes to section 12.6.2.

]
Revision History/Contents — Intel® 82599 10 GbE Controller l n tel

The following was updated and or changed for this release:

Section 4.6.11.3.1 (changed MRQC.VT_Ena to MTQC.VT_Ena).

Section 4.6.11.3.3 (changed “via setting RTTDQSEL first for the lowest indexed queue of a pool” to “via
setting RTTDQSEL first for the pool index™).

Section 4.6.11.6.1 (updated first step under “Refill Credits”).

Section 4.6.12 (updated Security Offload description).

Section 6.3.2.3 (APM Enable Port 1/0 bit descriptions).

Section 6.3.3 (PBA Number Module — Word Address 0x15-0x16).

Section 6.3.8 (Checksum Word Calculation (Word 0x3F)).

Section 6.4.5.5 (PCle Control 1 —Offset 0x04).

Section 6.4.5.8 (PCle Control 3 — Offset 0x07).

2.4 September 2010 « Section 7.1.2.3 (L2 Ethertype Filters, step 9).
= Section 7.1.2.5 (L3/L4 5-tuple Filters, removed “If the packet is mirrored or replicated
= Section 7.1.2.7 (Flow Director Filters, removed “In case of mirroring or replication. . .”.
= Section 7.2.5.3 (added a note to Tx SCTP CRC Offload).
= Section 8.2.3.11.4 (TXDQ_IDX bit description).
= Section 8.2.3.11.5 (register RTTDT1C description).
* Section 8.2.3.10.3 (VT bit description).
= Section 8.2.3.8.2 (VET bit description).
= Section 8.2.3.11.9 (DCB Transmit Descriptor Plane T2 Config bit descriptions).
= Section 8.2.3.13 (updated Security Offload description).
= Section 8.2.3.13.5 (updated MINSECIFG and SECTXDCB bit descriptions).
« Section 8.2.3.21.22 (updated Rx Queue Index bit description).
The following was updated and or changed for this release:
« Section 2.1.8 (changed pull-up to pull-down in the note following the table).
* Section 6.4.2 (updated bit 15 bit description).
= Section 7.1.2.2 (updated RSS queues reference).
* Section 7.1.11 (updated IPv6 filter description).
* Section 7.7.2.2 (added a note about using advanced transmit descriptors in DCB mode).
= Section 8.2.3.6.1 (added notation about the EICR register).
25 Novemnber 2010 - Sect!on 8.2.3.8.4 (updated the RQPL bit qescrlptlon).. .
« Section 8.2.3.25.3 (updated the WUS register description).
= Section 9.3.10.7 (updated bit description for bits 9:4).
« Section 11.4.5.1 (changed load capacitance value to 20 pF).
= Added new Table 12-1 (Microstrip Trace Dimensions for SFI Using Different Dielectric
Materials).
 Section 12.12.1.1 (updated the part numbers for recommended crystals).
= Updated Figures 12-20 and 12-21 (changed 10 KQ to 100 Q).
* Section 13.11.4 (updated the maximum static normal load value).
= Updated section 3.4.7 EEPROM Recovery (changed Data Byte value from 0xD8 to 0xB6).
= Added reference clock specifications note to section 11.4.3.
2.6 December 2010 -

Updated table 11.25 (changed duty cycle values and added p-noise for non-high serial speed
parameter.

Added new figure 11.16 (refclk phase noise as a function of frequency).

tel Intel® 82599 10 GbE Controller — Revision History/Contents

Contents
1.0 Introduction
1.1 SCOPE vt
1.2 ProduCt OVEIVIEWt e
1.2.1 82599 Silicon/Software Features
1.2.2 System ConfigurationsS...........cooeiiiiiiiiiiiiiiieaaes
1.3 External INterfacesooooiiiiiiii i
1.3.1 PCI-EXPress™ (PCIe™) INterfacCe ...ttt e aeeaas
1.3.2 [N LSy ATV o] g Qg 1 (=T o = Tt PP
1.3.3 EEPROM Interface........
1.3.4 Serial Flash Interface....
1.3.5 SMBus Interface
1.3.6 NC-SI Interface
1.3.7 MDIO Interfaces
1.3.8 |24 O 1 g (=T g = 1o = PPN
1.3.9 Software-Definable Pins (SDP) Interface (General-Purpose 1/0)
1.3.10 [=T =V
1.4 Features SUMMATIY ..o eaes
1.5 Overview of New Capabilities Beyond the 82598
1.5.1 SECUNITY ettt et
1.5.2 Transmit Rate Limiting.......ccoiuiiiiii e
1.5.3 Fibre Channel over Ethernet (FCOE).......ccoiiiiiiiiiiiiiiiiiiiiaannes
1.5.4 PerfOrmMaNnCe. ... s
1.5.5 Rx/Tx Queues and Rx Filtering...
1.5.6 Interrupts ..o
1.5.7 Virtualization
1.5.8 VPD .o
1.5.9 Double VLAN
1.5.10 Time Sync — IEEE 1588 — Precision Time Protocol (PTP)
1.6 [070] ¢ 17=T 01 W To] 1= PPN
1.6.1 Terminology and ACIrONYMScieiiiiiie i aieaaeaaaaaaas
1.6.2 BYte COUNT ...t e eeeeas
1.6.3 Byte Ordering............
1.7 Register/Bit Notations
1.8 References.......c.ccooviiiiiiiiiiinna..
1.9 Architecture and Basic Operation
1.9.1 Transmit (TX) Data FIOWccoiiiiiiiiiiiiiiiiieas
1.9.2 RECEIVE (RX) Data FIOW. ...ttt et ettt ettt et e e et a e et et e e e e e e e e e e eaneaanennes
2.0 e L T 1) = = Vo = PPN
2.1 L LI AN T= To T 0 01T o 1 o PP
2.1.1 Signal Type Definition...... ...
2.1.2 PCle Symbols and Pin Names
2.1.3 MAUL . e
2.1.4 EEPROM
2.1.5 Serial Flash
2.1.6 SMBUS....ciiiiiiiiiaennes
2.1.7 ol
2.1.8 NC-Sl..ciiiiiiiiiiiiens
2.1.9 MDIO ..o
2.1.10 Software Defined Pins (SDPs)
2.1.11 LEDS «ueeiiie e
2.1.12 RSVD and No Connect Pins......
2.1.13 Miscellaneouscccoeeenae.
2.1.14 JTAG .o
2.1.15 Power Supplies
2.1.16 Pull-Ups......ccocoeiieenae
2.2 2o L@ 10y A o o T I -
3.0 {1 =] eTe] 1 g =T o PP
3.1 [B o] €21 Sl (O =S T PPN
3.1.1 OVerviewcccceue...
3.1.2 General Functionality...
3.1.3 Host Interface
3.1.4 Transaction Layer
3.1.5 Link Layer.................
3.1.6 Physical Layer
3.1.7 Error Events and Error Reportingcooovieiiiiiiiiiiiaiiaanes
3.1.8 Performance MONItOriNg .. .cooeeieiiie i aaeas
3.2 SMBUS .o
3.2.1 Channel Behavior-.......
3.2.2 SMBus Addressing
3.2.3 SMBus Notification Methods

Revision History/Contents — Intel® 82599 10 GbE Controller

3.

3.

3.

»

4.

4.

ww
No

aoo
NP O

3

4

5

(@)

W

5

6

Receive TCO Flow
Transmit TCO Flow
Concurrent SMBus Transactions
SMBuUS ARP FUNCHIONAIITY ...eeeee i eaee s
LAN Fail-Over Through SMBUScoiiiiiiiiiiii i
ork Controller — Sideband Interface (NC-SI)cocciiiiiiiiiiiiiiienn,
Electrical Characteristics
NC-SI Transactions
General Overview
EEPROM DEVICE ..ttt et e eaes
EEPROM Vital Contentcooiviiiiiiiiiiiiiiieeieenns
SOftWAIE ACCESSES ..uineeitiiie e aeeaeaaneans
Signature Field
Protected EEPROM SpPaCeccouiieiiiiiiiiiiiiiiiienens
EEPROM RECOVEIY ...ttt et ettt et
EEPROM Deadlock AvoidancCe........ccoviiiiiiiiiiiiieiiieeaeenns
VPD SUPPOIT ...t et eea
Flash Interface Operation........c..ccoiviieiiiiiiiiiiaennns
Flash Write Control
Flash Erase Control
Flash Access Contention

SIZENNISISININ
So~NOUIR

m
o

hwhp:wmummbmmhgmp
<

nfigurable 1/0 Pins — Software-Definable Pins (SDP)
twork Interface (MAUI Interface)
7.1 10 GbE Interface
7.2 GbE Interface............
7.3 SGMII Support
7.4 Auto Negotiation For Backplane Ethernet and Link Setup Features

.7.5 Transceiver MOAUIE SUPPOIT ...t ettt ettt ettt e e
.7.6 Management Data Input/Output (MDIO) Interface

7.7 Ethernet Flow Control (FC)oiiiiiiiii e

.7.8 Inter Packet Gap (IPG) Control and Pacingccccccvveeuennnn.

7.9 MAC Speed Change at Different Power Modes

W0 W LW LWL WZ WL L TTW LW W LW W WU MWW ZWWwWwWw

Power-Up Sequence ...

4.1.2 Power-Up Timing Diagram......ccceveiiieiiiii e vaeeeaeaanens

RESEt OPEIration ... et aas

4.2.1 RESEL SOUICES ...t

4.2.2 Reset in PCI-1OV ENVironmentcooieiiiiiiiiiiieieaeeenae

4.2.3 Reset Effects

Queue Disable........c..ccoeeiieinen.e.

Function Disable........................

4.4.1 Generalc.oeeltl

4.4.2 OvVerviewc.cee.ue.

4.4.3 Control Options

4.4.4 Event Flow for Enable/Disable Functions

Device Disable ... s

45.1 L0 =T VT PN
4.5.2 BIOS Disable of the Device at Boot Time by Using the Strapping Option

Software Initialization and Diagnostics

4.6.1 INtrodUCtioN ..o

4.6.2 Power-Up State

4.6.3 Initialization SequUeNCe...........ooiviiiiiiiiiiiiieiienae

4.6.4 100 Mb/s, 1 GbE, and 10 GbE Link Initialization

4.6.5 Initialization of StatistiCS.........ccoviiiiiiiiiiiiiiiiaaen.

4.6.6 Interrupt Initialization ...

4.6.7 Receive Initializationc..cooieiiiinnn.

4.6.8 Transmit Initialization ...t

4.6.9 FCOE Initialization FIOWcoioiiiiiiii i

4.6.10 Virtualization Initialization FIOW..........c.coooiiiiiiiiiiieens

4.6.11 DCB CoNfiguIrationeoiiiiii e e s

4.6.12 Security Initialization

4.6.13 Alternate MAC Address Support

Power Management and DEIIVEIY ...ttt ettt e e e e e eaneanens
Power Targets and Power DeliVeryoooiiiiiiiiiiiiiiii i

Power Managementcouuiii et

5.2. Introduction to the 82599 Power States

5.2.2 Auxiliary POWEr USAgeoiuuiiiiiiiii et

5.2.3 Power Limits by Certain Form Factors............c.ccoeeiiiiinnnenn..

524 Interconnects Power Management.........ccoovviiiiiiiiiiienennnnnnn.

5.25 RO AT Y= ST €= L = PPN
5.2.6 TimiNg Of POWEr-State TranSitiONSttt ettt e e e aeaaes

200
NYRYS)

6.3

6.4

N~
e

7.2

7.3

7.4

7.8

=]
~re
D

Intel® 82599 10 GbE Controller — Revision History/Contents

RTAT 2= 1= T o T

5.3.1 Advanced Power Management Wake Up

5.3.2 ACPI Power Management Wake Up.........cooviiiiiiiiiiiiiicnnanes

5.3.3 Wake-Up PaCKEeES ...t e eeeaaes

5.3.4 Wake Up and VirtualiZation ..ottt e e e e aneaaes
[\[e] g BV o] FoX f] =RV (=T o g o] YA 1Y, F=T o R PP
[2@ 1Y B =Y o =T =Y 1 - T o TP ..
EEPROM SOFEWAIEttt et et et

6.2.1 SW Compatibility Module — Word Address 0x10-0x14

6.2.2 PBA Number Module — Word Address OXL15-0X16ceuuieutieiieeaae et e e eaeeaaeaannns
6.2.3 iSCSI Boot Configuration — Word Address OXL7ceueeeeee et eeae et eaeeaneaaeeeneeaneaaeaanenn
6.2.4 VPD Module Pointer — Word Address Ox2F

6.2.5 EEPROM PXE Module — Word Address 0x30-0x36

6.2.6 Alternate Ethernet MAC Address — Word Address 0x37..........

6.2.7 Checksum Word Calculation (Word OX3F)ccccvieiiiiiiiiinennnnn.

6.2.8 SAN MAC Addresses Pointer — Word Address 0x28................

EEPROM Hardware SECTIONScuuiutiiieii et ees

6.3.1 EEPROM Hardware Section — Auto-Load Sequence................

6.3.2 EEPROM INit MOAUIE ...t

6.3.3 PCle Analog Configuration Module..........cccceviiiiiiiiiiiiiaennnn

6.3.4 Core 0/1 Analog Configuration Modules

6.3.5 PCle General Configuration Module...............coooiciiiiiiiiinnn.

6.3.6 PCle Configuration Space 0/1 Modules

6.3.7 LAN Core O/1L Modulescooeiiiiiiiiiiiieiiceieieeee

6.3.8 MAC O/1 Modules.........c.coiiiiiiiiiiiiiiiiei s

6.3.9 CSR 0/1 Auto Configuration Modules

Firmware Module ...

6.4.1 Test Configuration Module........ ...

6.4.2 Common Firmware Parameters — (Global MNG Offset 0x3)

6.4.3 Pass Through LAN 0/1 Configuration MOAUIES ... e
6.4.4 Sideband Configuration MOAUIE ...t
6.4.5 Flexible TCO Filter Configuration Module

6.4.6 NC-SI Microcode Download Module...........c.c.oooiiiiiiiiiiiiin.n.

6.4.7 NC-SI Configuration MOGUIE ... e et eeaes
LT T g TS T g T T =
{2t TNV g Tox [0 o F= 111 Y28
7.1.1 Packet Filtering...........c..........

7.1.2 Rx Queues Assignment

7.1.3 MAC Layer Offloadsccvveiiieiii i

7.1.4 Receive Data Storage in System Memory

7.1.5 Legacy Receive Descriptor Format.........ccoviiiiiiiineiiiiiiennanns

7.1.6 Advanced Receive Descriptors

7.1.7 Receive Descriptor Fetching.......

7.1.8 Receive Descriptor Write-Back

7.1.9 Receive Descriptor QuUeue StruCturecoocvvievievieiiinenannnnns

7.1.10 Header Splitting.......cooii e

7.1.11 Receive Checksum Offloading

7.1.12 SCTP Receive Offloadc.oooiiiiiiiiii e

7.1.13 Receive UDP Fragmentation Checksum

Transmit Functionalitycooiiiiiii s

7.2.1 Packet Transmission...............

7.2.2 Transmit CoONteXES.ciiiiii i

7.2.3 L= L] 0 1) B L= Yo o) o] S
7.2.4 TCP and UDP SegMENTAtiONttt ettt ettt et e e e e e e e e e e e eaneeaneaneaneans
7.2.5 Transmit Checksum Offloading in Non-segmentation Mode

(=T g U o O

7.3.1 Interrupt Registers.......

7.3.2 Interrupt Moderation

7.3.3 TCP Timer Interruptoooviiiiiiiiiiiieeaieenns

7.3.4 Mapping of Interrupt Causesc.ccccveeenne

802.19 VLAN SUPPOIT. ..t et e e e e aees

7.4.1 802.1q VLAN Packet Formatcoooeviiiiiiiiiiiinnnnnn.

7.4.2 802.1q Tagged Framesoooeviiiieiiieiieeaieeaenaaaanens

7.4.3 Transmitting and Receiving 802.1q Packets

7.4.4 802.1q VLAN Packet Filtering......ccevieiiiiiiiiiiiii e

7.4.5 Double VLAN and Single VLAN Support

Direct Cache AccesS (DCA) ...

7.5.1 PCle TLP Format for DCA ..o

LE DS . ettt e s

Data Center Bridging (DCB)

7.7.1 Overview

7.7.2 Transmit-side Capabilities

7.7.3 Receive-Side Capabilities e
[T oS

Revision History/Contents — Intel® 82599 10 GbE Controller

7.8.1 Packet FOrMato.vieieiii e

7.8.2 LinkSec Header (SecTag) Formatc..ccoiviivinenn...

7.8.3 LinkSec Management — KaY (Key Agreement Entity)....

7.8.4 ReCEIVE FIOWeiii e

7.8.5 Transmit Data Path ...

7.8.6 LinkSec and Manageabilityc.ccooviiiiiiiiiiianan.n.

7.8.7 Key and Tamper Protectionccocviiiviiiiiiiininnannn.

7.8.8 LiNKSeC StatiStiCS....couieiiiii i
7.9 Time SYNC (IEEE1588 and 802.1AS)

7.9.1 OVEIVIBW ...ttt et

7.9.2 Flow and Hardware/Software Responsibilities............

7.9.3 Hardware Time Sync Elements............ccooooiiiiiiai

7.9.4 Time Sync Related Auxiliary Elements......................

7.9.5 PTP Packet Structure
7.10 Virtualization..................ooooat

7.10.1 OVEIVIBW ...ttt ettt

7.10.2 PCI-SIG SR-10V SUPPOIt.....ueiieiiiiiiiei e aes

7.10.3 Packet SWItChiNgcoviiiiiii e

7.10.4 Virtualization of Hardwareccooiiiiiiiiiiini.
7.11 Receive Side Coalescing (RSC)ovieiiiiiiiiiiiiiieiieanen.

7.11.1 Packet Viability for RSC Functionality

7.11.2 Flow Identification and RSC Context Matching...........

7.11.3 Processing New RSC.......oiiiiiiiiiiiiiiii e

7.11.4 Processing Active RSC ...

7.11.5 Packet DMA and Descriptor Write Back

7.11.6 RSC Completion and AQiNgcoceiiiiieiieiiiiiieennes
7.12 IPSEC SUPPOIT ..eeeei e e

7.12.1 Overview

7.12.2 Hardware Features LiSt..........ooviuiiiiiii i

7.12.3 Software/Hardware Demarcationc.cccoviieiiininiiinen.

7.12.4 IPsec Formats Exchanged Between Hardware and Software....

7.12.5 TX SA TaADIE ..

7.12.6 TX Hardware FIOW.......ccoviiiiiiiiiiiiiiieaaes

7.12.7 AES-128 Operation in Tx

7.12.8 RX DESCHIPLOIS . .eceiitie ettt eeaes

7.12.9 ST AN -1 o] L= P

7.12.10 RX Hardware Flow without TCP/UDP Checksum Offload

7.12.11 RX Hardware Flow with TCP/UDP Checksum Offload

7.12.12 AES-128 Operation in RXccvieiiiiiiiiiiiiiiiiieieaanns
7.13 Fibre Channel over Ethernet (FCOE)cccviiiiiiiiiiiiiieiiieeenns

7.13.1 INErOdUCTHION ...

7.13.2 FCOE Transmit Operationccccoiiiiiiiiiiiiiiiiiiienns

7.13.3 FCOE Receive Operationccveeeviiiiiiiieiiieninaanannns
7.14 REHADIITY .. .ee e e

7.14.1 Memory Integrity Protectionccooeiiiiiiiiiiiiiiiiiiaieaen

7.14.2 L O LT ol =T 0 T |10V
8.0 Programming INEerTaCeo ettt aas
8.1 P o [=L o (=T [o 1 PPN

8.1.1 Memory-Mapped ACCESS......c.vitiuiiuiiiiieiitiieeeiiaeenens

8.1.2 1/0-MappPed ACCESS . .vuuueeniiaeeeaee et eaeeaeeaeaanenn

8.1.3 Registers Terminologyoooeiiiiiiiiiiiiiieeaes
8.2 Device Registers — PF

8.2.1 MSI-X BAR Register Summary PF........cooiviiiiiiiiinnnn..

8.2.2 Registers Summary PF — BAR Ocoiiiiiiiiiiiiiiiieanne

8.2.3 Detailed Register Descriptions — PFc..cccvivvennen.
8.3 DEVICE REGISTEIS — V. ittt et e e et e e e eaneanns

8.3.1 Registers Allocated Per Queue ...

8.3.2 NON-QUEUE REQISTEIS. .. .ttt

8.3.3 MSI—X Register Summary VF — BAR 3....cciiiiiiiiiiiiiieeeeenen

8.3.4 Registers Summary VF — BAR Oiiiiiiiiiiiiiii i

8.3.5 Detailed Register DesCriptions —VF aeee
9.0 PCle Programming INTerfacCe ...t ettt ettt e aeaaeaaes
9.1 [B0 0 a7 o 7= 110 1 11 1/
9.2 Configuration Sharing Among PCIl Functionsccoiieiieannen.
9.3 PCle ReQISter Mapcueiiiei e

9.3.1 Register AttribULEScoiie e

9.3.2 PCle Configuration Space Summary

9.3.3 Mandatory PCI Configuration Registers — Except BARs

9.3.4 Subsystem ID Register (OX2E; RO)...cvieiiiiiiiiiiiiiiieiieiieeaaens

9.3.5 Cap_Ptr Register (0X34; RO) ..o

9.3.6 Mandatory PCI Configuration Registers — BARs

9.3.7 PCle CapabilitieS......cccvvieiiiii e

9.3.8 [ST B G OF= T o 2= o1 1) 1 S

9.3.9 RV D S {=To |15 (T T PO

10.2

10.3

10.4
10.5

PR
el
NRF O

11.3

11.4

11.5

11.6

12.0
12.1

12.2

10

®
l n tel Intel® 82599 10 GbE Controller — Revision History/Contents

9.3.10 PCle Configuration RegiSterscceviiiiiiiiiiiiii i

PCle Extended Configuration SPaCe........ceouiiieiieeii i aeeaeaaeeaaens

9.4.1 Advanced Error Reporting Capability (AER)

9.4.2 Serial NUMDET e

9.4.3 Alternate Routing ID Interpretation (ARI) Capability Structure

9.4.4 1OV Capability STIUCTUIE ... ettt ettt ettt ettt aeeeaas
Virtual Functions Configuration SPace........ccvvovvieiiiiiiiiiieii i vaenaaaanens

9.5.1 Mandatory Configuration Space

9.5.2 PCI Capabilitiesottt
MaNAGEADITIITY e e
[d F= a0 ¢ g @ o) o 10 = o 1
10.1.1 On-Board BMC Configurations

10.1.2 the 82599 NIC.......ccevvieiiinennn.

Pass Through (PT) Functionality...
10.2.1 DMTF NC-SI Mode

10.2.2 SMBus Pass Through (PT) Functionality.........c..cooooiiiiiiiiant.
Manageability Receive Filteringcccvieiiiiiiii e e
10.3.1 Overview and General Structurec.ccoiievieennen.
10.3.2 L2 EtherType Filterscooieoiiiiii i

10.3.3 VLAN Filters - Single and Double VLAN Cases
10.3.4 L3 and L4 Filters ..o
10.3.5 Manageability Decision Filters
10.3.6 Possible Configurations

LinkSec and Manageabilityo e

10.4.1 Handover of LinkSec Responsibility Between BMC and Host

Manageability Programming INterfacesccoooeviiiiiiiiiiiii i iieieeaaaas

10.5.1 NC-SI Programmingceeoe e ae e eenas

10.5.2 SMBUS Programmingcccveeeiieenenieenaaannns

10.5.3 Manageability Host Interface

10.5.4 Software and Firmware Synchronization

Electrical / Mechanical SpecCifiCation e
L oo 0T T o PP

Operating Conditions
11.2.1 Absolute Maximum Ratings
11.2.2 Recommended Operating Conditionsccccvieiiiiiiiennane.
POWET DBIIVEIY ..ttt e ettt et et et et e aeaas
11.3.1 Power Supply Specifications
11.3.2 IN-RUSh CUIreNt. ... e
DC/AC Specification

11.4.1 DC Specifications
11.4.2 Digital I/F AC Specifications
11.4.3 PCle Interface AC/DC Specification
11.4.4 Network (MAUI) Interface AC/DC Specification

11.4.5 SerDes Crystal/Reference Clock Specification............

= T = Vo 1=

11.5.1 Mechanical ..o,

11.5.2 Thermal.....cooviiiiiiiiiiiiian.

11.5.3 Electrical.........cooovieiiiiiiinn..

11.5.4 Mechanical Packageccooiiiiiiiiiiiie

DeVvices SUPPOITEAo e

11.6.1 Flash ...

11.6.2 L (1 O
Design Considerations and GUIAEIINES e
Connecting the PCIE INTEITACE ...ttt
12.1.1 Link Width Configuration

12.1.2 Polarity Inversion and Lane Reversal

12.1.3 PCle Reference CIOCKcieiiiiiiiii e

12.1.4 PCle Analog Bias ReSIStOrccovviviiiiiiiiiiiiieaanenns

12.1.5 Miscellaneous PCle Signals............cccciieinatn

12.1.6 PCle Layout Recommendations

Connecting the MAUI INterfaces......cooviieiiiiiei e

12.2.1 MAUI Channels Lane ConNectionS..........ccevieiiiiiiiiieiienaaannes

12.2.2 MAUIL BiaS RESISTON ...ttt ettt ettt ettt ettt et e et et et e e eae e eanenn
12.2.3 XAUI, KX/KR, BX4, CX4, BX and SFI+ Layout Recommendations...........cccvvvviieviiiinnnnnnn.. 783
12.2.4 Board Stack-Up EXamPle e
12.2.5 Trace GEOMETIIES.ttt

12.2.6 Other High-Speed Signal Routing Practices

12.2.7 Reference Planescooieiiiiiiiiiiiii e

12.2.8 Dielectric Weave COmMpensationcooeiuvieiiiiieiniiniiaieinenns

12.2.9 Impedance Discontinuities

12.2.10 Reducing Circuit Inductance

12.2.11 Signal Isolation......................

12.2.12 Power and Ground Planes...........ooiiiiieiiiiiiiiiiei e

12.2.13 KR and SFI+ Recommended SimuIatioNS e ee e e

Revision History/Contents — Intel® 82599 10 GbE Controller

12.3
12.4

12.5
12.6

12.7
12.8
12.9
12.10
12.11

12.12

12.13

12.14

13.0
13.1
13.2
13.3
13.4
13.5
13.6

13.7
13.8
13.9
13.10
13.11

13.12
13.13

13.14
13.15

14.0
14.1

15.0
15.1

12.2.14 Additional Differential Trace Layout Guidelines for SFI+ BoardS..........ccoviiviiiiiiiiiiiienanannns 799
Connecting the Serial EEPROMttt ettt ettt et ettt et n e aeenas 801
12.3.1 Supported EEPROM DEVICESuniitite ittt ettt et ettt et ettt et ettt et e e neeen 802
[0 o1 g =T w1 T o V= = T o 802
12.4.1 S18] o] o Jo) g t=To I o Fo T, o W BV o =T PPN 802
SMBUS @NA NC-SH .. ettt et et e e e 803
N PP 804
12.6.1 NC-SI DeSign REQUITEIMENTS ...ttt et ettt et ettt et e e e neaeeans 804
12.6.2 NC-SI Layout REQUITEMIENTSttt ettt et eaneees 805
LRSS PP 810
Connecting the MDIO INTEITACESt ettt ettt et e ettt ettt et et e eeaneaenns 811
Connecting the Software-Definable PiNS (SDPS) ... 811
Connecting the Light EMitting DIiodeS (LEDS) ..uuciuuiiiitii ettt et et et e e e et e e e e e e aneeaneaaeannn 812
Connecting Miscellan@ous SIGNAISt ettt ettt 812
12.11.1 LAN DiSADIE ..o e e 812
12.11.2 BIOS Handling of DEVICE DiSabIec.neiiiiiii ettt ettt eneaaaenas 813
Oscillator Design CONSIAEIATIONSttt ettt ettt ettt ettt e e et e et e an e aaeanens 813
12.12.1 (@ =TT | F= 1 o T 57/ 0 1= 814
12.12.2 (@ 2To3 |1 =1 (o] g ST] 11] 1o o I N 814
12.12.3 Oscillator Layout ReCOMMENAtIONSiie ettt ettt e e e eaeeaneaas 814
12.12.4 Reference Clock Measurement Recommendations.............coooiiiiiiiiiiiiiiiii e 815
[1TV = ST U o o] 1= 815
12.13.1 RO NV @S U o] o] AV ARST=Te (U L= o [ox | o o N PPN 815
12.13.2 Power SUPPIY FIEIING - ..o e e ettt e aaeans 815
12.13.3 Support for Power Management and Wake UpDc.ciiiiiiiiiiiii i eeaeaanens 816
CONNECHING The JTAG POI ...ttt ettt et et ettt ettt et e et e e ettt e e e eneaeeaeenns 816
Thermal Design ReCOMMENAATIONS ...ttt ettt et e e aneaaeaaes 817
LI =] g0 g F= V@] o 1] [=T = U T o PN 817
Importance of Thermal ManagemENt ... ettt et e e e e e e e e eeeaneaaneannnn 818
Packaging TerMINOIOQYttt ettt ettt ettt et ettt e et ettt e e a e ean e anaaeeanns 818
3.0 Thermal SPECITICATIONSttt ettt ettt ettt et e e e e eeanen 818
(082 TS T =T 0 0] o 1= = L = 819
I (=] g o LA 1 1 g o 0 PP 820
13.6.1 Designing for Thermal PerformanCeo et aneaaas 820
13.6.2 Model System DefinitioNciiii et —aaaaas 820
13.6.3 Package Thermal CharaCteriStiCS ...ttt eeeaaenas 820
LI =] 0 g = U = o g =Yg ToT =Yg g 1= o P 822
[1= = = T =P 822
Default Enhanced Thermal SOIUTION ettt et e e aeaens 824
EXtruded HEAtSINKS ...t e 824
Attaching the EXTruded HEatSINKiiiiiii et ettt e e et e et e et et e n e et e e e e aneeaneaneanenn 825
13.11.1 [0 1oL PPN 825
13.11.2 Thermal INterface (PCMAS SEIIES) ..unuiiniit it ettt ettt et e e e aaeenes 826
13.11.3 Avoid Damaging Die-Side Capacitors with Heat Sink Attached.............ccccciiiiiiiiiiiiinn... 826
13.11.4 Maximum Static NOrmMal LOA ... ettt et e aneaeenas 827
L= 1= o 1 Y2 PN 827
13.12.1 Thermal Interface Management for Heat-Sink SolutionSccooeiiiiiiiiiiiiii e 828
Measurements for Thermal SPecifiCatiONs ... e e e e 828
13.13.1 Case Temperature MEASUIEIMENTSci.uiieii ittt e ettt r e e e e aae e aaeraeaaeans 828
13.13.2 Attaching the Thermocouple (NO HeatSinK)o.eiieiiiiii e e e eea e 829
13.13.3 Attaching the Thermocouple (HeatSink) ... e e aes 829
Heatsink and Attach SUPPIIEIS ... ettt ettt et eeae 830
@8 S U o 1] 11 1= PN 831
[0 = Vo [o 2o oo 833
[T 0] 2 WoTe] o] oI Ted 1Q @] =T =N A (o] g 1S N PPN 833
(€] (e XSTST=1 5 VAR=T g [0 I AN o] o] 0)Y 0 0 =TT 835
R CTo [(=T gl N g o1 U | = PPN 847

11

intel.

Note: This page intentionally left blank.

12

Intel® 82599 10 GbE Controller — Revision History/Contents

™1 ®
Introduction — Intel® 82599 10 GbE Controller l n tel)

1.0 Introduction

1.1 Scope

This document describes the external architecture (including device operation, pin descriptions, register
definitions, etc.) for the 82599, a dual 10 Gigabit Ethernet (GbE) Network Interface Controller.

This document is intended as a reference for logical design group, architecture validation, firmware
development, software device driver developers, board designers, test engineers, or anyone else who
may need specific technical or programming information about the 82599.

1.2 Product Overview

The 82599 is a derivative of previous generations of Intel 1 GbE and 10 GbE Network Interface Card
(NIC) designs. Many features of its predecessors remain intact; however, some have been removed or
modified as well as new features introduced.Two versions are available:

e 82599EB — PCI Express* (PCle*) 2.0, dual port 10 Gigabit Ethernet controller

= 82599ES — Serial 10 GbE backplane interface for blade implementations (includes the 82599EB
SKU functionality plus serial).

1.2.1 82599 Silicon/Software Features
The base software device driver supports the following interfaces:
- XAUI (BX4)
e SFI
e KX/KX4
KR

Linux software features include:
e LLI — Low Latency Interrupts
» DCA — Direct Cache Access
» RSC — Receive Side Coalescing

= All sleep states (SO through S5); however, for sleep states S3 through S5, there are power and
airflow conditions that need to be met. Refer to Section 5.0 and Section 11.0 for more details.

= Header Split — This feature consists of splitting a packet header to a different memory space and
help the host to fetch headers only for processing.

* Flow Director (SW ATR only) — A large number of flow affinity filters that direct receive packets by
their flows to queues for classification, load balancing, and matching between flows and CPU cores.

13

intel)

Windows software features include:

e LLI
= DCA

= Wake on LAN (WolL) support:

— WoL from S3 and S4 are not currently supported for the 82599. Also, there are no plans to
support it in the future.

Intel® 82599 10 GbE Controller — Introduction

— WoL from S5 is supported for connections capable of KR to KX transitions only. Implementation
of this feature has special requirements, contact your Intel representative for more details.

= Header Split — This feature consists of splitting a packet header to a different memory space and
help the host to fetch headers only for processing.

Note: Some PCle x8 slots are actually configured as x4 slots. These slots have insufficient
bandwidth for full 10 GbE line rate with dual port 10 GbE devices. If a solution suffers
bandwidth issues when both 10 GbE ports are active, it is recommended to verify that the
PCle slot is indeed a true PCle x8.

1.2.2 System Configurations

The 82599 is targeted for system configurations such as rack mounted or pedestal servers, where it can
be used as an add-on NIC or LAN on Motherboard (LOM). Another system configuration is for blade
servers, where the 82599 can be used in a LOM or mezzanine card.

BMC /
ME

SMBUS/
NC-SI

PCle* V 2.0 (2.5GT/s or 5GT/s) x 8

EEPROM/
FLASH

Ethernet Controller

MAUI PHY MAUI PHY

A A

v — Y,

Figure 1.1. Typical Rack / Pedestal System Configuration

14

Introduction — Intel® 82599 10 GbE Controller

PCle* V 2.0 (2.5GT/s or 5GT/s) x 8

SMBUS

BMC/ME <7\ cq)

A

Ethernet Controller

Backplane

10GbE Switch

EEPROM/FLASH

Figure 1.2.

Typical Blade System Configuration

15

] ®>
I n tel Intel® 82599 10 GbE Controller — Introduction

1.3 External Interfaces

PCle*V 2.0 (2.5GT/s or 5GT/s) x 8

EEPROM I/F

Host Interface
Serial Flash I/F

100M/1G /710G
MAC 0

100M /1G/10G
MAC 1

MAUI_0 MAUI_1

l 1

Figure 1.3. 82599 External Interfaces Diagram

1.3.1 PCl-Express™ (PCle*) Interface

The 82599 supports PCle V2.0 (2.5GT/s or 5GT/s). See Section 2.1.2 for full pin description and
Section 11.4.3 for interface timing characteristics.

1.3.2 Network Interfaces

The 82599 interfaces the network through the Multi-Speed Attachment Unit Interface also referred to
as the MAUI interface.

Two independent MAUI interfaces are used to connect two the 82599 ports to external devices. Each
MAUI interface can be configured to interface using the following high speed links:
a. XAUI for connection to another XAUI compliant PHY device or optical module.

b. SGMII for connection to another SGMII compliant PHY using 1000BASE-BX or 1000BASE-KX
electrical signaling.

c. 1000BASE-KX for connection over a backplane to another 1000BASE-KX compliant device.
d. 10GBASE-KX4 for connection over a backplane to another 10GBASE-KX4 device.
1000BASE-BX for connection over a backplane to another 1000BASE-BX compliant device.

16

™1 ®
Introduction — Intel® 82599 10 GbE Controller l n tel)

f. 10GBASE-CX4 for connection over a CX4 compliant cable to another 10GBASE-CX4 compliant
device.

g. SFI for connection to another SFI compliant PHY or optical module.
h. 10GBASE-KR for connection over a backplane to another 10GBASE-KR compliant device.
i. 10GBASE-BX4 for connection over a backplane to another 10GBASE-BX4 device.

The 82599 also supports:

« IEEE 802.3ae (10 Gb/s) implementations. It performs all of the functions required for transmission
and reception handling called out in the standards for a XAUl Media interface.

= |EEE 802.3ak, IEEE 802.3ap Backplane Ethernet (KX, KX4, or KR), and PICMG3.1 (BX only)
implementations including an Auto-Negotiation layer and PCS layer synchronization.

« SFP+ MSA (SFI) implementations.

These interfaces can be configured to operate in 100 Mb/s mode (SGMII), 1 Gb/s mode (SGMII, BX and
KX) and 10 Gb/s mode (XAUI, CX4, KX4, KR and SFI). In 100 Mb/s mode, 1 Gb/s mode and in KR and
SFI 10 Gb/s modes, only one of the four MAUI lanes (lane 0) is used and the remaining lanes (lanes 1
to 3) are powered down. For more information on how to configure the 82599 for 100 Mb/s,

1 Gb/s or 10 Gb/s operating modes, refer to Section 3.7.

Refer to Section 2.1.3 for full-pin descriptions and to the respective specifications (IEEE802.3, optical
module MSAs...). For the timing characteristics of those interfaces see the relevant external
specifications as listed in Section 11.4.4 for interface timing characteristics.

1.3.3 EEPROM Interface

The 82599 uses an EEPROM device for storing product configuration information. Several words of the
EEPROM are accessed automatically by the 82599 after reset in order to provide pre-boot configuration
data that must be available to it before it is accessed by host software. The remainder of the stored
information is accessed by various software modules used to report product configuration, serial
number, etc.

The 82599 uses a SPI (4-wire) serial EEPROM devices. Refer to Section 2.1.4 for the 1/0 pin
descriptions; Section 11.4.2.4 for timing characteristics of this interface and Section 11.6.2 for a list of
supported EEPROM devices.

1.3.4 Serial Flash Interface

The 82599 provides an external SPI serial interface to a Flash (or boot ROM) device. The 82599
supports serial Flash devices with up to 64 Mb (8 MB) of memory. The size of the Flash used by the
82599 can be configured by the EEPROM. See Section 2.1.5 for full pin description and Section 11.4.2.3
for interface timing characteristics.

Note: Though the 82599 supports devices with up to 8 MB of memory, bigger devices can also be
used. Accesses to memory beyond the Flash device size results in access wrapping as only
the lower address bits are used by the Flash control unit.

1.3.5 SMBus Interface

SMBus is an optional interface for pass-through and/or configuration traffic between an external MC
and the 82599.

The 82599's SMBus interface supports standard SMBus, up to a frequency of 400 KHz. Refer to
Section 2.1.6 for full-pin descriptions and Section 11.4.2.2 for timing characteristics of this interface.

17

] ®>
I n tel Intel® 82599 10 GbE Controller — Introduction

1.3.6 NC-SI Interface

NC-SI is an optional interface for pass-through traffic to and from a MC. The 82599 meets the NC-SI
version 1.0.0a specification.

Refer to Section 3.3 for an additional description of the NC-SI interface, Section 2.1.8 for the pin
descriptions, Section 10.5.1 for NC-SI programming and Section 11.4.1.4 for the timing characteristics.

1.3.7 MDIO Interfaces

The 82599 implements two serial management interfaces known as the Management Data Input/
Output (MDIO) Interface that controls and manages PHY devices (master side). This interface provides
the Media Access Controller (MAC) and software with the ability to monitor and control the state of the
PHY. The 82599 supports the MDIO frame formats specified in both IEEE802.3 clause 22 and IEEE802.3
clause 45 using the electrical specification defined in IEEE802.3 clause 22 (LVTTL signaling). The MDIO
interface can be controlled by software via a MDI single command and address register — MSCA (see
Section 8.2.3.22.11 for more details).

Each MDIO interface should be connected to the relevant PHY as shown in the following example (each
MDIO interface is driven by the appropriate MAC function).

Refer to Section 3.7.6 for complete description of the MDIO interface, Section 2.1.9 for the pin
descriptions, the MSCA register in Section 8.2.3.22.11, and Section 11.4.2.7 for the timing
characteristics.

MAUIO-—— >

XAUI PHY
MDIO_0— >
MAUI1—»

XAUI PHY
MDIO 1 »

Figure 1.4. MDIO Connection Example

1.3.8 12C Interfaces

The 82599 implements two serial management interfaces known as 1°C Management Interfaces for the
control and management of external optical modules (XFP and SFP+). This interface provides the MAC
and software with the ability to monitor and control the state of the optical module. The use, direction,
and values of the I12C pins are controlled and accessed using fields in the 12C Control (12CCTL) register.

Each 12C interface should be connected to the relevant PHY as shown in the following example (each
I2C interface is driven by the appropriate MAC function).

Refer to Section 2.1.7 for the pin descriptions, 12CCTL register information in Section 8.2.3.1.4 for 12c
programming, and Section 11.4.2.2 for timing characteristics.

18

"] ®
Introduction — Intel® 82599 10 GbE Controller l n tel >

MAUIO—>» Optical
<« —1’)C 0> Module

< MAUI1—» Optical
’C_ 1 » Module

Figure 1.5. 12C Connection Example

1.3.9 Software-Definable Pins (SDP) Interface (General-Purpose 1/0)

The 82599 has eight SDP pins per port that can be used for miscellaneous hardware or software-
controllable purposes. These pins can each be individually configured to act as either input or output
pins. Via the SDP pins, the 82599 can support IEEE1588 auxiliary device connections, control of the low
speed optical module interface, and other functionality. For more details on the SDPs see Section 3.6
and the ESDP register information in Section 8.2.3.1.3.

1.3.10 LED Interface

The 82599 implements four output drivers intended for driving external LED circuits per port. Each of
the four LED outputs can be individually configured to select the particular event, state, or activity,
which is indicated on that output. In addition, each LED can be individually configured for output
polarity as well as for blinking versus non-blinking (steady-state) indications.

The configuration for LED outputs is specified via the LEDCTL register (see Section 8.2.3.1.5). In
addition, the hardware-default configuration for all LED outputs can be specified via an EEPROM field
(see Section 6.3.7.3), thereby supporting LED displays configured to a particular OEM preference.

See Section 2.1.11 for a full pin description.

1.4 Features Summary

Table 1.1 to Table 1.7 list the 82599's features in comparison to previous dual-port 1 Gb/s and 10 Gb/s
Ethernet controllers.

Table 1.1. General Features

Feature 82599 82598 Reserved
Serial Flash Interface Y
4-wire SPI EEPROM Interface Y Y
Configu_rabl_e LED Opera_tion for Software or OEM v v
Customization of LED Displays
Protected EEPROM Space for Private Configuration Y Y

19

intel.

Intel® 82599 10 GbE Controller — Introduction

Table 1.1. General Features
Feature 82599 82598 Reserved
Device Disable Capability Y Y
Package Size 25 x 25 mm 31 x 31 mm
Watchdog Timer Y N
Time Sync (IEEE 1588) Y N
Table 1.2. Network Features
Feature 82599 82598 Reserved

Compliant With_t_he 10 Gb/s and 1 Gb/s Ethernet/802.3ap v Y
(KX/KX4) Specification

Compliant with the 10 Gb/s 802.3ap (KR) specification Y N
Support of 10GBASE-KR FEC Y

Compl_iant_ with the 10 Gb/s Ethernet/802.3ae (XAUI) v v
Specification

Compliant with SFI interface

Support for EDC N

Compliant with the 1000BASE-BX Specification

Operation at all Supported Speeds Y (100 Wb FDX) NA
10/100/1000 Copper PHY Integrated On-chip N N
Support Jumbo Frames of up to 15.5 KB (15872 bytes) y?

Auto-Negotiation Clause 73 for Supported Modes Y Y
FIow_ControI Support: Send/Receive Pause Frames and v Y
Receive FIFO Thresholds

Statistics for Management and RMON Y

802.1q VLAN Support \% Y
SerDes Interface for External PHY Connection or System v v
Interconnect

SGMII Interface Y (100 M/1G only)

SerDes Support of non Auto-Negotiation Partner Y Y
Double VLAN Y

1. The 82599 supports full-size 15.5 KB (15872-byte) jumbo packets while in a basic mode of operation. When DCB mode is enabled,
or security engines enabled or virtualization is enabled, the 82599 supports 9.5 KB (9728-byte) jumbo packets.

Table 1.3. Host Interface Features

Feature

82599

82598

Reserved

PCle* Host Interface

PCle V2.0 (2.5GT/s
or 5GT/s)

PCle v2.0 (2.5GT/s)

Number of Lanes

x1, X2, x4, x8

x1, X2, x4, x8

64-bit Address Support for Systems Using More Than 4 GB of
Physical Memory

Y

Y

Outstanding Requests for Tx Data Buffers

16

16

20

Introduction — Intel® 82599 10 GbE Controller

intel.

Table 1.3. Host Interface Features
Feature 82599 82598 Reserved
Outstanding Requests for Tx Descriptors 8 8
Outstanding Requests for Rx Descriptors 8 4
Credits for P-H/P-D/NP-H/NP-D (shared for the 2 ports) 16/16/4/4 8/16/4/4
Max Payload Size Supported 512 Bytes 256 Bytes
Max Request Size Supported 2 KB 256 Bytes
Link Layer Retry Buffer Size (shared for the 2 ports) 3.4 KB 2 KB
Vital Product Data (VPD) Y N
End to End CRC (ECRC) Y N
Table 1.4. LAN Functions Features
Feature 82599 82598 Reserved
Programmable Host Memory Receive Buffers Y Y
Desc_riptor Ring Management Hardware for Transmit and v Y
Receive
ACPI Register Set and Power Down Functionality Supporting v v
DO & D3 States
Integrated LinkSec security engines: AES-GCM 128-bit;
Encryption + Authentication; One SC x 2 SA per port. Replay Y N
Protection with Zero Window
Integrated IPsec security engines: AES-GCM 128bit; AH or
ESP encapsulation; IPv4 and IPv6 (no option or extended 1024 SA / port N
headers)
Software-Contrqlled G_Iobal Reset Bit (Resets Everything v v
Except the Configuration Registers)
Software-Definable Pins (SDP); (per port) 8 8
Four SDP Pins can be Configured as General Purpose v v
Interrupts
Wake-on-LAN (WolL) Y Y
IPv6 Wake-up Filters Y Y
Configurable (through EEPROM) Wake-up Flexible Filters Y Y
Defau_lt Covnfiguration by EEPROM for all LEDs for Pre-Driver v v
Functionality
LAN Function Disable Capability Y Y
Programmable Memory Transmit Buffers 160 KB / port 320 KB / port
Programmable Memory Receive Buffers 512 KB / port 512 KB / port
Table 1.5. LAN Performance Features
Feature 82599 82598 Reserved

TCP/UDP Segmentation Offload

256 KB in all modes

256 KB in legacy

mode, 32 KB in DCB

TSO Interleaving for Reduced Latency

Y

N

TCP Receive Side Coalescing (RSC)

32 flows / port

N

21

intel.

Intel® 82599 10 GbE Controller — Introduction

Table 1.5. LAN Performance Features
Feature 82599 82598 Reserved

Data Center Bridging (DCB), IEEE Compliance to:

Priority Groups (up to 8) and Bandwidth Allocation (ETS) v Y
IEEE802.1Qaz Y v
Priority-based Flow Control (PFC) IEEE802.1Qbb

Transmit Rate Scheduler Y N
IPv6 Support for IP/TCP and IP/UDP Receive Checksum

Y Y

Offload

Fragmented UDP Checksum Offload for Packet Reassembly Y

FCoE Tx / Rx CRC Offload Y N
FCoE Transmit Segmentation 256 KB

512 outstanding
FCoE Coalescing and Direct Data Placement Read — Write N
requests / port
Message Signaled Interrupts (MSI) Y Y
Message Signaled Interrupts (MSI-X) Y Y
Interrupt Throttling Control to Limit Maximum Interrupt Rate
Y Y

and Improve CPU Use

Rx Packet Split Header Y Y

. . 8x8
Multiple Rx Queues (RSS) Y (multiple modes)
16x4

Flow Director Filters: up to 32 KB Flows by Hash Filters or up v N
to 8 KB Perfect Match Filters

Number of Rx Queues (per port) 128 64
Number of Tx Queues (per port) 128 32
Low Latency Interrupts

DCA

c S_upport Yes to all Yes to all

TCP Timer Interrupts

Relax Ordering

Rate Control of Low Latency Interrupts Y N
Table 1.6. Virtualization Features

Feature 82599 82598 Reserved

Support for Virtual Machine Device Queues (VMDQ) 64 16
L2 Ethernet MAC Address Filters (unicast and multicast) 128 16
L2 VLAN filters 64 -
PCI-SIG SR IOV Y N
Multicast and Broadcast Packet Replication Y N
Packet Mirroring Y N
Packet Loopback Y N
Traffic Shaping Y N

22

Introduction — Intel® 82599 10 GbE Controller

Table 1.7. Manageability Features

intel)

Feature 82599 82598 Reserved
Advanced Pass Through-Compatible Management Packet v Y
Transmit/Receive Support
SMBus Interface to an External MC Y Y
NC-SI Interface to an External MC Y Y
New Management Protocol Standards Support (NC-SI) Y Y
L2 Address Filters 4 4
VLAN L2 Filters 8 8
Flex L3 Port Filters 16 16
Flexible TCO Filters 4 4
L3 Address Filters (IPv4)
L3 Address Filters (IPv6) 4 4
1.5 Overview of New Capabilities Beyond the 82598

1.5.1 Security

The 82599 supports the IEEE P802.1AE LinkSec specification. It incorporates an inline packet crypto
unit to support both privacy and integrity checks on a packet by packet basis. The transmit data path
includes both encryption and signing engines. On the receive data path, the 82599 includes both
decryption and integrity checkers. The crypto engines use the AES GCM algorithm, which is designed to
support the 802.1AE protocol. Note that both host traffic and Manageability Controller (MC)
management traffic might be subject to authentication and/or encryption.

The 82599 supports IPsec offload for a given number of flows. It is the operating system’s responsibility
to submit (to hardware) the most loaded flows in order to take maximum benefits of the IPsec offload

in terms of CPU utilization savings. Main features are:

= Offload IPsec for up to 1024 Security Associations (SA) for each of Tx and Rx

Transport mode encapsulation

1.5.2 Transmit Rate Limiting

AH and ESP protocols for authentication and encryption
AES-128-GMAC and AES-128-GCM crypto engines

IPv4 and IPv6 versions (no options or extension headers)

The 82599 supports Transmit Rate Scheduler (TRS) in addition to the Data Center Bridging (DCB)
functionality provided in the 82598. TRS is enabled for each transmit queue. The following modes of

TRS are used:

= Frame Overhead — IPG is extended by a fixed value for all transmit queues.

« Payload Rate — IPG, stretched relative to frame size, provides pre-determined data (bytes) rates

for each transmit queue.

23

| ®
l n tel) Intel® 82599 10 GbE Controller — Introduction

1.5.3 Fibre Channel over Ethernet (FCoE)

Fibre Channel (FC) is the predominant protocol used in Storage Area Networks (SAN). Fibre Channel
over Ethernet (FCoE) enables a connection between an Ethernet storage initiator and legacy FC storage
targets or a complete Ethernet connection between a storage initiator and a device.

Existing FC Host Bus Adapters (HBAs) used to connect between FC initiator and FC targets provide full
offload of the FC protocol to the initiator that enables maximizing storage performance. The 82599
offloads the main data path of 1/0 Read and Write commands to the storage target.

1.5.4 Performance

The 82599 improves on previous 10 GbE products in the following performance vectors:

e Throughput — The 82599 aims to provide wire speed dual-port 10 Gb/s throughput. This is
accomplished using the PCle physical layer (PCle V2.0 (5GT/s), by tuning the internal pipeline to 10
Gb/s operation, and by enhancing the PCle concurrency capabilities.

* Latency — The 82599 reduces end-to-end latency for high priority traffic in presence of other
traffic. Specifically, the 82599 reduces the delay caused by preceding TCP Segmentation Offload
(TSO) packets. Unlike previous products, a TSO packet might be interleaved with other packets
going to the wire. Interleaving is done at the Ethernet packet boundary, therefore reducing the
maximum delay due to a TSO from a TSO-worth of data to an MTU-worth of data.

« CPU utilization — The 82599 supports reduction in CPU utilization, mainly by supporting Receive
Side Coalescing (RSC)

* Flow affinity filters

1.5.4.1 Receive Side Coalescing (RSC)

RSC coalesces incoming TCP/IP packets into larger receive segments. It is the inverse operation to TSO
on the transmit side. It has the same motivation, reducing CPU utilization by executing the TCP/IP stack
only once for a set of received Ethernet packets. The 82599 can handle up to 32 flows per port at any
given time. See Section 7.11 for more details on RSC.

1.5.4.2 PCle V2.0 (5GT/s)

Several changes are defined in the size of PCle transactions to improve the performance in
virtualization environments. Larger request sizes decrease the number of independent transactions on
PCle and therefore decreases trashing of the IOTLB cache. Changes include:

< Increase in the number of outstanding requests (data, descriptors) to a total of 32 requests
« Increase in the number of credits for posted transaction (such as for tail updates) to 16
« Increase in the maximum payload size supported from 256 bytes to 512 bytes

* Increase in the supported maximum read request size from 256 bytes to 2 KB. Note that the
amount of outstanding request data does not change. That is, if the 82599 supports N outstanding
requests of 256 bytes, then it would support N/2 requests of 512 bytes, etc.

= Retry buffer size — The link layer retry buffer size increases to 3.4 KB to meet the higher speed of
PCle V2.0 (5GT/s).

24

™1 ®
Introduction — Intel® 82599 10 GbE Controller l n tel)

1.5.5 Rx/Tx Queues and Rx Filtering
The 82599 Tx and Rx queues have increased in size to 128 Tx queues and 128 Rx queues. Additional
filtering capabilities are provided based on:

* L2 Ethertype

= 5-tuples

= SYN identification

= Flow Director — a large number of flow affinity filters that direct receive packets by their flows to
queues for classification, load balancing, and matching between flows and CPU cores.

See Section 7.0 for a complete description.

1.5.6 Interrupts

Several changes in the interrupt scheme are available in the 82599:
= Control over the rate of Low Latency Interrupts (LLI)
« Extensions to the filters that invoke LLIs
= Additional MSI-X vectors for the five-tuple filters and for 10V virtualization

See Section 7.3 for more details.

1.5.7 Virtualization

See Section 7.10 for more details.

1.5.7.1 PCI- IOV
The 82599 supports the PCI-SIG single-root 1/0 Virtualization initiative (SR-10V), including the
following functionality:
= Replication of PCI configuration space
= Allocation of BAR space per virtual function
= Allocation of requester ID per virtual function
= Virtualization of interrupts
The 82599 provides the infrastructure for direct assignment architectures through a mailbox

mechanism. Virtual Functions (VFs) might communicate with the Physical Function (PF) through the
mailbox and the PF can allocate shared resources through the mailbox channel.

1.5.7.2 Packet Filtering and Replication
The 82599 adds extensive coverage for packet filtering for virtualization by supporting the following
filtering modes:

= Filtering by unicast Ethernet MAC address

= Filtering by VLAN tag

= Filtering of multicast Ethernet MAC address

= Filtering of broadcast packets

25

| ®
l n tel) Intel® 82599 10 GbE Controller — Introduction

For each of the above categories, the 82599 can replicate packets to multiple Virtual Machines (VMs).
Various mirroring modes are supported, including mirroring a VM, a Virtual LAN (VLAN), or all traffic
into a specific VM.

1.5.7.3 Packet Switching

The 82599 forwards transmit packets from a transmit queue to an Rx software queue to support VM-VM
communication. Transmit packets are filtered to an Rx queue based on the same criteria as packets
received from the wire.

1.5.7.4 Traffic Shaping

Transmit bandwidth is allocated among the virtual interfaces to avoid unfair use of bandwidth by a
single VM. Allocation is done separately per DCB traffic class so that bandwidth assignment to each
traffic class is partitioned among the different VMs.

1.5.8 VPD

The 82599 supports VPD capability defined in the PCI Specification, version 3.0. See Section 3.4.9 for
more details.

1.5.9 Double VLAN

The 82599 supports a mode where all received and sent packets have at least one VLAN tag in addition
to the regular tagging that can optionally be added. This mode is used for systems where the switches
add an additional tag containing switching information.

When a port is configured to double VLAN, the 82599 assumes that all packets received or sent to this
port have at least one VLAN. The only exception to this rule is flow control packets, which don't have a
VLAN tag. See Section 7.4.5 for more details.

1.5.10 Time Sync — IEEE 1588 — Precision Time Protocol (PTP)

The IEEE 1588 International Standard lets networked Ethernet equipment synchronize internal clocks
according to a network master clock. The protocol is implemented mostly in software, with the 82599
providing accurate time measurements of special Tx and Rx packets close to the Ethernet link. These
packets measure the latency between the master clock and an end-point clock in both link directions.
The endpoint can then acquire an accurate estimate of the master time by compensating for link
latency. See Section 7.9 for more details.

The 82599 provides the following support for the IEEE 1588 protocol:

« Detecting specific PTP Rx packets and capturing the time of arrival of such packets in dedicated
CSRs

« Detecting specific PTP Tx packets and capturing the time of transmission of such packets in
dedicated CSRs
= A software-visible reference clock for the above time captures

1.6 Conventions

1.6.1 Terminology and Acronyms

See Section 15.0 for a list of terminology and acronyms used throughout this document.

26

™1 ®
Introduction — Intel® 82599 10 GbE Controller l n tel)

1.6.2 Byte Count
When referencing jumbo packet size, 1 KB equals 1024 bytes.

For example:
« 9.5 KB equals 9.5 x 1024 = 9728 bytes
= 15.5 KB equals 15.5 x 1024 = 15872 bytes

1.6.3 Byte Ordering

This section defines the organization of registers and memory transfers, as it relates to information
carried over the network:

= Any register defined in big endian notation can be transferred as is to/from Tx and Rx buffers in the
host memory. Big endian notation is also referred to as being in network order or ordering.

= Any register defined in little endian notation must be swapped before it is transferred to/from Tx
and Rx buffers in the host memory. Registers in little endian order are referred to being in host
order or ordering.

Tx and Rx buffers are defined as being in network ordering; they are transferred as is over the network.

Note: Registers not transferred on the wire are defined in little endian notation. Registers
transferred on the wire are defined in big endian notation, unless specified differently.

1.7 Register/Bit Notations

This document refers to device register names with all capital letters. To refer to a specific bit in a
register the convention REGISTER.BIT is used. For example CTRL.GIO Master Disable refers to the GIO
Master Disable bit in the Device Control (CTRL) register.

This document also refers to bit names as initial capital letters in an italic font. For example, GIO Master
Disable.

1.8 References
The 82599 implements features from the following specifications:

IEEE Specifications

= |EEE standard 802.3-2005 (Ethernet). Incorporates various |IEEE Standards previously published
separately. Institute of Electrical and Electronic Engineers (IEEE).

= 10GBASE-X — An IEEE 802.3 physical coding sublayer for 10 Gb/s operation over XAUI and four
lane PMDs as per IEEE 802.3 Clause 48.

= 1000BASE-CX — 1000BASE-CX over specially shielded 150 Q balanced copper jumper cable
assemblies as specified in IEEE 802.3 Clause 39.

» 10GBASE-LX4 — IEEE 802.3 Physical Layer specification for 10 Gb/s using 10GBASE-X encoding
over four WWDM lanes over multimode fiber as specified in IEEE 802.3 Clause 54.

= 10GBASE-CX4 — IEEE 802.3 Physical Layer specification for 10 Gb/s using 10GBASE-X encoding
over four lanes of 100 Q shielded balanced copper cabling as specified in IEEE 802.3 Clause 54.

= 1000BASE-KX — IEEE 802.3ap Physical Layer specification for 1 Gb/s using 1000BASE-X encoding
over an electrical backplane as specified in IEEE 802.3 Clause 70.

= 10GBASE-KX4 — IEEE 802.3ap Physical Layer specification for 10 Gb/s using 10GBASE-X encoding
over an electrical backplane as specified in IEEE 802.3 Clause 71.

27

| ®
l n tel) Intel® 82599 10 GbE Controller — Introduction

10GBASE-KR — IEEE 802.3ap Physical Layer specification for 10 Gb/s using 10GBASE-R encoding
over an electrical backplane as specified in IEEE 802.3 Clause 72.

1000BASE-BX — 1000BASE-BX is the PICMG 3.1 electrical specification for transmission of 1 Gb/s
Ethernet or 1 Gb/s Fibre Channel encoded data over the backplane.

10GBASE-BX4 — 10GBASE-BX4 is the PICMG 3.1 electrical specification for transmission of 10 Gb/
s Ethernet or 10 Gb/s Fibre Channel encoded data over the backplane.

IEEE standard 802.3ap, draft D3.2.
IEEE standard 1149.1, 2001 Edition (JTAG). Institute of Electrical and Electronics Engineers (IEEE).
IEEE standard 802.1Q for VLAN.

IEEE 1588 International Standard, Precision clock synchronization protocol for networked
measurement and control systems, 2004-09.

IEEE P802.1AE/D5.1, Media Access Control (MAC) Security, January 19, 2006.

PCI-SIG Specifications

PCI Express 2.0 Base specification, 12/20/2006.
PCI Express™ 2.0 Card Electromechanical Specification, Revision 0.9, January 19, 2007.
PCI Bus Power Management Interface Specification, Rev. 1.2, March 2004.

PICMG3.1 Ethernet/Fibre Channel Over PICMG 3.0 Draft Specification January 14, 2003 Version
D1.0.

Single Root 1/0 Virtualization and Sharing, Revision 0.7, 1/11/2007.

IETF Specifications

IPv4 specification (RFC 791)

IPv6 specification (RFC 2460)

TCP specification (RFC 793)

UDP specification (RFC 768)

ARP specification (RFC 826)

RFC4106 — The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP).
RFC4302 — IP Authentication Header (AH)

RFC4303 — IP Encapsulating Security Payload (ESP)

RFC4543 — The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH.

IETF Internet Draft, Marker PDU Aligned Framing for TCP Specification.

IETF Internet Draft, Direct Data Placement over Reliable Transports.

Other

28

Serial-GMII Specification, Cisco Systems document ENG-46158, Revision 1.7.

Advanced Configuration and Power Interface Specification, Rev 2.0b, October 2002

Network Controller Sideband Interface (NC-SI) Specification, Version cPubs-0.1, 2/18/2007.
System Management Bus (SMBus) Specification, SBS Implementers Forum, Ver. 2.0, August 2000.
EUI-64 specification, http://standards.ieee.org/regauth/oui/tutorials/EUI164.html.

Backward Congestion Notification Functional Specification, 11/28/2006.

Definition for new PAUSE function, Rev. 1.2, 12/26/2006.

GCM spec — McGrew, D. and J. Viega, “The Galois/Counter Mode of Operation (GCM)”, Submission
to NIST. http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf, January
2004.

]
Introduction — Intel® 82599 10 GbE Controller l n tel

* FRAMING AND SIGNALING-2 (FC-FS-2) Rev 1.00
= Fibre Channel over Ethernet Draft Presented at the T11 on May 2007

= Per Priority Flow Control (by Cisco* Systems) — Definition for new PAUSE function, Rev 1.2, EDCS-
472530

In addition, the following document provides application information:
= 82563EB/82564EB Gigabit Ethernet Physical Layer Device Design Guide, Intel Corporation.

1.9 Architecture and Basic Operation

1.9.1 Transmit (Tx) Data Flow

Tx data flow provides a high-level description of all data/control transformations steps needed for
sending Ethernet packets over the wire.

Table 1.8. Tx Data Flow

Step Description
1 The host creates a descriptor ring and configures one of the 82599’s transmit queues with the address location,
length, head, and tail pointers of the ring (one of 128 available Tx queues).
> The host is requested by the TCP/IP stack to transmit a packet, it gets the packet data within one or more data

buffers.

The host initializes the descriptor(s) that point to the data buffer(s) and have additional control parameters that
3 describes the needed hardware functionality. The host places that descriptor in the correct location at the
appropriate Tx ring.

4 The host updates the appropriate Queue Tail Pointer (TDT)

The 82599’s DMA senses a change of a specific TDT and as a result sends a PCle request to fetch the descriptor(s)

5 from host memory.

6 The descriptor(s) content is received in a PCle read completion and is written to the appropriate location in the
descriptor queue.

7 The DMA fetches the next descriptor and processes its content. As a result, the DMA sends PCle requests to fetch

the packet data from system memory.

The packet data is being received from PCle completions and passes through the transmit DMA that performs all
8 programmed data manipulations (various CPU offloading tasks as checksum offload, TSO offload, etc.) on the
packet data on the fly.

While the packet is passing through the DMA, it is stored into the transmit FIFO.

° After the entire packet is stored in the transmit FIFO, it is then forwarded to transmit switch module.

10 "\I;lrl\ectransmit switch arbitrates between host and management packets and eventually forwards the packet to the

11 The MAC appends the L2 CRC to the packet and sends the packet over the wire using a pre-configured interface.

12 When all the PCle completions for a given packet are complete, the DMA updates the appropriate descriptor(s).

13 The descriptors are written back to host memory using PCle posted writes. The head pointer is updated in host
memory as well.

14 An interrupt is generated to notify the host driver that the specific packet has been read to the 82599 and the

driver can then release the buffer(s).

29

[®
l n tel Intel® 82599 10 GbE Controller — Introduction

1.9.2

Receive (Rx) Data Flow

Rx data flow provides a high-level description of all data/control transformation steps needed for
receiving Ethernet packets.

Table 1.9. Rx Data Flow
Step Description

1 The host creates a descriptor ring and configures one of the 82599’s receive queues with the address location,
length, head, and tail pointers of the ring (one of 128 available Rx queues)

> The host initializes descriptor(s) that point to empty data buffer(s). The host places these descriptor(s) in the
correct location at the appropriate Rx ring.

3 The host updates the appropriate Queue Tail Pointer (RDT).

6 A packet enters the Rx MAC.

7 The MAC forwards the packet to the Rx filter.

8 If the packet matches the pre-programmed criteria of the Rx filtering, it is forwarded to an Rx FIFO.

9 The receive DMA fetches the next descriptor from the appropriate host memory ring to be used for the next
received packet.
After the entire packet is placed into an Rx FIFO, the receive DMA posts the packet data to the location indicated by

10 the descriptor through the PCle interface.
If the packet size is greater than the buffer size, more descriptors are fetched and their buffers are used for the
received packet.

11 When the packet is placed into host memory, the receive DMA updates all the descriptor(s) that were used by the
packet data.

12 The receive DMA writes back the descriptor content along with status bits that indicate the packet information
including what offloads were done on that packet.

13 The 82599 initiates an interrupt to the host to indicate that a new received packet is ready in host memory.

14 The host reads the packet data and sends it to the TCP/IP stack for further processing. The host releases the
associated buffer(s) and descriptor(s) once they are no longer in use.

30

Pin Interface — Intel® 82599 10 GbE Controller

2.0

Pin Interface

2.1 Pin Assignment
2.1.1 Signal Type Definition
Signal Definition DC Specification

In Input is a standard input-only signal. Section 11.4.1.2

Out (O) Totem Pole Output (TPO) is a standard active driver. Section 11.4.1.2

T/s Tri-state is a bi-directional, tri-state input/output pin. Section 11.4.1.2

o/d Open drain enables multiple devices to share as a wire-OR. Section 11.4.1.3

A-in Analog input signals. Section 11.4.3 and Section 11.4.4
A-out Analog output signals. Section 11.4.3 and Section 11.4.4
B Input BIAS. -

CML-in CML input signal. Section 11.4.5

NCSI-in NC-SI input signal. Section 11.4.1.4

NCSI-out NC-SI output signal. Section 11.4.1.4

Pu Internal pull-up. -

Pd Internal pull-down. -
2.1.2 PCle Symbols and Pin Names

See AC/DC specifications in Section 11.4.3.

Reserved Pin Name Ball # Type Name and Function

PCle Differential Reference Clock In. A 100 MHz differential
PE_CLK_p AB23 Acin clock input. This clock is used as the reference clock for the PCle
PE_CLK_n AB24 Tx/Rx circuitry and by the PCle core PLL to generate clocks for

the PCle core logic.

PCle Serial Data Output. A serial differential output pair running
PET_O_p Y23 A-out at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
PET_O_n Y24 embedded 5 GHz or 2.5 GHz clock that is recovered along with

data at the receiving end.

PCle Serial Data Output. A serial differential output pair running
PET_1 p V23 A-out at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
PET_1_n V24 embedded 5 GHz or 2.5 GHz clock that is recovered along with

data at the receiving end.

PCle Serial Data Output. A serial differential output pair running
PET_2 p T23 A-out at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
PET 2 n T24 embedded 5 GHz or 2.5 GHz clock that is recovered along with

data at the receiving end.

31

intel.

Intel® 82599 10 GbE Controller — Pin Interface

Reserved Pin Name Ball # Type Name and Function
PCle Serial Data Output. A serial differential output pair running
PET_3_p P23 A-out at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
PET_3_n P24 embedded 5 GHz or 2.5 GHz clock that is recovered along with
data at the receiving end.
PCle Serial Data Output. A serial differential output pair running
PET_4_p J23 A-out at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
PET_4 n J24 embedded 5 GHz or 2.5 GHz clock that is recovered along with
data at the receiving end.
PCle Serial Data Output. A serial differential output pair running
PET_5_p G23 A-out at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
PET_5 n G24 embedded 5 GHz or 2.5 GHz clock that is recovered along with
data at the receiving end.
PCle Serial Data Output. A serial differential output pair running
PET_6_p E23 A-out at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
PET_6_n E24 embedded 5 GHz or 2.5 GHz clock that is recovered along with
data at the receiving end.
PCle Serial Data Output. A serial differential output pair running
PET_7_p c23 at 5 Gb/s or 2.5 Gb/s. This output carries both data and an
A-out p
PET_7_n c24 embedded 5 GHz or 2.5 GHz clock that is recovered along with
data at the receiving end.
PER_O_p AC20 PCle Serial Data Input. A serial differential input pair running at
- = A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is
PER_O_n AC21 recovered along with the data.
PER_1_p AA20 PCle Serial Data Input. A serial differential input pair running at
- = A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is
PER_1 n AAZ1 recovered along with the data.
PER 2 p u20 PCle Serial Data Input. A serial differential input pair running at
- - A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is
PER_2 n uz1 recovered along with the data.
PER_3_p R20 PCle Serial Data Input. A serial differential input pair running at
- A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is
PER_3_n R21 recovered along with the data.
PER_4_p K20 PCle Serial Data Input. A serial differential input pair running at
- - A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is
PER_4_n K21 recovered along with the data.
PER 5 p H20 PCle Serial Data Input. A serial differential input pair running at
- A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is
PER_5_n H21 recovered along with the data.
PER_6_p D20 PCle Serial Data Input. A serial differential input pair running at
- = A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is
PER_6_n D21 recovered along with the data.
PER_7_p B20 PCle Serial Data Input. A serial differential input pair running at
PER_7_n B21 A-in 5 Gb/s or 2.5 Gb/s. An embedded clock present in this input is

recovered along with the data.

32

Pin Interface — Intel® 82599 10 GbE Controller

intel

Reserved Pin Name Ball # Type

Name and Function

PE_WAKE_N AA18 o/d

Wake. Pulled to Ob to indicate that a Power Management Event
(PME) is pending and the PCle link should be restored. Defined
in the PCle specifications.

PE_RST_N AD18 In

Power and Clock Good Indication. Indicates that power and PCle
reference clock are within specified values. Defined in the PCle
specifications; also called: PCle Reset and PERST.

M24
N24

PE_RBIAS
PE_RSENSE

PCle BIAS.

A 24.9 Q +0.5%, 50 ppm resistor should be connected from
PE_RBIAS to the chip's 1.2V Analog PCle supply rail
(VCC1P2_PE). Connection should be as close as possible to the
chip. Resistor is used for internal impedance compensation and
BIAS current generation circuitry.

PE_RSENSE is used as sensing node and should be shorted on
board to PE_RBIAS as close as possible to the external resistor's
pad.

2.1.3 MAUI

See AC/DC specifications in Section 11.4.4 and Section 11.4.5.

Reserved Pin Name Ball # Type Name and Function
MAUI BIAS.
XA_RBIAS_p L2 A 1 KQ +0.5%, 50 ppm resistor should be connected between
XA_RBIAS_n L1 B XA_RBIAS_p and XA_RBIAS_n and located close to the chip.
Resistor generates internal BIAS currents used for impedance
compensation. XA_RBIAS_n is internally connected to ground.
REFCLKIN_p P2 CMLsin External Reference Clock Input/Crystal Oscillator Input. If an
REFCLKIN_n P1 external clock is applied, it must be 25 MHz +0.01%.
RX0_L3_p B4 XAUI Serial Data Input for Port 0. A serial differential input pair
- = A-in running at up to 3.125 Gb/s. An embedded clock present in this
RX0_L3_n A4 input is recovered along with the data.
RXO_L2_p D4 XAUI Serial Data Input for Port 0. A serial differential input pair
- A-in running at up to 3.125 Gb/s. An embedded clock present in this
RX0_L2_n D5 input is recovered along with the data.
RXO_L1_p Fa XAUI Serial Data Input for Port 0. A serial differential input pair
- A-in running at up to 3.125 Gb/s. An embedded clock present in this
RX0_L1 n FS input is recovered along with the data.
XAUI Serial Data Input for Port 0. A serial differential input pair
RXO0_LO_p H4 . running at up to 3.125 Gb/s. An embedded clock present in this
RXO LO n H5 A-in input is recovered along with the data.
This lane is also used in BX, BX4, CX4, KX, KR, and SFI modes.
XAUI Serial Data Output for Port O. A serial differential output pair
TXO_L3_p ci A-out running at up to 3.125 Gb/s. This output carries both data and an
TX0_ L3 n c2 embedded clock that is recovered along with data at the receiving
end.
XAUI Serial Data Output for Port 0. A serial differential output pair
TX0_L2 p E1l Acout running at up to 3.125 Gb/s. This output carries both data and an
TX0_ L2 n E2 embedded clock that is recovered along with data at the receiving
end.

33

[®
l n tel Intel® 82599 10 GbE Controller — Pin Interface

Reserved Pin Name Ball # Type Name and Function
XAUI Serial Data Output for Port 0. A serial differential output pair
TX0_L1_p Gl A-out running at up to 3.125 Gb/s. This output carries both data and an
TX0 L1 _n G2 embedded clock that is recovered along with data at the receiving
end.
XAUI Serial Data Output for Port 0. A serial differential output pair
TXO LO I running at up to 3.125 Gb/s. This output carries both data and an
LO_p A-out embedded clock that is recovered along with data at the receiving
TX0_LO_n J2 end.
This lane is also used in BX, BX4, CX4, KX, KR, and SFI modes.
RX1_L3_p U4 XAUI Serial Data Input for Port 1. A serial differential input pair
- - A-in running at up to 3.125 Gb/s. An embedded clock present in this
RX1 L3 n us input is recovered along with the data.
RX1_L2 p W4 XAUI Serial Data Input for Port 1. A serial differential input pair
- A-in running at up to 3.125 Gb/s. An embedded clock present in this
RX1 L2 n w5 input is recovered along with the data.
RX1_L1 p AA4 XAUI Serial Data Input for Port 1. A serial differential input pair
- A-in running at up to 3.125 Gb/s. An embedded clock present in this
RX1 L1 n AAS input is recovered along with the data.
XAUI Serial Data Input for Port 1. A serial differential input pair
RX1_LO_p AC4 . running at up to 3.125 Gb/s. An embedded clock present in this
RX1 LO n AD4 A-in input is recovered along with the data.
This lane is also used in BX, BX4, CX4, KX, KR, and SFI modes.
XAUI Serial Data Output for Port 1. A serial differential output pair
TX1_L3 p T1 A-out running at up to 3.125 Gb/s. This output carries both data and an
TX1_L3 n T2 embedded clock that is recovered along with data at the receiving
end.
XAUI Serial Data Output for Port 1. A serial differential output pair
TX1 L2 p V1 A-out running at up to 3.125 Gb/s. This output carries both data and an
TX1_L2 n V2 embedded clock that is recovered along with data at the receiving
end.
XAUI Serial Data Output for Port 1. A serial differential output pair
TX1_L1 p Yl A-out running at up to 3.125 Gb/s. This output carries both data and an
TX1_L1 n Y2 embedded clock that is recovered along with data at the receiving
end.
XAUI Serial Data Output for Port 1. A serial differential output pair
X1 LO AB1 running at up to 3.125 Gb/s. This output carries both data and an
O_p A-out embedded clock that is recovered along with data at the receiving
TX1_LO_n AB2 end.
This lane is also used in BX, BX4, CX4, KX, KR, and SFI modes.
2.1.4 EEPROM
See AC specifications in Section 11.4.2.4.
Reserved Pin Name Ball # Type Name and Function
EE_DI B18 O Data output to EEPROM.
1
EE_DO Al18 PTJ Data input from EEPROM.
EE_SK B19 (@) EEPROM serial clock operates at maximum of 2 MHz.
EE_CS_N C19 O EEPROM chip select output.

34

Pin Interface — Intel® 82599 10 GbE Controller

2.1.5

Serial Flash

See AC specifications in Section 11.4.2.3.

Reserved Pin Name Ball # Type Name and Function
FLSH_SI B6 T/s Serial data output to the Flash.
FLSH_SO A7 :;:J Serial data input from the Flash.
FLSH_SCK A8 T/s Flash serial clock operates at 12.5 MHz.
FLSH_CE_N B7 T/s Flash chip select output.
2.1.6 SMBus

See the AC specifications in Section 11.4.2.2.

Reserved Pin Name Ball # Type Name and Function
SMBus Clock. One clock pulse is generated for each data bit
SMBCLK AC19 o/d transferred.
SMBus Data. Stable during the high period of the clock (unless it is a
SMBD ABI19 o/d start or stop condition).
SMBALRT_N AA19 o/d SMBus Alert. Acts as an interrupt pin of a slave device on the SMBus.
Note: If the SMBus is disconnected, an external pull-up should be used for the SMBCLK, SMBD pins.

2.1.7

12C

See the 12C specification and Section 11.4.2.2 for AC specifications.

Reserved Pin Name Ball # Type Name and Function

SCLO AB12 o/d 12C Clock. One clock pulse is generated for each data bit transferred.
> - - - —

SDAO AAL2 o/d 1“C Data. .S_table during the high period of the clock (unless it is a start or
stop condition).

SCL1 AD17 o/d 12C Clock. One clock pulse is generated for each data bit transferred.
2 . - . . .

SDA1L AC18 o/d 1C Data. _S_table during the high period of the clock (unless it is a start or
stop condition).

Note: If the 12C is disconnected, an external pull-up should be used for the clock and data pins.

35

] ®
l n tel Intel® 82599 10 GbE Controller — Pin Interface

2.1.8 NC-SI

See AC specifications in Section 11.4.2.5.

Reserved Pin Name Ball # Type Name and Function

NC-SI Reference Clock Input. Synchronous clock reference for receive,

NCSI_CLK_IN AC11 NCSI-In transmit, and control interface. It is a 50 MHz clock £+ 50 ppm.

NCSI_CRS_DV AB11 NCSI-Out | Carrier Sense/Receive Data Valid (CRS/DV).

NCSI_RXD_O AA1l . .
- - NCSI-Out | Receive Data. Data signals to the BMC.
NCSI_RXD_1 AC10
NCSI_TX_EN AB10 NCSI-In Transmit Enable.
NCSI_TXD_O AA10 .)
NCSI_TXD_ 1 AD11 NCSI-In Transmit Data. Data signals from the BMC.

Notes: If NC-SI is disconnected, an external pull-down should be used for the NCSI_CLK_IN,
NCSI_TXD[1:0], and NCSI_TX_EN pins.

2.1.9 MDIO

See AC specifications in Section 11.4.2.7.

Reserved Pin Name Ball # Type Name and Function

Management Data. Bi-directional signal for serial data transfers between
MDIOO AD12 T/s the 82599 and the PHY management registers for port 0. Note: Requires
an external pull-up device.

Management Clock. Clock output for accessing the PHY management
registers for port 0. MDC clock frequency is Proportional to link speed. At
10 Gb/s Link speed MDC frequency can be set to 2.4 MHz (default) or

24 MHz.

MDCO AC12 (¢]

Management Data. Bi-directional signal for serial data transfers between
MDIO1 AC17 T/s the 82599 and the PHY management registers for port 1. Note: Requires
an external pull-up device.

Management Clock. Clock output for accessing the PHY management
registers for port 1. MDC clock frequency is Proportional to link speed. At
10 Gb/s Link speed MDC frequency can be set to 2.4 MHz (default) or

24 MHz.

MDC1 AB18 [¢]

36

Pin Interface — Intel® 82599 10 GbE Controller

2.1.10

Software Defined Pins (SDPs)

See AC specifications in Section 11.4.2.1.

See Section 3.6 for more details on configurable SDPs.

Reserved Pin Name Ball # Type Name and Function
SDPO_0 AD8 General Purpose SDPs. 3.3V 1/0s for function 0.
SDPO_1 AC8 Can be used to support IEEE1588 Auxiliary
SDPO 2 ABS devices, Low speed optical module interface
- SDPO_4 is dedicated input pin for Security
SbP0_3 AAB /s enablement. Security offload on both ports is
SDPO_4 AD7 Pu enabled if the Security Enablement flags in the
SDPO_5 AC7 SKU Fuses register are set to 1b and SDPO_4
SDPO 6 AB7 input pin is driven high.
SDPO 7 AA7 See Section 3.6 for possible usages of the pins.
SDP1_0 AC16
SDP1_1 AB16
SDP1_2 AB17 General purpose SDPs. 3.3V 1/0s for function 1.
SDP1_3 AAL17 T/s Can be used to support IEEE1588 auxiliary
SDP1 4 AA16 Pu devices, low speed optical module interface
SDP1_5 AC15 See Section 3.6 for possible usages of the pins.
SDP1_6 AB15
SDP1_7 AA15
2.1.11 LEDs
See AC specifications in Section 11.4.2.1.
Reserved Pin Name Ball # Type Name and Function

LEDO_O AD14 Port O LEDO. Programmable LED that indicates Link-Up (default).

LEDO_1 AC14 Port O LED1. Programmable LED that indicates 10 Gb/s Link (default).

LEDO_2 AB14 o Port O LED2. Programmable LED that indicates a Link/Activity indication

(default).

LEDO_3 AA14 Port O LED3. Programmable LED that indicates a 1 Gb/s Link (default).

LED1_O AD13 Port 1 LEDO. Programmable LED that indicates Link-Up (default).

LED1_1 AC13 Port 1 LED1. Programmable LED that indicates 10 Gb/s Link (default).

LED1 2 AB13 o Port 1 LED2. Programmable LED that indicates a Link/Activity indication

— (default).
LED1_3 AA13 O Port 1 LED3. Programmable LED that indicates a 1 Gb/s Link (default).

37

[®
l n tel Intel® 82599 10 GbE Controller — Pin Interface

2.1.12 RSVD and No Connect Pins

Connecting RSVD pins based on naming convention:
e NC — pin is not connected in the package
e RSVD_NC — reserved pin. Should be left unconnected.
e RSVD_VSS — reserved pin. Should be connected to GND.

Reserved Pin Name Ball # Name and Function

RSVDA11_NC All
RSVDA12_NC Al2
RSVDA17_NC Al17
RSVDA20_NC A20

RSVDA21_NC A21 RSVD* pins.
RSVDB10_NC B10

RSVDB11_NC B11

RSVDB12_NC B12

RSVDB17_NC B17

RSVDB8_NC B8

RSVDB9_NC B9

RSVDC10_NC c10
RSVDC11_NC ci11
RSVDC12_NC ci12 RSVD* pins.
RSVDC13_NC c13
RSVDC14_NC ci14
RSVDC15_NC ci15
RSVDC16_NC ci16

RSVDC17_NC Cc17
RSVDC18_NC cis

RSVDC7_NC c7
RSVDC8_NC c8
RSVDC9_NC C9 RSVD* pins.

RSVDD10_NC D10
RSVDD11_NC D11
RSVDD12_NC D12
RSVDD13_NC D13

RSVDD14_NC D14
RSVDD15_NC D15
RSVDD16_NC D16
RSVDD17_NC D17

RSVDD18_NC D18 RSVD* pins.
RSVDD7_NC D7

RSVDD8_NC D8

RSVDD9_NC D9

RSVDE11_NC E11

RSVDE13_NC E13

RSVDE15_NC E15

RSVDE9_NC E9

RSVDJ6_NC J6 RSVD* pins.
RSVDJ7_NC J7

RSVDL23_NC L23

RSVDL24_NC L24

38

Pin Interface — Intel® 82599 10 GbE Controller

Reserved Pin Name Ball # Name and Function
RSVDM1_NC M1
RSVDM2_NC M2
RSVDM20_NC M20
RSVDM21_NC M21
RSVDN1_NC N1 RSVD* pins.
RSVDN2_NC N2
RSVDN20_NC N20
RSVDN21_NC N21
RSVDN4_NC N4
RSVDN5_NC N5
RSVDT6_NC T6
RSVDT7_NC T7 RSVD* pins.
RSVDW20_NC W20
RSVDW21_NC w21
RSVDY11 _NC Y11
RSVDY13_NC Y13
RSVDY15_NC Y15 RSVD* pins.
RSVDY17_NC Y17
RSVDY18_NC Y18
NCY16 Y16
NCY14 Y14
NCY12 Y12
NCY10 Y10
NCY8 Y8
NCuU7 u7
NCE18 E18
NCE16 E16 .
NCE14 E14 NC pins.
NCE12 E12
NCE10 E10
NCES8 E8
NCP4 P4
NCL4 L4
NCF20 F20
NCH7 H7
RSVDY9_VSS Y9
RSVDV16_VSS V16
RSVDW16_VSS | W16 RSVD* pins.
RSVDF21_VSS F21
RSVDE17_VSS E17

See AC specifications in Section 11.4.2.1.

39

[®
l n tel Intel® 82599 10 GbE Controller — Pin Interface

2.1.13 Miscellaneous

Reserved Pin Name Ball # Type Name and Function

LAN Power Good. A 3.3V input signal. A transition from low to
In high initializes the 82599 into operation. If not used

Pu (POR_BYPASS = 0b), an internal Power-on-Reset (POR) circuit
triggers the 82599 power-up.

LAN_PWR_GOOD Al4

Bypass indication as to whether or not to use the internal POR or

In the LAN_PWR_GOOD pin. When set to 1b, the 82599 disables
POR_BYPASS D19 Pu the internal POR circuit and uses the LAN_PWR_GOOD pin as a
POR indication.
RSVDAC6_VCC AC6 In This pin must be connected to logic one.

Defines the input clock connected to the REFCLKIN_p/
REFCLKIN_n pins:

0SC_SEL Ao | T8 0b = XTAL Clock (valid only for 25 MHz)
Pu 1b = OSC Clock
This pin is a strapping option latched at LAN_PWR_GOOD.
Auxiliary Power Available. When set, indicates that auxiliary
power is available and the 82599 should support D3¢, p power
AUX_PWR AB9 T/s state if enabled to do so. This pin is latched at the rising edge of
LAN_PWR_GOOD.
MAIN PWR OK ACO In Main Power OK. Indicates that platform main power is up. Must
- — be connected externally.
This pin is a strapping pin latched at the rising edge of
T/s LAN_PWR_GOOD or PE_RST_N or In-Band PCle Reset. If this pin
LAN1_DIS_N AD20 PU is not connected or driven high during initialization, LAN 1 is
enabled. If this pin is driven low during initialization, LAN 1 port
is disabled.
This pin is a strapping option pin latched at the rising edge of
LAN_PWR_GOOD or PE_RST_N or In-Band PCle Reset. If this pin
T/s is not connected or driven high during initialization, LAN O is
LANO_DIS_N AD21 PU enabled. If this pin is driven low during initialization, LAN O port
is disabled.
When LAN O port is disabled MNG is not functional and it must
not be enabled in the EEPROM Control Word 1.
2.1.14 JTAG
See AC specifications in Section 11.4.2.6.
Reserved Pin Name Ball # Type Name and Function
JTCK B16 In JTAG Clock Input.
In
JTDI Al13 Pu JTAG Data Input.
JTDO B15 o/d JTAG Data Output.
In
JTMS B13 PU JTAG TMS Input.
JRST_N B14 In Pu JTAG Reset Input. Active low reset for the JTAG port.

40

Pin Interface — Intel® 82599 10 GbE Controller

2.1.15

Power Supplies

See AC specifications in Section 11.3.1.

Reserved Pin Name Ball # Type Name and Function
1.2v Power supply.
w14, W11, W9, vi4, vi1, V9, Ul6, Ul4, Ul1l, U9, T16, T14, T11, R16, R14, R13, R12,
VCC1P2 R11, P14, P11, N14, N11, M14, M11, L14, L11, K16, K14, K13, K12, K11, J16, J14,
J11, H16, H14, H11, H9, G16, G14, G11, G9, F16, F14, F11, F9, U18, T18, R18, P18,
P16, N18, N16, M18, M16, L18, L16, K18, J18, H18, K9, K7, J9, T9, R9, R7, M9, M7,
L9, L7, P9, P7, N9, N7
‘ 3.3V ‘ Power supply.
VCC3P3
AD19, AD15, AD10, AD6, Al9, A15, A10, A6, E7, Y7, L5, PS5
‘ ov ‘ Ground
AD16, AD9, W18, w17, W15, W13, W12, W10, w8, W7, v17, V15, V13, V12, V10, V8,
u15, U13, Ul12, U10, T15, T13, T12, T10, R15, R10, P15, P13, P12, P10, N15, N13,
N12, N10, M15, M13, M12, M10, L15, L13, L12, L10, K15, K10, J15, J13, J12, J10,
H15, H13, H12, H10, G17, G15, G13, G12, G10, G8, F18, F17, F15, F13, F12, F10, F8,
F7, A16, A9, K8, K6, J8, J5, J4, H8, H6, G7, G6, G5, G4, F6, E6, E5, E4, D6, C6, C5,
C4, B5, B3, A5, A3, AD5, AD3, AC5, AC3, AB6, AB5, AB4, AAG, Y6, Y5, Y4, W6, V7, V6,
VSS V5, V4, U8, U6, T8, T5, T4, R8, R6, M8, M6, M5, M4, M3, L8, L6, L3, K5, K4, K3, K2,
K1, J3, H3, H2, H1, G3, F3, F2, F1, E3, D3, D2, D1, C3, B2, B1, A2, A1, AD2, AD1,
AC2, AC1, AB3, AA3, AA2, AAL, Y3, W3, W2, W1, V3, U3, U2, U1, T3, R5, R4, R3, R2,
R1, P8, P6, P3, N8, N6, N3, AD24, AD23, AD22, AC24, AC23, AC22, AB22, AB21,
AB20, AA24, AA23, AA22, Y22, Y21, Y20, Y19, W24, W23, W22, W19, V22, V21, V20,
V19, V18, U24, U23, U22, U19, Ul7, T22, T21, T20, T19, T17, R24, R23, R22, R19,
R17, P22, P21, P20, P19, P17, N23, N22, N19, N17, M23, M22, M19, M17, L22, L21,
L20, L19, L17, K24, K23, K22, K19, K17, J22, J21, J20, J19, J17, H24, H23, H22, H19,
H17, G22, G21, G20, G19, G18, F24, F23, F22, F19, E22, E21, E20, E19, D24, D23,
D22, C22, C21, C20, B24, B23, B22, A24, A23, A22
2.1.16 Pull-Ups
Note: Refer to the reference schematics for implementation details.
Pin Internal Pull Up at Internal Pull Up at
Resened Name ReSened Power Up Nominal Active State
PUP Comment PUP Comment
EE_DI N N
EE_DO Y Y
EE_SK N N
EE_CS_N N N
FLSH_SI Y N
FLSH_SO Y Y
FLSH_SCK Y N
FLSH_CE_N Y N
SMBCLK N N
SMBD N N
SMBALRT_N N N
SCLO/SCL1 N N

41

intel.

Intel® 82599 10 GbE Controller — Pin Interface

Reserved

Pin
Name

Reserved

Internal Pull Up at
Power Up

Internal Pull Up at
Nominal Active State

PUP Comment

PUP Comment

SDAO/SDA1

NCSI_CLK_IN

NCSI_CRS_DV

NCSI_RXD_0

NCSI_RXD_1

NCSI_TX_EN

NCSI_TXD_0

NCSI_TXD_1

MDIOO

MDCO

MDIO1

MDC1

z|lz|z|lz|z|lz|lz|z|2Z2| 2| 2| 2

z|lz|z|lz|z|z|lz|zZz|2Z2| 2| 2| 2

SDPO_0 / RX_LOS_0
SDPO_1
SDPO_2
SDPO_3
SDPO_4 / TX_DIS_0

SDPO_5 /
LINK_SPEED_O

SDPO_6
SDPO_7

SDP1_0 / RX_LOS_1
SDP1_1
SDP1_2
SDP1_3
SDP1_4 / TX_DIS_1

SDP1_5/
LINK_SPEED_1

SDP1_6
SDP1_7

LEDO_O
LEDO_1
LEDO_2
LEDO_3

LED1_O
LED1 1
LED1_2
LED1_3

LAN_PWR_GOOD

AUX_PWR

LANO_DIS_N

LAN1_DIS_N

MAIN_PWR_OK

JTCK

zZ|l z| <| <| zZz| <

Zl z| <| <| z| <

42

Pin Interface — Intel® 82599 10 GbE Controller

intel.

RS Pin FrEeEREs) Internal Pull Up at Intgmal Pu_II Up at
Name Power Up Nominal Active State
PUP Comment PUP Comment
JTDI N N
JTDO N N
JTMS N N
JRST_N Y Y
PE_RST_N N N
PE_WAKE_N N N
OSC_SEL Y Y
POR_BYPASS Y N

43

inte

2.2

Intel® 82599 10 GbE Controller — Pin Interface

Ball Out — Top Level

Top view, through package.

AD

AC

AB

24 23 22 21 20 19 18 17 16 15 14 13

PECLKn PECLKp

e | R
e - R
e [] e -
T e e = L

PET.2.p

PET.5.p
vss VCCiP2

PET.6.p

EE_DO RSVDA17_NC vss

24 23 22 21 20 19 18 17 16 15 14 13

Figure 2.1.

44

Package Layout - Left View

Pin Interface — Intel® 82599 10 GbE Controller

VCC1P2

VCC1P2

VCCiP2 VCCiP2

VCC1P2

VCC1P2

VCC1P2

FLSH_SCK

FLSH_SO

VCC3P3

TXI_L0p

™ L p

™I L3 p

™0 L1 p

AD

AC

AB

Figure 2.2.

Package Layout - Right View

45

intel.

Note:

46

This page intentionally left blank.

Intel® 82599 10 GbE Controller — Pin Interface

] ®
Interconnects — Intel® 82599 10 GbE Controller l n tel >

3.0 Interconnects
3.1 PCIl-Express™ (PCle*)
3.1.1 Overview

PCle is an 1/0 architecture that enables cost competitive solutions as well as provide industry leading
price/performance and feature richness. It is an industry-driven specification.

PCle defines a basic set of requirements that addresses the majority of the targeted application classes.
Higher-end applications’ requirements (Enterprise class servers and high-end communication
platforms) are addressed by a set of advanced extensions that compliment the baseline requirements.

To guarantee headroom for future applications, PCle provides a software-managed mechanism for
introducing new, enhanced capabilities.

Figure 3.1 shows the PCle architecture.

PCI Compliant Block

Preserve Driver Model

A —
Advanced Xtensions '

Common Base Protocol

Point to point; serial; differential,
hot-plug;, inter-op formfactors

Figure 3.1. PCle Stack Structure

The PCle physical layer consists of a differential transmit pair and a differential receive pair. Full-duplex
data on these two point-to-point connections is self-clocked such that no dedicated clock signals are
required. The bandwidth of this interface increases in direct proportion with frequency increases.

47

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

The packet is the fundamental unit of information exchange and the protocol includes a message space
to replace a variety of side-band signals found on previous interconnects. This movement of hard-wired
signals from the physical layer to messages within the transaction layer enables easy and linear
physical layer width expansion for increased bandwidth.

The common base protocol uses split transactions along with several mechanisms to eliminate wait
states and to optimize the re-ordering of transactions to further improve system performance.

3.1.1.1 Architecture, Transaction and Link Layer Properties
= Split transaction, packet-based protocol
< Common flat address space for load/store access (for example, PCl addressing model)

— 32-bit memory address space to enable a compact packet header (must be used to access
addresses below 4 GB)

— 64-bit memory address space using an extended packet header
« Transaction layer mechanisms:
— PCI-X style relaxed ordering
« Credit-based flow control
» Packet sizes/formats:
— Maximum packet size: 512 bytes
— Maximum read request size: 2 KB
+ Reset/initialization:
— Frequency/width/profile negotiation performed by hardware
« Data integrity support
— Using CRC-32 for Transaction layer Packets (TLP)
« Link Layer Retry (LLR) for recovery following error detection
— Using CRC-16 for Link Layer (LL) messages
« No retry following error detection
— 8b/10b encoding with running disparity
« Software configuration mechanism:
— Uses PCI configuration and bus enumeration model
— PCle-specific configuration registers mapped via PCl extended capability mechanism
+ Baseline messaging:
— In-band messaging of formerly side-band legacy signals (interrupts, etc.)
— System-level power management supported via messages
- Power management:
— Full support for PCIm
— Wake capability from D3cold state
— Compliant with ACPI, PCIm software model

— Active state power management

48

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

« Support for PCle V2.0 (2.5GT/s or 5GT/s)
— Support for completion time out control
— Support for additional registers in the PCle capability structure

3.1.1.2 Physical Interface Properties
= Point-to-point interconnect

— Full-duplex; no arbitration

Signaling technology:

— Low Voltage Differential (LVD)

— Embedded clock signaling using 8b/10b encoding scheme
Serial frequency of operation: PCle V2.0 (2.5GT/s or 5GT/s).
Interface width of 1, 2, 4, or 8 PCle lanes.

DFT and DFM support for high-volume manufacturing

3.1.1.3 Advanced Extensions

PCle defines a set of optional features to enhance platform capabilities for specific usage modes. The
82599 supports the following optional features:

= Advanced Error Reporting (AER) — Messaging support to communicate multiple types/severity of
errors

= Device Serial Number — Allows exposure of a unique serial number for each device
= Alternative RID Interpretation (ARI) — allows support of more than eight functions per device

= Single Root 1/0 Virtualization (SR-10V) — allows exposure of virtual functions controlling a subset
of the resources to Virtual Machines (VMs)

3.1.2 General Functionality

3.1.2.1 Native/Legacy

All 82599 PCI functions are native PCle functions.

3.1.2.2 Locked Transactions

The 82599 does not support locked requests as a target or a master.

3.1.3 Host Interface

PCle device numbers identify logical devices within the physical device (the 82599 is a physical device).
The 82599 implements a single logical device with two separate PCl Functions: LAN O and LAN 1. The
device number is captured from each type O configuration write transaction.

Each of the PCle functions interfaces with the PCle unit through one or more clients. A client ID
identifies the client and is included in the Tag field of the PCle packet header. Completions always carry
the tag value included in the request to enable routing of the completion to the appropriate client.

49

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

3.1.3.1 TAG ID Allocation

Tag IDs are allocated differently for read and write as detailed in the following sections.

3.1.3.1.1 TAG ID Allocation for Read Transactions

Table 3.1 lists the Tag ID allocation for read accesses. The Tag ID is used by hardware in order to be
able to forward the read data to the required internal client.

Table 3.1. TAG ID Allocation Table for Read Transactions

TAG ID Description TAG ID Description
0x0 Data Request 0x0 0x10 Tx Descriptor O
Oox1 Data Request Ox1 Ox11 Tx Descriptor 1
0x2 Data Request O0x2 0x12 Tx Descriptor 2
0x3 Data Request 0x3 0x13 Tx Descriptor 3
ox4 Data Request 0x4 0x14 Tx Descriptor 4
0x5 Data Request O0x5 0x15 Tx Descriptor 5
0x6 Data Request 0x6 0x16 Tx Descriptor 6
ox7 Data Request Ox7 0x17 Tx Descriptor 7
0x8 Data Request 0x8 0x18 Rx Descriptor O
0x9 Data Request 0x9 0x19 Rx Descriptor 1
OxA Data Request OxA Ox1A Rx Descriptor 2
0xB Data Request O0xB 0x1B Rx Descriptor 3
oxC Data Request OxC 0x1C Rx Descriptor 4
OxD Data Request OxD 0x1D Rx Descriptor 5
OxE Data Request OxE Ox1E Rx Descriptor 6
OxF Data Request OxF Ox1F Rx Descriptor 7

3.1.3.1.2 TAG ID Allocation for Write Transactions

Request tag allocation depends on these system parameters:
= DCA supported or not supported in the system (DCA_CTRL.DCA_DIS)

 DCA enabled or disabled (DCA_TXCTRL.TX Descriptor DCA EN, DCA_RXCTRL.RX Descriptor DCA
EN, DCA_RXCTRL.RX Header DCA EN, DCA_RXCTRL.Rx Payload DCA EN)

= System type: Legacy DCA versus DCA 1.0 (DCA_CTRL.DCA_MODE)
e CPU ID (DCA_RXCTRL.CPUID or DCA_TXCTRL.CPUID)

Case 1 — DCA Disabled in the System:

The following table lists the write requests tags:

Tag ID Description
2 Write-back descriptor Tx /write-back head.
4 Write-back descriptor Rx.
6 Write data.

50

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

Case 2 — DCA Enabled in the System, but Disabled for the Request:

= Legacy DCA platforms — If DCA is disabled for the request, the tags allocation is identical to the
case where DCA is disabled in the system (refer to the previous table).

= DCA 1.0 platforms — All write requests have the tag of 0x00.

Case 3 — DCA Enabled in the System, DCA Enabled for the Request:
= Legacy DCA Platforms: the request tag is constructed as follows:
— Bit[0] — DCA Enable = 1b

— Bits[3:1] — The CPU ID field taken from the CPUID[2:0] bits of the DCA_RXCTRL or
DCA_TXCTRL registers

— Bits[7:4] — Reserved

« DCA 1.0 Platforms: the request tag (all eight bits) is taken from the CPU ID field of the
DCA_RXCTRL or DCA_TXCTRL registers

3.1.3.2 Completion Timeout Mechanism

In any split transaction protocol, there is a risk associated with the failure of a requester to receive an
expected completion. To enable requesters to attempt recovery from this situation in a standard
manner, the completion timeout mechanism is defined.

The completion timeout mechanism is activated for each request that requires one or more completions
when the request is transmitted. The 82599 provides a programmable range for the completion
timeout, as well as the ability to disable the completion timeout altogether. The completion timeout is
programmed through an extension of the PCle capability structure.

The 82599’s reaction to a completion timeout is listed in Table 3.8.

The 82599 controls the following aspects of completion timeout:
= Disabling or enabling completion timeout
= Disabling or enabling resending a request on completion timeout
= A programmable range of timeout values
= Programming the behavior of completion timeout is listed in Table 3.2. Note that system software
can configure a completion timeout independently per each LAN function.

Table 3.2. Completion Timeout Programming

Capability Programming Capability
Completion Timeout Enabling Controlled through PCI configuration. Visible through a read-only CSR bit.
Resend Request Enable Loaded from the EEPROM into a read-only CSR bit.
Completion Timeout Period Controlled through PCI configuration.

Completion Timeout Enable — Programmed through the PCI configuration space. The default is:
Completion Timeout Enabled.

Resend Request Enable — The Completion Timeout Resend EEPROM bit (loaded to the
Completion_Timeout_Resend bit in the PCle Control Register (GCR) enables resending the request
(applies only when completion timeout is enabled). The default is to resend a request that timed out.

51

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

3.1.3.2.1 Completion Timeout Period

Programmed through the PCI configuration. Visible through bits 3:0 in the Device Capabilities 2
Register (0xC4; RO) register (see Section 9.3.10.10). The 82599 supports all four ranges defined by
PCle V2.0 (2.5GT/s or 5GT/s):

e 50 ps to 10 ms

e 10 ms to 250 ms

e 250 msto4s

e 4stob64s
System software programs a range (one of nine possible ranges that sub-divide the four previous
ranges) into the PCI configuration register. The supported sub-ranges are:

e 50 ps to 50 ms (default).

e 50 ps to 100 ps

e 1 msto 10 ms

e 16 ms to 55 ms

e 65 ms to 210 ms

e 260 ms to 900 ms

e 1sto3.5s

e 4sto13s

e 17 sto 64s
A memory read request for which there are multiple completions are considered completed only when
all completions have been received by the requester. If some, but not all, requested data is returned

before the completion timeout timer expires, the requestor is permitted to keep or to discard the data
that was returned prior to timer expiration.

3.1.4 Transaction Layer

The upper layer of the PCle architecture is the transaction layer. The transaction layer connects to
82599's core using an implementation-specific protocol. Through this core-to-transaction-layer
protocol, the application-specific parts of the 82599 interact with the PCle subsystem and transmits
and receives requests to or from the remote PCle agent, respectively.

3.1.4.1 Transaction Types Accepted by the 82599

Table 3.3. Transaction Types Accepted by the Transaction Layer

Transaction Type FC Type ;)éall_ft%/c?r: Harg:gi:eosr?;l;g l;z(e:EeDtata For Client
Configuration Read Request NPH CPLH + CPLD Requester 1D, TAG, attribute Configuration space
Configuration Write Request NPH + NPD CPLH Requester 1D, TAG, attribute Configuration space
Memory Read Request NPH CPLH + CPLD Requester 1D, TAG, attribute CSR space
Memory Write Request :Zg * - - CSR space
10 Read Request NPH CPLH + CPLD Requester 1D, TAG, attribute CSR space

52

Interconnects — Intel® 82599 10 GbE Controller

intel.

Table 3.3. Transaction Types Accepted by the Transaction Layer
. Tx Layer Hardware Should Keep Data .
Transaction Type FC Type React>i/0n From Original PacEet For Client
10 Write Request NPH + NPD CPLH Requester 1D, TAG, attribute CSR space
Read Completions CPLH + CPLD |- - DMA
Message unit/INT/ PM/
Message PH - - error l?nit

Flow Control Types Legend:

CPLD — Completion Data Payload

CPLH — Completion Headers

NPD — Non-Posted Request Data Payload
NPH — Non-Posted Request Headers

PD — Posted Request Data Payload

PH — Posted Request Headers

3.1.4.2 Transaction Types Initiated by the 82599
Table 3.4. Transaction Types Initiated by the Transaction Layer
Transaction type Payload Size FC Type From Client

Configuration Read Request Completion Dword CPLH + CPLD Configuration space
Configuration Write Request Completion - CPLH Configuration space
10 Read Request Completion Dword CPLH + CPLD CSR

10 Write Request Completion - CPLH CSR

Read Request Completion Dword/Qword CPLH + CPLD CSR

Memory Read Request - NPH DMA

Memory Write Request <= MAX_PAYLOAD_SIZE PH + PD DMA

Message ~ PH Message unit/INT/PM/ error

unit
Note: MAX_PAYLOAD_SIZE is loaded from the EEPROM (up to 512 bytes). Effective

MAX_PAYLOAD_SIZE is defined for each PCI function according to the configuration space
register for that function.

3.1.4.2.1 Data Alignment

Note: Requests must never specify an address/length combination that causes a memory space

access to cross a 4 KB boundary.

The 82599 breaks requests into 4 KB-alighed requests (if needed). This does not pose any requirement
on software. However, if software allocates a buffer across a 4 KB boundary, hardware issues multiple
requests for the buffer. Software should consider aligning buffers to a 4 KB boundary in cases where it
improves performance.

53

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

The general rules for packet alignment are as follows. Note that these apply to all the 82599 requests
(read/write and snoop):

= The length of a single request does not exceed the PCle limit of MAX_PAYLOAD_SIZE for write and
MAX_READ_REQ for read.

« The length of a single request does not exceed the 82599 internal limitations.

< A single request does not span across different memory pages as noted by the 4 KB boundary
alignment previously mentioned.

If a request can be sent as a single PCle packet and still meet the general rules for packet alignment,
then it is not broken at the cache line boundary but rather sent as a single packet (motivation is that
the chipset can break the request along cache line boundaries, but the 82599 should still benefit from
better PCle use). However, if any of the three general rules require that the request is broken into two
or more packets, then the request is broken at the cache line boundary.

3.1.4.2.2 Multiple Tx Data Read Requests (MULR)

The 82599 supports 16 multiple pipelined requests for transmit data. In general, requests can belong to
the same packet or to consecutive packets. However, the following restrictions apply:

= All requests for a packet must be issued before a request is issued for a consecutive packet.

« Read requests can be issued from any of the supported queues, as long as the previous restriction
is met. Pipelined requests can belong to the same queue or to separate queues. However, as
previously noted, all requests for a certain packet are issued (from the same queue) before a
request is issued for a different packet (potentially from a different queue).

= The PCle specification does not insure that completions for separate requests return in-order. Read
completions for concurrent requests are not required to return in the order issued. The 82599
handles completions that arrive in any order. Once all completions arrive for a given request, it can
issue the next pending read data request.

= The 82599 incorporates a reorder buffer to support re-ordering of completions for all issued
requests. Each request/completion can be up to 512 bytes long. The maximum size of a read
request is defined as the minimum {2 KB bytes, Max_Read_Request_Size}.

< In addition to the transmit data requests, the 82599 can issue eight pipelined read requests for Tx
descriptors and eight pipelined read requests for Rx descriptors. The requests for Tx data, Tx
descriptors, and Rx descriptors are independently issued.

3.1.4.3 Messages

3.1.4.3.1 Received Messages

Message packets are special packets that carry a message code. The upstream device transmits special
messages to the 82599 by using this mechanism. The transaction layer decodes the message code and
responds to the message accordingly.

Table 3.5. Supported Message in the 82599 (as a Receiver)

C'\élgzsfa?gg] Routing r2rl1r0O Message 82599 Later Response
0x14 100b PM_Active_State_NAK Internal Signal Set
0x19 01l1b PME_Turn_Off Internal Signal Set
0x50 100b Slot power limit support (has one Dword data) Silently Drop
OX7E 010b, 011b,100b Vendor_defined type O No data Unsupported Request
OX7E 010b,011b,100b Vendor_defined type O data Unsupported Request

54

Interconnects — Intel® 82599 10 GbE Controller

intel.

Table 3.5. Supported Message in the 82599 (as a Receiver)
Message .
Code [7:0] Routing r2r1rO Message 82599 Later Response
OX7F 010b,011b,100b Vendor_defined type 1 no data Silently Drop
Ox7F 010b, 011b,100b Vendor_defined type 1 data Silently Drop
0x00 01l1b Unlock Silently Drop
3.1.4.3.2 Transmitted Messages

The transaction layer is also responsible for transmitting specific messages to report internal/external
events (such as interrupts and PMES).

Table 3.6. Supported Message in the 82599 (as a Transmitter)
vesegsy | o

0x20 100b Assert INT A

0x21 100b Assert INT B

ox22 100b Assert INT C

0x23 100b Assert INT D

0x24 100b DE- Assert INT A

0x25 100b DE- Assert INT B

0x26 100b DE- Assert INT C

0x27 100b DE- Assert INT D

0x30 000b ERR_COR

0x31 000b ERR_NONFATAL

0x33 000b ERR_FATAL

0x18 000b PM_PME

0x1B 101b PME_TO_Ack

3.1.4.4 Ordering Rules

The 82599 meets the PCle ordering rules by following the PCI simple device model:

1. Deadlock Avoidance — The 82599 meets the PCle ordering rules that prevent deadlocks:

a. Posted writes overtake stalled read requests. This applies to both target and master directions.
For example, if master read requests are stalled due to lack of credits, master posted writes are
allowed to proceed. On the target side, it is acceptable to timeout on stalled read requests in
order to allow later posted writes to proceed.

b. Target posted writes overtake stalled target configuration writes.

c. Completions overtake stalled read requests. This applies to both target and master directions.
For example, if master read requests are stalled due to lack of credits, completions generated

by the 82599 are allowed to proceed.

2. Descriptor/Data Ordering — The 82599 insures that a Rx descriptor is written back on PCle only
after the data that the descriptor relates to is written to the PCle link.

55

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

3. MSI and MSI-X Ordering Rules — System software can change the MSI or MSI-X tables during run-
time. Software expects that interrupt messages issued after the table has been updated are using
the updated contents of the tables.

a. Since software doesn’t know when the tables are actually updated in the 82599, a common
scheme is to issue a read request to the MSI or MSI-X table (a PCI configuration read for MSI
and a memory read for MSI-X). Software expects that any message issued following the
completion of the read request, is using the updated contents of the tables.

b. Once an MSI or MSI-X message is issued using the updated contents of the interrupt tables, any
consecutive MSI or MSI-X message does not use the contents of the tables prior to the change.

4. The 82599 meets the rules relating to independence between target and master accesses:
a. The acceptance of a target posted request does not depend upon the transmission of any TLP.

b. The acceptance of a target Non-posted Request does not depend upon the transmission of a non-
posted request.

c. Accepting a completion does not depend upon the transmission of any TLP.

3.1.4.4.1 Out of Order Completion Handling

In a split transaction protocol, when using multiple read requests in a multi-processor environment,
there is a risk that completions for separate requests arrive from the host memory out of order and
interleaved. In this case, the 82599 sorts the completions and transfers them to the network in the
correct order.

Note: Completions for separate read requests are not guaranteed to return in order. Completions for
the same read request are guaranteed to return in address order.

3.1.4.5 Transaction Definition and Attributes

3.1.45.1 Max Payload Size

The 82599's policy for determining Max Payload Size (MPS) is as follows:

1. Master requests initiated by the 82599 (including completions) limit Max Payload Size to the value
defined for the function issuing the request.

2. Target write accesses to the 82599 are accepted only with a size of one Dword or two Dwords.
Write accesses in the range of three Dwords (MPS) are flagged as unreliable. Write accesses above
MPS are flagged as malformed.

3.1.4.5.2 Traffic Class (TC) and Virtual Channels (VC)

The 82599 only supports TC = 0 and VC = 0 (default).

3.1.4.5.3 Relaxed Ordering
The 82599 takes advantage of the relaxed ordering rules in PCle. By setting the relaxed ordering bit in
the packet header, the 82599 enables the system to optimize performance in the following cases:

1. Relaxed ordering for descriptor and data reads — When the 82599 masters a read transaction, its
split completion has no ordering relationship with the writes from the CPUs (same direction). It
should be allowed to bypass the writes from the CPUs.

2. Relaxed ordering for receiving data writes — When the 82599 masters receive data writes, it also
enables them to bypass each other in the path to system memory because software does not
process this data until their associated descriptor writes are done.

3. The 82599 cannot relax ordering for descriptor writes or an MSI write.

56

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

Relaxed ordering is enabled globally in Niantic by clearing the CTRL_EXT.RO_DIS bit and further
enabled per queue in the DCA_RXCTRL[N] registers.

3.1.4.6 Flow Control

3.1.4.6.1 Flow Control Rules

The 82599 only implements the default Virtual Channel (VCO). A single set of credits is maintained for
VCO.

Table 3.7. Flow Control Credits Allocation

Credit Type Operations Number of Credits (dual port)

Target write 16 credit units to support tail write at wire

Posted Request Header (PH) Message (one unit) speed.

Target Write (Length/16 bytes = one)

Posted Request Data (PD) Message (one unit)

max{MAX_PAYLOAD_SIZE/16, 32}.

Target read (one unit)
Non-Posted Request Header (NPH) Configuration read (one unit)
Configuration write (one unit)

Four units (to enable concurrent target
accesses to both LAN ports).

Non-Posted Request Data (NPD) Configuration write (one unit) Four units.
Completion Header (CPLH) Read completion (n/a) Infinite (accepted immediately).
Completion Data (CPLD) Read completion (n/a) Infinite (accepted immediately).

Rules for FC updates:

= The 82599 maintains two credits for NPD at any given time. It increments the credit by one after
the credit is consumed, and sends an UpdateFC packet as soon as possible. UpdateFC packets are
scheduled immediately after a resource is available.

= The 82599 provides 16 credits for PH (such as for concurrent target writes) and two credits for NPH
(such as for two concurrent target reads). UpdateFC packets are scheduled immediately after a
resource is available.

= The 82599 follows the PCle recommendations for frequency of UpdateFC FCPs.

3.1.4.6.2 Upstream Flow Control Tracking

The 82599 issues a master transaction only when the required flow control credits are available. Credits
are tracked for posted, non-posted, and completions (the later to operate against a switch).

3.1.4.6.3 Flow Control Update Frequency

In all cases, Update Flow Control Packets (FCPs) are scheduled immediately after a resource is
available.

When the link is in the LO or LOs link state, Update FCPs for each enabled type of non-infinite flow
control credit must be scheduled for transmission at least once every 30 ps (-0% /+50%), except when
the Extended Sync bit of the Control Link register is set, in which case the limit is 120 pys (-0% /+50%).

57

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.1.4.6.4 Flow Control Timeout Mechanism
The 82599 implements the optional flow control update timeout mechanism.

The mechanism is active when the link is in LO or LOs link state. It uses a timer with a limit of 200 ps (-
0% /+50%), where the timer is reset by the receipt of any Init or Update FCP. Alternately, the timer
can be reset by the receipt of any DLLP.

Upon timer expiration, the mechanism instructs the PHY to retrain the link (via the LTSSM recovery
state).

3.1.5 Link Layer

3.1.5.1 ACK/NAK Scheme

The 82599 supports two alternative schemes for ACK/NAK rate:
e ACK/NAK is scheduled for transmission following any TLP.
< ACK/NAK is scheduled for transmission according to timeouts specified in the PCle specification.

The PCle Error Recovery bit (loaded from the EEPROM) determines which of the two schemes is used.

3.1.5.2 Supported DLLPs

The following DLLPs are supported by the 82599 as a receiver:

e ACK

e NAK

e PM_Request_Ack
e InitFC1-P

e InitFC1-NP

« InitFC1-Cpl

e InitFC2-P

e InitFC2-NP

e InitFC2-Cpl

< UpdateFC-P
« UpdateFC-NP
« UpdateFC-Cpl

58

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

The following DLLPs are supported by the 82599 as a transmitter:
e ACK
= NAK
e PM_Enter_L1
e PM_Enter_L23

e InitFC1-P
* InitFC1-NP
* InitFC1-Cpl
* InitFC2-P
e InitFC2-NP
« InitFC2-Cpl

= UpdateFC-P
= UpdateFC-NP

Note: UpdateFC-Cpl is not sent because of the infinite FC-Cpl allocation.

3.1.5.3 Transmit EDB Nullifying (End Bad)

If retrain is necessary, there is a need to guarantee that no abrupt termination of the Tx packet
happens. For this reason, early termination of the transmitted packet is possible. This is done by
appending the EDB to the packet.

3.1.6 Physical Layer

3.1.6.1 Link Speed

The 82599 supports PCle V2.0 (2.5GT/s or 5GT/s). The following configuration controls link speed:

= PCle Supported Link Speeds bit — Indicates the link speeds supported by the 82599. Loaded from

the PCle Link Speed field in the EEPROM.

EEPROM Word Offset
(Starting at Odd
Word)

Allow PCle Force PCle

v2.0(Default) | V2.0 Setting Description

2*N+1 0x094 MORIAG register offset (lower word).

Disabling PCle V2.0 is controlled by setting bit[8] in this register.
2*N+2 0x0000 0x0100 When the bit is set the 82599 does not advertise PCle V2.0 link-
speed support.

= PCle Current Link Speed bit — Indicates the negotiated Link speed.

= PCle Target Link Speed bit — used to set the target compliance mode speed when software is using
the Enter Compliance bit to force a link into compliance mode. The default value is the highest link

speed supported defined by the previous Supported Link Speeds.
The 82599 does not initiate a hardware autonomous speed change.

The 82599 supports entering compliance mode at the speed indicated in the Target Link Speed field

in

the PCle Link Control 2 register. Compliance mode functionality is controlled via the PCle Link Control 2

register.

59

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.1.6.2 Link Width

e The 82599 supports a maximum link width of x8, x4, x2, or x1 as determined by the PCle Analog
Configuration Module in the EEPROM and can be set as follows. Note that these settings might not
be needed during normal operation:

EEPROM Word Offset Enable x8 L A -
(Starting at Odd Setting L'rsnelzttiﬂ x4 LI?eI:tti?] x2 ngqelttti?] x1 Description
Word) (Default) 9 9 9

2*N+1 0x094 MORIAG6 register offset (lower word).
Lanes can be disabled by setting bits[7:0] in

2*N+2 0x0000 OX00FO OXOOFC OXOOFE this offset. Having bit[X] set causes laneX to
be disabled, resulting in narrower link widths
(bits per lane).

The maximum link width is loaded into the Max Link Width field of the PCle Capability register
(LCAP[11:6]). Hardware default is the x8 link.

During link configuration, the platform and the 82599 negotiate on a common link width. The link width
must be one of the supported PCle link widths (x1, 2%, x4, x8), such that:

< If Maximum Link Width = x8, then the 82599 negotiates to either x8, x4, x2 or x11

« If Maximum Link Width = x4, then the 82599 negotiates to either x4 or x1

« If Maximum Link Width = x1, then the 82599 only negotiates to x1

The 82599 does not initiate a hardware autonomous link width change.

Note: Some PCle x8 slots are actually configured as x4 slots. These slots have insufficient
bandwidth for full 10 GbE line rate with dual port 10 GbE devices. If a solution suffers
bandwidth issues when both 10 GbE ports are active, it is recommended to verify that the
PCle slot is indeed a true PCle x8.

3.1.6.3 Polarity Inversion
If polarity inversion is detected, the receiver must invert the received data.

During the training sequence, the receiver looks at symbols 6-15 of TS1 and TS2 as the indicators of
lane polarity inversion (D+ and D- are swapped). If lane polarity inversion occurs, the TS1 symbols 6-
15 received are D21.5 as opposed to the expected D10.2. Similarly, if lane polarity inversion occurs,
symbols 6-15 of the TS2 ordered set are D26.5 as opposed to the expected 5 D5.2. This provides the
clear indication of lane polarity inversion.

3.1.6.4 LOs Exit Latency

The number of FTS sequences (N_FTS) sent during LOs exit is loaded from the EEPROM into an 8-bit
read-only register.

1. See restriction in Section 3.1.6.6.

60

[] ®
Interconnects — Intel® 82599 10 GbE Controller l n tel ’

3.1.6.5 Lane-to-Lane De-Skew

A multi-lane link can have many sources of lane-to-lane skew. Although symbols are transmitted
simultaneously on all lanes, they cannot be expected to arrive at the receiver without lane-to-lane
skew. The lane-to-lane skew can include components, which are less than one bit time, bit time units
(400/200 ps for 2.5/5 Gb), or full symbol time units (4/2 ns). This type of skew is caused by the
retiming repeaters' insert/delete operations. Receivers use TS1 or TS2 or Skip Ordered Sets (SOS) to
perform link de-skew functions.

The 82599 supports de-skew of up to 12 symbols time [48 ns for PCle v2.0 (2.5GT/s) and 24 ns for
PCle V2.0 (5GT/s)].

3.1.6.6 Lane Reversal
Auto lane reversal is supported by the 82599 at its hardware default setting. The following lane reversal
modes are supported:

= Lane configurations x8, x4, x2, and x1

« Lane reversal in x8 and in x4

= Degraded mode (downshift) from x8 to x4 to x2 to x1 and from x4 to x1, with one restriction — if
lane reversal is executed in x8, then downshift is only to x1 and not to x4.

Figure 3.2 through Figure 3.5 shows the lane downshift in both regular and reversal connections as well
as lane connectivity from a system level perspective.

Root Root
Complex Complex
Ethernet Ethernet Ethernet
Controller Controller Controller

Figure 3.2. Lane Downshift in an x8 Configuration

61

Interconnects

Intel® 82599 10 GbE Controller

intel.

0# due]
L# auen
zH aue

€# oue

sue

of oue]
#dueT]

Lane #7
Lane #6
==
Lane #4
Lane #3
Lane #2
Lane #1
Lane #0

Lane #7
Lane #6
I
Lane #4
Lane #3
Lane #2
Lane #1
Lane #0

Lane Downshift in a Reversal x8 Configuration

Figure 3.3.

Lane #3
Lane #2
Lane #1
Lane #0

Lane #7
Lane #6
[Lanes |
Lane #4
Lane #3
Lane #2
Lane #1
Lane #0

Lane #7
Lane #6
Lane #4
Lane #3

Lane #2

Lane #1
Lane #0

ion

in a x4 Configurat

Lane Downshi

Figure 3.4.

62

Interconnects — Intel® 82599 10 GbE Controller

Lane #0

2 3
Ethernet Controller Ethernet Controller

Figure 3.5. Lane Downshift in an x4 Reversal Configuration

Auto lane reversal can be disabled or forced to reversal mode by setting the internal registers:
PHYLTSSMDBGOO and LTSSMDBGO. These registers are loaded from the PCle Analog Configuration
Module in the EEPROM and could be set as follows. Note that these setting are not likely being needed
in normal operation:

EEPROM Word Offset Lane Reversal Force Lane
(Starting at Odd Disable Settin Reversal Description
Word) 9 Setting
2*N+1 0x310 0x310 PHYLTSSMDBGOO register OFFSET (lower word)
2*N+2 0x0003 0x0013 Lower word DATA of the PHYLTSSMDBGOO register
2*N+5 0x314 0x314 LTSSMDBGO register OFFSET (lower word)
2*N+6 0x3920 0x3920 Lower word DATA of the LTSSMDBGO register

3.1.6.7 Reset

The PCle PHY supplies the core reset to the 82599. The reset can be caused by the following events:
= Upstream move to hot reset — Inband Mechanism (LTSSM).
= Recovery failure (LTSSM returns to detect)
= Upstream component moves to disable.

3.1.6.8 Scrambler Disable

The scrambler/de-scrambler functionality in the 82599 can be eliminated by two mechanisms:
= Upstream according to the PCle specification
e EEPROM bit — Scram_dis.

63

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.1.7 Error Events and Error Reporting

3.1.7.1 General Description

PCle defines two error reporting paradigms: the baseline capability and the Advanced Error Reporting
(AER) capability. The baseline error reporting capabilities are required of all PCle devices and define the
minimum error reporting requirements. The AER capability is defined for more robust error reporting
and is implemented with a specific PCle capability structure. Both mechanisms are supported by the
82599.

The SERR# Enable and the Parity Error bits from the Legacy Command register also take part in the
error reporting and logging mechanism.

In a multi-function device, PCle errors that are not related to any specific function within the device are
logged in the corresponding status and logging registers of all functions in that device. These include
the following cases of Unsupported Request (UR):

< A memory or I/0 access that does not match any BAR for any function
= Messages

= Configuration accesses to a non-existent function

Figure 3.6 shows, in detail, the flow of error reporting in the 82599.

64

Interconnects — Intel® 82599 10 GbE Controller

Error Sources
(Associated with Port)

\J
Uncorrectable Error Severity

:

Uncorrectable!rror Status

Correctable EroFtatus

<T

Correctable Error Mask Uncorrectable Error Mask

Device Status ::

E Correctable Error Detected Status ::

U] - Signaled Target Abort
B Device Status ::

Zé, Non-Fatal Error Detected > Status

£ Device Status ** Received Target Abort
E— Fatal Error Detected > Status -

@) . Received Master Abort
g Device Status ::

& | Unsupported Request Detected Status

Y
Device Control :: LD—

" Detected Parity Error

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| —p
I Correctable Error Reporting Enable \ RO S EES
: Device Control ::
IUnsupported Request Reporting Enable
| Device Control :: ED\ Report Error Command ::
: Non-Fatal Error Reporting Enable D Correctable Error Reporting Enable
I Device Control : \:Dx Report Error Command = | INterrupt
: Fatal Error Reporting Enable L D—— Non-Fatal Error Reporting Enable ———
: ,— R’leport Error Cpmmanilzz
| Command:: Fatal Error Reporting Enable
: SERR# Enable — % L
: Command:: }— | —pp Status:) Status::
| Parity Erfor Response | Master Data Parity Error f_> Signaled System Error
: Bridge Control:: _ D .
SERR Enable Root Control::
: \T\ / System Error on Correctable Error Enable
Rcv: D Root Control::
System Error on Non-Fatal Error Enable ﬂ')ﬁ
Msgi Error Message - T A ¥ System
Processing Root Control:: Error
j} System Error on Fatal Error Enable

Secondary Side Error Sources

> Secondary Status::
N P Received System Error

Secondary Status:: Either Implementation

Detected Parity Error Acceptable - the unqualified

Secondary Status: \éarai:jsmén |ser20re like PCI P2P

Received Target Abort ge Sp

Secondary Status::

Received Target Abort

glzcnoa:gsr{/l:;?et?;bort Brid.ge Control: Secondary Status::

Parity Error Response Enable | > y .l

Master Data Parity
Error

Figure 3.6. Error Reporting Mechanism

3.1.7.2 Error Events

Table 3.8 lists the error events identified by the 82599 and the response in terms of logging, reporting,
and actions taken. Refer to the PCle specification for the effect on the PCI Status register.

65

intel.

Table 3.8.

Intel® 82599 10 GbE Controller — Interconnects

Response and Reporting of PCle Error Events

Error Name

Error Events

Default Severity

Action

Physical Layer Errors

Receiver Error

8b/10b Decode Errors
Packet Framing Error

Correctable
Send ERR_CORR

TLP to Initiate NAK, Drop Data
DLLP to Drop

Data Link Errors

Bad CRC

Correctable

Bad TLP Not L | EDB TLP Initi NAK, D D
ad ot Legal Send ERR CORR to Initiate , Drop Data
Wrong Sequence Number -
C tabl
Bad DLLP Bad CRC orrectable DLLP o Drop
Send ERR_CORR
i |
Replay Timer REPLAY_TIMER expiration Correctable Follow LL Rules
Timeout - Send ERR_CORR
REPLAY NUM Correctable
REPLAY NUM Rollover Follow LL Rules
Rollover

Send ERR_CORR

Data Link Layer
Protocol Error

Violations of Flow Control
Initialization Protocol

Uncorrectable
Send ERR_FATAL

TLP Errors

Poisoned TLP

TLP With Error Forwarding

Uncorrectable
ERR_NONFATAL

If completion TLP:
Error is non-fatal (default case)
= Send error message if advisory

= Retry the request once and send
advisory error message on each failure

Received Log Header = If fails, send uncorrectable error
message
Error is defined as fatal
= Send uncorrectable error message
Wrong Config Access
MRdLk
Config Request Typel
Unsupported Vendor Defined Uncorrectable
Unsupported Type O Message

Request (UR)

Not Valid MSG Code
Not Supported TLP Type
Wrong Function Number

Received TLP Outside Address
Range

ERR_NONFATAL
Log header

Send Completion With UR

Completion Timeout

Completion Timeout Timer
Expired

Uncorrectable
ERR_NONFATAL

Error is non-fatal (default case)
= Send error message if advisory

« Retry the request once and send
advisory error message on each failure

< If fails, send uncorrectable error
message

Error is defined as fatal
= Send uncorrectable error message

Completer Abort

Received Target Access With
Data Size >64 bits

Uncorrectable.
ERR_NONFATAL
Log header

Send completion with CA

Unexpected
Completion

Received Completion Without
a Request For It (Tag, ID, etc.)

Uncorrectable
ERR_NONFATAL
Log Header

Discard TLP

Receiver Overflow

Received TLP Beyond
Allocated Credits

Uncorrectable
ERR_FATAL

Receiver Behavior is Undefined

66

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

Table 3.8. Response and Reporting of PCle Error Events

= Minimum Initial Flow Control
Flow Control Advertisements Uncorrectable.
Protocol Error « Flow Control Update for ERR_FATAL

Infinite Credit Advertisement

Receiver Behavior is Undefined

« Data Payload Exceed
Max_Payload_Size

* Received TLP Data Size Does
Not Match Length Field

« TD field value does not

Uncorrectable

Malformed TLP (MP) correspond with the observed ERR_FATAL Drop the Packet, Free FC Credits
size Log Header
= PM Messages That Don’t Use
TCO.
= Usage of Unsupported VC
Completion with No Action (already done
Unsuccessful by originator of Free FC Credits
Completion Status completion)

3.1.7.3 Error Forwarding (TLP Poisoning)

If a TLP is received with an error-forwarding trailer, the packet is dropped and is not delivered to its
destination. The 82599 then reacts as described in Table 3.8.

The 82599 does not initiate any additional master requests for that PCI function until it detects an
internal software reset for the associated LAN port. Software is able to access device registers after
such a fault.

System logic is expected to trigger a system-level interrupt to inform the operating system of the
problem. Operating systems can then stop the process associated with the transaction, re-allocate
memory to a different area instead of the faulty area, etc.

3.1.7.4 End-to-End CRC (ECRC)

The 82599 supports ECRC as defined in the PCle specification. The following functionality is provided:
* Inserting ECRC in all transmitted TLPs:

— The 82599 indicates support for inserting ECRC in the ECRC Generation Capable bit of the PCle
configuration registers. This bit is loaded from the ECRC Generation EEPROM bit.

— Inserting ECRC is enabled by the ECRC Generation Enable bit of the PCle configuration
registers.

= ECRC is checked on all incoming TLPs. A packet received with an ECRC error is dropped. Note that
for completions, a completion timeout occurs later (if enabled), which results in re-issuing the
request.

— The 82599 indicates support for ECRC checking in the ECRC Check Capable bit of the PCle
configuration registers. This bit is loaded from the ECRC Check EEPROM bit.

— Checking of ECRC is enabled by the ECRC Check Enable bit of the PCle configuration registers.
= ECRC errors are reported

= System software can configure ECRC independently per each LAN function

67

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

3.1.7.5 Partial Read and Write Requests
Partial memory accesses

The 82599 has limited support of read and write requests with only part of the byte enable bits set:
- Partial writes with at least one byte enabled are silently dropped.

= Zero-length writes have no internal impact (nothing written, no effect such as clear-by-write). The
transaction is treated as a successful operation (no error event).

- Partial reads with at least one byte enabled are handled as a full read. Any side effect of the full
read (such as clear by read) is also applicable to partial reads.

- Zero-length reads generate a completion, but the register is not accessed and undefined data is
returned.

Note: The 82599 does not generate an error indication in response to any of the previous events.

Partial 1/0 accesses
- Partial access on address
— A write access is discarded
— A read access returns OxFFFF
e Partial access on data, where the address access was correct
— A write access is discarded
— A read access performs the read

3.1.7.6 Error Pollution

Error pollution can occur if error conditions for a given transaction are not isolated to the error's first
occurrence. If the PHY detects and reports a receiver error, to avoid having this error propagate and
cause subsequent errors at the upper layers, the same packet is not signaled at the data link or
transaction layers. Similarly, when the data link layer detects an error, subsequent errors that occur for
the same packet are not signaled at the transaction layer.

3.1.7.7 Completion With Unsuccessful Completion Status

A completion with unsuccessful completion status is dropped and not delivered to its destination. The
request that corresponds to the unsuccessful completion is retried by sending a new request for
undeliverable data.

3.1.7.8 Error Reporting Changes

The PCle Rev. 1.1 specification defines two changes to advanced error reporting. A (new) Role Based
Error Reporting bit in the Device Capabilities register is set to 1b to indicate that these changes are
supported by the 82599.

1. Setting the SERR# Enable bit in the PCI Command register also enables UR reporting (in the same
manner that the SERR# Enable bit enables reporting of correctable and uncorrectable errors). In
other words, the SERR# Enable bit overrides the Unsupported Request Error Reporting Enable bit in
the PCle Device Control register.

68

[| ®
Interconnects — Intel® 82599 10 GbE Controller l n tel

2. Changes in the response to some uncorrectable non-fatal errors detected in non-posted requests to
the 82599. These are called Advisory Non-Fatal Error cases. For each of the errors listed, the
following behavior is defined:

— The Advisory Non-Fatal Error Status bit is set in the Correctable Error Status register to indicate
the occurrence of the advisory error and the Advisory Non-Fatal Error Mask corresponding bit in
the Correctable Error Mask register is checked to determine whether to proceed further with
logging and signaling.

— If the Advisory Non-Fatal Error Mask bit is clear, logging proceeds by setting the corresponding
bit in the Uncorrectable Error Status register, based upon the specific uncorrectable error that's
being reported as an advisory error. If the corresponding Uncorrectable Error bit in the
Uncorrectable Error Mask register is clear, the First Error Pointer and Header Log registers are
updated to log the error, assuming they are not still occupied by a previous unserviced error.

— An ERR_COR Message is sent if the Correctable Error Reporting Enable bit is set in the Device
Control register. An ERROR_NONFATAL message is not sent for this error.

The following uncorrectable non-fatal errors are considered as advisory non-fatal errors:

= A completion with an Unsupported Request or Completer Abort (UR/CA) status that signals an
uncorrectable error for a non-posted request. If the severity of the UR/CA error is non-fatal, the
completer must handle this case as an advisory non-fatal error.

= When the requester of a non-posted request times out while waiting for the associated completion,
the requester is permitted to attempt to recover from the error by issuing a separate subsequent
request or to signal the error without attempting recovery. The requester is permitted to attempt
recovery zero, one, or multiple (finite) times, but must signal the error (if enabled) with an
uncorrectable error message if no further recovery attempt is made. If the severity of the
completion timeout is non-fatal, and the requester elects to attempt recovery by issuing a new
request, the requester must first handle the current error case as an advisory non-fatal error.

* Reception of a poisoned TLP. See Section 3.1.7.3.

= When a receiver receives an unexpected completion and the severity of the unexpected completion
error is non-fatal, the receiver must handle this case as an advisory non-fatal error.

3.1.8 Performance Monitoring

The 82599 incorporates PCle performance monitoring counters to provide common capabilities to
evaluate performance. The 82599 implements four 32-bit counters to correlate between concurrent
measurements of events as well as the sample delay and interval timers. The four 32-bit counters can
also operate in a two 64-bit mode to count long intervals or payloads. Software can reset, stop, or start
the counters (all at the same time).

Some counters operate with a threshold — the counter increments only when the monitored event
crossed a configurable threshold (such as the number of available credits is below a threshold)

Counters operate in one of the following modes:
= Count mode — the counter increments when the respective event occurred

= Leaky bucket mode — the counter increments only when the rate of events exceeded a certain
value. See Section 3.1.8.1 for more details.

The list of events supported by the 82599 and the counters Control bits are described in
Section 8.2.3.4.

69

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.1.8.1 Leaky Bucket Mode
Each of the counters can be configured independently to operate in a leaky bucket mode. When in leaky
bucket mode, the following functionality is provided:

= One of four 16-bit Leaky Bucket Counters (LBC) is enabled via the LBC Enable [3:0] bits in the PCle
Statistic Control register #1.

= The LBC is controlled by the GIO_COUNT_START, GIO_COUNT_STOP, GIO_COUNT_RESET bits in
the PCle Statistic Control register #1.

< The LBC increments every time the respective event occurs.

e The LBC is decremented every T us as defined in the LBC Timer field in the PCle Statistic Control
registers.

< When an event occurs and the value of the LBC meets or exceeds the threshold defined in the LBC
Threshold field in the PCle Statistic Control registers, the respective statistics counter increments,
and the LBC counter is cleared to zero.

3.2 SMBus

SMBus is a management interface for pass through and/or configuration traffic between an external
Management Controller (MC) and the 82599.

3.2.1 Channel Behavior

The SMBus specification defines the maximum frequency of the SMBus as 100 KHz. However, the
SMBus interface can be activated up to 400 KHz without violating any hold and setup time.

SMBus connection speed bits define the SMBus mode. Also, SMBus frequency support can be defined
only from the EEPROM.

3.2.2 SMBus Addressing

The number of SMBus addresses that the 82599 responds to depends on the LAN mode (teaming/non-
teaming). If the LAN is in teaming mode (fail-over mode), the 82599 is presented over the SMBus as
one device and has one SMBus address. If the LAN is in non-teaming mode, the SMBus is presented as
two SMBus devices on the SMBus (two SMBus addresses). In dual-address mode, all pass through
functionality is duplicated on the SMBus address, where each SMBus address is connected to a different
LAN port.

Note: Designers are not allowed to configure both ports to the same address. When a LAN function
is disabled, the corresponding SMBus address is not presented to the MC.

The SMBus address method is defined through the SMB Addressing Mode bit in the EEPROM. The
SMBus addresses are set using the SMBus O Slave Address and SMBus 1 Slave Address fields in the
EEPROM.

Note: If single-address mode is selected, only the SMBus O Slave Address field is valid.

The SMBus addresses (those that are enabled from the EEPROM) can be re-assigned using the SMBus
ARP protocol.

Besides the SMBus address values, all the previous parameters of the SMBus (SMBus channel selection,
addressing mode, and address enable) can be set only through the EEPROM.

All SMBus addresses should be in Network Byte Order (NBO) with the most significant byte first.

70

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.2.3 SMBus Notification Methods
The 82599 supports three methods of signaling the external MC that it has information that needs to be
read by the external MC:

= SMBus alert — Refer to Section 3.2.3.1.

= Asynchronous notify — Refer to Section 3.2.3.2.

« Direct receive — Refer to section Section 3.2.3.3.
The notification method that is used by the 82599 can be configured from the SMBus using the Receive
Enable command. The default method is set from the Notification Method field in the LRXEN1 word from
the EEPROM.
The following events cause the 82599 to send a notification event to the external MC:

= Receiving a LAN packet designated for the MC.

= Receiving a Request Status command from the MC that initiates a status response.

= The 82599 is configured to notify the external MC upon status changes (by setting the EN_STA bit
in the Receive Enable command) along with one of the following events:

— TCO Command Aborted
— Link Status changed

— Power state change

— LinkSec indication

There can be cases where the external MC is hung and cannot respond to the SMBus notification. The
82599 has a timeout value defined in the EEPROM (refer to Section 6.4.4.3) to avoid hanging while
waiting for the notification response. If the MC does not respond until the timeout expires, the
notification is de-asserted.

3.2.3.1 SMBus Alert and Alert Response Method

The SMBus Alert# signal is an additional SMBus signal, which acts as an asynchronous interrupt signal
to an external SMBus master. The 82599 asserts this signal each time it has a message that it needs
the external MC to read and if the chosen notification method is the SMBus alert method.

Note: SMBus Alert# is an open-drain signal, which means that other devices beside the 82599 can
be connected to the same alert pin and the external MC requires a mechanism to distinguish
between the alert sources as follows:

The external MC responds to the alert by issuing an ARA cycle to detect the alert source device. The
82599 responds to the ARA cycle (if it was the SMBus alert source) and de-asserts the alert when the
ARA cycle completes. Following the ARA cycle, the MC issues a Read command to retrieve the the
82599 message.

Note: Some MCs do not implement the ARA cycle transaction. These MCs respond to an alert by
issuing a Read command to the 82599 (0xC0/0xDO or OxXDE). The 82599 always responds to
a Read command even if it is not the source of the notification. The default response is a
status transaction. If the 82599 is the source of the SMBus alert, it replies to the read
transaction.

The ARA cycle is an SMBus receive byte transaction to SMBus Address 0x18.

Note: The ARA transaction does not support PEC.

71

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

The alert response address transaction format is as follows:

1 7 1 1 8 1 1
S Alert Response Address Rd A Slave Device Address A P
0001 100 0 (0] 1

Figure 3.7. SMBus ARA Cycle Format

3.2.3.2 Asynchronous Notify Method

When configured using the asynchronous notify method, the 82599 acts as an SMBus master and
notifies the external MC by issuing a modified form of the write word transaction. The asynchronous
notify transaction SMBus address and data payload are configured using the Receive Enable command
or by using the EEPROM defaults (see Section 6.4.3.19).

Note: The asynchronous notify is not protected by a PEC byte.

1 7 1 1 7 1 1
S Target Address Wr A Sending Device Address A eee
MC Slave Address 0 0 Manageability Slave SMBus 0 0
Address
8 1 8 1 1
Data Byte Low A Data Byte High A| P
Interface 0 Alert Value

Figure 3.8. Asynchronous Notify Command Format

3.2.3.3 Direct Receive Method

If configured, the 82599 has the capability to send the message it needs to transfer to the external MC,
as a master over the SMBus instead of alerting the MC and waiting for it to read the message.

The message format is shown Figure 3.9. Note that the command that should be used is the same
command that should be used by the MC in the Block Read command and the opcode that the 82599
puts in the data is the same as it would have put in the Block Read command of the same functionality.
The rules for the F an L flags are also the same as in the Block Read command.

1 7 1 1 1 1 6 1
S Target Address Wr A F L Command A CRCN
First Last Receive TCO Command
MC Slave Address (o] (o]
Flag | Flag 01 0000b
8 1 8 1 1 8 1 1
Byte Count A Data Byte 1 A eee A Data Byte N A P
N

Figure 3.9. Direct Receive Transaction Format

72

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.2.4 Receive TCO Flow

The 82599 is used as a channel for receiving packets from the network link and passing them to the
external MC. The MC can configure the 82599 to pass specific packets to the MC (see Section 10.2).
Once a full packet is received from the link and identified as a manageability packet that should be
transferred to the MC, the 82599 starts the receive TCO transaction flow to the MC.

The maximum SMBus fragment length is defined in the EEPROM (see Section 6.4.4.2). The 82599 uses
the SMBus notification method to notify the MC that it has data to deliver. The packet is divided into
fragments, where the 82599 uses the maximum fragment size allowed in each fragment. The last
fragment of the packet transfer is always the status of the packet. As a result, the packet is transferred
in at least two fragments. The data of the packet is transferred in the receive TCO LAN packet
transaction.

When SMBus alert is selected as MC notification method, the 82599 notifies the MC on each fragment of
a multi-fragment packet.

When asynchronous notify is selected as the MC notification method, the 82599 notifies the MC only on
the first fragment of a received packet. It is the MC's responsibility to read the full packet including all
the fragments.

Any timeout on the SMBus notification results in discarding of the entire packet. Any NACK by the MC
on one of the 82599's receive bytes also causes the packet to be silently discarded.

Since SMBus throughput is lower than the network link throughput, the 82599 uses an 8 KB internal
buffer per LAN port, which stores incoming packets prior to being sent over the SMBus interface. The
82599 services back-to-back management packets as long as the buffer does not overflow.

The maximum size of the received packet is limited by the 82599 hardware to 1536 bytes. Packets
larger then 1536 bytes are silently discarded. Any packet smaller than 1536 bytes is processed by the
82599.

Note: When the RCV_EN bit is cleared, all receive TCO functionality is disabled including packets
directed to the MC as well as auto ARP processing.

3.2.5 Transmit TCO Flow

The 82599 is used as a channel for transmitting packets from the external MC to the network link. The
network packet is transferred from the external MC over the SMBus, and then, when fully received by
the 82599, is transmitted over the network link.

In dual-address mode, each SMBus address is connected to a different LAN port. When a packet
received in SMBus transactions using the SMBus O Slave Address, it is transmitted to the network using
LAN port O and is transmitted through LAN port 1 if received on SMBus 1 Slave Address. In single-
address mode, the transmitted port is chosen according to the fail-over algorithm (see

Section 10.2.2.2).

The 82599 supports packets up to an Ethernet packet length of 1536 bytes. SMBus transactions can be
up to 240 bytes in length, which means that packets can be transferred over the SMBus in more than
one fragment. In each command byte there are the F and L bits. When the F bit is set, it means that
this is the first fragment of the packet and L means that it is the last fragment of the packet (when both
are set, it means that the entire packet is in one fragment). The packet is sent over the network link
only after all its fragments have been received correctly over the SMBus.

73

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

The 82599 calculates the L2 CRC on the transmitted packet, and adds its four bytes at the end of the
packet. Any other packet field (such as XSUM) must be calculated and inserted by the external MC
controller (the 82599 does not change any field in the transmitted packet, besides adding padding and
CRC bytes). If the packet sent by the MC is bigger than 1536 bytes, then the packet is silently discard
by the 82599.

The minimum packet length defined by the 802.3 specification is 64 bytes. The 82599 pads packets
that are less than 64 bytes to meet the specification requirements (no need for the MC to do it). There
is one exception, that is if the packet sent over the SMBus is less than 32 bytes, the MC must pad it for
at least 32 bytes. The passing bytes value should be zero. Packets which are smaller then 32 bytes
(including padding) are silently discarded by the 82599.

If the network link is down when the 82599 has received the last fragment of the packet, it silently
discards the packet.

Note: Any link down event while the packet is being transferred over the SMBus does not stop the
operation, since the 82599 waits for the last fragment to end to see whether the network link
is up again.

The transmit SMBus transaction is described in Section 10.5.2.1.

3.2.5.1 Transmit Errors in Sequence Handling

Once a packet is transferred over the SMBus from the MC to the 82599 the F and L flags should follow
specific rules. The F flag defines that this is the first fragment of the packet, and the L flag defines that
the transaction contains the last fragment of the packet.

Table 3.9 lists the different option of the flags in transmit packet transactions.

Table 3.9. SMBus Transmit Sequencing

Previous Current Action/Notes
Last First Allowed — accept both.
Last Not First Error for current transaction. Current transaction is discarded and an abort status is asserted.

Error for previous transaction. The previous transaction (until previous First) is discarded. The current
Not Last First packet is processed.
No abort status is asserted.

Not Last Not First The 82599 can process the current transaction.

Please note that since every other Block Write command in the TCO protocol has both the F and L flags
off, they cause flushing any pending transmit fragments that were previously received.

3.2.5.2 TCO Command Aborted Flow

Bit 6 in first byte of the status returned from the 82599 to the external MC indicates that there was a
problem with previous SMBus transactions or with the completion of the operation requested in
previous transaction.
The abort can be asserted due to any of the following reasons:

e Any error in the SMBus protocol (NACK, SMBus time outs).

< Any error in compatibility due to required protocols to specific functionality (RX Enable command
with byte count not 1/14 as defined in the command specification).

74

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

= |If the 82599 does not have space to store the transmit packet from the MC (in an internal buffer)
before sending it to the link. In this case, all transactions are completed but the packet is discarded
and the MC is notified through the Abort bit.

= Error in F/L bit sequence during multi-fragment transactions.
= The Abort bit is asserted after an internal reset to the 82599 manageability unit.
Note: The abort in the status does not always imply that the last transaction of the sequence was

incorrect. There is a time delay between the time the status is read from the 82599 and the
time the transaction has occurred.

3.2.6 Concurrent SMBus Transactions

Concurrent SMBus write transactions are not permitted. Once a transaction is started, it must be
completed before additional transaction can be initiated.

3.2.7 SMBus ARP Functionality

The 82599 supports the SMBus ARP protocol as defined in the SMBus 2.0 specification. Note that the
82599 is a persistent slave address device each time its SMBus address is valid after power-up and
loaded from the EEPROM. The 82599 supports all SMBus ARP commands defined in the SMBus
specification, both general and directed.

Note: SMBus ARP can be disabled through EEPROM configuration (See Section 6.4.4.3).

3.2.7.1 SMBus ARP in Dual-/Single-Mode

The 82599 can operate in either single SMBus address mode or in dual SMBus address mode. These
modes reflect on its SMBus-ARP behavior.

When working in single-address mode, the 82599 presents itself on the SMBus as one device, and
responds to SMBus-ARP as only one device. In this case its SMBus address is SMBus address O as
defined in EEPROM SMBus ARP addresses word (see Section 6.4.4.4). The device has only one Address
Resolved (AR) and one Address Valid (AV) flag each. The vendor ID that is the Ethernet MAC address of
the LAN's port, is taken from port O address.

In dual-address mode, the 82599 responds as two SMBus devices, meaning it has two sets of AR/AV
flags (one for each port). The 82599 should respond twice to the SMBus-ARP master, one time for each
port. Both SMBus addresses are taken from the SMBus ARP addresses word of the EEPROM. The Unique
Device ldentifier (UDID) is different between the two ports in the version ID field, which represent the
Ethernet MAC address, which is different between the two ports. It is recommended for the 82599 to
first answer as port 0, and only when the address is assigned, to answer as port 1 to the Get UDID
command.

3.2.7.2 SMBus ARP Flow

SMBus-ARP flow is based on the status of two AVs and ARs:
= Address Valid — This flag is set when the 82599 has a valid SMBus address.

= Address Resolved — This flag is set when the 82599 SMBus address is resolved: SMBus address
was assighed by the SMBus-ARP process.

Note: These flags are internal the 82599 flags and not shown to external SMBus devices.

75

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

Since the 82599 is a Persistent SMBus Address (PSA) device, the AV flag is always set, while the AR flag
is cleared after power-up until the SMBus-ARP process completes. Since AV is always set, it means that
the 82599 always has a valid SMBus address. The entire SMBus ARP Flow is described in Figure 3.10.

When the SMBus master needs to start the SMBus-ARP process, it resets (in terms of ARP functionality)
all the devices on the SMBus, by issuing either Prepare to ARP or Reset Device commands. When the

82599 accepts one of these commands, it clears its AR flag (if set from previous SMBus-ARP process),
but not its AV flag (The current SMBus address remains valid until the end of the SMBus ARP process).

A cleared AR flag means that the 82599 answers the following SMBus ARP transactions that are issued
by the master. The SMBus master then issues a Get UDID command (General or Directed), to identify
the devices on the SMBus. The 82599 responds to the Directed command all the time, and to the
General command only if its AR flag is not set. After the Get UDID, the master assigns the 82599
SMBus address, by issuing Assign Address command. The 82599 checks whether the UDID matches its
own UDID, and if there is a match it switches its SMBus address to the address assigned by the
command (byte 17). After accepting the Assign Address command, the AR flag is set, and from this
point (as long as the AR flag is set), the 82599 does not respond to the Get UDID General command,
while all other commands should be processed even if the AR flag is set.

76

Interconnects — Intel® 82599 10 GbE Controller

Power-Up reset

Set AV flag; Clear AR flag
Load SMB address from EPROM

Process regular
command

ACK the command
and clear AR flag

ACK the command
and clear AR flag

NACK packet

ACK packet
Set slave Address and
store it in EEPROM
Set AR flag

Return UDID
NACK packet
Yes
» Return UDID '—»

@egal command handlin@

Figure 3.10. SMBus ARP Flow

7

intel.

3.2.7.2.1

SMBus ARP UDID Content

Intel® 82599 10 GbE Controller — Interconnects

The UDID provides a mechanism to isolate each device for the purpose of address assignment. Each
device has a unique identifier. The 128-bit number is comprised of the following fields:

1 Byte 1 Byte 2 Bytes 2 Bytes 2 Bytes 2 Bytes 2 Bytes 4 Bytes
Device Version/] Subsystem Subsystem Vendor
Capabilities Revision Vendor ID Device ID Interface Vendor ID Device ID Specific ID
0x8086 .
. As reflected in
Aﬁ reflec_ted N1 the Device ID
See as follows | See as follows | the De_v|ce 1D field in the 0x0004 0x0000 0x0000 See as follows
field in the PCI config
PCI config space
space
MSB LSB
Where:

* Interface:

e Subsystem Fields

Identifies the protocol layer interfaces supported over the SMBus connection by the device.

In this case, SMBus Version 2.0

Constant value: 0x0004.

These fields are not supported and return zeros.

Device Capabilities: Dynamic and Persistent Address, PEC Support bit

7 6 5 4 3 2 1 (0]
PEC
Address Type Reserved (0) Reserved (0) Reserved (0) Reserved (0) Reserved (0) Supported
Ob 1b Ob Ob Ob Ob Ob Ob
MSB LSB
Version/Revision: UDID Version 1, Silicon Revision
7 6 5 4 3 2 1 (0]
Reserved (0) Reserved (0) UDID Version Silicon Revision ID
Ob Ob 001b See as follows
MSB LSB

Silicon Revision ID:

Silicon Version

Revision ID

AO

000b

BO

001b

78

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

Vendor Specific ID:

Four LSB bytes of the device Ethernet MAC address. The device Ethernet MAC address is taken from the
EEPROM LAN Core 0/1 Modules in the EEPROM (see Section 6.3.7.2). Note that in the 82599 there are
two Ethernet MAC Addresses (one for each port).

1 Byte 1 Byte 1 Byte 1 Byte

Ethernet MAC Address, byte 3 | Ethernet MAC Address, byte 2 | Ethernet MAC Address, byte 1 | Ethernet MAC Address, byte O

MSB LSB

3.2.8 LAN Fail-Over Through SMBus

In fail-over mode, the 82599 determines which ports are used for transmit/reactive (according to the
configuration). LAN fail-over is tied to the SMBus addressing mode. When the SMBus is dual-address
mode, the 82599 does not activate its fail-over mechanism (it ignores the fail-over register), and
operates in two individual LAN ports. When the SMBus is in single-address mode, in PT mode, the
82599 operates in fail-over mode as described in section Section 10.2.2.2.

3.3 Network Controller — Sideband Interface (NC-SI)

In the 82599, the NC-SI interface is connected to an external MC. Note that the 82599 NC-SI interface
meets the NC-SI specification as a PHY-side device.

3.3.1 Electrical Characteristics
The 82599 complies with the electrical characteristics defined in the NC-SI specification.

The 82599 NC-SI behavior is configured by the 82599 on power-up:

= The output driver strength for the NC-SI output signals is configured by the EEPROM RMM Out
Buffer Strength field (default = Ox1F).

= The NC-SI topology is loaded from the EEPROM (point-to-point or multi-drop with the default being
point-to-point).
The 82599 dynamically drives its NC-SI output signals as required by the sideband protocol:
= On power up, the 82599 floats the NC-SI outputs.

« |If the 82599 operates in point-to-point mode, then the 82599 starts driving the NC-SI outputs at
some time following power up.

= If the 82599 operates in a multi-drop mode, the 82599 drives the NC-SI outputs as configured by
the MC.

3.3.2 NC-SI Transactions

Compatible with the NC-SI specification.

79

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.4 EEPROM

3.4.1 General Overview

The 82599 uses an EEPROM device for storing product configuration information. The EEPROM is
divided into three general regions:

Hardware accessed — loaded by the 82599 hardware after power-up, PCI reset de-assertion, D3 to DO
transition, or software reset. Different hardware sections in the EEPROM are loaded at different events.
See further details on power-up and reset sequences in Section 4.0.

Firmware Area — Includes structures used by the firmware for management configuration in its
different modes.

Software accessed — used by software only. The meaning of these registers as listed here is a
convention for software only and is ignored by the 82599.

3.4.2 EEPROM Device

The EEPROM interface supports an SPI interface and. It expects the EEPROM to be capable of 5 MHz
operation.

The 82599 is compatible with many sizes of 4-wire serial EEPROM devices. A 4096-bit serial SPI
compatible EEPROM can be used. All EEPROM's are accessed in 16-bit data words only.

The 82599 automatically determines the address size to be used with the SPI EEPROM it is connected
to, and sets the EEPROM Size field of the EEPROM/FLASH Control and Data register
(EEC.EE_ADDR_SIZE) field appropriately. Software can use this size to determine how to access the
EEPROM. The exact size of the EEPROM is determined within one of the EEPROM words.

3.4.3 EEPROM Vital Content

The EEPROM contains several main types of vital content: pre-boot, pre-operating system and pre-
driver parameters, manageability related structures, hardware default parameters, and driver default
parameters. The 82599 must have the EEPROM to auto-load these settings.

3.4.4 Software Accesses

The 82599 provides two different methods for software access to the EEPROM.
= Use the built-in controller to read the EEPROM
* Access the EEPROM directly using the EEPROM's 4-wire interface

In addition, the Vital Product Data (VPD) area of the EEPROM can be accessed via the VPD capability
structure of the PCle.

Software can use the EEPROM Read (EERD) register to cause the 82599 to read a word from the
EEPROM that the software can then use. To do this, software writes the address to read to the Read
Address (EERD.ADDR) field and then simultaneously writes a 1b to the Start Read bit (EERD.START).
The 82599 reads the word from the EEPROM, sets the Read Done bit (EERD.DONE), and puts the data
in the Read Data field (EERD.DATA). Software can then poll the EEPROM Read register until it sees the
Read Done bit set, then use the data from the Read Data field.

Note: Any words read this way are not written to the 82599's internal registers.

80

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

Software can also directly access the EEPROM's 4-wire interface through the EEPROM/Flash Control
(EEC) register. It can use this for reads, writes, or other EEPROM operations.

To directly access the EEPROM, software should follow these steps:
1. Write a 1b to the EEPROM Request bit (EEC.EE_REQ).

2. Read the EEPROM Grant bit (EEC.EE_GNT) until it becomes 1b. It remains Ob as long as hardware is
accessing the EEPROM.

3. Write or read the EEPROM using the direct access to the 4-wire interface as defined in the EEPROM/
Flash Control and Data (EEC) register. The exact protocol used depends on the EEPROM placed on
the board and can be found in the appropriate EEPROM datasheet.

4. Write a Ob to the EEPROM Request bit (EEC.EE_REQ).

Note: Each time the EEPROM is not valid (blank EEPROM or wrong signature), software should use
the direct access to the EEPROM through the EEC register.

3.4.5 Signature Field

The only way the 82599 has to tell if an EEPROM is present is by trying to read the EEPROM. The 82599
first reads the EEPROM Control word at word address 0x000000 and at address 0x000800. It then
checks the signature value at bits 7 and 6 in both addresses. If bit 7 is Ob and bit 6 is 1b in one of the
two addresses, it considers the EEPROM to be present and valid. It then reads the additional EEPROM
words and programs its internal registers based on the values read. Otherwise, it ignores the values it
reads from that location and does not read any other words.

3.4.6 Protected EEPROM Space

The 82599 provides a mechanism for a hidden area in the EEPROM of the host. The hidden area cannot
be read or write accessed via the EEPROM registers in the CSR space. It can be accessed only by the
manageability subsystem.

After the EEPROM was configured to be protected, changing bits that are protected require specific
manageability instructions with an authentication mechanism. This mechanism is defined in the
firmware documentation.

3.4.6.1 Initial EEPROM Programming

In most applications, initial EEPROM programming is done directly on the EEPROM pins. Nevertheless, it
is desired to enable existing software utilities (accessing the EEPROM via the host interface) to initially
program the entire EEPROM without breaking the protection mechanism. Following a power up
sequence, the 82599 reads the hardware initialization words in the EEPROM. If the signature in both
word addresses 0x000000 and 0x000800 is not equal to 01b the EEPROM is assumed as non-
programmed. There are two effects of a non-valid signature:

1. The 82599 does not read any further EEPROM data and sets the relevant registers to default.

2. The 82599 enables host write (and read) access to any location in the EEPROM via the EEPROM CSR
registers.

3.4.6.2 EEPROM Protected Areas

The 82599 defines two protected areas in the EEPROM. The first area is words 0x00-0x0F. These words
hold the basic configuration and the pointers to all other configuration sections. The second area is a
programmable size area located at the end of the EEPROM and assigned with protecting the appropriate
sections that should be blocked for changes.

81

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.4.6.3 Activating the Protection Mechanism

Following a device initialization, the 82599 reads the Init control 1 word from the EEPROM sectors 0 and
1. The 82599 turns on the protection mechanism if this word contains a valid signature (equals to 01b)
and bit 4 (EEPROM protection) is set to 1b. Once the protection mechanism is turned on, words 0x00-
OxOF area become write-protected and the hidden area that is defined by word 0x0 becomes read/write
protected to host access.

Note: Although possible by configuration, it is prohibited that the software sections in the EEPROM
is included as part of the EEPROM protected area.

3.4.6.4 Non Permitted Access to Protected Areas in the EEPROM

This section refers to EEPROM accesses by the host via the EEC (bit banging) or EERD (parallel read

access) registers. Following a write access to the protected areas in the EEPROM (word 0x0 and the

hidden area defined by word 0x0), hardware responds properly on the PCle bus but does not initiate
any access to the EEPROM. Following a read access to the hidden area in the EEPROM (as defined by
word 0x0), hardware does not access the EEPROM and returns meaningless data to the host.

Notes: Using the bit banging access, the SPI EEPROM can be accessed in a burst mode by providing
opcode, address, and then read or write data for multiple bytes. Hardware inhibits any
attempt to access the protected EEPROM locations even in burst accesses.

Software should not access the EEPROM in a burst write mode starting in a non-protected
area and continue to a protected one, or vice versa. In such a case, it is not guaranteed that
the write access to the non-protected area takes place.

3.4.7 EEPROM Recovery

The EEPROM contains fields that if programmed incorrectly might affect the functionality of the 82599.
The impact might range from an incorrect setting of some function (like LED programming), via
disabling of entire features (such as no manageability) and link disconnection, to inability to access the
device via the regular PCle interface.

The 82599 implements a mechanism that enables recovery from a faulty EEPROM no matter what the
impact is, using an SMBus message that instructs the firmware to invalidate the EEPROM.

This mechanism uses an SMBus message that the firmware is able to receive in all modes, no matter
what is the content of the EEPROM. After receiving this message, firmware clears word 0xO0 including
the signature. Afterwards, the BIOS/operating system initiates a reset to force an EEPROM auto-load
process that fails and enables access to the device.

Firmware is programmed to receive such a command only from PCle reset until one of the functions
changes its status from DOu to DOa. Once one of the functions moves to DOa it can be safely assumed
that the device is accessible to the host and there is no further need for this function. This reduces the
possibility of malicious software using this command as a back door and limits the time the firmware
must be active in non-manageability mode.

The command is sent on a fixed SMBus address of OxC8. The format of the SMBus Block Write
command is as follows:

Function Command Data Byte

Release EEPROM OxC7 OxB6

82

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

Notes: This solution requires a controllable SMBus connection to the 82599.

In case more than one the 82599 is in a state to accept this solution, all of the the 82599
devices connected to the same SMBus accept the command. The devices in DOu state release
the EEPROM.

After receiving a release EEPROM command, firmware should keep its current state. It is the
responsibility of the programmer updating the EEPROM to send a firmware reset if required after the
full EEPROM update process is done.

An additional command is introduced to enable the EEPROM write directly from the SMBus interface to
enable the EEPROM modification (writing from the SMBus to any MAC CSR register). The same rules as
for the Release EEPROM command that determine when firmware accepts this command apply to this

command as well.

The command is sent on a fixed SMBus address of OxC8. The format of the SMBus Block Write
command is as follows:

Function Command CB;)):Jtr?t Data 1 Data 2 Data 3 Data 4 Data 7
. Config Config Config Config Config Data
EEPROM Write oxc8 7 Address 2 Address 1 Address 0 Data MSB LSB

The most significant bit in Configuration address 2 indicates which port is the target of the access (0 or
1). The 82599 always enables the manageability block after power up. The manageability clock is
stopped only if the manageability function is disabled in the EEPROM and one of the functions had
transitioned to DOa; otherwise, the manageability block gets the clock and is able to wait for the new
command.

This command enables writing to any MAC CSR register as part of the EEPROM recovery process. This
command can be used to write to the EEPROM and update different sections in it.

3.4.8 EEPROM Deadlock Avoidance

The EEPROM is a shared resource between the following clients:
1. Hardware auto read.
2. LAN port 0 and LAN port 1 software accesses.
3. Manageability-firmware accesses.

When accessing the EEPROM, software and manageability-firmware should use the EEPROM parallel
access. On this interface, hardware schedules the actual accesses to the EEPROM, avoiding starvation
of any client. The bit banging interface does not guarantee fairness between the clients, therefore it
should be avoided in nominal operation as much as possible. When write accesses to the EEPROM are
required the software or manageability should access the EEPROM one word at a time releasing the
interface after each word.

3.4.9 VPD Support

The EEPROM image can contain an area for VPD. This area is managed by the OEM vendor and does not
influence the behavior of the hardware. Word 0x2F of the EEPROM image contains a pointer to the VPD
area in the EEPROM. A value of OXFFFF means VPD is not supported and the VPD capability does not
appear in the configuration space.

The maximum area size is 256 bytes but can be smaller. The VPD block is built of a list of resources. A
resource can be either large or small. The structure of these resources are listed in the following tables.

83

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

Table 3.10. Small Resource Structure

Offset 6] 1—n
Content Tag = Oxxx,xyyyb (Type = Smag}(,(t)g:s)ltem Name = xxxx, length = yy Data
Table 3.11. Large Resource Structure

Offset 0 1-2 3—n
Content Tag = 1xxx,xxxxb (Type = Large(1), Item Name = XXXXXXXX) Length Data

The 82599 parses the VPD structure during the auto-load process following PCle reset in order to
detect the read only and read/write area boundaries. The 82599 assumes the following VPD fields with
the limitations listed in Table 3.12.

Table 3.12. VPD Structure

Tag éBe;tge?) Data Resource Description

0x82 idelr_lgrf]igetrhs(t):ing Identifier Identifier string.

0x90 Lengat?egf RO RO data VPD-R list containing one or more VPD keywords.

0x91 Leng;?ec;f RW RW data VPD-W list containing one or more VPD keywords. This part is optional.
0x78 N/A N/A End tag.

VPD structure limitations:

84

The structure must start with a tag equal to 0x82. If the 82599 does not detect a value of 0x82 in
the first byte of the VPD area or the structure does not follow the information listed inTable 3.12, it
assumes the area is not programmed and the entire 256 bytes area is read only.

The RO area and R/W area are both optional and can appear in any order. A single area is
supported per tag type. See PCI 3.0 specification Appendix | for details of the different tags.

If a VPD-W tag is found, the area defined by its size is writable via the VPD structure.

Both read and write sections on the VPD area must be Dword aligned (for example, each tag must
start on Dword boundaries, and each data field must end on Dword boundary). Write accesses to
Dwords that are only partially in the R/W area are ignored. VPD software is responsible to make the
right alignment to enable a write to the entire area.

The structure must end with a tag equal to 0x78. The tag must be word aligned.

The VPD area is accessible for read and write via the regular EEPROM mechanisms pending the
EEPROM protection capabilities enabled. The VPD area can be accessed through the PCle
configuration space VPD capability structure listed in Table 3.12. Write accesses to a read only area
or any accesses outside of the VPD area via this structure are ignored.

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.5 Flash

The 82599 provides an interface to an external serial Flash/ROM memory device. This Flash/ROM
device can be mapped into memory space for each LAN device through the use of Base Address
Registers (BARs). EEPROM bits associated with each LAN device selectively disable/enable whether the
Flash can be mapped for each LAN device by controlling the BAR register advertisement and write
ability.

3.5.1 Flash Interface Operation
The 82599 provides two different methods for software access to the Flash.

Using the legacy Flash transactions the Flash is read from, or written to, each time the host CPU
performs a read or a write operation to a memory location that is within the Flash address mapping or
upon boot via accesses in the space indicated by the Expansion ROM Base Address register. All accesses
to the Flash require the appropriate command sequence for the device used. Refer to the specific Flash
data sheet for more details on reading from or writing to Flash. Accesses to the Flash are based on a
direct decode of CPU accesses to a memory window defined in either:

< Memory CSR + Flash Base Address register (PCle Control register at offset 0x10).
= The Expansion ROM Base Address register (PCle Control register at offset 0x30).

The 82599 controls accesses to the Flash when it decodes a valid access.

Note: Flash read accesses must always be assembled by the 82599 each time the access is greater
than a byte-wide access.

The 82599 byte reads or writes to the Flash take about 2 us time. The device continues to
issue retry accesses during this time.

The 82599 supports only byte writes to the Flash.

Another way for software to access the Flash is directly using the Flash's 4-wire interface through the
Flash Access (FLA) register. It can use this for reads, writes, or other Flash operations (accessing the
Flash status register, erase, etc).

To directly access the Flash, software should follow these steps:
1. Write a 1b to the Flash Request bit (FLA.FL_REQ).

2. Read the Flash Grant bit (FLA.FL_GNT) until it becomes 1b. It remains Ob as long as there are other
accesses to the Flash.

3. Write or read the Flash using the direct access to the 4-wire interface as defined in the FLA register.
The exact protocol used depends on the Flash placed on the board and can be found in the
appropriate Flash datasheet.

4. Write a Ob to the Flash Request bit (FLA.FL_REQ).

3.5.2 Flash Write Control

The Flash is write controlled by the bits in the EEPROM/FLASH Control and Data (EEC.FWE) register.
Note that attempts to write to the Flash device when writes are disable (FWE=01b) should not be
attempted. Behavior after such an operation is undefined, and might result in component and/or
system hangs.

After sending one byte to write to the Flash, software can check if it can send the next byte to write
(check if the write process in the Flash had finished) by reading the FLA register. If bit (FLA.FL_BUSY) in
this register is set, the current write did not finish. If bit (FLA.FL_BUSY) is cleared, then software can
continue and write the next byte to the Flash.

85

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.5.3 Flash Erase Control

When software needs to erase the Flash it should set the FLA.FL_ER bit in the FLA register to 1b (Flash
erase and set bits EEC.FWE in the EEPROM/Flash Control register to Ob).

Hardware gets this command and sends the Erase command to the Flash. The erase process then
finishes by itself. Software should wait for the end of the erase process before any further access to the
Flash. This can be checked by using the Flash Write control mechanism previously described (see
Section 3.5.2).

The opcode used for the erase operation is defined in the FLOP register.

Note: Sector erase by software is not supported. To delete a sector, the serial (bit bang) interface
should be used.

3.5.4 Flash Access Contention

The 82599 implements internal arbitration between Flash accesses initiated through the LAN O device
and those initiated through the LAN 1 device. If accesses from both LAN devices are initiated during the
same approximate size window, The first one is served first and only then the next one. Note that the
82599 does not synchronize between the two entities accessing the Flash though contentions caused
from one entity reading and the other modifying the same locations is possible.

To avoid this contention, accesses from both LAN devices should be synchronized using external
software synchronization of the memory or 1/0 transactions responsible for the access. It is possible to
ensure contention-avoidance simply by the nature of the software sequence.

3.6 Configurable 1/0 Pins — Software-Definable Pins (SDP)

The 82599 has eight Software-Defined Pins (SDP pins) per port that can be used for miscellaneous
hardware or software-controllable purposes (see Figure 3.11). These pins and their function are bound
to a specific LAN device. The use, direction, and values of SDP pins are controlled and accessed by the
Extended SDP Control (ESDP) register. To avoid signal contention, following power up, all eight pins are
defined as input pins.

Some SDP pins have specific functionality:

e The default direction of the lower SDP pins (SDP0O-SDP3) is loaded from the SDP Control word in the
EEPROM.

= The lower SDP pins (SDP0O-SDP3) can also be configured for use as external interrupt sources
(GPI). To act as GPI pins, the desired pins must be configured as inputs and enabled by the GPIE
register. When enabled, an interrupt is asserted following a rising-edge detection of the input pin
(rising-edge detection occurs by comparing values sampled at the internal clock rate, as opposed to
an edge-detection circuit). When detected, a corresponding GPI interrupt is indicated in the EICR
register.

Certain SDP pins can be allocated to hardware functions. For example SDP2, SDP3, SDP6 and SDP7 can
be defined to support IEEE1588 auxiliary devices. In addition, the functionality of the 1/0 pins are
programmed by the TimeSync Auxiliary Control (TSAUXC) register.

86

]
Interconnects — Intel® 82599 10 GbE Controller l n tel

Table 3.13 defines an example of possible usage of SDP 1/0 pins, MDIO pins, and 1°C pins as a function
of an optical module or the PHY being interfaced. If mapping of these SDP pins to a specific hardware
function is not required then the pins can be used as general purpose software defined 1/0s. For any of
the function specific usages, the SDP 1/0 pins should be set to native mode by software by setting the
SDPxxx_NATIVE bits in the ESDP register. Native mode in those SDP 1/0 pins designed for PHY and
optical module specific usages, defines the pin functionality while in an inactive state (reset or power
down) while behavior in an active state is controlled by software. The hardware functionality of these
SDP 1/0 pins differ mainly by the active behavior controlled by software.

Table 3.13. Example for SDP, MDIO and 12C Ports Usage

SFP+ Reserved Copper PHY X2/XPAK1L

SDPO GPIO: RX_LOS GPIO: INTR_L GPIO: LASI

SDP1 GPIO: RX_LOS_N

SDP2 GPIO: MOD_ABS_N

SDP3 GP10: TX_DISABLE NATIVE: TS_SDP3 NATIVE: TS_SDP3
SDP4 Port O IN: SEC_ENA IN: SEC_ENA IN: SEC_ENA
SDP4 Port 1 GPIO GPIO GPIO

SDP5 NATIVE: RSO/RS1 drive NATIVE: RESET NATIVE: TX ON/OFF2

SDP6 GPI10O: RSO/RS1 sense NATIVE: TS_SDP6 GPIO: RESET_N

SDP7 GPIO: TX_FAULT NATIVE: TS_SDP7 NATIVE: TS_SDP7

MDIO MDIO MDIO

12c 12c

1. To Support XENPAK, X2 or XPAK modules, 3.3V to 1.2V level shifters are required between the 82599 and an optical
module.

2. When TX ON/OFF is low in XENPAK, X2 and XPAK modules transmission is disabled. The SDP5_Function bit in the ESDP
register should be set to Ob enabling the pin to be at a HiZ state while the 82599 is in an inactive state (as defined in the
register). Board designers should populate with an external pull-down resistor forcing a low level during an inactive state.

87

Intel® 82599 10 GbE Controller — Interconnects

intel.

Port 0 configuration shown. Port 1 is configured the same, except
that SDP1_4 is not used for SEC_ENA and may be used as a GPIO.
SFP Cage / \
RS1 RX_LOSO SDPO_O
RX_LOS {> RX LOSO N SDPO_l
RSO
MOD_ABS MOD_ABSO MOD ABSO N SDPO_2
TX_DISABLE TX DISABLEO._— gppQ_3
TX_FAULT
3.3V
SEC_ENA is used on
Port0 only (SDPO_4). Connect to 82599
Port1 may configure 10K SDP
as GPIO (SDP1_4) i SEC ENA SDPO_4
{Stuffing Opt ? 1
{(Empty) 100 i J
GND
1.5K
RSO/RS1 DRIVEO — SDPO_5
RS0/RS1 SENSEO SDPO 6
TX_FAULTO SDPO 7
Pull-up & Pull-down resistors
3.3V
A
> e — y
RX LOSO 10K DISABLEO | 1
MOD ABSO 10K
TX_FAULTO ok | T
RSO/RS1 DRIVEO 1.5K
Nntac:

Figure 3.11. SDP Connections

Table 3.14 lists the signals defined in Table 3.13 and behavior during reset and power down state (D3)
without management.

Table 3.14. SDP Assigned Signals Description

Software 1/0

Default Values at

Signal Description Programming (Reset, D3 no WoL and no MNG)
RX LOS RX_LOS high and RX_LOS_N low indicate
- | insufficient optical power for reliable signal GPIO: Input Input, no change.
RX_LOS_N -
- - reception.
INTR_L or Link Alarm Status Interrupt (LASI) — GPIO: Inbut
LASI, INTR_L when low, indicates possible module operational - Inp

fault or a status critical to the host system.

(Interrupt)

Input, no change.

RSO/RS1 drive

Short-circuit protected.

Native: Output

Output, autonomous high or tri-state
with pull-up.

RSO/RS1 sense

Directly connected input.

GPIO: Input

Input, no change.

88

Interconnects — Intel® 82599 10 GbE Controller

Table 3.14. SDP Assigned Signals Description

intel.

Software 170

Default Values at

Signal Description Programming (Reset, D3 no WoL and no MNG)
When held high by the host, places the module in Input, no change. In order to minimize
I)]
P DOWN/RST | Standby (_OW power) mode _ o GPIO: Output PHY power, software should drive the
- The negative edge of P_DOWN/RST signal initiates SDP to high or set to input while
a complete module reset. populating a pull-up.
Output, no change. In order to
RESET N When low, XENPAK, X2 or XPAK optical module is GPIO: Output minimize PHY power software _should
reset. drive the SDP to low or set to input
while populating a pull-down.
RESET When high, the copper PHY is reset. Native: Output Output, autonomous high or tri-state
with pull-up.
Output, no change. In order to
When TX_DISABLE is asserted high, optical B minimize PHY power software should
TX_DISABLE module transmitter is turned off. GPIO: Output drive the SDP to high or set to input
while populating a pull-up.
TX_DIS When TX_D!S is asserted high, optical module Native: Output O_utput, autonomous high or tri-state
transmitter is turned off. with pull-up.
1b = Transmitter on. S Output, autonomous low or tri-state
TX ON/OFF 0b = Transmitter off. Native: Output | .0 pull-down.
GPIO: Input
MOD_DET_N Inverted mode detect. (Interrupt) Input, no change.
. . . Native: According | Tri-state during reset. No change in
TS_SDPX Z:/rzﬁtsgﬂf support pins, can be used as event in or to programmed | D3. External pull-up / pull-down as
: functionality required by the system designer.
When high, indicates that the module transmitter GPIO: Inbut
TX_FAULT has detected a fault condition related to laser - 'np Input, no change.
A (Interrupt)
operation or safety.
When high, indicates that the module has detected GPIO: Input
MOD_NR a condition that renders transmitter and or (Inte-rru pt) Input, no change.
receiver data invalid. p
GPIO: Input
MOD_ABS (Interrupt) Input, no change.
FAN_Status Optional health indication of the fan. GPIO: Input Input, no change.

(Interrupt)

89

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.7 Network Interface (MAUI Interface)

The 82599 supports 10 GbE operation, 1 GbE operation and 100 Mb/s Ethernet operation on the MAUI
interface. The 82599 can support different or the same link speeds (10 Gb/s, 1 Gb/s and 100 Mb/s) and
protocols on each of the two MAUI ports. The 82599 also supports automatic crossover and polarity
correction on each of the MAUI ports to eliminate the need for crossover cables between similar
devices. The 82599 also supports auto-negotiation when configured for backplane Ethernet to
automatically select between KX, KX4 and KR.
When in 10 GbE operating mode, the MAUI interface can be configured as any of the following:

= A four lane XAUI interface.

« A four lane 10GBASE-BX4 interface.

« A four lane 10GBASE-KX4 interface.

« A four lane 10GBASE-CX4 interface.

* A single lane 10GBASE-KR interface.

« A single lane SFI interface.

When in 1 GbE operating mode, the MAUI interface can be configured as any of the following:
= A single lane 1000BASE-KX interface.
« A single lane 1000BASE-BX interface.
« A single SGMII (1 Gb/s or 100 Mb/s) lane over a KX or BX compliant electrical interface.

The device implements all features required for transmission and reception defined for the XAUI, BX4,
CX4, KX4, KX, KR, SFI and BX Media interface. The MAUI interface supports the IEEE 802.3ae

(10 GbE — XAUI), IEEE 802.3ap (KX, KX4 and KR), IEEE802.3ak (L0GBASE-CX4), PICMG3.1
(1000BASE-BX and 10GBASE-BX4), and SFI standards.

In 10 GbE BX4, KX4, CX4 or XAUI operating modes, data passes on all four MAUI lanes complying with
the BX4, KX4, CX4 or XAUI protocol. In 10GBASE-KR, SFI, SGMII, 1000BASE-KX, 1000BASE-BX, or
10GBASE-BX4 operation, data passes on MAUI lane O complying with the 10 GbE KR, SFI protocols, the
1 GbE KX or BX protocols or the 100 Mb/s and 1 GbE SGMII protocol over a KX or BX electrical
interface.

3.7.1 10 GbE Interface

The 82599 provides complete functionality to support up to two 10 Gb/s ports. The device performs all
functions required for transmission and reception defined in the various standards.

A lower-layer PHY interface is included to attach either to an external PMA or Physical Medium
Dependent (PMD) components.

The 82599 enables 10 GbE operation compliant to the XAUI, CX4, KX4, KR, SFI specifications by
programming the appropriate bits in the AUTOC register.

3.7.1.1 XAUI Operating Mode

The Ten Gigabit Attachment Unit Interface (XAUI) supports data rates of 10 Gb/s over four differential
paths in each direction for a total of eight pairs, with each path operating at 3.125 Gb/s. The interface
is used to connect the 82599 to an external 10 GbE PHY device with a XAUI interface. XAUI operating
mode can be forced by software by setting the relevant bits in the AUTOC register and disabling auto-
negotiation (see Section 3.7.4.2).

90

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

3.7.1.1.1 XAUI Overview

XAUI is a full-duplex interface that uses four self-clocked serial differential links in each direction to
achieve 10 Gb/s data throughput. Each serial link operates at 3.125 GBaud to accommodate both data
and the overhead associated with 8B/10B coding. The self-clocked nature eliminates skew concerns
between clock and data, and enables a functional reach of up to 50 cm. Conversion between the XGMII
and XAUI interfaces occurs at the XGXS (XAUI Extender Sublayer). Functional and electrical
specifications of XAUI interface can be found in IEEE802.3 clause 47.

XGMII XGXS XAUI
Tx_CLK —— Source Lane
. » DOOP
TXD (7:0) — » Lane 0 —» DO_O_N
_____________________________ ——» DO_1_P
TxD (15:8) ———»| Lane 1 ——» DO_1N
R ———» D0 2 P
TxD (23:16) ———p| Lane 2 I DO 2 N
TxD (31:24) ———p| Lane 3 IR
I » D0 3 N
Rx_CLK ————| Destination Lane
le—
RxD (7:0) ———»| Lane 0 —— g::g:z
- O ¢——— D1_1_P
xD (15:8) ————» Lane 1 e—— D1_1.N
- R l«—— D1.2 P
xD (23:16) ——— Lane 2 e—— D1_2 N
- O l«—— D1_3_P
xD (31:24) ————» Lane 3 e——— D1.3 N

Figure 3.12. XGMII to XAUI at the XGXS

91

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

The XAUI interface has the following characteristics:

a. Simple signal mapping to the XGMII.
Independent transmit and receive data paths.
Four lanes conveying the XGMII 32-bit data and control.
Differential signaling with low voltage swing.
Self-timed interface enables jitter control to the PCS.
Using 8B/10B coding.

"o a0 o

Figure 3.13 Shows the architectural positioning of XAUI.

LAN CSMA/CD LAYERS

Higher Layers

LLC - Logical Link Control or other MAC Client

MAC Control (Optional)

MAC

I Reconciliation I

XGMIl —p

10GBASE-X PCS (8B/10B)

PMA

PMD

H MEDIUM

YT

XAUI

b

Figure 3.13. Architectural Positioning of XAUI

3.7.1.1.2 XAUI Operation

XAUI supports the 10 Gb/s data rate of the XGMII. The 10 Gb/s MAC data stream is converted into four
lanes at the XGMII interface. The byte stream of each lane is 8B/10B encoded by the XGXS for
transmission across the XAUI at a nominal rate of 3.125 GBaud. The XGXS and XAUI at both sides of
the connection (MAC or PHY) can operate on independent clocks.

The following is a list of the major concepts of XGXS and XAUI:

1. The XGMII is organized into four lanes with each lane conveying a data octet or control character on
each edge of the associated clock. The source XGXS converts bytes on an XGMII lane into a self
clocked, serial, 8B/10B encoded data stream. Each of the four XGMII lanes is transmitted across
one of the four XAUI lanes.

2. The source XGXS converts XGMII Idle control characters (inter-frame) into an 8B/10B code
sequence.

3. The destination XGXS recovers clock and data from each XAUI lane and de-skews the four XAUI
lanes into the single-clock XGMII.

4. The destination XGXS adds to or deletes from the inter-frame gap as needed for clock rate disparity
compensation prior to converting the inter-frame code sequence back into XGMII idle control
characters.

5. The XGXS uses the same code and coding rules as the 10GBASE-X PCS and PMA specified in IEEE
802.3 Clause 48.

92

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.7.1.1.3 XAUI Electrical Characteristics

The XAUI lane is a low swing AC coupled differential interface using NRZ signaling. AC coupling allows
for inter-operability between components operating at different supply voltages. Low swing differential
signaling provides noise immunity and reduced Electromagnetic Interference (EMI). Differential signal
swings specifications depend on several factors, such as transmitter pre-equalization and transmission
line losses.

The XAUI signal paths are point-to-point connections. Each path corresponds to a XAUI lane and is
comprised of two complementary signals making a balanced differential pair. There are four differential
paths in each direction for a total of eight pairs, or 16 connections. The signal paths are intended to
operate up to approximately 50 cm over controlled impedance traces on standard FR4 Printed Circuit
Boards (PCBs).

3.7.1.2 10GBASE-KX4 Operating Mode

The KX4 interface supports data rates of 10 Gb/s over copper traces in improved FR4 PCBs. Data is
transferred over four differential paths in each direction for a total of eight pairs, with each path
operating at 3.125Gbaud to support overhead of 8B/10B coding. The interface is used to connect the
82599 to a KX4 switch port over the backplane or to an external 10 GbE PHY device with a KX4
interface.

The MAUI interface is configured as a KX4 interface while auto-negotiation to a KX4 link partner is
detected. KX4 operation can also be forced by EEPROM or software by setting the relevant bits in the
AUTOC register and disabling auto-negotiation (see Section 3.7.4.2).

3.7.1.2.1 KX4 Overview

10GBASE-KX4 definition is based on XAUI with 10GBASE-CX4 extensions and specifies 10 Gb/s
operation over four differential paths in each direction for a total of eight pairs, or 16 connections. This
system uses the 10GBASE-X PCS and PMA as defined in IEEE802.3 Clause 48 with amendments for
auto-negotiation as specified in IEEE802.3ap. The 10GBASE-KX4 PMD is defined in IEEE802.3ap Clause
71.

KX4 is a full-duplex interface that uses four self-clocked serial differential links in each direction to
achieve 10 Gb/s data throughput. Each serial link operates at 3.125 Gbaud to accommodate both data
and the overhead associated with 8B/10B coding. The self-clocked nature eliminates skew concerns
between clock and data, and enables a functional reach of up to one meter.

93

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

Figure 3.14 shows the architectural positioning of 10GBASE-KX4.

LAN CSMA/CD LAYERS
Higher Layers
LLC — Logical Link Control or other MAC Client
MAC Control (optional)
MAC
Reconciliation

XGMIl ——
8B/10B PCS
PMA
PMD
AN
MDI —
(O
MEDIUM
e

10GBASE KX4

Figure 3.14. Architectural Positioning of 10GBASE-KX4

3.7.1.2.2 KX4 Electrical Characteristics

The KX4 lane is a low swing AC coupled differential interface using NRZ signaling. AC coupling allows for
inter-operability between components operating at different supply voltages. Low swing differential
signaling provides noise immunity and reduced EMI. Differential signal swings specifications depend on
several factors, such as transmitter pre-equalization and transmission line losses.

The KX4 signal paths are point-to-point connections. Each path corresponds to a KX4 lane and is
comprised of two complementary signals making a balanced differential pair. There are four differential
paths in each direction for a total of eight pairs, or 16 connections. The signal paths are intended to
operate up to approximately one meter over controlled impedance traces on improved FR4 PCBs.

3.7.1.3 10GBASE-KR Operating Mode

The KR interface supports data rates of 10 Gb/s over copper traces in improved FR4 PCBs. Data is
transferred over a single differential path in each direction for a total of two pairs, with each path
operating at 10.3125 Gbaud + 100 ppm to support overhead of 64B/66B coding. The interface is used
to connect the 82599 to a KR switch port over the backplane.

The MAUI interface is configured as a KR interface while auto-negotiation to a KR link partner is
detected. KR operation can also be forced by EEPROM or software by setting the relevant bits in the
AUTOC register and disabling auto-negotiation (see Section 3.7.4.2). When in 10GBASE-KR operating
mode, MAUI lane O is used for receive and transmit activity while lanes 1 to 3 of the MAUI interface are
powered down.

94

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.7.1.3.1 KR Overview

10GBASE-KR definition enables 10 Gb/s operation over a single differential path in each direction for a
total of two pairs, or four connections. This system uses the 10GBASE-KR PCS as defined in IEEE802.3
Clause 49 with amendments for auto-negotiation specified in IEEE802.3ap and 10 Gigabit PMA as
defined in IEEE802.3 clause 51. The 10GBASE-KR PMD is defined in IEEE802.3ap Clause 72. The
10GBASE-KR PHY includes 10GBASE-KR Forward Error Correction (FEC), as defined in IEEE802.3ap
Clause 74. FEC support is optional and is negotiated between Link partners during auto-negotiation as
defined in IEEE802.3ap clause 73. Activating FEC improves link quality (2dB coding gain) by enabling
correction of up to 11 bit-burst errors.

KR is a full-duplex interface that uses a single self-clocked serial differential link in each direction to
achieve 10 Gb/s data throughput. The serial link transfers scrambled data at 10.3125 Gbaud to
accommodate both data and the overhead associated with 64B/66B coding. The self-clocked nature
eliminates skew concerns between clock and data, and enables a functional reach of up to one meter.

Following initialization and auto-negotiation 10GBASE-KR defines a start-up protocol, where link
partners exchange continuous fixed length training frames using differential Manchester Encoding
(DME) at a signaling rate equal to one quarter of the 10GBASE-KR signaling rate. This protocol
facilitates timing recovery and receive equalization while also providing a mechanism through which the
receiver can tune the transmit equalizer to optimize performance over the backplane interconnect.
Successful completion of the start-up protocol enables transmission of data between the link partners.

Figure 3.15 shows the architectural positioning of 10GBASE-KR.

LAN CSMA/CD LAYERS
Higher Layers
LLC — Logical Link Control or other MAC Client
MAC Control (optional)
MAC
Reconciliation

XGMIl ——,

64B/66B PCS
FEC (optional)
PMA
PMD
AN

MDI —

ﬁ MEDIUM

L J

~
10GBASE Kr

Figure 3.15. Architectural Positioning of 10GBASE-KR

95

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

3.7.1.3.2 KR Electrical Characteristics

The KR lane is a low swing AC coupled differential interface using NRZ signaling. AC coupling allows for
inter-operability between components operating from at different supply voltages. Low swing
differential signaling provides noise immunity and improved reduced EMI. Differential signal swings
defined specifications depend on several factors, such as transmitter pre-equalization and transmission
line losses.

The KR signal paths are point-to-point connections. Each path corresponds to a KR lane and is
comprised of two complementary signals making a balanced differential pair. There is a single
differential path in each direction for a total of two pairs, or four connections.

The 10GBASE-KR link requires a nominal 100 Q differential source and load terminations with AC
coupling on the receive side. The signal paths are intended to operate up to approximately one meter,
including two connectors, over controlled impedance traces on improved FR4 PCBs.

3.7.1.3.3 KR Reverse Polarity

The 82599 supports reverse polarity of the KR transmit and receive lanes. It is enabled by the following
EEPROM setting in the Core 0/1 Analog Configuration Modules:

Reverse Tx polarity setting:

EEPROM Word Offset
(Starting at Odd Reserved KR /PSFI Reverse Description
olarity
Word)
2*N+1 0x0101 Set page 1.
2*N+2 Ox1E12 Write register Ox1E the data Ox12 to invert Tx polarity.

Reverse Rx polarity setting

EEPROM Word Offset
(Starting at Odd Reserved KR 7 SFI Reverse Description
Polarity
Word)
2*N+1 0x0101 Set page 1.
2*N+2 Ox1FCO Write register Ox1F the data 0xCO to invert Rx polarity.

3.7.1.4 10GBASE-CX4 Operating Mode

The CX4 interface supports data rates of 10 Gb/s over twinaxial cable. Data is transferred over four
differential paths in each direction for a total of eight pairs, with each path operating at 3.125Gbaud to
support overhead of 8B/10B coding. The interface is used to connect the 82599 to a CX4 switch. CX4
operation can be forced by EEPROM or software by setting the relevant bits in the AUTOC register and
disabling auto-negotiation (see Section 3.7.4.2).

3.7.1.4.1 CX4 Overview

10GBASE-CX4 definition specifies 10 Gb/s operation over four differential paths in each direction for a
total of eight pairs, or 16 connections. This system uses the 10GBASE-X PCS and PMA as defined in
IEEE802.3 Clause 48. The 10GBASE-CX4 PMD is defined in IEEE802.3 Clause 54.

96

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

CX4 is a full-duplex interface that uses four self-clocked serial differential links in each direction to
achieve 10 Gb/s data throughput. Each serial link operates at 3.125 Gbaud to accommodate both data
and the overhead associated with 8B/10B coding. The self-clocked nature eliminates skew concerns
between clock and data.

Figure 3.16 shows the architectural positioning of 10GBASE-CX4.

LAN CSMA/CD LAYERS
Higher Layers
LLC — Logical Link Control or other MAC Client
MAC Control (optional)
MAC
Reconciliation

XGMI| ——p,

10GBASE-X PCS (8B/10B)
PMA
PMD

MDI —

ﬁ MEDIUM

L

~
10GBASE-CX4

Figure 3.16. Architectural Positioning of 10GBASE-CX4

3.7.1.4.2 CX4 Electrical Characteristics

The CX4 lane is a low swing AC coupled differential interface using NRZ signaling. AC coupling allows for
inter-operability between components operating from at different supply voltages. Low swing
differential signaling provides noise immunity and improved reduced EMI. Differential signal swings
defined specifications depend on several factors, such as transmitter pre-equalization and transmission
line losses.

The CX4 signal paths are point-to-point connections. Each path corresponds to a CX4 lane and is
comprised of two complementary signals making a balanced differential pair. There are four differential
paths in each direction for a total of eight pairs, or 16 connections. The signal paths are intended to
operate on twinaxial cable assemblies up to 15 m in length.

97

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

3.7.1.5 10GBASE-BX4 Operating Mode

10 GDbE is supported within PICMG 3.1 by adopting a subset of the IEEE 802.3 XAUI specifications.
Where XAUI is a chip-to-chip interface between test points TP-1 and TP-4, the PICMG 3.1 specifies what
goes into the backplane at TP-T and what comes out of the backplane at TP-R. When implementing a
10 Gb/s PICMG 3.1 channel, board designers must implement this channel with compliant TP-T and TP-
R test points.

Note: The channel-to-channel skew is handled by the XAUI protocol.

3.7.1.5.1 10GBASE-BX4 Electrical Characteristics
Transmitted Electrical Specifications at TP-1:

PICMG 3.1 specifies the compliance point TP-T. System designers are required to implement additional
margin at TP-1 to ensure compliance at TP-T.

The impedance at termination must be 100 Q + 10%.
Transmitted Electrical Specifications at TP-T:

The PICMG 3.1 drive levels into the backplane must conform to the following specifications as listed in
Table 3.15.

Table 3.15. Transmit Specifications at TP-T

Parameter Value Units
Baud rate 3.125 GBd
Clock tolerance + 100 ppm
Differential amplitude maximum 1600 mV p-p
Absolute output voltage limits -0.4 min, 1.6 max \Y
Differential output return loss See footnote® dB

Output jitter

Near-end maximums (TP-T)

Total jitter =+ 0.075 peak from the mean ul

Deterministic jitter =+ 0.085 peak from the mean Ul

1. s11 = -10 dB for 312.5 MHz < Freq (f) < 625 MHz, and —10 + 10log(f/625) dB for 625 MHz <= Freq (f) = < 3.125
GHz; where f is frequency in MHz.

Note: All measurements are made through a mated pair connector.

To maintain inter-operability between older and newer technologies and to avoid damage to the
components, the maximum drive amplitude of any PICMG 3.1 driver must not exceed 1600 mV P-P.

The output impedance requirement applies to all valid output levels. The reference impedance for
differential return loss measurements is 100 Q.

Receiver Electrical Specifications at TP-R:

Table 3.16 lists the receiver specifications at TP-R.

98

Interconnects — Intel® 82599 10 GbE Controller

Table 3.16. Receiver Specifications at TP-R

Parameter Value Units
Baud rate 3.125 GBd
Clock tolerance + 100 ppm
Differential return loss 10 dB
Common mode return loss 6 dB
Jitter amplitude tolerance (p-p) 0.65 Ul
Differential skew 75 ps

Receiver input impedance must result in a differential return loss better than 10 dB and a common
mode return loss better than 6 dB from 100 MHz to 2.5 GHz. This includes contributions from all
components related to the receiver including coupling components. The return loss reference
impedance is 100 Q for differential return loss and 25 Q for common mode.

Receiver Electrical Specifications at TP-4:

PICMG 3.1 specifies the compliance point TP-R. System designers are required to ensure the additional
losses to TP-4 are accounted for.

The AC coupling capacitors at the receiver must be no more than 470 pF +1% and matched within 2%
with each other.

A 10GBASE-BX4 interface between two GbE ports is shown in Figure 3.17.

Mated ZD
Bo ard connector Bo ard
Driver |\TP-1 P.T Ba ckplane PR TR-4

D= i T 1 >
= >
E \J’]] \J/ >

TP-4TP R TP-T TP -

A A
< Iy T T T e
< <
< e
< I 1 1 - e

T T
< PiamMGs1 >
< IEEE 802.3 XAUI >

Figure 3.17. 10GBASE-BX4 Electrical Environment

99

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.7.1.6 SFI1 Operating Mode

The MAUI interface is configured as SFI by EEPROM or software by setting the relevant bits in the
AUTOC register and disabling auto-negotiation (see Section 3.7.4.2). When in SFIl operating mode, only
the operation of the 82599 Analog Front End (AFE) is modified, while the rest of the 82599 logic and
circuitry operates similar to 10GBASE-KR. When in SFI operating mode, MAUI lane O is used for receive
and transmit activity while lanes 1 to 3 of the MAUI interface are powered down.

3.7.1.6.1 SFI1 Overview

SFI definition enables 10 Gb/s operation over a single differential path in each direction for a total of
two pairs, or four connections. When in SFI operating mode the 82599 uses the 10GBASE-R PCS and
10 Gigabit PMA as defined in IEEE802.3 Clause 49 and 51, respectively.

SFl is a full-duplex interface that uses a single self-clocked serial differential link in each direction to
achieve 10 Gb/s data throughput. The serial link transfers scrambled data at 10.3125 Gbaud to
accommodate both data and the overhead associated with 64B/66B coding. The self-clocked nature
eliminates skew concerns between clock and data.

3.7.1.6.2 SFI1 Electrical Characteristics

The SFI lane is a low swing AC coupled differential interface using NRZ signaling. AC coupling allows for
inter-operability between components operating from at different supply voltages. Low swing
differential signaling provides noise immunity and improved reduced EM). Differential signal swings
defined specifications depend on several factors, such as transmitter pre-equalization and transmission
line losses.

The SFI signal paths are point-to-point connections. Each path corresponds to a SFI lane and is
comprised of two complementary signals making a balanced differential pair. There is a single
differential path in each direction for a total of two pairs, or four connections. The signal paths are
intended to operate on FR4 PCBs.

SFI interface typically operates over 200 mm of improved FR4 material or up to about 150 mm of
standard FR4 with one connector. The electrical interface is based on high speed low voltage AC coupled
logic with a nominal differential impedance of 100 Q. The SFI link requires nominal 100 Q differential
source and load terminations on both the host board and the module. The SFI terminations provide
both differential and common mode termination to effectively absorb differential and common mode
noise and reflections. All SFI transmitters and receivers are AC coupled. SFP+ modules incorporate
blocking capacitors on all SFI lines.

3.7.2 GbE Interface

The 82599 provides complete support for up to two 1 Gb/s port implementations. The device performs
all functions required for transmission and reception defined by the different standards.

A lower-layer PHY interface is included to attach either to external PMA or Physical Medium Dependent
(PMD) components.

When operating in 1 GbE operation mode, the 82599 uses Lane O of the XAUI interface for 1 GbE
operation while the other three XAUI lanes are powered down.

The 82599 enables 1 GbE operation compliant with the KX, BX or SGMII specifications by programming
the appropriate bits in the AUTOC register.

100

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.7.2.1 1000BASE-KX Operating Mode

The MAUI interface, when operating as a KX Interface, supports data rates of 1 Gb/s over copper traces
on improved FR4 PCBs. Data is transferred over a single differential path in each direction for a total of
two pairs (Lane O of MAUI interface and Lanes 1 to 3 powered down), with each path operating at 1.25
Gbaud to support overhead of 8B/10B coding. The interface is used to connect the 82599 to a KX
compliant switch port over the backplane or to KX compliant 1 GbE PHY device. In the event of auto-
negotiation defined in IEEE802.3ap clause 73 ending with 1 Gb/s as the HCD, the MAUI interface is
configured as a KX interface. KX operating mode can also be forced by software by setting the relevant
bits in the AUTOC register and disabling auto-negotiation (see Section 3.7.4.2).

3.7.2.1.1 KX Overview

1000BASE-KX extends the family of 1000BASE-X Physical Layer signaling systems. KX specifies
operation at 1 Gb/s over two differential, controlled impedance pairs of traces (one pair for transmit,
one pair for receive). This system uses the 1000BASE-X PCS and PMA as defined in IEEE802.3 Clause
36 together with the amendments placed in IEEE802.3ap. The 1000BASE-KX PMD is defined in
IEEE802.3ap Clause 70.

KX is a full-duplex interface that uses a single serial differential link in each direction to achieve 1 Gb/s
data throughput. Each serial link operates at 1.25 GBaud to accommodate both data and the overhead
associated with 8B/10B coding. The self-clocked nature eliminates skew concerns between clock and
data, and enables a functional reach of up to one meter.

Figure 3.18 shows the architecture positioning of 1000BASE-KX.

101

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

LAN CSMA/CD LAYERS
Higher Layers
LLC — Logical Link Control or other MAC Client
MAC Control (optional)
MAC
Reconciliation

GMIl ——p
8B/10B PCS
PMA
PMD
AN
MDI —
(O
MEDIUM
e

1000BASE- KX

Figure 3.18. Architectural Positioning of 1000BASE-KX

3.7.2.1.2 KX Electrical Characteristics

The KX lane is a low swing AC coupled differential interface using NRZ signaling. AC coupling allows for
inter-operability between components operating from at different supply voltages. Low swing
differential signaling provides noise immunity and improved reduced electromagnetic interference
(EMI). Differential signal swings defined specifications depend on several factors, such as transmitter
pre-equalization and transmission line losses.

The KX signal paths are point-to-point connections. Each path corresponds to a KX lane and is
comprised of two complementary signals making a balanced differential pair. There is one differential
path in each direction for a total of two pairs, or four connections. The signal paths are intended to
operate up to approximately one meter over controlled impedance traces on improved FR4 PCBs.

3.7.2.2 1000BASE-BX Operating Mode

1000BASE-BX is the PICMG 3.1 electrical specification for transmission of 1 Gb/s Ethernet encoded data
over a 100 Q differential backplane. The 1000BASE-BX standard defines a full-duplex interface that
uses a single serial differential link in each direction (one pair for receive and one for transmit) to
achieve 1 Gb/s data throughput. Each serial link operates at 1.25 GBaud to accommodate both data
and the overhead associated with 8B/10B coding. The self-clocked nature eliminates skew concerns
between clock and data. BX operating mode can be forced by software by setting the relevant bits in
the AUTOC register and disabling auto-negotiation (see Section 3.7.4.2).

102

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.7.2.2.1 BX Electrical Characteristics

The BX lane is a low swing AC coupled differential interface. AC coupling allows for inter-operability
between components operating from at different supply voltages. Low swing differential signaling
provides noise immunity and improved reduced EMI. Differential signal swings defined specifications
depend on several factors, such as transmitter pre-equalization and transmission line losses.

The BX signal paths are point-to-point connections. Each path corresponds to a BX lane and is
comprised of two complementary signals making a balanced differential pair. There is one differential
path in each direction for a total of two pairs, or four connections.

3.7.3 SGMII Support

The 82599 supports 1 Gb/s and 100 Mb/s operation using the SGMII protocol over the KX and BX
electrical interface (AC coupling, no source synchronous TX clock, etc.).

3.7.3.1 SGMII Overview

SGMII interface supported by the 82599 enables operation at 1 Gb/s over two differential, controlled
impedance pairs of traces (one pair for transmit, one pair for receive). When operating in SGMII, the
MAUI interface uses the 1000BASE-X PCS and PMA as defined in IEEE802.3 Clause 36 and the
1000BASE-KX PMD as defined in IEEE802.3ap Clause 70 or the 1000BASE-BX as defined in the PCIMG
3.1 standard. In SGMII operating mode, the MAUI interface can support data rates of 1 Gb/s and

100 Mb/s.

SGMII, supported by the 82599, is a full-duplex interface that uses a single serial differential link in
each direction to achieve 1 Gb/s data throughput. Each serial link operates at 1.25 GBaud to
accommodate both data and the overhead associated with 8B/10B coding. The self-clocked nature
eliminates skew concerns between clock and data.

SGMII control information, as listed in Table 3.17 is transferred from the PHY to the MAC to signal
change of link speed (100 Mb/s or 1 Gb/s). This is achieved by using the auto-negotiation functionality
defined in Clause 37 of the IEEE Specification 802.3z. Instead of the ability advertisement, the PHY
sends the control information via its tx_config_reg[15:0] as listed in Table 3.17 each time the link
speed information changes. Upon receiving control information, the MAC acknowledges the update of
the control information by asserting bit 14 of its tx_config_reg[15:0] as listed in Table 3.17. Compared
to the definition in IEEE802.3 clause 37, the link_timer inside the auto-negotiation has been changed
from 10 ms to 1.6 ms to ensure a prompt update of the link status.

Table 3.17. SGMII Link Control Information

Nuﬁiger TX_CONFIG_REG[15:0] Sent From PHY to MAC TX_CONFIG_REG[15:0] Sent From MAC to PHY
15 Link: 1b = link up, Ob = link down Ob: Reserved for future use.
14 Rese_r_/ed _for auto-negotiation acknowledge as 1b.
specified in 802.3z
13 Ob: Reserved for future use Ob: Reserved for future use.
12 Duplex mode: 1b = full duplex, Ob = half duplex Ob: Reserved for future use.

103

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

Table 3.17. SGMII Link Control Information

Bit

Number TX_CONFIG_REG[15:0] Sent From PHY to MAC TX_CONFIG_REG[15:0] Sent From MAC to PHY

Speed: Bit 11, 10:
11b = Reserved.
11:10 10b = 1000 Mb/s: 1000BASE-TX. 00b: Reserved for future use.
01lb = 100 Mb/s: 100BASE-TX.

00b = 10 Mb/s: 10BASE-T (not supported).

9:1 0x0 = Reserved for future use. 0x0: Reserved for future use.

0 1b. 1b.

When operating in 100 Mb/s the SGMII interface elongates the frame by replicating each frame byte 10
times for 100 Mb/s. This frame elongation takes place above the 802.3z PCS layer, thus the start frame
delimiter only appears once per frame. Note that the 802.3z PCS layer might remove the first byte of
the elongated frame. An example of a 100 Mb/s elongated frame can be seen in Figure 3.19.

Data in 100 Mbps :X Data 0 X Data 1 X Data 2)

Domain

Ko o oo)))))))) o)))0 G)0)) e o e G

Figure 3.19. Data Sampling in 100 Mb/s Mode

3.7.4 Auto Negotiation For Backplane Ethernet and Link Setup
Features

Auto-negotiation provides a linked device with the capability to detect the abilities (modes of operation)
supported by the device at the other end of the link, determine common abilities, and configure for
joint operation.

Auto-negotiation for backplane Ethernet is based on IEEE802.3 clause 28 definition of auto-negotiation
for twisted-pair link segments. Auto-negotiation for backplane Ethernet uses an extended base page
and next page format and modifies the timers to allow rapid convergence. Furthermore, auto-
negotiation does not use Fast Link Pulses (FLPs) for link code word signaling and instead uses
Differential Manchester Encoding (DME) signaling, which is more suitable for electrical backplanes.
Since DME provides a DC balanced signal.

Auto-negotiation for backplane Ethernet is defined in IEEE802.3ap Clause 73 and includes support for
parallel detection of 1000BASE-KX and 10GBASE-KX4 links in addition to transmission and reception of
extended base page and next page auto-negotiation frames. The 82599 supports reception of extended
base page and next page auto-negotiation frames but does not transmit next page auto-negotiation
frames only NULL frames.

3.7.4.1 Link Configuration

The 82599 network interface meets industry specifications for:
e 10 GbE:
— XAUI (IEEE 802.3ae)

— SFI (SFF-8431 Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable
Module SFP+)

- 10 GbE — 10GBASE-CX4 (IEEE 802.3ak)

104

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

= 1 GbE backplane:
— Ethernet 1000BASE-KX (IEEE 802.3ap)
— Ethernet 1000BASE-BX (PICMG3.1)

— SFI (SFF-8431 Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable
Module SFP+)

= 10 GbE backplane:
— Ethernet 10GBASE-KX4 (IEEE 802.3ap)
— Ethernet 10GBASE-KR (IEEE 802.3ap)

The MAUI AFE is configured at start up to support the appropriate protocol as a function of the
negotiation process and pre-defined control bits that are either loaded from the EEPROM or configured
by software.

3.7.4.2 MAC Link Setup and Auto Negotiation

The MAC block in the 82599 supports both 10 GbE and 1 GbE link modes and the appropriate
functionality specified in the standards for these link modes.

Each of these link modes can use different PMD sub-layer and base band medium types.

In 10 GbE operating mode, the 82599 supports 10GBase-KX4, 10GBase-CX4,10GBase-KR, SFI or XAUI
(10 GbE Attachment Unit Interface). While in 1 GbE operating mode, the 82599 supports 1000Base-KX,
1000Base-BX or SGMII (SGMII also supports both 100 Mb/s and 1 Gb/s data rates) protocols. The
different protocols supported in 10 GbE operating mode and 1 GbE operating mode affect only the
configuration of the MAUI AFE and MAUI PHY logic blocks (PCS, FEC, etc.) while the MAC supports rates
of either 1 Gb/s or 10 Gb/s, without need to know the electrical medium actually being interfaced.

Link speed and link characteristics can be determined through static configuration, parallel detect and
auto-negotiation or forced operation for diagnostic purposes. The auto-negotiation processes defined in
IEEE802.3ap clause 73 enables selection between KR (10G), KX4 (10G) and KX (1G) compliant link
partners and defining link characteristics and link speed. While the auto-negotiation process defined in
IEEE802.3 clause 37 enables detection of the BX (1 GbE) link characteristics but not the link speed.

Link setting is done by configuring the speed configuration in the AUTOC.LMS field, defining the
appropriate physical interface by programming AUTOC.1G_PMA_PMD,
AUTOC.10G_PMA_PMD_PARALLEL and AUTOC2.10G_PMA_PMD_Serial and restarting auto-negotiation
by setting AUTOC.Restart_AN to 1b.

3.7.4.3 Hardware Detection of Legacy Link Partner (Parallel Detection)

The 82599 supports the IEEE802.3ap clause 73 parallel detection process to enable a connection to
legacy link partners that do not support auto-negotiation. Parallel detection enables detecting the link
partner operating mode (KX4 or KX as defined in IEEE802.3ap clause 73) by activating KX4 and KX
alternately and attempting to achieve link synchronization by the related PCS block.

Parallel detection is enabled as part of clause 73 backplane auto-negotiation process by appropriately
configuring the link speed and auto-negotiation mode in the AUTOC.LMS register field, clearing
AUTOC2.PDD to Ob and restarting auto-negotiation by setting the AUTOC.RestartAN bit to 1b.

105

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.7.4.4 MAUI Link Setup Flow

The 82599 MAUI interface is configured at start up (before the driver is loaded) in the following
manner:

1. If the link is statically configured by programming the appropriate AUTOC (LMS, 1G_PMA_PMD,
10G_PMA_PMD_PARALLEL) register fields and AUTOC2.10G_PMA_PMD_ Serial field, the 82599
attempts to synchronize on incoming data and if successful updates the relevant Link status
registers (LINKS, ANLP1 and ANLP2) and sets up the link. If link synchronization is not successful,
the 82599 does not report link-up in the LINKS register and continuously attempts to set up the link
according to the static configuration.

2. If the Link is not statically configured and parallel detection is enabled (auto-negotiation enabled in
AUTOC.LMS and the AUTOC2.PDD parallel detect disable is Ob) the 82599 starts IEEE802.3ap
clause 73 negotiation protocol by attempting to parallel detect the protocol on the MAUI interface
by enabling KX and KX4 receive circuitry and trying to synchronize on incoming data. If
synchronization succeeds in either KX or KX4 modes, the 82599 updates the relevant link status
registers (LINKS, ANLP1 and ANLP2) and commences with setting up the link.

3. If parallel detect fails, the 82599 attempts to auto-negotiate according to IEEE802.3ap clause 73
using the data written to the AUTOC, AUTOC2 and AUTOCS3 registers. If auto-negotiation succeeds,
the 82599 updates the link status registers (LINKS, ANLP1 and ANLP2). If auto-negotiation fails,
the 82599 does not report link up in the LINKS register and retries acquiring the link by parallel
detection and auto-negotiation continuously (the receiver goes through a continuous cycle of
1 GbE parallel detect, 10 GbE parallel detect and clause 73 auto-negotiation).

4. If parallel detect or static configuration succeeds and the link rate is 1 Gb/s, AUTOC.LMS enables
IEEE802.3 clause 37 auto-negotiation. The 82599 auto-negotiates to define link characteristics
according to IEEE802.3 clause 37 using information placed in registers PCS1GANA and PCS1GANNP.
On completion of clause 37 auto-negotiation, the 82599 updates the status in the LINKS,
PCS1GLSTA, PCS1GANLPNP and PCS1GANLP registers.

5. If parallel detect or static configuration succeeds and the link rate is 1 Gb/s, SGMII is enabled in the
AUTOC.LMS field (LMS = 101b). If the 82599 detects the SGMII negotiation control information
sent by the PHY, the 82599 auto-negotiates to define link characteristics (1 Gb/s or 100 Mb/s and
full duplex capability) according to the SGMII specification. On completing SGMII auto-negotiation,
the 82599 updates the status in the LINKS, PCS1GLSTA and PCS1GANLP registers.

When AUTOC.LMS is set to 1b of the auto-negotiation modes and the Link Up bit is set to 1b in the
LINKS register, the final link speed can be read from the LINK_SPEED field of LINKS.

If LINK_SPEED is 10 Gb/s, the MLINK_MODE field is used to differentiate between KX4 (10 GbE
parallel) and KR (10 GbE serial).

Note: AUTOC.AN_RESTART must be set on every AUTOC.LMS change.

3.7.4.5 Next Page Support
Next Page (NP) support in the 82599 is compliant with IEEE802.3ap.

The 82599 acts as receiver of NP each time the link partner needs to transmit NP data through the KX/
KX4 auto-negotiation process.

The 82599 does not support transmission of configurable NP. It transmits a null NP each time the auto-
negotiation arbitration state machine is required to go through the NP handshake. There is a possibility
to configure the Acknowledge?2 field in the NP through the AUTOC.ANACK?2 bit.

106

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

3.7.4.6 Forcing Link Up

Forcing link up can be accomplished by software by setting the AUTOC.FLU bit to 1b, which forces the
MAC to the appropriate MAC link speed as defined by the AUTOC.LMS field and the appropriate protocol
as defined by the AUTOC.10G_PMA_PMD_PARALLEL, AUTOC2.10G_PMA_PMD_ Serial and
AUTOC.1G_PMA_PMD bits. The Force-Link-Up mode enables loopback operation (when HLREGO.LPBK is
set to 1b) by setting the link_up indication regardless of the XGXS/PCS_1G/KR_locked status. Link
indication in register LINKS should be ignored when in this mode.

3.7.4.7 Crossover

The 82599 supports crossover on each of the two MAUI ports to eliminate the need for crossover cables
between similar devices. This has historically been accomplished using special crossover cables (patch
cables), magnetic pinouts or PCB wiring. The 82599 supports crossover configuration in both 10 GbE
andl GbE operating modes via the SERDESC register.

Having established that there is a problem with the link connection, the driver detects and corrects
crossovers and arbitrary polarity swaps for several configurations of pair swaps. Crossover can also be
set by EEPROM following power up.

The following receiver pairs:
A — MI_QLO (MIP_QLO and MIN_QLO)
B — MI_QL1 (MIP_QL1 and MIN_QL1)
C — MI_QL2 (MIP_QL2 and MIN_QLZ2)
D — MI_QL3 (MIP_QL3 and MIN_QL3)
can be connected to the corresponding link partner’s transmit pairs in any of the following ways with
arbitrary polarity (positive and negative wires exchanged):
« No crossover
= A/B crossover only
= C/D crossover only
= A/B crossover and C/D crossover
Crossover operation is controlled by programming the relevant bits in the SerDes Interface Control

(SERDESC) register. The SERDESC register supports correction of all combinations of crossover
scenarios, in addition to the scenarios previously described.

3.7.5 Transceiver Module Support

The 82599 MAUI interface with additional usage of low speed interface pins (SDP, 1°C and MDIO 1/0s)
supports a connection to transceiver modules compliant with the following Multi Source Agreements
(MSAs):

= XENPAK — A cooperation agreement for 10 Gigabit Ethernet Transceiver package Rev 3.0

= X2 — A cooperation agreement for a small Versatile 10 Gigabit Ethernet Transceiver package Rev
2.0b

= XPAK — A cooperation agreement for a small form factor pluggable 10 Gigabit Ethernet Transceiver
package Rev 2.2

= SFP+ — SFF-8431 Specifications for Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable
Module SFP+ rev 1.0

107

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

Figure 3.20 shows the various transceiver module architecture.

Control/Status

1 XGXS PCS PMA PMD

10
Gbit/s
Serial

XAUI-10G Serial SerDes PMA PHY 10G Serial TIA and LDD PMD PHY
* Includes 10-Gbit/s SerDes/CDR » Transimpedance Amplifier (TIA)
+ 4x3.125Gbit/s Electrical XAUI next to Photo Diode (PD) in
interface Receiver Optical Sub-Assembly
(ROSA)
Laser Device Driver (LDD)
driving the laser in the
Transmitter Optical Sub-
Assembly (TOSA)

Figure 3.20. XENPAK, XPAK and X2 Transceiver Architecture

Table 3.18 lists the required interface (per port) for supporting the various modules. The 82599
supports the high speed interface using the MAUI port and the low speed interface using the SDP pins.

Table 3.18. Optical Module Interface Support

Module High Speed

Type MAUI Protocol Low Speed Interface (per port)

MDC? (1.2v ouUT), MDIO? (1.2V 1/0),
XENPAK XAUI TX ON/OFF2 (1.2V OUT), RESET? (1.2V OUT)
LASI (1.2V IN — Interrupt)

MDC? (1.2Vv OUT), MDIO?! (1.2V 1/0),
X2 XAUI TX ON/OFF? (1.2V OUT), RESET? (1.2V OUT)
LASI (1.2V IN — Interrupt)

MDC?! (1.2V OUT), MDIO? (1.2V 1/0),
XPAK XAUI TX ON/OFF? (1.2V OUT), RESET? (1.2V OUT)
LASI (1.2V IN — Interrupt)

scL! (12¢c — ob), sbL! (12C — oD)
SFP+ SFI TX Disable® (LVTTL — OUT), RS0/1 (LVTTL — OUT)
TX Fault (LVTTL IN), RX_LOS (LVTTL — IN)

1. Single management interface can be used for two ports.
2. Output low during reset and power down.

The 82599 enables interfacing optical modules using the MAUI pins, MDIO pins, 1°C pins and SDP pins.
When interfacing with XENPAK, XPAK and X2 modules, level translators from LVTTL to 1.2V need to be
added on the MDIO pins and the relevant SDP pins.

108

Interconnects — Intel® 82599 10 GbE Controller

intel)

3.7.6 Management Data Input/Output (MDIO) Interface

The 82599 supports a MDIO interface (per port) to control PHY functionality through the interface. PHY
configuration registers are mapped into the MDIO space and can be accessed by the MAC or any other
MDIO-master device.

The 82599 supports the MDIO interface for a control plane connection between the MAC (master side)
and PHY devices. The MDIO interface enables both MAC and software access to the PHY for monitor and
control of PHY functionality. The 82599 is compliant with the IEEE802.3 clause 45 in both 10 GbE and
1 GbE operation. The 82599 also supports IEEE 802.3 clause 22 frame formats and register address
space for accessing legacy PHY registers. The MDIO interface uses LVTTL signaling as defined in Clause
22 of the IEEE802.3 standard. To access PHYs that support clause 45 1.2V electrical interface, level
translators need to be added on board.

Figure 3.21 shows the basic connectivity between the PHY and MAC.

MAUI
PHY/
__MDIOFC_) Optical Cable/Fiber)
Module
Status/Control
Communications
Controller
MAUI
PHY/
MDIO/I’C Optical Cable/Fiber)
Module
Status/Control

Figure 3.21. Basic PHY MAC Connectivity

The MDIO interface is a simple 2-wire serial interface between MAC and PHY and is used to access
Control and Status registers inside the PHY. The interface is implemented using two LVTTL 1/0s:
1. MDC — MDIO-interface clock signal driven by an external MAC (STA) device.
2. MDIO — Read/write data between an external MAC and PHY.

3.7.6.1 MDIO Timing Relationship to MDC

The MDC clock toggles during a read/write operation at a frequency of 24 MHz, 2.4 MHz or 240 KHz
depending on the link speed and register bit HLREGO.MDCSPD as listed in Table 3.19.

Table 3.19. MDC Frequency as Function of Link Speed and MDC Speed Bit

Link Speed MDCSPD=1b MDCSPD=0b
10 Gb/s 24 MHz 2.4 MHz
1 Gb/s 2.4 MHz 240 KHz
100 Mb/s 240 MHz 240 KHz

109

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

MDIO is a bidirectional signal that can be sourced by the Station Management Entity (STA) or the PHY.
When the STA sources the MDIO signal, the STA must provide a minimum of 10 ns of setup time and a
minimum of 10 ns of hold time referenced to the rising edge of MDC, as shown in Figure 3.22
(measured at the MII connector).

'l\ ‘-\ Vlﬂ{mlﬂ_}
MDC T V.I{ma.-:}
NN WS T Min{min}
MDIO A
A N Iz
10 ns MIN —> [e—
— e— 10 ns MIN

Figure 3.22. MDIO Timing Sourced by the MAC

When the MDIO signal is sourced by the PHY, it is sampled by the MAC (STA) synchronously with
respect to the rising edge of MDC. The clock to output delay from the PHY, as measured at the Ml
connector, must be a minimum of 0 ns, and a maximum of 300 ns, as shown in Figure 3.23.

/ Vm{mn_}
MDC /| \ 1‘" Milgerizo)
AN Vinjerin)
MDIO Y
77 ARRAAS iHemax]
—| 0Ons MIN @ [&—
—>{ 300ns MAX |[€—
Figure 3.23. MDIO Timing Sourced by the PHY
3.7.6.2 IEEE802.3 Clause 22 and Clause 45 Differences

IEEE802.3 clause 45 provides the ability to access additional device registers while still retaining logical
compatibility with interface defined in Clause 22. Clause 22 specifies the MDIO frame format and uses
an ST code of 01 to access registers. In clause 45, additional registers are added to the address space
by defining MDIO frames that use a ST code of 00.
Clause 45 (MDIO interface) major concepts:

a. Preserve management frame structure defined in IEEE 802.3 Clause 22.

b. Define mechanism to address more registers than specified in IEEE802.3 Clause 22.

c. Define ST and OP codes to identify and control the extended access functions.

110

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

3.7.6.3 MDIO Management Frame Structure

The MDIO interface frame structure defined in IEEE802.3 clause 22 and Clause 45 are compatible so
that the two systems supporting different formats can co-exist on the same MDIO bus. The 82599
supports both frame structures to enable interfacing PHYs that support either protocol.

The basic frame format as defined in IEEE802.3 clause 22 can optionally be used for accessing legacy
PHY registers is listed in Table 3.20.

Table 3.20. Clause 22 Basic MDIO Frame Format

Management Frame Fields

Frame Pre ST OoP PRTAD REGAD TA Data Idle
Read 1...1 01 10 PPPPP RRRRR Z0 DDDDDDDDDDDDDDDD 4
Write 1...1 01 01 PPPPP RRRRR 10 DDDDDDDDDDDDDDDD z

The MDIO interface defined in clause 45 uses indirect addressing to create an extended address space
enabling access to a large number of registers within each MDIO Managed Device (MMD). The MDIO
management frame format is listed in Table 3.21.

Table 3.21. Clause 45 Indirect Addressing MDIO Frame Format

Management Frame Fields
Frame Pre ST OoP PRTAD DEVAD TA Address / Data Idle
Address 1...1 00 00 PPPPP EEEEE 10 AAAAAAAAAAAAAAAA z
Write 1...1 00 01 PPPPP EEEEE 10 DDDDDDDDDDDDDDDD z
Read 1...1 00 11 PPPPP EEEEE Z0 DDDDDDDDDDDDDDDD z
Post-Read
Increment 1...1 00 10 PPPPP EEEEE Z0 DDDDDDDDDDDDDDDD z
Address

To support clause 45 indirect addressing each MMD (PHY — MDIO managed device) implements a 16-
bit address register that stores the address of the register to be accessed by data transaction frames.
The address register must be overwritten by address frames. At power up or device reset, the contents
of the address register are undefined. Write, read, and post-read-increment-address frames must
access the register whose address is stored in the address register. Write and read frames must not
modify the contents of the address register. Upon receiving a post-read-increment-address frame and
having completed the read operation, the MMD increments the Address register by one (up to a value of
OxFFFF). Each MMD supported implements a separate address register, so that the MMD's address
registers operate independently of one another.

Idle Condition (IDLE) — The IDLE condition on MDIO is a high-impedance state. All three state drivers
must be disabled and the PHY's pull-up resistor pulls the MDIO line to a logic one.

Preamble (PRE) — At the beginning of each transaction, the station management entity must send a
sequence of 32 contiguous consecutive one bits on MDIO with 32 corresponding cycles on MDC to
provide the PHY with a pattern that it can use to establish synchronization. A PHY must observe a
sequence of 32 contiguous consecutive one bits on MDIO with 32 corresponding cycles on MDC before it

responds to any transaction.

111

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

Start of Frame (ST) — The ST is indicated by:
e <00= pattern for clause 45 compatible frames for indirect access cycles.
e <01=> pattern for clause 22 compatible frames for direct access cycles.

These patterns ensure a transition from the default value of one on the MDIO signal, and identifies the
start of frame.

Operation Code (OP) — The OP field indicates the type of transaction being performed by the frame.

For Clause 45 compatible frames:
« A <00=> pattern indicates that the frame payload contains the address of the register to access.

< A <01> pattern indicates that the frame payload contains data to be written to the register whose
address was provided in the previous address frame.

e A <11> pattern indicates that the frame is an indirect read operation.

A <10= pattern indicates that the frame is an indirect post-read-increment-address operation.

For Clause 22 compatible frames:
= A <10= pattern indicates a direct read transaction from a register.
A <01= pattern indicates a direct write transaction to a register.

Port Address (PRTAD) — The PRTAD is five bits, allowing 32 unique PHY port addresses. The first PRTAD
bit to be transmitted and received is the MSB of the address. A station management entity must have
prior knowledge of the appropriate port address for each port to which it is attached, whether
connected to a single port or to multiple ports.

Device Address (DEVAD) — The DEVAD is five bits, allowing 32 unique MMDs per port. The first DEVAD
bit transmitted and received is the MSB of the address. This field is relevant only in clause 45
compatible frames (ST=<00>).

Register Address (REGAD) — The REGAD is five bits, allowing 32 individual registers to be addressed
within each PHY. The first REGAD bit transmitted and received is the MSB of the address. This field is
relevant only in clause 22 compatible frames (ST=<01>).

Turnaround (TA) — The TA time is a 2-bit time spacing between the DEVAD field and the Data field of a
management frame. This is to avoid contention during a read transaction. For a read or post-read-
increment-address transaction, both the STA and the PHY must remain in a high-impedance state for
the first bit time of the TA. The PHY must drive a zero bit during the second bit time of the TA of a read
or postread-increment-address transaction. During a write or address transaction, the STA must drive a
one bit for the first bit time of the TA and a zero bit for the second bit time of the TA. Figure 3.24 shows
the behavior of the MDIO signal during the TA field of a read transaction.

<R> <Z> <0>

MDC

MDIO

Figure 3.24. Behavior of MDIO During TA Field of a Read Transaction

112

. ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

= Clause 45 compatible frames have 16-bit address/data fields. For an auto-negation address cycle, it
contains the address of the register to be accessed on the next cycle. For the data cycle of a write
frame, the field contains the data to be written to the register. For a read or post-read-increment-
address frame, the field contains the contents of the register. The first bit transmitted and received
must be bit 15.

= Clause 22 compatible frames have 16-bit data fields. The first data bit transmitted and received
must be bit 15 of the register being addressed.

3.7.6.4 MDIO Direct Access

The MDI is accessed through registers MSCA and MSRWD. A single management frame is sent by
setting bit MSCA.MDICMD to 1b after programming the appropriate fields in the MSCA and MSRWD
registers. The MSCA.MDICMD bit is auto cleared after the read or write transaction completes. To
execute clause 22 format write operations, the following steps should be done:

1. Data to be written is programmed in field MSRWD.MDIWRDATA.

2. Register MSCA is initialized with the appropriate control information (start, code, etc.) with bit
MSCA.MDICMD set to 1b.

3. Wait for bit MSCA.MDICMD to reset to Ob when indicating that the transaction on the MDIO
interface is complete.

The steps for clause 22 format read operations are identical to the write operation except that the data
in field MSRWD.MDIWRDATA is ignored and the data read from the external device is stored in register
field MSRWD.MDIRDDATA bits. Clause 45 format read/write operations must be performed in two steps.
The address portion of the pair of frames is sent by setting register field MSCA.MDIADD to the desired
address, field MSCA.STCODE to 00b (start code that identifies clause 45 format), and register field
MSCA.OPCODE to 00b (clause 45 address register write operation). A second data frame must be sent
after the address frame completes. This second frame executes the write or read operation to the
address specified in the PHY address register.

3.7.7 Ethernet Flow Control (FC)

The 82599 supports flow control as defined in 802.3x, as well as the specific operation of asymmetrical
flow control defined by 802.3z. The 82599 also supports Priority Flow Control (PFC), sometimes
referred to as Class Based Flow Control or (CBFC), as part of the DCB architecture.

Note: The 82599 can either be configured to receive regular flow control packets or Priority Flow
Control (PFC) packets. The 82599 does not support the reception of both types of packets
simultaneously.

Flow control is implemented to reduce receive buffer overflows, which result in the dropping of received
packets. Flow control also allows for local controlling of network congestion levels. This can be
accomplished by sending an indication to a transmitting station of a nearly full receive buffer condition
at a receiving station.

The implementation of asymmetric flow control allows for one link partner to send flow control packets
while being allowed to ignore their reception (for example, not required to respond to PAUSE frames).

The following registers are defined for the implementation of flow control. In DCB mode, some of the
registers are duplicated per Traffic Class (TC), up to eight duplicate copies of the registers. If DCB is
disabled, index [0] of each register is used.

= MAC Flow Control (MFLCN) register — Enables flow control and passing of control packets to the
host.

113

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

* Flow Control Configuration (FCCFG) — Determines mode for Tx flow control (no FC vs. link based
versus priority based). Note that if Tx flow control is enabled then Tx CRC by hardware should be
enabled as well (HLREGO.TXCRCEN = 1b).

« Flow Control Address Low, High (RAL[0], RAH[O]) — 6-byte flow control multicast address.
= Priority Flow Control Type Opcode (PFCTOP) — Contains the type and opcode values for priority FC.

= Flow Control Receive Threshold High (FCRTH[7:0]) — A set of 13 bit high watermarks indicating
receive buffer fullness. A single watermark is used in link FC mode and up to eight watermarks are
used in priority FC mode.

« Flow Control Receive Threshold Low (FCRTL[7:0]) — A set of 13 bit low watermarks indicating
receive buffer emptiness. A single watermark is used in link FC mode and up to eight watermarks
are used in priority FC mode.

* Flow Control Transmit Timer Value (FCTTV[3:0]) — a set of 16 bit timer values to include in
transmitted PAUSE frame. A single timer is used in link FC mode and up to eight timers are used in
priority FC mode.

* Flow Control Refresh Threshold Value (FCRTV) — 16-bit PAUSE refresh threshold value (in legacy
FC FCRTV[0] must be smaller than FCTTV[0])

3.7.7.1 MAC Control Frames and Reception of Flow Control Packets

3.7.7.1.1 MAC Control Frame — Other than FC

IEEE reserved the Ethertype value of 0x8808 for MAC control frames as listed in Table 3.22.

Table 3.22. MAC Control Frame Format

The Destination Address field can be an individual or multicast (including broadcast) address.
DA Permitted values for the Destination Address field can be specified separately for a specific
control opcode such as FC packets.

SA Port Ethernet MAC address (6 bytes).
Type 0x8808 (2 bytes).
Opcode The MAC control opcode indicates the MAC control function.
The MAC Control Parameters field must contain MAC control opcode-specific parameters. This
Parameters Eslttéscan contain none, one, or more parameters up to a maximum of minFrameSize =20

The Reserved field is used when the MAC control parameters do not fill the fixed length MAC

Reserved field = 0x00
control frame.

CRC 4 bytes.

3.7.7.1.2 Structure of 802.3X FC Packets

802.3X FC packets are defined by the following three fields (see Table 3.23):

1. A match on the six-byte multicast address for MAC control frames or a match to the station address
of the device (Receive Address Register 0). The 802.3x standard defines the MAC control frame
multicast address as 01-80-C2-00-00-01.

2. A match on the Type field. The Type field in the FC packet is compared against an IEEE reserved
value of 0x8808.

3. A match of the MAC Control Opcode field has a value of 0x0001.
Frame based flow control differentiates XOFF from XON based on the value of the PAUSE Timer field.
Non-zero values constitute XOFF frames while a value of zero constitutes an XON frame. Values in the

Timer field are in units of pause quanta (slot time). A pause quanta lasts 64 byte times, which is
converted in to an absolute time duration according to the line speed.

114

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

Note: XON frame signals the cancellation of the pause from that was initiated by an XOFF frame
pause for zero pause quanta).

Table 3.23. 802.3X Packet Format

DA 01_80_C2_00_00_01 (6 bytes).

SA Port Ethernet MAC address (6 bytes).
Type 0x8808 (2 bytes).

Opcode 0x0001 (2 bytes).

Time XXXX (2 bytes).

Pad 42 bytes.

CRC 4 bytes.

3.7.7.1.3 PFC

DCB introduces support for multiple traffic classes assigning different priorities and bandwidth per TC.
Link level Flow Control (PAUSE) stops all the traffic classes. PFC or CBFC allows more granular flow
control on the Ethernet link in an DCB environment as opposed to the PAUSE mechanism defined in
802.3X.

PFC is implemented to prevent the possibility of receive packet buffers overflow. Receive packet buffers
overflow results in the dropping of received packets for a specific TC. Board designers can implement
PFC by sending a timer indication to the transmitting station traffic class (XOFF) of a nearly full receive
buffer condition at the 82599. At this point the transmitter would stop transmitting packets for that TC
until the XOFF timer expires or a XON message is received for the stopped TC.

Similarly, once the 82599 receives a priority-based XOFF it stops transmitting packets for that specific
TC until the XOFF timer expires or XON packet for that TC is received.

F
i

802.3
a MAC Rx

Data to 802.3
MAC MAC TX

XOFF blocks traffic on
the whole link

F

Figure 3.25. 802.3X Link Flow Control (PAUSE)

115

| ®
‘ l n tel) Intel® 82599 10 GbE Controller — Interconnects

Link flow control (802.3X) causes all traffic to be stopped on the link. DCB uses the same mechanism of
flow control but provides the ability to do PFC on TCs as shown in Figure 3.26.

802.3

Data to 802.3
MAC Rx

MAC MAC TX

Class based XOFF blocks traffic on a
specific traffic class and not the whole link

Figure 3.26. Priority Flow Control

Table 3.24. Packet Format for Priority Flow Control

DA 01_80_C2_00_00_01 (6 bytes).
SA Port Ethernet MAC Address (6 bytes).
Type 0x8808 (2 bytes).

Opcode 0x0101 (2 bytes).

Priority Enable Vector 0x00XX (2 bytes).

Timer O XXXX (2 bytes).

Timer 1 XXXX (2 bytes).

Timer 2 XXXX (2 bytes).

Timer 3 XXXX (2 bytes)

Timer 4 XXXX (2 bytes).

Timer 5 XXXX (2 bytes).

Timer 6 XXXX (2 bytes).

Timer 7 XXXX (2 bytes).

Pad 26 bytes.

CRC 4 bytes.

116

™1 ®
Interconnects — Intel® 82599 10 GbE Controller l n tel)

Table 3.25. Format of Priority Enable Vector

ms octet Is octet

Priority Enable vector definition 0 e[7]...e[n]...e[0]

e[n] =1 => time (n) valid
e[n] =0 => time (n) invalid

The Priority Flow Control Type Opcode (PFCTOP) register contains the type and opcode values for PFC.
These values are compared against the respective fields in the received packet.

Each of the eight timers refers to a specific User Priority (UP). For example, Timer O refers to UP O, etc.
The 82599 binds a UP (and therefore the timer) to one of its TCs according to the UP-to-TC binding
tables. Refer to the RTTUP2TC register for the binding of received PFC frames to Tx TCs, and to the
RTRUP2TC register for the binding of transmitted PFC frames to Rx TCs.

Tx manageability traffic is bound to one the TCs via the MNGTXMAP register, and should thus be paused
according to RTTUP2TC mapping whenever receiving PFC frames.

When a PFC frame is formatted by the 82599, the same values are replicated into every Timer field and
priority enable vector bit of all the UPs bound to the concerned TC. These values as configured in the
RTRUP2TC register.

The following rule is applicable for the case of multiple UPs that share the same TC (as configured in the
RTTUP2TC register). When PFC frames are received with different timer values for the previous UPs, the
traffic on the associated TC must be paused by the highest XOFF timer’s value.

3.7.7.1.4 Operation and Rules

The 82599 operates in either link FC or in PFC mode. Enabling both modes concurrently is not allowed:
« Link FC is enabled by the RFCE bit in the MFLCN register.
= PFC is enabled by the RPFCE bit in the MFLCN register.
Note: Link flow control capability must be negotiated between link partners via the auto-negotiation
process. PFC capability is negotiated via some higher level protocol and the resolution is
usually provided to the driver by the DCB management agent. It is the driver’s responsibility

to reconfigure the link flow control settings (including RFCE and PRFCE) after the auto-
negotiation process was resolved.

Note: Receiving a link FC frame while in PFC mode might be ignored or might pause TCs in an
unpredictable manner. Receiving a PFC frame while in link FC mode is ignored.

Once the receiver has validated the reception of an XOFF, or PAUSE frame, the device performs the
following:
« Increments the appropriate statistics register(s)

= Initialize the pause timer based on the packet's PAUSE Timer field (overwriting any current timer’s
value)

— In case of PFC, this is done per TC. If several UPs are associated with a TC, then the device sets
the timer to the maximum value among all enabled timer fields associated with the TC.

117

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

- Disable packet transmission or schedule the disabling of transmission after the current packet
completes.

— In case of PFC, this is done per paused TC
— Tx manageability traffic is bound to a specific TC as defined in the MNGTXMAP register, and is
thus paused when its TC is paused
Resumption of transmission can occur under the following conditions:

- Expiration of the PAUSE timer
— In case of PFC, this is done per TC

= Reception of an XON frame (a frame with its PAUSE timer set to Ob)
— In case of PFC, this is done per TC

Both conditions set the relevant TC_XON status bits in the Transmit Flow Control Status (TFCS) register
and transmission can resume. Hardware records the number of received XON frames.

3.7.7.1.5 Timing Considerations

When operated at 10 Gb/s line speed, the 82599 must not begin to transmit a (new) frame more than
60 pause quanta after receiving a valid Link XOFF frame, as measured at the wires (a pause quantum is
512 bit times). When connected to an external 10GBASE-KR PHY with FEC or to an external 10GBASE-
T PHY, the response time requirement decreases to 74 pause quanta, because of extra delays
consumed by these external PHYs.

When operating at 1 Gb/s line speed, the 82599 must not begin to transmit a (new) frame more than 2
pause quanta after receiving a valid Link XOFF frame, as measured at the wires.

The 802.1Qbb draft 1.0, proposes that the tolerated response time for Priority XOFF frames are the
same as Link XOFF frames with extra budget of 19072 bit times if MACSec is used, or of 2 pause quanta
otherwise. This extra budget is aimed to compensate the fact that decision to stop new transmissions
from a specific TC must be taken earlier in the transmit data path than for the Link Flow Control case.

3.7.7.2 PAUSE and MAC Control Frames Forwarding

Two bits in the Receive Control register control transfer of PAUSE and MAC control frames to the host.
These bits are Discard PAUSE Frames (DPF) and Pass MAC Control Frames (PMCF). Note also that any
packet must pass the L2 filters as well.

= The DPF bit controls transfer of PAUSE packets to the host. The same policy applies to both link FC
and priority FC packets as listed in Table 3.26. Note that any packet must pass the L2 filters as well.

« The PMCEF bit controls transfer of non-PAUSE packets to the host. Note that when link FC frames are
not enabled (RFCE = 0b) then link FC frames are considered as MAC Control (MC) frames for this
matter. Similarly, when PFC frames are not enabled (RPFCE = Ob) then PFC frames are considered
as MC frames as well.

118

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

Note: When virtualization is enabled, forwarded control packets are queued according to the regular
switching procedure defined in Section 7.10.3.4.

Table 3.26. Transfer of PAUSE Packet to Host (DPF Bit)

RFCE RPFCE DPF Link FC handling Priority FC handling
Ob Ob X Treat as MC (according to PMCF setting). Treat as MC (according to PMCF setting).
1b Ob Ob Accept. Treat as MC (according to PMCF setting).
1b Ob 1b Reject. Treat as MC (according to PMCF setting).
Ob 1b Ob Treat as MC (according to PMCF setting). Accept.
Ob 1b 1b Treat as MC (according to PMCF setting). Reject.
1b 1b X Unsupported setting. Unsupported setting.

3.7.7.3 Transmitting PAUSE Frames

The 82599 generates PAUSE packets to insure there is enough space in its receive packet buffers to
avoid packet drop. The 82599 monitors the fullness of its receive FIFOs and compares it with the
contents of a programmable threshold. When the threshold is reached, the 82599 sends a PAUSE
frame. The 82599 supports both link flow control and PFC — but not both concurrently. When DCB is
enabled, it sends only PFC, and when DCB is disabled, it send only link flow control.

Note: Similar to the reception of flow control packets previously mentioned, software can enable
flow control transmission by setting the FCCFG.TFCE field only after it is negotiated between
the link partners (possibly by auto-negotiation).

3.7.7.3.1 Priority Flow Control

Like Tx flow control, Rx flow control operates in either a link 802.3X compliant mode or in PFC mode,
but not in both at the same time.

The same flow control mechanism is used for PFC and for 802.3X flow control to determine when to
send XOFF and XON packets. When PFC is used in the receive path, Priority PAUSE packets are sent
instead of 802.3X PAUSE packets. The format of priority PAUSE packets is described in

Section 3.7.7.1.3.

Specific considerations for generating PFC packets:

= When a PFC packet is sent, the packet sets all the UPs that are associated with the relevant TC (UP-
to-TC association in receive is defined in RTRUP2TC register).

3.7.7.3.2 Operation and Rules

The TFCE field in the Flow Control Configuration (FCCFG) register enables transmission of PAUSE
packets as well as selects between the link flow control mode and the PFC mode.

The content of the Flow Control Receive Threshold High (FCRTH) register determines at what point the
82599 transmits the first PAUSE frame. The 82599 monitors the fullness of the receive FIFO and
compares it with the contents of FCRTH. When the threshold is reached, the 82599 sends a PAUSE
frame with its pause time field equal to FCTTV.

At this time, the 82599 starts counting an internal shadow counter (reflecting the pause time-out
counter at the partner end). When the counter reaches the value indicated in FCRTV register, then, if
the PAUSE condition is still valid (meaning that the buffer fullness is still above the low watermark), an
XOFF message is sent again.

119

[®
l n tel Intel® 82599 10 GbE Controller — Interconnects

Once the receive buffer fullness reaches the low water mark, the 82599 sends an XON message (a
PAUSE frame with a timer value of zero). Software enables this capability with the XONE field of the
FCRTL.

The 82599 sends a PAUSE frame if it has previously sent one and the FIFO overflows. This is intended
to minimize the amount of packets dropped if the first PAUSE frame did not reach its target.

3.7.7.3.3 Flow Control High Threshold — FCRTH

The 82599 sends a PAUSE frame when a Rx packet buffer is full above the high threshold. The
threshold should be large enough to overcome the worst case latency from the time that crossing the
threshold is sensed until packets are not received from the link partner. This latency is composed of the
following elements:

« Threshold Cross to XOFF Transmission + Round-trip Latency + XOFF Reception to Link Partner
Response, where:

Latency Parameter Affected by. . . Value at 10 GbE with Jumbo
Trigger to XOFF transmission. Max packet size at all TCs. 9.5 KB (example).
Link partner XOFF to transmission hold. | Max packet size on the specific TC. 9.5 KB (example).

The latencies on the wire and the LAN devices at | 8 KB (see the calculation that

Round-trip Latency. both sides of the wire. follows).

< Round-trip Latency Calculation:
— Pause Quanta (PQ) = 512 bit time (bt)

— Round trip for 10 GbE MAC + XAUI + 10 GbE PHY = 16+8+50 PQ = 4.7 KB (using another PHY
a lower latency can be taken)

— Round trip capable (2x100 m) = 200 m x 50 bt/m = 10000 bt = 1.25 KB (at other known
topologies lower latency can be taken)

— Plus 2 KB for some guard-band and processing latency of transmission and reception pause
frames
The internal architecture of the Rx packet buffer is as follows:
1. Any packet starts at 32 byte aligned address.

2. Any packet has an internal status of 32 bytes. As a result, the Rx packet buffer is used at worst
conditions when the Rx packet includes 65 bytes that are posted to the host memory. Assuming
that the CRC bytes are not posted to host memory then in the worst case the Rx packet buffer can
be filled at 1.44 higher rate than the wire speed (69-byte packet including CRC + 8-byte preamble
+ 12-byte back-to-back IFS consumes 4 x 32 bytes = 128 bytes on the Rx packet buffer).

Translating the latencies to possible consumed Rx packet buffer at worst case is:

Latency Parameter Value Consumed Rx Packet Buffer
Trigger to XOFF transmission 9.5 KB 1.44 x 9.5 KB = 14 KB
Link partner XOFF to transmission hold 9.5 KB 9.5 KB
Round-trip latency 8 KB 1.44 x 8 KB = 11.5 KB

120

Interconnects — Intel® 82599 10 GbE Controller

intel.

The FCRTH should be set to the size of the Rx packet buffer minus (14 + 9.5 + 11.5 = 35 KB). As
previously indicated, these numbers are valid if jJumbo frames are enabled in all traffic classes. When it
is required to avoid packet lost, software must follow this requirement and enable flow control
functionality.

When Tx to Rx switching is enabled, packets can be received to the Rx packet buffer by local VM-to-VM
traffic. Once the Rx packet buffer gets full and is above the high threshold it might receive up to one
additional packet from a local VM. Therefore, FCRTH should be set to the size of the Rx packet buffer
minus (the size previously explained plus one additional max packet size).

3.7.7.3.4 Flow Control Low Threshold — FCRTL

The low threshold value is aimed to protect against wasted available host bandwidth. There is some
latency from the time that the low threshold is crossed until the XON frame is sent and packets are
received from the link partner. The low threshold can be set high enough so that the Rx packet buffer
does not get empty before new whole packets are received from the link partner. When considering
data movement from the Rx packet buffer to host memory, then large packets represent the worst.
Assuming the host bandwidth is about as twice the bandwidth on the wire (when only a single port is
active at a given time). Therefore, on 10 GbE network with jumbo packets a threshold that guarantee
that the Rx packet buffer is not emptied should be set larger than: 2 x (2 x 9.5 KB + 8 KB) = 54 KB.
Setting the FCRTL to lower values than expressed by the previous equation is permitted. It might
simply result with potential sub-optimal use of the PCle bus once bandwidth is available.

3.7.7.3.5 Packet Buffer Size

When flow control is enabled, the total size of a packet buffer must be large enough for the low and
high thresholds. In order to avoid constant transmission of XOFF and XON frames it is recommended to
add some space for hysteresis type of behavior. The difference between the two thresholds is
recommended to be at least one frame size (when 9.5 KB (9728-byte) jumbo frames are enabled) and
larger than a few frames in other cases. If the available Rx packet is large enough, it is recommended
to increase as much as possible the hysteresis budget. If the available Rx packet is not large enough it
might be required to cut both the low threshold as well as the hysteresis budget. The following table
lists a few examples while it is recommended to validate the values for a given use case.

Latency Parameter Flow Control High Flow Control Low Total Packet
Y Threshold Threshold Buffer Size

9.5 KB (9728-byte) jumbo enabled with no DCB with flow 477 KB 54 KB 512 KB
control.
9.5 KB (9728-byte) jumbo enabled x 8 TCs with flow control. 29 KB 19.5 KB 64 KB
9.5 KB (9728-byte) jumbo enabled x 8 TCs with flow control
and flow director table enabled with 128 KB. 13 kB 9 KB 48 KB
9.5 KB (9728-byte) jumbo enabled x 4 TCs with flow control 21 KB 11.5 KB 56 KB (jumbo
and 1500-byte (no jumbo) x 4 TCs with flow control and flow : G)
director table enabled with 128 KB. 14 KB 9 KB 40 KB (1.5 KB)
9.5 KB (9728-byte) jumbo enabled x 4 TCs WITHOUT flow
control and N/A N/A 40 KB (jumbo)
1500-byte (no jumbo) x 4 TCs WITH flow control and flow 30 KB 20 KB 56 KB (1.5 KB)
director table enabled with 128 KB.

When Tx-to-Rx switching is enabled (in virtualization mode) the high threshold should take into account
potential VM-to-VM reception. As a result, the Rx packet buffer's sizes should be increased,

respectively.

121

| ®
l n tel) Intel® 82599 10 GbE Controller — Interconnects

3.7.7.4 Link FC in DCB Mode

When operating in DCB mode, PFC is the preferred method of getting the best use of the link for all TCs.
When connecting to switches that do not support (or enable) PFC, the 82599 throttles the traffic using
link FC. Following is the required device setting and functionality:

 The 82599 should be set to legacy link FC by setting MFLCN.RFCE.
« Reception of XOFF pauses transmission in all TCs.

= Crossing the Rx buffer high threshold on any TC generates XOFF transmission. Each TC can have its
own threshold configured by the FCRTH[n] registers.

= Crossing the Rx buffer low threshold on any TC generates XON transmission. This behavior is
undesired. Therefore, software should not enable XON in this mode by clearing FCRTL[n].XONE bits
in all TC.

e The Flow Control Transmit Timer Value of all TCs must be set to the same value.

3.7.8 Inter Packet Gap (1PG) Control and Pacing

The 82599 supports transmission pacing by extending the IPG (the gap between consecutive packets).
The pacing mode allows the average data rate to be slowed in systems that cannot support the full link
rate (10 Gb/s, 1Gb/s or 100 Mb/s). As listed in Table 3.27, the pacing modes work by stretching the
IPG in proportion to the data sent. In this case the data sent is measured from the end of preamble to
the last byte of the packet. No allowance is made for the preamble or default IPG when using pacing
mode.

Example 1:

Consider an example of a 64-byte frame. To achieve a 1 Gb/s data rate when link rate is 10 Gb/s and
packet length is 64 bytes (16 Dwords), programmers need to add an additional IPG of 144 Dwords
(nine times the packet size to reach 1 Gb/s). Which when added to the default IPG gives an IPG of 147
Dwords.

Example 2:

Consider an example of a 65-byte frame. To achieve a 1 Gb/s data rate when link rate is 10 Gb/s and
packet length is 65 bytes (17 Dwords when rounded up) programmers need to add an additional IPG of
153 Dwords (nine times the packet duration in Dwords). Which when added to the default IPG gives an
IPG of 156 Dwords. Note that in these case, where the packet length counted in Dwords is not an
integer, programmers need to count any fraction of a Dword as a whole Dword for computing the
additional IPG.

Table 3.27 lists the pacing configurations supported by the 82599 at link rates of 10 Gb/s. When
operating at lower link speeds the pacing speed is proportional to the link speed.

Table 3.27. Pacing Speeds at 10 Gb/s Link Speed

Pacing Speeds (Gb/s) Delay Inserted into IPG Register Value
10 (LAN) None 0000b
9.294196 (WAN) 1 byte for 13 transmitted 1111b
9.0 1 Dword for 9 transmitted 1001b
8.0 1 Dword for 4 transmitted 1000b
7.0 3 Dwords for 7 transmitted 0111b
6.0 2 Dwords for 3 transmitted 0110b
5.0 1 Dwords for 1 transmitted 0101b

122

[®
Interconnects — Intel® 82599 10 GbE Controller l n tel

Table 3.27. Pacing Speeds at 10 Gb/s Link Speed

Pacing Speeds (Gb/s) Delay Inserted into IPG Register Value
4.0 3 Dwords for 2 transmitted 0100b
3.0 7 Dwords for 3 transmitted 0011b
2.0 4 Dwords for 1 transmitted 0010b
1.0 9 Dwords for 1 transmitted 0001b
10 None Default

Pacing is configured in the PACE field of the Pause and Pace (PAP) register.

Note: The IPG pacing feature is a parallel feature to the Tx rate scheduler where IPG pacing is
applied to the entire Tx data flow while the Tx rate scheduler is applied separately to each Tx
queue. Therefore, if a single queue is used, either feature can be used to limit the Tx data
rate; however, if multiple queues are used, the IPG pacing feature is a better choice for a
homogeneous Tx data rate limitation.

3.7.9 MAC Speed Change at Different Power Modes

Normal speed negotiation drives to establish a link at the Highest Common Denominator (HCD) link
speed. The 82599 supports an additional mode of operation, where the MAC establishes a link at the
Lowest Common Denominator (LCD) link speed. The link-up process enables a link to come up at any
possible speed in cases where power is more important than performance. Different behavior is defined
for the DO state and non-DO states as a function of the AUTOC.D10GMP, AUTOC.RATD and
MMNGC.MNG_VETO register bits.
The 82599 can initiate auto-negotiation without direct driver command in the following cases:

= When the state of MAIN_PWR_OK pin changes.

= When the MNG_VETO bit value changes.

= On a transition from DOa state to a non-DOa state, or from a non-DOa state to DOa state.

Figure 3.27 shows the 82599 behavior when entering low power mode and Figure 3.28 shows the
82599 behavior when going to power-up mode.

123

Intel® 82599 10 GbE Controller — Interconnects

AN enabled

NO
RATD set

YES

A

NO

MAIN_PWR_OK

D10GMP set

Speed @LCD

Figure 3.27. MAC Speed Change When Entering Power Down Mode

124

Interconnects — Intel® 82599 10 GbE Controller

NO

AN enabled

Y YES

Speed is 10G

Speed changed
due to low power?

igher HCD is

enabled?

YES

VETO bit is set

NO

Figure 3.28. MAC Speed Change on Entering Power-up Mode

125

"] ®
I n tel Intel® 82599 10 GbE Controller — Interconnects

Note: This page intentionally left blank.

126

Initialization — Intel® 82599 10 GbE Controller

4.0 Initialization
4.1 Power Up
4.1.1 Power-Up Sequence

Figure 4.1 shows the 82599 power-up sequence from power ramp up until the 82599 is ready to accept
host commands.

C Vcc power on (80%) >

l

‘ Strapping pins are latched ‘

l

Wait for internal Power On Reset De-Assertion
(~35 ms after XTAL stabilizes)

l

Load EEPROM 1: Init Analog parameters, PLL,
Core Rx/Tx, PCle Lanes & MNG / Wake up En

I v

Wait for Core PLL Stable

No

De-Asserted

‘ Wait for PCle PLL stable ‘

1

Load EEPROM 2: MAC, NC-SI, Load EEPROM 3:
Configure MNG and Wake up Init PCle and Configure MAC

Manageability & Wakeup Enabled (Dr state) DOu state

Figure 4.1. 82599 Power-Up Sequence

127

] ®
l n tel Intel® 82599 10 GbE Controller — Initialization

4.1.2 Power-Up Timing Diagram
Power ‘
txog i Y
Base 25 MHz = ‘..“..
@
Power On Reset tppg

(internal)

PClereferenceclock | [T
PERST#| \

PCle PLL State PLL reset

PLL Stable

N, |
@ PLL Stable %
tpgtm 3

PCle Link up \ éi k Lo tpgcfg tpgres

NVM Load

Core PLL(s) State PLL reset

Manageability / Wake

D-State Dr X DOu DOa

Figure 4.2. Power-Up Timing Diagram

Table 4.1. Notes for Power-Up Timing Diagram

Note
1 Base 25 clock is stable t,oq4 after power is stable.
2 Internal Reset is released t,pq after Base 25 is stable (also power supplies are good).
3 NVM read starts following the rising edge of the internal Power On Reset or external LAN Power Good.
4 EEPROM auto-load 1: EEPROM Init Section; PCle Analog; Core Analog.
5 EEPROM auto-load 1 completion to Core PLL(s) stable — typ.
6 EEPROM auto-load 2: MAC module manageability and wake up (if manageability / wake up enabled).
7 APM wake up and/or manageability active, based on NVM contents (if enabled).
8 The PCle reference clock is valid tpyrep-cLk before the de-assertion of PCle Reset (PCle specification).
9 PCle Reset is de-asserted tpypg after power is stable (PCle specification).
10 De-assertion of PCle Reset invokes the EEPROM auto-load 3.
11 De-assertion of PCle Reset to PCle PLL stable tpcip -
12 EEPROM ag_to—l_oad 3: PCle General Configuration; PCle Configuration Space; LAN Core Modules and MAC module if
manageability is not enabled.
13 Link training starts after t,g, from PCle Reset de-assertion (PCle specification).
14 A first PCle configuration access might arrive after t,q.¢y from PCle Reset de-assertion (PCle specification).
15 A first PCI configuration response can be sent after t,ges from PCle Reset de-assertion (PCle specification).
16 ?;gg%tgl:Memory Access Enable or Bus Master Enable bits in the PCI Command register transitions the 82599 from DOu

128

Initialization — Intel® 82599 10 GbE Controller

4.1.2.1 Timing Requirements

The 82599 requires the following start-up and power state transitions.

Table 4.2. Power-Up Timing Requirements

Parameter Description Min Max. Notes
tyog Base 25 MHz clock stable from power stable. 10 ms
thwRGD-CLK PCle clock valid to PCle power good. 100 ups - According to PCle specification.
tovpaL Power rails stable to PCle Reset inactive. 100 ms - According to PCle specification.
thgcfg External PCle Reset signal to first configuration cycle. | 100 ms According to PCle specification.
Note: It is assumed that the external 25 MHz clock source is stable after the power is applied; the

timing for that is part of txog.

4.1.2.2 Timing Guarantees

The 82599 guarantees the following start-up and power state transition related timing parameters.

Table 4.3. Power-Up Timing Guarantees

Parameter Description Min Max. Notes
tyog Xosc stable from power stable. 10 ms
Internal power good delay from valid Use internal counter for external devices
t : 35 ms AN
PPy power rail. stabilization.
too EEPROM read duration. 20 ms Actual time depends on the EEPROM
content.
topll PCle Reset to start of link training. 10 ms
tpcipll PCle Reset to first configuration cycle. 5ms
tpgtrn PCle Reset to start of link training. 20 ms According to PCle specification.
tpgres PCle Reset to first configuration cycle. | 100 ms According to PCle specification.
4.2 Reset Operation
4.2.1 Reset Sources

The 82599 reset sources are described in the sections that follow:

4.2.1.1 LAN_PWR_GOOD

The 82599 has an internal mechanism for sensing the power pins. Once the power is up and stable, the
82599 creates an internal reset, which acts as a master reset of the entire chip. It is level sensitive, and
while it is Ob, all of the registers are held in reset. LAN_PWR_GOOD is interpreted to be an indication
that device power supplies are all stable. LAN_PWR_GOOD changes state during system power up.

4.2.1.2 PE_RST_N (PCle Reset)

The de-assertion of PCle reset indicates that both the power and the PCle clock sources are stable. This
pin asserts an internal reset also after a D3cold exit. Most units are reset on the rising edge of PCle
reset. The only exception is the PCle unit, which is kept in reset while PCle reset is asserted (level).

129

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.2.1.3 In-band PCle Reset

The 82599 generates an internal reset in response to a physical layer message from PCle or when the
PCle link goes down (entry to polling or detect state). This reset is equivalent to PCI reset in previous
(PCI) GbE controllers.

4.2.1.4 D3hot to DO Transition

This is also known as ACPI reset. The 82599 generates an internal reset on the transition from D3hot
power state to DO (caused after configuration writes from D3 to DO power state). Note that this reset is
per function and resets only the function that transitioned from D3hot to DO.

4.2.1.5 Function Level Reset (FLR) Capability

The FLR bit is required for the Physical Function (PF) and per Virtual Function (VF). Setting of this bit for
a VF resets only the part of the logic dedicated to the specific VF and does not influence the shared part
of the port. Setting the PF FLR bit resets the entire function.

4.2.1.5.1 FLR in Non-10V Mode

A FLR reset to a function is equivalent to a DO —> D3 —> DO transition with the exception that this reset
doesn’t require driver intervention in order to stop the master transactions of this function. FLR affects
the device 1 parallel clock cycle from FLR assertion by default setting, or any other value defined by the
FLR Delay Disable and FLR Delay fields in the PCle Init Configuration 2 — Offset 0x02 word in the
EEPROM.

4.2.1.5.2 Physical Function FLR (PFLR)

An FLR reset to the PF function in an IOV mode is equivalent to a FLR in non-10V mode. All VFs in the
PCle function of the PF are affected.

The affected VFs are not notified of the reset in advance. The RSTD bit in the VFMailbox[n] is set
following the reset (per VF) to indicate to the VFs that a PF FLR took place. Each VF is responsible to
probe this bit (such as after a timeout).

4.2.1.5.3 Virtual Function FLR (VFLR)

A VF operating in an IOV mode can issue a FLR. The VFLR resets the resources allocated to the VF (such
as disabling the queues and masking interrupts). It also clears the PCle configuration for the VF. There
is no impact on other VFs or on the PF.

Tx and Rx flows for the queues allocated to this VF are disabled. All pending read requests are dropped
and PCle read completions to this function can be completed as unsupported requests.

Note: Clearing of the 10V Enable bit in the 10V structure is equivalent to a VFLR to all the VFs in the
same port.

130

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

4.2.1.6 Software Resets

4.2.1.6.1 Software Reset

Software reset is done by writing to the Device Reset bit of the Device Control register (CTRL.RST). The
82599 re-reads the per-function EEPROM fields after a software reset. Bits that are not normally read
from the EEPROM are reset to their default hardware values.

Note: This reset is per function and resets only the function that received the software reset.

Fields controlled by the LED, SDP and Init3 words of the EEPROM are not reset and not re-read after a
software reset.

PCI configuration space (configuration and mapping) of the device is unaffected. The MAC might or
might not be reset (see Section 4.2.3).

Prior to issuing software reset, the driver needs to execute the master disable algorithm as defined in
Section 5.2.5.3.2.

If DCB is enabled then following a software reset the following steps must be executed to prevent
potential races between manageability mapping to TC before and after initialization.
1. Clear the flow control enablement in the MAC by clearing MFLCN.RFCE (or clear the entire register).
2. Software should wait ~10 ps.

3. Software polls TFCS.TC_XON(0) = Ob (in most cases it is expected to be found at zero while max
poll time is always shorter than the max expected PAUSE time before a software reset is initiated).

4. Software maps the manageability transmit TC (setting the MNGTXMAP register) and then maps the
user priority of manageability traffic to the manageability TC (setting the RTRUP2TC and RTTUP2TC
registers).

5. Software waits ~10 pus.

6. Software can re-enable the flow control as part of the rest of the initialization flow.

4.2.1.6.2 Physical Function (PF) Software Reset

A software reset by the PF in IOV mode has the same consequences as a software reset in non-10V
mode.

The procedure for a PF software reset is as follows:

= The PF driver disables master accesses by the device through the master disable mechanism (see
Section 5.2.5.3.2). Master disable affects all VFs traffic.

= Execute the procedure described in Section 4.2.2 to synchronize between the PF and VFs.

VFs are expected to timeout and check on the RSTD bit in order to identify a PF software reset event.
The RSTD bits are cleared on read.

4.2.1.6.3 VF Software Reset

A software reset applied by a VF is equivalent to a FLR reset to this VF with the exception that the PCle
configuration bits allocated to this function are not reset. It is activated by setting the VTCTRL.RST bit.

131

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.2.1.6.4 Force TCO

This reset is generated when manageability logic is enabled. It is only generated if enabled by the Force
TCO Reset bit in the Common Firmware Parameters word in the EEPROM. If enabled by the EEPROM,
firmware triggers a port reset by setting the CTRL.RST bit. In pass through mode it is generated when
receiving a ForceTCO SMB command with bit O set.

4.2.1.7 Link Reset
Also referred to as MAC reset.
Initiated by writing the Link Reset bit of the Device Control register (CTRL.LRST).

A link reset is equivalent to a software reset + reset of the MAC. The 82599 re-reads the per-function

EEPROM fields after link reset. Bits that are normally read from the EEPROM are reset to their default

hardware values. Note that this reset is per function and resets only the function that received the link
reset.

The PF in IOV mode can also generate a link reset.

Prior to issuing link reset, the driver needs to execute the master disable algorithm as defined in
Section 5.2.5.3.2.

4.2.2 Reset in PCI-10V Environment

Several mechanisms are provided to synchronize reset procedures between the PF and the VFs.

4.2.2.1 (RSTI1)/(RSTD)
This mechanism is provided specifically for a PF software reset but can be used in other reset cases.
The procedure is as follows:
= One of the following reset cases takes place:
— LAN Power Good
— PCle Reset (PERST and in-band)
— D3hot --> DO
— FLR
— Software reset by the PF

= The 82599 sets the RSTI bits in all the VFMailbox registers. Once the reset completes, each VF can
read its VFMailbox register to identify a reset in progress.

— The VF might poll the RSTI bit to detect if the PF is in the process of configuring the device.

« Once the PF completes configuring the device, it sets the CTRL_EXT.PFRSTD bit. As a result, the
82599 clears the RSTI bits in all the VFMailbox registers and sets the Reset Done (RSTD) bits in all
the VFMailbox registers.

— The VF might read the RSTD bit to detect that a reset has occurred. The RSTD bit is cleared on
read.

132

u ®
Initialization — Intel® 82599 10 GbE Controller l n t E l

4.2.2.2 VF Receive Enable — PFVFRE / VF Transmit Enable — PFVFTE
This mechanism insures that a VF cannot transmit or receive before the Tx and Rx path has been
initialized by the PF.

= The PFVFRE register contains a bit per VF. When the bit is set to Ob, Rx packet assignment for the
VF’s pool is disabled. When set to 1b, Rx packet assignment for the VF’s pool is enabled.

= The PFVFTE register contains a bit per VF. When the bit is set to Ob, data fetching for the VF’s pool
is disabled. When set to 1b, data fetching for the VF’s pool is enabled. Descriptor fetching for the VF
pool is maintained, up to the limit of the internal descriptor queues — regardless of PFVFTE
settings.

The PFVFTE and PFVFRE registers are initialized to zero (VF Tx and Rx traffic gated) following a PF
reset. The relevant bits per VF are also initialized by a VF software reset or VFLR.

4.2.3 Reset Effects
Table 4.4 through Table 4.6 list how resets affect the following registers and logic:

Table 4.4. Reset Effects — Common Resets

Reset Activation LAI\(IB(F;géver Pllsz(Q:SI$# Pé?ébsg:et FW Reset Force TCO Notes
EEPROM Read See Section 6.3.1
LTSSM (back to detect/polling) X X X
PCle Link Data Path X X X
PCI Configuration Registers RO X X X 9
PCI Configuration Registers RW X X X 9
PCle Local Registers X X X 8
Data Path X X X 2
On-die Memories X X X 7
MAC, PCS, Auto-Negotiation, LinkSec, IPsec X X6 X6
Wake Up (PM) Context X 1 3
Wake Up/Manageability Control/Status X 45
Regs ’
Manageability Unit X X
LAN Disable Strapping Pins X X X
All Other Strapping Pins
Table 4.5. Reset Effects — Per Function Resets
Link Reset
Reset Activation D3 or Dr F;‘ELgr SW Reset fr(())rmE)If,iAt\N Notes
Disable
EEPROM Read See Section 6.3.1
LTSSM (back to detect/polling)
PCle Link Data Path
PCI Configuration Registers RO 9
PCI Configuration Registers RW X X 9

133

intel.

Table 4.5. Reset Effects — Per Function Resets

Intel® 82599 10 GbE Controller — Initialization

Link Reset
Reset Activation D3 or Dr Fllj_FRLgr SW Reset frc()):‘nE)L(,iAtN Notes
Disable
Data path, Memory Space X X 2
On-die Memories 7
MAC, PCS, Auto-Negotiation, LinkSec, IPsec X 6 X 6 X 6 X
Virtual Function Resources X X X 10
Wake Up (PM) Context 3
Wake Up/Manageability Control/Status Regs 4,5
Manageability Unit
Strapping Pins
Table 4.6. Reset Effects -Virtual Function Resets
Reset Activation VFLR VF SW Reset Notes
Interrupt Registers X X 11
Queue Disable X X 12
VF Specific PCle Configuration Space X 13
Data Path
Statistics Registers 14

Note: VFLR won’t clear the VFMAILBOX.VFU bit. This bit should be cleared by a direct write access
or by setting PFMailbox.RVFU bit. Refer to Section 8.3.5.1.5 for more details.

Notes For Previous Tables:

1. If AUX_PWR = Ob the wake up context is reset (PME_Status and PME_En bits should be Ob at reset if the 82599 does not

support PME from D3cold).

2. The following register fields do not follow the previous general rules:
« ESDP registers- reset on LAN Power Good only.

« LED configuration registers.

« The Aux Power Detected bit in the PCle Device Status register is reset on LAN Power Good and PCle Reset only.

< FLA — reset on LAN Power Good only.

< RAH/RAL[Nn, where n>0], MTA[n], VFTA[n], FFMT[n], FFVT[n], TDBAH/TDBAL, and RDBAH/RDVAL registers
default value. If the functions associated with the registers are enabled they must be programmed by software.

programmed, their value is preserved through all resets as long as power is applied.

« Statistic registers (physical function)

3. The wake up context is defined in the PCI Bus Power Management Interface Specification (sticky bits). It includes:

« PME_En bit of the Power Management Control/Status Register (PMCSR)

< PME_Status bit of the Power Management Control/Status Register (PMCSR)

< Aux_En in the PCle registers

« The device requester ID (since it is required for the PM_PME TLP)

The shadow copies of these bits in the Wakeup Control Register are treated identically.

4. Refers to bits in the Wake Up Control Register that are not part of the Wake-Up Context (the PME_En and PME_Status bits).
Note that the WUFC and WUC registers are not part of the Wake Up Context and are reset as part of the data path. Include also

the SW_FW_SYNC and the FWSM registers.

5. The Wake Up Status Registers include the following:

< Wake Up Status Register
« Wake Up Packet Length
« Wake Up Packet Memory

have no

Once

6. The MAC cluster is reset by the appropriate event only if manageability unit is disabled and the host is in a low power state with

WolL disabled.

134

Initialization — Intel® 82599 10 GbE Controller

10.

11.

12.

13.

14.

The contents of the following memories are cleared to support the requirements of PCle FLR:
= The Tx packet buffers
= The Rx packet buffers
= |IPsec Tx SA tables
= IPsec Rx SA tables
The following registers are part of this group:
- SWSM
= GCR (only bit 9 is cleared by this reset while all other fields are cleared at LAN Power Good reset)
- GSCL_1/GSCL_2
= GSCN_0/1/2/3

Sticky bits and hardware init bits (indicated as Hwlnit) in the PCI Configuration registers are cleared only by LAN Power Good
reset.

These registers include:
= VFEICS
« VFEIMS
= VFEIAC
= VFEIAM
VFEITR 0-2
VTIVARO
VFIVAR_MISC
VFPBACL
VFMailbox
These registers include:
= VFEICS
= VFEIMS
= VFEIMC
= VFEIAC
= VFEIAM
VFEICR
EITR 0-2
VTIVARO
VFIVAR_MISC
VFPBACL
PSRTYPE
VFMailbox
VFMBMEM
These registers include:
« Specific VF bits in the FVRE and FVTE are cleared as well
These registers include:
= MSI/MSI-X enable bits
- BME
= Error indications

Rx and Tx counters might miss proper counting due to VFLR indicating more packets than those ones actually transferred. It
could happen if the VFLR happened after counting occurred but before Tx or Rx were completed.

135

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.3 Queue Disable
See Section 4.6.7.1 for details on disabling and enabling an Rx queue.

See Section 4.6.8.1 for details on disabling and enabling a Tx queue.
4.4 Function Disable

4.4.1 General

For a LAN on Motherboard (LOM) design, it might be desirable for the system to provide BIOS-setup
capability for selectively enabling or disabling LAN functions. It enables the end-user more control over
system resource-management and avoids conflicts with add-in NIC solutions. The 82599 provides
support for selectively enabling or disabling one or both LAN device(s) in the system.

4.4.2 Overview

Device presence (or non-presence) must be established early during BIOS execution, in order to ensure
that BIOS resource-allocation (of interrupts, of memory or 10 regions) is done according to devices that
are present only. This is frequently accomplished using a BIOS Configuration Values Driven on Reset
(CVDR) mechanism. The 82599 LAN-disable mechanism is implemented in order to be compatible with
such a solution.

The 82599 provides two mechanisms to disable each of its LAN ports:

e The LANx_DIS_N pins (one pin per LAN port) are sampled on reset to determine the LAN
enablement.

« One of the LAN ports can be disabled using EEPROM configuration.

Disabling a LAN port affects the PCI function it resides on. When function O is disabled (either LANO or
LAN1), two different behaviors are possible:

< Dummy function mode — In some systems, it is required to keep all the functions at their
respective location, even when other functions are disabled. In dummy function mode, if function
#0 (either LANO or LANL1) is disabled, then it does not disappear from the PCle configuration space.
Rather, the function presents itself as a dummy function. The device ID and class code of this
function changes to other values (dummy function device ID 0x10A6 and class code OxFFO000). In
addition, the function does not require any memory or 1I/0 space, and does not require an interrupt
line.

* Legacy mode — When function O is disabled (either LANO or LAN1), then the port residing on
function 1 moves to reside on function 0. Function 1 disappears from the PCI configuration space.

Mapping between function and LAN ports is listed in the following tables.

Table 4.7. PCI Functions Mapping (Legacy Mode)

PCI Function # LAN Function Select Function O Function 1
[0] LAN O LAN 1
Both LAN functions are enabled.
1 LAN 1 LAN O
LAN O is disabled. X LAN1 Disable
LAN 1 is disabled. X LAN O Disable
Both LAN functions are disabled. Both PCI functions are disabled. Device is in low power mode.

136

u ®
Initialization — Intel® 82599 10 GbE Controller l n t E l

Table 4.8. PCI Functions Mapping (Dummy Function Mode)

PCI Function # LAN Function Select Function O Function 1
0 LAN O LAN 1
Both LAN functions are enabled.
1 LAN 1 LAN O
(6] Dummy LAN1
LAN O is disabled.
1 LAN 1 Disable
0 LAN O Disable
LAN 1 is disabled.
1 Dummy LAN O
Both LAN functions are disabled. Both PCI functions are disabled. Device is in low power mode.

The following rules apply to function disable:

When function O is disabled in legacy mode, the LAN port associated originally with function 1
appears in function 0. Function 1 disappears from the PCI configuration space.

When function O is disabled in dummy function mode, it is converted into a dummy PCI function.
Function 1 is not affected.

When function 1 is disabled, it disappears from the PCI configuration space.

The disabled LAN port is still available for manageability purposes if disabled through the EEPROM
mechanism. The disabled LAN port is not available for manageability purposes if disabled through
the pin mechanism.

Dummy function mode should not be used in PCI IOV mode (since PFO is required to support
certain functionality)

The following EEPROM bits control function disable:

One PCI function can be enabled or disabled according to the EEPROM LAN PCI Disable bit.
The LAN Disable Select EEPROM field indicates which function is disabled.

The LAN Function Select EEPROM bit defines the correspondence between LAN Port and PCI
function

The Dummy Function Enable EEPROM bit enables the dummy function mode. Default value is
disabled.

137

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.4.3 Control Options

The functions have a separate enabling mechanism. Any function that is not enabled does not function
and does not expose its PCI configuration registers.

LANO or LAN 1 can be disabled in the EEPROM by setting the LAN PCI Disable bit in the PCle Control 2
word at offset 0x05. The LAN Disable Select bit in the same word in the EEPROM selects which LAN is

disabled. Furthermore, if the LAN port at function O is disabled, the Dummy Function Enable bit in the
same word chooses between filling the disabled function by a dummy function, or moving the other LAN
port to function 0.

Note: Mapping LANO and LAN1 to PCI function O and PCI function 1 is controlled by the EEPROM
LAN Function Select bit in the PCle Control 2 word at offset 0x05.

LANO and LAN 1 can be disabled on the board level by driving the LANO_Dis_N and LAN1_Dis_N pins to
low. These 1/0 pins have internal weak pull-up resistors so leaving them unconnected or driving them
to high enables the respective LAN port. These pins are strapping options, sampled at LAN Power Good,
PCle reset or in-band PCle reset.

4.4.4 Event Flow for Enable/Disable Functions

This section describes the driving levels and event sequence for device functionality. Following a Power
on Reset / LAN Power Good/ PCle Reset/ In-Band Reset, the LANx_DIS_N signals should be driven high
(or left open) for normal operation. If any of the LAN functions are not required statically, its associated
disable strapping pin can be tied statically to low.

4.4.4.1 BI1OS Disable the LAN Function at Boot Time by Using Strapping Option

Assume that following a power up sequence LANx_DIS_N signals are driven high.
1. PCle is established following PCle reset.

BIOS recognizes that a LAN function in the 82599 should be disabled.

The BIOS drives the LANx_DIS_N signal to the low level.

BIOS issues PCle reset or an in-band PCle reset.

o bk wDN

As a result, the 82599 samples the LANx_DIS_N signals and disables the LAN function and issues
an internal reset to this function.

6. BIOS might start with the device enumeration procedure (the disabled LAN function is invisible —
changed to dummy function).

7. Proceed with normal operation.

8. Re-enable could be done by driving the LANx_DIS_N signal high and then requesting the user to
issue a warm boot to initialize new bus enumeration.

4.4.4.2 Multi-Function Advertisement

If one of the LAN devices is disabled and function O is the only active function, the 82599 is no longer a
multi-function device. The 82599 normally reports a 0x80 in the PCI configuration header, indicating
multi-function capability. However, if a LAN is disabled and only function O is active, the 82599 reports
a 0x0 in this field to signify single-function capability.

138

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

4.4.4.3 Interrupt Utilization

When both LAN devices are enabled, the 82599 uses the PCI legacy interrupts of both ports for
interrupt reporting. The EEPROM configuration controls the Interrupt Pin field of the PCI configuration
header to be advertised for each LAN device to comply with PCI specification requirements.

However, if either LAN device is disabled, then the legacy PCI interrupt of port A must be used for the
remaining LAN device, therefore the EEPROM configuration must be set accordingly. Under these
circumstances, the Interrupt Pin field of the PCI configuration header always reports a value of 0x1,
indicating INTA# pin usage, which means legacy PCI interrupt of port A is used.

4.4.4.4 Power Reporting

When both LAN devices are enabled, the PCI Power Management register block has the capability of
reporting a common power value. The common power value is reflected in the Data field of the PCI
Power Management registers. The value reported as common power is specified via an EEPROM field,
and is reflected in the Data field each time the Data_Select field has a value of 0x8 (0x8 = common
power value select).

When only one LAN port is enabled and the 82599 appears as a single-function device, the common
power value, if selected, reports Ox0 (undefined value), as common power is undefined for a single-
function device.

4.5 Device Disable

45.1 Overview

When both LAN ports are disabled following a Power on Reset / LAN Power Good/ PCle Reset/ In-Band
Reset, the LANX_DIS_N signals should be tied statically to low. In this state the device is disabled, LAN
ports are powered down, all internal clocks are shut, and the PCle connection is powered down (similar
to L2 state).

4.5.2 B10OS Disable of the Device at Boot Time by Using the Strapping
Option
Assume that following power-up sequence LANx_DIS N signals are driven high:
1. PCle is established following PCle reset.
BIOS recognizes that the 82599 should be disabled.
The BIOS drives the LANx_DIS_N signals to the low level.
BIOS issues PCle reset or an in-band PCle reset.

As a result, the 82599 samples the LANx_DIS_N signals and disables the LAN ports and the PCle
connection.

o s e

%

Re-enable can be done by driving at least one of the LANx_DIS_N signals high and then issuing a
PCle reset to restart the device.

139

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.6 Software Initialization and Diagnostics

4.6.1 Introduction
This section discusses general software notes for the 82599, especially initialization steps. This
includes:
« General hardware power-up state
= Basic device configuration
< Initialization of transmit
- Receive operation
< Link configuration
- Software reset capability
- Statistics
< Diagnostic hints

4.6.2 Power-Up State

When the 82599 powers up, it automatically reads the EEPROM. The EEPROM contains sufficient
information to bring the link up and configure the 82599 for manageability and/or APM wakeup.
However, software initialization is required for normal operation.

4.6.3 Initialization Sequence
The following sequence of commands is typically issued to the device by the software device driver in
order to initialize the 82599 for normal operation. The major initialization steps are:
1. Disable interrupts.
Issue global reset and perform general configuration (see Section 4.6.3.2).
Wait for EEPROM auto read completion.
Wait for DMA initialization done (RDRXCTL.DMAIDONE).
Setup the PHY and the link (see Section 4.6.4).
Initialize all statistical counters (see Section 4.6.5).
Initialize receive (see Section 4.6.7).

Initialize transmit (see Section 4.6.8).

©® N O A~ LD

Enable interrupts (see Section 4.6.3.1).

4.6.3.1 Interrupts During Initialization

Most drivers disable interrupts during initialization to prevent re-entrance. Interrupts are disabled by
writing to the EIMC registers. Note that the interrupts also need to be disabled after issuing a global
reset, so a typical driver initialization flow is:

1. Disable interrupts.
2. Issue a global reset.

3. Disable interrupts (again).

After initialization completes, a typical driver enables the desired interrupts by writing to the IMS
register.

140

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

4.6.3.2 Global Reset and General Configuration

Note: Global Reset = software reset + link reset.

Device initialization typically starts with a software reset that puts the device into a known state and
enables the device driver to continue the initialization sequence. Following a Global Reset the Software
driver should wait at least 10msec to enable smooth initialization flow.

To enable flow control, program the FCTTV, FCRTL, FCRTH, FCRTV and FCCFG registers. If flow control is
not enabled, these registers should be written with 0x0. If Tx flow control is enabled then Tx CRC by
hardware should be enabled as well (HLREGO.TXCRCEN = 1b). Refer to Section 3.7.7.3.2 through
Section 3.7.7.3.5 for the recommended setting of the Rx packet buffer sizes and flow control
thresholds. Note that if flow control is not enabled but Tx switching is enabled, the FCRTH[n].RTH fields
must be set as if flow control is enabled. The FCRTH[n].FCEN bit should be set to Ob as all the other
registers previously indicated.

The link interconnect configuration according to the electrical specification of the relevant electrical
interface should be set prior to the link setup. This configuration is done through the EEPROM by
applying the appropriate settings to the link interconnect block.

4.6.4 100 Mb/s, 1 GbE, and 10 GbE Link Initialization

4.6.4.1 BX/ SGMII Link Setup Flow

1. BX link electrical setup is done according to EEPROM configuration to set the analog interface to the
appropriate setting.

Configure the Link Mode Select field in the AUTOC register to the appropriate operating mode.
Configure any interface fields in the SERDESC register if necessary.

Restart the link using the Restart Auto Negotiation field in the AUTOC register.

Verify correct link status (sync, link_up, speed) using the LINKS register.

a M wN

4.6.4.2 XAUI /7 BX4 / CX4 / SFI1 Link Setup Flow

1. XAUI / BX4 / CX4 / SFI link electrical setup is done according to EEPROM configuration to set the
analog interface to the appropriate setting.

2. Configure the Link Mode Select field in the AUTOC register, AUTOC.10G_PARALLEL_PMA_PMD and
AUTOC2.10G_PMA_PMD_Serial to the appropriate operating mode.

3. Configure any interface fields in the SERDESC register if necessary.
4. Restart the link using the Restart Auto Negotiation field in the AUTOC register.
5. Verify correct link status (align, link_up, speed) using the LINKS register.

4.6.4.3 KX /7 KX4 / KR Link Setup Flow Without Auto-Negotiation

1. KX / KX4 / KR link electrical setup is done according to EEPROM configuration to set the analog
interface to the appropriate setting.

2. Configure the Link Mode Select field in the AUTOC register, AUTOC.10G_PARALLEL_PMA_PMD and
AUTOC2.10G_PMA_PMD_Serial to the appropriate operating mode.

3. Configure any interface fields in the SERDESC register if necessary.
4. Restart the link using the Restart Auto Negotiation field in the AUTOC register.
5. Verify correct link status (sync, align, link_up, speed) using the LINKS register.

141

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.6.4.4 KX /7 KX4 / KR Link Setup Flow With Auto-Negotiation

1. KX / KX4 / KR link electrical setup is done according to EEPROM configuration to set the analog
interface to the appropriate setting.

2. Configure the Link Mode Select field in the AUTOC register, AUTOC.10G_PARALLEL_PMA_PMD and
AUTOC2.10G_PMA_PMD_Serial to the appropriate operating mode.
3. Configure any interface fields in the SERDESC register if necessary.
4. Configure the KX_Support field and any other auto-negotiation related fields in the AUTOC register.
5. Restart the link using the Restart Auto Negotiation field in the AUTOC register.
6. Verify correct link status (sync, align, link_up, speed) using the LINKS register.
4.6.5 Initialization of Statistics

Statistics registers are hardware-initialized to values as detailed in each particular register's
description. The initialization of these registers begins upon transition to DO active power state (when
internal registers become accessible, as enabled by setting the Memory Access Enable field of the PCle
Command register), and is guaranteed to be completed within 1 ms of this transition. Note that access
to statistics registers prior to this interval might return indeterminate values.

All of the statistical counters are cleared on read and a typical device driver reads them (thus making
them zero) as a part of the initialization sequence.

Queue counters are mapped using the RQSMR registers for Rx queues, and TQSM registers for Tx
queues. Refer to Section 8.2.3.23.71 for RQSMR setup, and Section 8.2.3.23.73 for TQSM setup. Note
that if software requires the queue counters, the RQSMR and TQSM registers must be re-programmed
following a device reset.

4.6.6 Interrupt Initialization

Operating with Legacy or MSI Interrupts:

= The software driver associates between Tx and Rx interrupt causes and the EICR register by setting
the IVAR[N] registers.

e Program SRRCTL[n].RDMTS (per receive queue) if software uses the receive descriptor minimum
threshold interrupt.

< All interrupts should be set to Ob (no auto clear in the EIAC register). Following an interrupt,
software might read the EICR register to check for the interrupt causes.

« Set the auto mask in the EIAM register according to the preferred mode of operation.
= Set the interrupt throttling in EITR[n] and GPIE according to the preferred mode of operation.

« Software enables the required interrupt causes by setting the EIMS register.

Operating with MSI-X:

« The operating system / BIOS sets the hardware to MSI-X mode and programs the MSI-X table as
part of the device enumeration procedure.

= The software driver associates between interrupt causes and MSI-X vectors and the throttling
timers EITR[N] by programming the IVAR[n] and IVAR_MISC registers.

« Program SRRCTL[N].RDMTS (per receive queue) if software uses the receive descriptor minimum
threshold interrupt.

« The EIAC[n] registers should be set to auto clear for transmit and receive interrupt causes (for best
performance). The EIAC bits that control the other and TCP timer interrupt causes should be set to
Ob (no auto clear).

142

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

= Set the auto mask in the EIAM and EIAM[n] registers according to the preferred mode of operation.
= Set the interrupt throttling in EITR[n] and GPIE according to the preferred mode of operation.
= Software enables the required interrupt causes by setting the EIMS[n] registers.

4.6.7 Receive Initialization

Initialize the following register tables before receive and transmit is enabled:
* Receive Address (RAL[Nn] and RAH[n]) for used addresses.
* Receive Address High (RAH[Nn].VAL = 0Ob) for unused addresses.
* Unicast Table Array (PFUTA).
= VLAN Filter Table Array (VFTA[N]).
« VLAN Pool Filter (PFVLVF[N]).
= MAC Pool Select Array (MPSAR[N]).
= VLAN Pool Filter Bitmap (PFVLVFB[N]).
Program the Receive Address register(s) (RAL[n], RAH[N]) per the station address. This can come from

the EEPROM or from any other means (for example, it could be stored anywhere in the EEPROM or even
in the platform PROM for LOM design).

Set up the Multicast Table Array (MTA) registers. This entire table should be zeroed and only the desired
multicast addresses should be permitted (by writing Ox1 to the corresponding bit location). Set the
MCSTCTRL.MFE bit if multicast filtering is required.

Set up the VLAN Filter Table Array (VFTA) if VLAN support is required. This entire table should be zeroed
and only the desired VLAN addresses should be permitted (by writing Ox1 to the corresponding bit
location). Set the VLNCTRL.VFE bit if VLAN filtering is required.

Initialize the flexible filters 0...5 — Flexible Host Filter Table registers (FHFT).

After all memories in the filter units previously indicated are initialized, enable ECC reporting by setting
the RXFECCERRO.ECCFLT_EN bit.

Program the different Rx filters and Rx offloads via registers FCTRL, VLNCTRL, MCSTCTRL, RXCSUM,
RQTC, RFCTL, MPSAR, RSSRK, RETA, SAQF, DAQF, SDPQF, FTQF, SYNQF, ETQF, ETQS, RDRXCTL,
RSCDBU.

Note that RDRXCTL.CRCStrip and HLREGO.RXCRCSTRP must be set to the same value. At the same
time the RDRXCTL.RSCFRSTSIZE should be set to Ox0 as opposed to its hardware default.

Program RXPBSIZE, MRQC, PFQDE, RTRUP2TC, MFLCN.RPFCE, and MFLCN.RFCE according to the DCB
and virtualization modes (see Section 4.6.11.3).

Enable jumbo reception by setting HLREGO.JUMBOEN in one of the following two cases:
1. Jumbo packets are expected. Set the MAXFRS.MFS to expected max packet size.

2. LinkSec encapsulation is expected.

In these cases set the MAXFRS.MFS bit in the Max Frame Size register to the expected maximum
packet size plus 32 bytes for the LinkSec encapsulation. Refer to Section 8.2.3.22.13 for details about
the correct handling of VLAN and double VLAN headers.

Enable receive coalescing if required as described in Section 4.6.7.2.

143

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

The following should be done per each receive queue:
1. Allocate a region of memory for the receive descriptor list.

2. Receive buffers of appropriate size should be allocated and pointers to these buffers should be
stored in the descriptor ring.

3. Program the descriptor base address with the address of the region (registers RDBAL, RDBAL).
4. Set the length register to the size of the descriptor ring (register RDLEN).

5. Program SRRCTL associated with this queue according to the size of the buffers and the required
header control.

6. If header split is required for this queue, program the appropriate PSRTYPE for the appropriate
headers.

7. Program RSC mode for the queue via the RSCCTL register.

8. Program RXDCTL with appropriate values including the queue Enable bit. Note that packets directed
to a disabled queue are dropped.

9. Poll the RXDCTL register until the Enable bit is set. The tail should not be bumped before this bit
was read as 1b.

10. Bump the tail pointer (RDT) to enable descriptors fetching by setting it to the ring length minus
one.

11. Enable the receive path by setting RXCTRL.RXEN. This should be done only after all other settings
are done following the steps below.

— Halt the receive data path by setting SECRXCTRL.RX_DIS bit.

— Wait for the data paths to be emptied by HW. Poll the SECRXSTAT.SECRX_RDY bit until it is
asserted by HW.

— Set RXCTRL.RXEN
— Clear the SECRXCTRL.SECRX_DIS bits to enable receive data path

— If software uses the receive descriptor minimum threshold Interrupt, that value should be set.

4.6.7.1 Dynamic Enabling and Disabling of Receive Queues

Receive queues can be enabled or disabled dynamically using the following procedure.

4.6.7.1.1 Enabling

Follow the per queue initialization described in the previous section.

4.6.7.1.2 Disabling

« Disable the routing of packets to this queue by re-configuring the Rx filters. In order to ensure that
the receive packet buffer does not contain any packets to the specific queue it is required to follow
the Flushing the Packet Buffers procedure described later in this section.

« If RSC is enabled on the specific queue and VLAN strip is enabled as well then wait 2 ITR expiration
time (ensure all open RSC are completed).

« Disable the queue by clearing the RXDCTL.ENABLE bit. The 82599 stops fetching and writing back
descriptors from this queue. Any further packet that is directed to this queue is dropped. If a packet
is being processed, the 82599 completes the current buffer write. If the packet spreads over more
than one data buffer, all subsequent buffers are not written.

e The 82599 clears the RXDCTL.ENABLE bit only after all pending memory accesses to the descriptor
ring are done. The driver should poll this bit before releasing the memory allocated to this queue.

* Once the RXDCTL.ENABLE bit is cleared the driver should wait additional amount of time
(—100 ps) before releasing the memory allocated to this queue.

144

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

Software might re-configure the Rx filters back to the original setting.The Rx path can be disabled only
after all the receive queues are disabled.

4.6.7.1.3 Flushing the Packet Buffers

Because there could be additional packets in the receive packet buffer targeted to the disabled queue
and the arbitration could be such that it would take a long time to drain these packets, if software re-
enables a queue before all packets to that queue were drained, the enabled queue could potentially get
packets directed to the old configuration of the queue. For example, a Virtual Machine (VM) goes down
and a different VM gets the queue.

The 82599 provides a mechanism for software to identify when the packet buffers were drained of such
stale packets. The read-only RXMEMWRAP register contains a set of counters (one per packet buffer)
that increments each time a buffer is overtaken by the tail pointer. Software must read a counter
repeatedly until its count is incremented at least by two, to insure that the buffer made at least one
complete wrap-around. Software should also check the Empty bit for the counter. If the bit is set, the
buffer is empty and there is no further need to sample the buffer counter.

4.6.7.2 RSC Enablement

RSC enablement as well as RSC parameter settings are assumed as static. It should be enabled prior to
reception and can be disabled only after the relevant Rx queue(s) are disabled.

4.6.7.2.1 Global Setting

« In SR-I0OV mode RSC must be disabled globally by setting the RFCTL.RSC_DIS bit. In this case the
following steps in this section are not required.

Enable global CRC stripping via HLREGO (hardware default setting)

Software should set the RDRXCTL.RSCACKC bit that forces RSC completion on any change of the
ACK bit in the Rx packet relative to the RSC context.

The SRRCTL[n].BSIZEHEADER (header buffer size) must be larger than the packet header (even if
header split is not enabled). A minimum size of 128 bytes for the header buffer addresses this
requirement.

NFS packet handling:

— NFS header filtering should be disabled if NFS packets coalescing are required (at the TCP
layer). The RFCTL.NFSW_DIS and RFCTL.NFSR_DIS bits should be set to 1b. Furthermore, the
PSR_typel bit in the PSRTYPE[n] registers (header split on NFS) must be turned off in all
queues.

— Both RFCTL.NFSW_DIS and RFCTL.NFSR_DIS bits should be cleared to Ob if NFS coalescing is
not required. The PSR_typel can be set per queue according to the required header split.

4.6.7.2.2 Per Queue Setting

= Enable RSC and configure the maximum allowed descriptors per RSC by setting the MAXDESC and
RSCEN fields in the RSCCTL[n].

= Use non-legacy descriptor type by setting SRRCTL[n].DESCTYPE to non-zero values.
= TCP header recognition — the PSR_type4 in the PSRTYPE[n] registers should be set.
= Interrupt setting:

— Interrupt moderation must be enabled by setting EITR[n].ITR Interval to a value greater than
zero. Note that the ITR Interval must be larger than the RSC Delay. Also, if the CNT_WDIS bit is
cleared (write enable), then the ITR counter should be set to zero.

145

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

— The RSC Delay field in the GPIE register should be set to the expected system latency
descriptor write-back cycles. 4 to 8 us should be sufficient in most cases. If software encounters
many instances that RSC did not complete as expected following EITR interrupt assertion, RSC
Delay might need to be increased.

— Map the relevant Rx queues to an interrupt by setting the relevant IVAR registers.

4.6.8 Transmit Initialization
< Program the HLREGO register according to the required MAC behavior.

= Program TCP segmentation parameters via registers DMATXCTL (while maintaining TE bit cleared),
DTXTCPFLGL, and DTXTCPFLGH; and DCA parameters via DCA_TXCTRL.

= Set RTTDCS.ARBDIS to 1b.

e Program DTXMXSZRQ, TXPBSIZE, TXPBTHRESH, MTQC, and MNGTXMAP, according to the DCB
and virtualization modes (see Section 4.6.11.3).

* Clear RTTDCS.ARBDIS to Ob.

The following steps should be done once per transmit queue:

1. Allocate a region of memory for the transmit descriptor list.

2. Program the descriptor base address with the address of the region (TDBAL, TDBAH).
3. Set the length register to the size of the descriptor ring (TDLEN).
4

. Program the TXDCTL register with the desired TX descriptor write back policy (see
Section 8.2.3.9.10for recommended values).

5. If needed, set TDWBAL/TWDBAH to enable head write back.

6. Enable transmit path by setting DMATXCTL.TE. This step should be executed only for the first
enabled transmit queue and does not need to be repeated for any following queues.

7. Enable the queue using TXDCTL.ENABLE. Poll the TXDCTL register until the Enable bit is set.

Note: The tail register of the queue (TDT) should not be bumped until the queue is enabled.

4.6.8.1 Dynamic Enabling and Disabling of Transmit Queues

Transmit queues can be enabled or disabled dynamically if the following procedure is followed.

4.6.8.1.1 Enabling

- Follow the per queue initialization described in the previous section.

4.6.8.1.2 Disabling
1. Stop storing packets for transmission in this queue.

2. The completion of the last transmit descriptor must be visible to software in order to guarantee that
packets are not lost in step 5. Therefore, its RS bit must be set or WTHRESH must be greater than
zero. If none of these conditions are met, software should add a null Tx data descriptor with an
active RS bit.

3. Wait until the software head of the queue (TDH) equals the software tail (TDT), indicating the
queue is empty.

4. Wait until all descriptors are written back (polling DD bit in ring or polling the Head_WB content). It
might be required to flush the transmit queue by setting TXDCTL[n].SWFLSH if the RS bit in the last
fetched descriptor is not set or if WTHRESH is greater than zero.

5. Disable the queue by clearing TXDCTL.ENABLE.

146

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

6. Any packets waiting for transmission in the packet buffer would still be sent at a later time.

The transmit path can be disabled only after all transmit queues are disabled.

4.6.9 FCoE Initialization Flow

Ordering between the following steps is not critical as long as it is done before transmit and receive
starts.

= The FCoE DDP context table should be initialized clearing the FCBUFF.Valid and FCFLT.Valid bits of
all contexts.

= EType Queue Filter — ETQF[n]: Select a filter by setting the FCoE bit. The EType field should be set
to Ox8906 (FCoE Ethernet Type). UP Enable and UP should be programmed if VLAN priority filtering
is required. If FCoOE traffic is expected on multiple VLAN priorities then multiple ETQF filters might
be required.

= EType Queue Select — ETQS[n]: Each ETQF filter is associated to a queue select register. The ETQS
registers can be used to direct the FCoE traffic to specific receive queues. Up to one queue per
Traffic Class (TC) as programmed in the ETQF.

= Multiple receive queues can be enabled by setting FCRECTL.ENA and programming the FCRETA[N]
registers.

= Low Latency Interrupts (LLI) for critical FCoE frames can be enabled by setting the
FCRXCTRL.FCOELLI bit.

* Set the RDRXCTL.FCOE_WRFIX bit that forces a DDP write exchange context closure after receiving
the last packet in a sequence with an active Sequence Initiative bit in the F_CTL field.

« Follow the rules indicated in Section 7.13.2.1 and Section 7.13.3.1 for Tx and Rx cross functionality
requirements. These sections include requirements on Ethernet CRC and padding handling, LinkSec
offload, Legacy Rx buffers, and more.

4.6.10 Virtualization Initialization Flow
4.6.10.1 VMDq Mode

4.6.10.1.1 Global Filtering and Offload Capabilities

« Select one of the VMDQ pooling methods — MAC/VLAN filtering for pool selection and either DCB or
RSS for the queue in pool selection. MRQC.Multiple Receive Queues Enable = 1000b, 1010b, 1011b,
1100b, or 1101b.

= DCB should be initiated as described in Section 4.6.11. In RSS mode, the RSS key (RSSRK) and
redirection table (RETA) should be programmed. Note that the redirection table is common to all
the pools and only indicates the queue inside the pool to use once the pool is chosen. Each pool can
decide if it uses DCB.

« Configure PFVTCTL to define the default pool.
= Enable replication via PFVTCTL.Rpl_En.
« If needed, enable padding of small packets via HLREGO.TXPADEN.

= The MPSAR registers are used to associate Ethernet MAC addresses to pools. Using the MPSAR
registers, software must reprogram RAL[O] and RAH[O] by their values (software could read these
registers and then write them back with the same content).

147

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.6.10.1.2 Mirroring Rules

For each mirroring rule to be activated:
« Set the type of traffic to be mirrored in the PFMRCTL[n] register.
« Set the mirror pool in PEFEMRCTL[Nn].MP.
= For pool mirroring, set the PFMRVM[n] register with the pools to be mirrored.

« For VLAN mirroring, set PFMRVLAN[N] with the indexes from the PFVLVF registers of the VLANs to
be mirrored.

4.6.10.1.3 Security Features

For each pool, the driver might activate the MAC and VLAN anti-spoof features via the relevant bit in
PFVFSPOOF.MACAS and PFVFSPOOF.VLANAS, respectively.

4.6.10.1.4 Per Pool Settings

As soon as a pool of queues is associated to a VM, software should set the following parameters:
« Associate the unicast Ethernet MAC address of the VM by enabling the pool in the MPSAR registers.

< If all the Ethernet MAC addresses are used, the Unicast Hash Table (PFUTA) can be used. Pools
servicing VMs whose address is in the hash table should be declared as so by setting
PFVML2FLT.ROPE. Packets received according to this method didn’t pass perfect filtering and are
indicated as such.

« Enable the pool in all the RAH/RAL registers representing the multicast Ethernet MAC addresses this
VM belongs to.

< If all the Ethernet MAC addresses are used, the Multicast Hash Table (MTA) can be used. Pools
servicing VMs using multicast addresses in the hash table should be declared as so by setting
PFVML2FLT.ROMPE. Packets received according to this method didn’t pass perfect filtering and are
indicated as such.

- Define whether this VM should get all multicast/broadcast packets in the same VLAN via
PFVML2FLT.MPE and PFVML2FLT.BAM, and whether it should accept untagged packets via
PFVML2FLT.AUPE.

= Enable the pool in each PFVLVF and PFVLVFB registers this VM belongs to.

< A VM might be set to receive it's own traffic in case the source and the destination are in the same
pool via the PFVMTXSW.LLE.

= Whether VLAN header and CRC should be stripped from the packet. Note that even if the CRC is
kept, it might not match the actual content of the forwarded packet, because of other offloads
application such as VLAN stripor LinkSec decrypting.

« Set which header split is required via the PSRTYPE register.

< In RSS mode, define if the pool uses RSS via the proper MRQC.MRQE mode.
« Enable the Pool in the PFVFRE register to allow Rx Filtering
« To Enable Multiple Tx queues, Set the MTQC as described in Section 7.2.1.2.1
« Enable the Pool in the PFVFTE register to allow Tx Filtering

e Enable Rx and Tx queues as described in Section 4.6.7 and Section 4.6.8.

« For each Rx queue a drop/no drop flag can be set in SRRCTL.DROP_EN and via the PFQDE register,
controlling the behavior if no receive buffers are available in the queue to receive packets. The
usual behavior is to allow drop in order to avoid head of line blocking. Setting PFQDE per queue is
made by using the Queue Index field in the PFQDE register.

148

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

4.6.10.2 10V Initialization

4.6.10.2.1 Physical Function (PF) Driver Initialization

The PF driver is responsible for the link setup and handling of all the filtering and offload capabilities for
all the VFs as described in Section 4.6.10.1.1 and the security features as described in

Section 4.6.10.1.3. It should also set the bandwidth allocation per transmit queue for each VF as
described in Section 4.6.10.

Note: The link setup might include the authentication process (802.1X or other), setup of the
LinkSec channel, and setup of the DCB parameters.

In IOV mode, VMDq + RSS mode is not available.

After all the common parameters are set, the PF driver should set all the VFMailbox[n].RSTD bits by
setting CTRL_EXT.PFRSTD.

PF enables VF traffic via the PFVFTE and PFVFRE registers after all VF parameters are set as defined in
Section 4.6.10.1.4.

Note: If the operating system changes the NumVF setting in the PCle SR-IOV Num VFs register
after the device was active, it is required to initiate a PF software reset following this change.

4.6.10.2.1.1 VF Specific Reset Coordination

After the PF driver receives an indication of a VF FLR via the PFVFLRE register, it should enable the
receive and transmit for the VF only once the device is programmed with the right parameters as
defined in Section 4.6.10.1.4. The receive filtering is enabled using the PFVFRE register and the
transmit filtering is enabled via the PFVFTE register.

Note: The filtering and offloads setup might be based on central IT settings or on requests from the
VF drivers.

4.6.10.2.2 VF Driver Initialization

Upon initialization, after the PF indicated that the global initialization was done via the VFMailbox.RSTD
bit, the VF driver should communicate with the PF, either via the mailbox or via other software
mechanisms to assure that the right parameters of the VF are programmed as described in

Section 4.6.10.1.4. The PF driver might then send an acknowledge message with the actual setup done
according to the VF request and the IT policy.

The VF driver should then setup the interrupts and the queues as described in Section 4.6.6,
Section 4.6.7 and Section 4.6.8.

149

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

4.6.10.2.3 Full Reset Coordination

A mechanism is provided to synchronize reset procedures between the PF and the VFs. It is provided
specifically for PF software reset but can be used in other reset cases. These reset cases are described
in the following procedure.
One of the following reset cases takes place:

< LAN Power Good

* PCle reset (PERST and in-band)

< D3hot --> DO

* FLR

- Software reset by the PF

The 82599 sets the RSTI bits in all the VFMailbox registers. Once the reset completes, each VF might
read its VFMailbox register to identify a reset in progress.

Once the PF completes configuring the device, it clears the CTRL_EXT.PFRSTD bit. As a result, the
82599 clears the RSTI bits in all the VFMailbox registers and sets the RSTD (Reset Done) bits in all the
VFMailbox registers.

Until a RSTD condition is detected, the VFs should access only the VFMailbox register and should not
attempt to activate the interrupt mechanism or the transmit and receive process.

4.6.11 DCB Configuration

After power up or device reset, DCB and any type of FC are disabled by default, and a unique TC and
packet buffer (like PBO) is used. In this mode, the host can exchange information via DCX protocol to
determine the number of TCs to be configured. Before setting the device to multiple TCs, it should be
reset (software reset).

The registers concerned with setting the number of TCs are: RXPBSIZE[0-7], TXPBSIZE[O-7],
TXPBTHRESH, MRQC, MTQC, and RTRUP2TC registers along with the following bits RTRPCS.RAC,
RTTDCS.TDPAC, RTTDCS.VMPAC and RTTPCS.TPPAC.

They cannot be modified on the fly, but only after device reset. Packet buffers with a non-null size must
be allocated from PBO and up.

Rate parameters and bandwidth allocation to VMs can be modified on the fly without disturbing traffic
flows.

4.6.11.1 CPU Latency Considerations

When the CPU detects an idle period of some length, it enters a low-power sleep state. When traffic
arrives from the network, it takes time for the CPU to wake and respond (such as to snoop). During
that period, Rx packets are not posted to system memory.

If the entry time to sleep state is too short, the CPU might be getting in and out of sleep state in
between packets, therefore impacting latency and throughput. 100 us was defined as a safe margin for
entry time to avoid such effects.

150

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

Each time the CPU is in low power, received packets need to be stored (or dropped) in the 82599 for the
duration of the exit time. Given 64 KB Rx packet buffers per TC in the 82599, Priority Flow Control
(PFC) does not spread (or a packet is not dropped) provided that the CPU exits its low power state
within

50 ps.

4.6.11.2 Link Speed Change Procedure

Each time the link status or speed is changed, hardware is automatically updating the transmit rates
that were loaded by software relatively to the new link speed. This means that if a rate limiter was set
by software to 500 Mb/s for a 10 GbE link speed, it is changed by hardware to 50 Mb/s if the link speed
has changed to 1 GbE.

Since transmit rates must be considered as absolute rate limitations (expressed in Mb/s, regardless of
the link speed), in such occasions software is responsible to either clear all the transmit rate-limiters via
the BCN_CLEAR_ALL bit in RTTBCNRD register, and/or to re-load each transmit rate with the correct
value relatively to the new link speed. In the previous example, the new transmit rate value to be
loaded by software must be multiplied by 10 to maintain the rate limitation to 500 Mb/s.

4.6.11.3 Initial Configuration Flow

Only the following configuration modes are allowed.

4.6.11.3.1 General Case: DCB-on, VT-on
1. Configure packet buffers, queues, and traffic mapping:

— 8 TCs mode — Packet buffer size and threshold, typically
RXPBSIZE[O-7].SIZE=0x40
TXPBSIZE[0-7].SIZE=0x14
but non-symmetrical sizing is also allowed (see Section 8.2.3.9.13 for rules)
TXPBTHRESH.THRESH[O-7]=TXPBSIZE[0-7].SIZE — Maximum expected Tx packet length in
this TC
— 4 TCs mode — Packet buffer size and threshold, typically
RXPBSIZE[0-3].SIZE=0x80, RXPBSIZE[[4-7].SIZE=0x0
TXPBSIZE[0-3].SIZE=0x28, TXPBSIZE[4-7].SIZE=0x0
but non-symmetrical sizing among TCs[0-3] is also allowed (see Section 8.2.3.9.13 for rules)

TXPBTHRESH.THRESH[O-3]=TXPBSIZE[0-3].SIZE — Maximum expected Tx packet length in
this TC

TXPBTHRESH.THRESH[4-7]=0x0
— Multiple Receive and Transmit Queue Control (MRQC and MTQC)

= Set MRQC.MRQE to 1xxxb, with the three least significant bits set according to the number
of VFs, TCs, and RSS mode as described in Section 8.2.3.7.12.

e Set both RT_Ena and VT_Ena bits in the MTQC register.

e Set MTQC.NUM_TC_OR_Q according to the number of TCs/VFs enabled as described in
Section 8.2.3.7.16.

— Set the PFVTCTL.VT_Ena (as the MTQC.VT_Ena)

— Queue Drop Enable (PFQDE) — In SR-10 the QDE bit should be set to 1b in the PFQDE register
for all queues. In VMDq mode, the QDE bit should be set to Ob for all queues.

— Split receive control (SRRCTL[0-127]): Drop_En=1 — drop policy for all the queues, in order to
avoid crosstalk between VMs

— Rx User Priority (UP) to TC (RTRUP2TC)

151

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

— Tx UP to TC (RTTUP2TC)

— DMA TX TCP Maximum Allowed Size Requests (DTXMXSZRQ) — set Max_byte num_req =
0x010 = 4 KB

2. Enable PFC and disable legacy flow control:

— Enable transmit PFC via: FCCFG.TFCE=10b

— Enable receive PFC via: MFLCN.RPFCE=1b

— Disable receive legacy flow control via: MFLCN.RFCE=0b

— Refer to Section 8.2.3.3 for other registers related to flow control
3. Configure arbiters, per TC[0-1]:

— Tx descriptor plane T1 Config (RTTDT1C) per queue, via setting RTTDQSEL first. Note that the
RTTDT1C for queue zero must always be initialized.

— Tx descriptor plane T2 Config (RTTDT2C[0-7])
— Tx packet plane T2 Config (RTTPT2C[0O-7])
— Rx packet plane T4 Config (RTRPT4C[0-7])

4. Enable TC and VM arbitration layers:

— Tx Descriptor plane Control and Status (RTTDCS), bits:

TDPAC=1b, VMPAC=1b, TDRM=1b, BDPM=1b, BPBFSM=0b, and set the LLTC bit only on TC(s)
with low latency requirements

— Tx Packet Plane Control and Status (RTTPCS): TPPAC=1b, TPRM=1b, ARBD=0x004
— Rx Packet Plane Control and Status (RTRPCS): RAC=1b, RRM=1b

4.6.11.3.2 DCB-On, VT-Off

Set the configuration bits as specified in Section 4.6.11.3.1 with the following exceptions:
= Configure packet buffers, queues, and traffic mapping:
— MRQC and MTQC

= Set MRQE to Oxxxb, with the three least significant bits set according to the number of TCs
and RSS mode

= Set RT_Ena bit and clear the VT_Ena bit in the MTQC register.
e Set MTQC.NUM_TC_OR_Q according to the number of TCs enabled
— Clear PFVTCTL.VT_Ena (as the MRQC.VT_Ena)
< Allow no-drop policy in Rx:

— PFQDE: The QDE bit should be set to Ob in the PFQDE register for all queues enabling per queue
policy by the SRRCTL[n] setting.

— Split Receive Control (SRRCTL[0-127]): The Drop_En bit should be set per receive queue
according to the required drop / no-drop policy of the TC of the queue.

= Tx descriptor plane control and status (RTTDCS) bits:

— TDPAC=1b, VMPAC=1b, TDRM=1b, BDPM=0Db if Tx rate limiting is not enabled and 1b if Tx rate
limiting is enabled, BPBFSM=0b, and set the LLTC bit only on TC(s) with low latency
requirements.

« Disable VM arbitration layer:
— Clear RTTDT1C register, per each queue, via setting RTTDQSEL first
— RTTDCS.VMPAC=0b

152

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

4.6.11.3.3 DCB-Off, VT-On

Set the configuration bits as specified in Section 4.6.11.3.1 with the following exceptions:
= Disable multiple packet buffers and allocate all queues to PBO:
— RXPBSIZE[0].SIZE=0x200, RXPBSIZE[1-7].SI1ZE=0x0
— TXPBSIZE[0].SIZE=0xA0, TXPBSIZE[1-7].SIZE=0x0

— TXPBTHRESH.THRESH[0]=0xA0 — Maximum expected Tx packet length in this TC
TXPBTHRESH.THRESH[1-7]=0x0

— MRQC and MTQC

= Set MRQE to 1xxxb, with the three least significant bits set according to the number of VFs
and RSS mode

e Clear RT_Ena bit and set the VT_Ena bit in the MTQC register.

e Set MTQC.NUM_TC_OR_Q according to the number of VFs enabled
— Set PFVTCTL.VT_Ena (as the MRQC.VT_Ena)
— Rx UP to TC (RTRUP2TC), UPNMAP=0b, n=0,...,7
— Tx UP to TC (RTTUP2TC), UPNMAP=0b, n=0,...,7

— DMA TX TCP Maximum Allowed Size Requests (DTXMXSZRQ) — set Max_byte_num_req =
OxFFF = 1 MB

= Disable PFC and enabled legacy flow control:
— Disable receive PFC via: MFLCN.RPFCE=0b
— Enable transmit legacy flow control via: FCCFG.TFCE=01b
— Enable receive legacy flow control via: MFLCN.RFCE=1b

= Configure VM arbiters only, reset others:

— Tx Descriptor Plane T1 Config (RTTDT1C) per pool, via setting RTTDQSEL first for the pool
index. Clear RTTDT1C for other queues. Note that the RTTDT1C for queue zero must always be
initialized.

— Clear RTTDT2C[0-7] registers

— Clear RTTPT2C[0-7] registers

— Clear RTRPT4C[0-7] registers

= Disable TC arbitrations while enabling the packet buffer free space monitor:

— Tx Descriptor Plane Control and Status (RTTDCS), bits:
TDPAC=0b, VMPAC=1b, TDRM=0b, BDPM=1b, BPBFSM=0b, clear LLTC bits

— Tx Packet Plane Control and Status (RTTPCS): TPPAC=0b, TPRM=0b, ARBD=0x224
— Rx Packet Plane Control and Status (RTRPCS): RAC=0b, RRM=0b

4.6.11.3.4 DCB-Off, VT-Off

Set the configuration bits as specified in Section 4.6.11.3.1 with the following exceptions:
= Disable multiple packet buffers and allocate all queues and traffic to PBO:
— RXPBSIZE[0].SIZE=0x200, RXPBSIZE[1-7].SIZE=0x0
— TXPBSIZE[0].SIZE=0xA0, TXPBSIZE[1-7].SIZE=0x0

— TXPBTHRESH.THRESH[0]=0xA0 — Maximum expected Tx packet length in this TC
TXPBTHRESH.THRESH[1-7]=0x0

153

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

— MRQC and MTQC
= Set MRQE to Oxxxb, with the three least significant bits set according to the RSS mode
e Clear both RT_Ena and VT_Ena bits in the MTQC register.
e Set MTQC.NUM_TC_OR_Q to 00b.

— Clear PFVTCTL.VT_Ena (as the MRQC.VT_Ena)

— Rx UP to TC (RTRUP2TC), UPNMAP=0b, n=0,...,7

— Tx UP to TC (RTTUP2TC), UPNMAP=0b, n=0,...,7

— DMA TX TCP Maximum Allowed Size Requests (DTXMXSZRQ) — set Max_byte num_req =
OXFFF = 1 MB

Allow no-drop policy in Rx:

— PFQDE: The QDE bit should be set to Ob in the PFQDE register for all queues enabling per queue
policy by the SRRCTL[n] setting.

— Split Receive Control (SRRCTL[0-127]): The Drop_En bit should be set per receive queue
according to the required drop / no-drop policy of the TC of the queue.

Disable PFC and enable legacy flow control:

— Disable receive PFC via: MFLCN.RPFCE=0b

— Enable receive legacy flow control via: MFLCN.RFCE=1b

— Enable transmit legacy flow control via: FCCFG.TFCE=01b

Reset all arbiters:

— Clear RTTDT1C register, per each queue, via setting RTTDQSEL first
— Clear RTTDT2C[0-7] registers

— Clear RTTPT2C[0-7] registers

— Clear RTRPT4C[0-7] registers

Disable TC and VM arbitration layers:

— Tx Descriptor Plane Control and Status (RTTDCS), bits:
TDPAC=0b, VMPAC=0b, TDRM=0b, BDPM=1b, BPBFSM=1b, clear LLTC bits

— Tx Packet Plane Control and Status (RTTPCS): TPPAC=0b, TPRM=0b, ARBD=0x224
— Rx Packet Plane Control and Status (RTRPCS): RAC=0b, RRM=0b

4.6.11.4 Transmit Rate Scheduler

In some applications it might be useful to setup rate limiters on Tx queues for other usage models
(rate-limiting VF traffic for instance). In all cases, setting a rate limiter on Tx queue N to a TargetRate
requires the following settings:

Global Setting

= The Transmit Rate-scheduler memory for all transmit queues must be cleared before rate limiting is
enabled on any queue. This memory is accessed by the RTTBCNRC register mapped by the
RTTDQSEL.TXDQ_IDX.

« Set global transmit compensation time to the MMW_SIZE in RTTBCNRM register. Typically
MMW_SIZE=0x014 if 9.5 KB (9728-byte) jumbo is supported and 0x004 otherwise.

154

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

Per Queue Setting
= Select the requested queue by programming the queue index - RTTDQSEL.TXQ_IDX
= Program the desired rate as follow

— Compute the Rate_Factor which equals Link_Speed / Target_Rate. Link_Speed could be either
10 Gb/s or 1 Gb/s. Note that the Rate_Factor is composed of an integer number plus a fraction.
The integer part is a 10 bit number field and the fraction part is a 14 bit binary fraction number.

— Integer (Rate_Factor) is programmed by the RTTBCNRC.RF_INT[9:0] field

— Fraction (Rate_Factor) is programmed by the RTTBCNRC.RF_DEC[13:0] field. It equals
RF_DEC[13] * 21 + RF_DEC[12] * 2°2 + ... + RF_DEC[0] * 2714

= Enable Rate Scheduler by setting the RTTBCNRC. RS_ENA
Numerical Example

= Target_Rate = 240 Mb/s; Link_Speed = 10 Gb/s

e Rate_Factor = 10/ 0.24 = 41.6666... = 101001.10101010101011b

e RF_DEC =10101010101011b; RF_INT = 0000101001b

e Therefore, set RTTBCNRC to Ox800A6AAB

Note: The IPG pacing feature is a parallel feature to the Tx rate scheduler where IPG pacing is
applied to the entire Tx data flow while the Tx rate scheduler is applied separately to each Tx
queue. Therefore, if a single queue is used, either feature can be used to limit the Tx data
rate; however, if multiple queues are used, the IPG pacing feature is a better choice for a
homogeneous Tx data rate limitation.

4.6.11.5 Configuration Rules

4.6.11.5.1 TC Parameters
Traffic Class
Per 802.1p, priority #7 is the highest priority.

A specific TC can be configured to receive or transmit a specific amount of the total bandwidth available
per port.

Bandwidth allocation is defined as a fraction of the total available bandwidth, which can be less than the
full Ethernet link bandwidth (if it is bounded by the PCle bandwidth or by flow control).

Low latency TC should be configured to use the highest priority TC possible (TC 6, 7). The lowest
latency is achieved using TC7.

155

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

Bandwidth Group (BWGS)

The main reason for having BWGs is to represent different traffic types. A traffic type (such as storage,
IPC LAN or manageability) can have more than one TC (for example, one for control traffic and one for
the raw data), by grouping these two TC to a BWG the user can allocate bandwidth to the storage traffic
so that unused bandwidth by the control could be used by the data and vise versa. This BWG concept
supports the converged fabric as each traffic type, that is used to run on a different fabric, can be
configured as a BWG and gets its resources as if it was on a different fabric.

1.

2.

156

To configure DCB not to share bandwidth between TCs, each TC should be configured as a separate
BWG.

There are no limits on the TCs that can be bundled together as a BWG. All TCs can be configured as
a single BWG.

BWG numbers should be sequential starting from zero until the total number of BWGs minus one.

. BWG numbers do not imply priority, priority is only set according to TCs.

u ®
Initialization — Intel® 82599 10 GbE Controller l n t E l

Refill Credits

Refill credits regulate the bandwidth allocated to BWG and TC. The ratio between the credits of the
BWG’s represents the relative bandwidth percentage allocated to each BWG. The ratio between the
credits of the TC’s represents the relative bandwidth percentage allocated to each TC within a BWG.

Credits are configured and calculated using 64 bytes granularity.

1. In any case, the number of refill credits assigned per TC should be as small as possible but mustbe
larger than the maximum frame size used and larger than 1.5 KB. Using a lower refill value causes
more refill cycles before a packet can be sent. These extra cycles unnecessarily increase the
latency.

2. Refill credits ratio between TCs should be equal to the desired ratio of bandwidth allocation between

the different TCs. Applying rule #1, means bandwidth shares are sorted from the smaller to the
bigger, and just one maximum sized frame is allocated to the smallest.

3. The ratio between the refill credits of any two TCs should not be greater than 100.

4. Exception to rule #2 — TCs that require low latency should be configured so that they are under
subscribed. For example, credit refill value should provide these TCs somewhat more bandwidth
than what they actually need. Low latency TCs should always have credits so they can be next in
line for the WSP arbitration.

This exception causes the low latency TC to always have maximum credits (as it starts with
maximum credits and on average cycle uses less than the refill credits).

The end point that is sending/receiving packets of 127 bytes eventually gets double the bandwidth it
was configured to, as we do all the credit calculation by rounding the values down to the next 64 byte
aligned value.

Maximum Credit Limit

The maximum credit limit value establishes a limit for the number of credits that a TC or BWG can own
at any given time. This value prevents stacking up stale credits that can be added up over a relatively
long period of time and then used by TCs all at once, altering fairness and latency.

Maximum credits limits are configured and calculated using 64 bytes granularity.

1. Maximum credit limit should be bigger than the refill credits allocated to the TC.

2. Maximum credit limit should be set to be as low as possible while still meeting other rules to
minimize the latency impact on low latency TCs.

3. If a low latency TC generates a burst that is larger than its maximum credit limit this TC might
experience higher latency since the TC needs to wait for allocation of additional credits because it
finished all its credits for this cycle. Therefore maximum credit limit for a low latency TC must be
set bigger than the maximum burst length of traffic expected on that TC (for all the VMs at once). If
TC7 and TC6 are for low latency traffic, it leads to:

Max(TC7,6) >= MaxBurst(TC7,6) served with low latency

4. An arbitration cycle can extend when one or more TCs accumulate credits more than their refill
values (up to their maximum credit limit). For such a case, a low latency TC should be provided
with enough credits to cover for the extended cycle duration. Since the low latency TC operates at
maximum credits (see rule #3) its maximum credit limit should meet the following formula:

{Max(TCx)/SUMi=0..7[Max(TCi)]} == {BW(TCx)/Full BW}

The formula applies to both descriptor arbiter and data arbiter.

157

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

5. When in a virtualized environment, the low latency TC condition checked by the VM WRR arbiter
(see Section 7.7.2.3.2) induces the following relation between the maximum credits of a low
latency TC and the refill credits of its attached VM arbiter:

Max(TCx) >= 2 x {SUMi=0...15[Refill(VMi)]}

6. To ensure bandwidth for low priority TC (when those are allocated with most of the bandwidth) the
maximum credit value of the low priority TC in the data arbiter needs to be high enough to ensure
sync between the two arbiters. In the equation that follows the bandwidth numbers are from the
descriptor arbiter while the maximum values are of the data arbiter.

{Max(TCx)/SUMi=x+1..7[Max(TCi)]} >= {BW(TCx)/Full_PCIE_BW}

Note that the previous equation is worst case and covers the assumption that all higher TCs have
the full maximum to transmit.

Tip: A simplified maximum credits allocation scheme would be to find the minimum number N >=
2 such that rules #3 and #5 are respected, and allocate

Max(TCi) = N x Refill(TCi), for i=0...7

By maintaining the same ratios between the maximum credits and the bandwidth shares, the
bandwidth allocation scheme is made more immune to disturbing events such as reception of priority
pause frames with short timer values.

GSP and LSP

TC Link Strict Priority (TC.LSP): This bit specifies that the configured TC can transmit without any
restriction of credits. This effectively means that the TC can take up entire link bandwidth, unless
preempted by higher priority traffic. The Tx queues associated with LSP TC must be set as Strict Low
Latency in the TXLLQ[n] registers.

TC Strict Priority within group (TC.GSP): This bit defines whether strict priority is enabled or disabled
for this TC within its BWG. If TC.GSP is set to 1b, the TC is scheduled for transmission using strict
priority. It does not check for availability of credits in the TC. It does check whether the BWG of this TC
has credits. For example, the amount of traffic generated from this TC is still limited by the BWG
allocated for the BWG.

1. TC’s with the LSP bit set should be the first to be considered by the scheduler. This implies that LSP
should be configured to the highest priority TC’s. For example, starting from priority 7 and down.
The other TC’s should be used for groups with bandwidth allocation. It is recommended to use LSP
only for one TC (TC7) as the first LSP TC takes its bandwidth and there are no guarantees to the
lower priority LSPs.

2. GSP can be set to more than one TC in a BWG, always from the highest priority TC within that BWG
downward. For the LAN scenario, all TCs could be configured to be GSP as their bandwidth needs
are not known.

3. To a low latency TC for which the GSP bit is set, non-null refill credits must be set for at least one
maximum sized frame. It ensures that even after having been quiet for a while, some BWG credits
are left available to the GSP TC, for serving it with minimum latency (without waiting for
replenishing). Bigger refill credits values ensure longer burst of GSP traffic served with minimum
latency.

158

u ®
Initialization — Intel® 82599 10 GbE Controller l n t E l

4.6.11.5.2 VM Parameters
Refill Credits

Refill credits regulate the fraction of the TC’s bandwidth that is allocated to a VM. The ratio between the
credits of the VMs represents the relative TC bandwidth percentage allocated to each VM.

Credits are configured and calculated using 64 bytes granularity.

1. The number of refill credits assigned per VM should be as small as possible but still larger than the
maximum frame size used and larger than 1.5 KB in any case. Using a lower refill value causes
more refill cycles before a packet can be sent. These extra cycles increase the latency
unnecessatrily.

2. Refill credits ratio between VMs should be equal to the desired ratio of bandwidth allocation
between the different TCs. Applying rule #1, means bandwidth shares are sorted from the smaller
to the bigger, and just one maximum sized frame is allocated to the smallest.

3. The ratio between the refill credits of any two VMs within the TC should not be greater than 10.
VMs that are sending/receiving packets of 127 bytes eventually gets double the bandwidth it was

configured to as we do all the credit calculation by rounding the values down to the next 64 byte
aligned value.

4. In a low latency TC, non-null refill credits must be set to a VSP VM, for at least one maximum sized
frame. It ensures that even after having been quiet for a while, some TC credits are left available to
the VSP VM, for serving it with minimum latency (without waiting for TC to replenish). Bigger refill
credits values ensure longer burst of VSP traffic served with minimum latency.

Example 1. Refill and MaxCredits Setting Example

This example assumes a system with only four TCs and three VMs present, and with the following
bandwidth allocation scheme. Also, full PCle bandwidth is evaluated to 15 G.

Table 4.9. Bandwidth Share Example

TCs and VMs Bgﬂg\;\g;:h Notes
TCO Total 40 9.5 KB (9728-byte) jumbo allowed.
VMO 60
VM1 30
VM2 10
TC1 Total 20 No jumbo.
VMO 34
VM1 33
VM2 33
Low latency TC. No jumbo.
TC2 Total 30 Bandwidth share already increased.
MaxBurstTC2=120 KB
VMO 80
VM1 10
VM2 10

159

] ®
l n tel Intel® 82599 10 GbE Controller — Initialization

Table 4.9. Bandwidth Share Example

Bandwidth
TCs and VMs Share% Notes

Low latency LSP TC.
TC3 Total 10 No jumbo.
MaxBurstTC3=36 KB

VMO 20
VM1 60
VM2 20

The ratios between TC refills were driven by TCO, which was set as 152 for supporting 9.5 KB jumbos.

The ratio between MaxCredits and Refill were taken as 17 for all the TCs, as driven by TC2 relation
between MaxCredits and MaxBurstTC2.

Table 4.10. Refill and MaxCredits Setting

Refi'bg?t‘;')Byte MaxCredits (64-Byte Units)
TCO Total |152 2584
VMo |912
VM1 | 456
VM2 | 152
TC1 Total |76 1202
VMO |25
VM1 24
VM2 |24
TC2 Total |114 1938
VMO | 192
VM1 |24
VM2 |24
TC3 Total 38 646
VMO |24
VM1 |72
VM2 |24

160

™1 ®
Initialization — Intel® 82599 10 GbE Controller l n tel)

4.6.12 Security Initialization

After power up or device reset, security offload is disabled by default (both LinkSec and IPsec), and the
content of SA tables must be cleared by software.

Security offload cannot be enabled if internal security fuses are not enabled or the SDPO_4 pin is set to
Ob. In this case, both IPsec and LinkSec are disabled and the following security related fields are not
writable:

e SECTXCTRL.SECTX_DIS is set to 1b and read as 1b.

e SECRXCTRL.SECRX_DIS is set to 1b and read as 1b.

* IPSTXIDX.IPS_TX_EN is cleared to Ob and read as Ob.

e [IPSRXIDX.IPS_RX_EN is cleared to Ob and read as Ob.

e LSECTXCTRL bits 1:0 are cleared to O0b and read as 00b.
» LSECRXCTRL bits 3:2 are cleared to 00b and read as 00b.

Security offload can be used when enabled by internal security fuses and when the SDPO_4 pin is set to
1b. In this case, the security offload can be enabled/disabled via the flows described as follows.

4.6.12.1 Security Enablement Flow

To enable one of the security modes perform the following steps:
1. Stop the data paths by setting the SECTXCTRL.TX_DIS and SECRXCTRL.RX_DIS bits.

2. Wait for hardware to empty the data paths. Poll the SECTXSTAT.SECTX_RDY and
SECRXSTAT.SECRX_RDY bits until they are both asserted by hardware.

3. Clear the SECTXCTRL.SECTX_DIS and SECRXCTRL.SECRX_DIS bits to enable the Tx and Rx crypto
engines.

When enabling IPsec or LinkSec offload, set SECTXMINIFG.MINSECIFG to 0x3 extending back-to-
back gap to the security block required for its functionality.

When enabling IPsec, set the SECTXCTRL.STORE_FORWARD bit, since a store and forward IPsec
buffer is required for the processing of AH packets (ICV field insertion is done at the beginning of
the frame). Otherwise, clear this bit.

When enabling IPsec, write the SEC buffer almost full threshold, register
SECTXBUFFAF.buff_af_thresh, with the value of 0x15.

4. Enable SA lookup:
For IPsec, set the IPSTXIDX.IPS_TX EN and the IPSRXIDX.IPS_RX_ EN bits.
For LinkSec, set the enable bits in the LSECTXCTRL and LSECRXCTRL registers.

5. Restart the data paths by clearing the SECTXCTRL.TX_DIS and SECRXCTRL.RX_DIS bits.

4.6.12.2 Security Disable Flow

To disable one of the security modes perform the following steps:
1. Stop the data paths by setting the SECTXCTRL.TX_DIS and SECRXCTRL.RX_DIS bits.

2. Wait for hardware to empty the data paths. Poll the SECTXSTAT.SECTX_RDY and
SECRXSTAT.SECRX_RDY bits until they are both asserted by hardware.

3. Disable SA lookup:
For IPsec, clear the IPSTXIDX.IPS_TX_EN and the IPSRXIDX.IPS_RX_EN bits.
For LinkSec, clear the enable bits in the LSECTXCTRL and LSECRXCTRL registers.

4. Set the SECTXCTRL.SECTX_DIS and SECRXCTRL.SECRX_DIS bits to disable the Tx and Rx crypto
engines.

161

| ®
l n tel) Intel® 82599 10 GbE Controller — Initialization

When disabling IPsec, clear the SECTXCTRL.STORE_FORWARD bit, to avoid using the IPsec buffer
and thus reducing Tx internal latency.

When disabling IPsec, write the SEC buffer almost full threshold, register
SECTXBUFFAF.buff_af_thresh, with the value of 0x250.

5. Restart the data paths by clearing the SECTXCTRL.TX_DIS and SECRXCTRL.RX_DIS bits.

Note: Disabling the crypto engine reduces the 82599’s power consumption.

4.6.13 Alternate MAC Address Support

In some systems, the MAC address used by a port needs to be replaced with a temporary MAC address
in a way that is transparent to the software layer. One possible usage is in blade systems, to allow a
standby blade to use the MAC address of another blade that failed, so that the network image of the
entire blade system does not change.

In order to allow this mode, a management console might change the MAC address in the NVM image.
It is important in this case to be able to keep the original MAC address of the device as programmed at
the factory.

In order to support this mode, the 82599 provides the Alternate Ethernet MAC Address structure in the
NVM to store the original MAC addresses. This structure is described in Section 6.2.6. In some systems,
it might be advantageous to restore the original MAC address at power on reset, to avoid conflicts
where two network controllers would have the same MAC address.

162

[] ®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel ’

50 Power Management and Delivery

This section defines how power management is implemented in the 82599.

51 Power Targets and Power Delivery

See Section 11.2.1 for the current consumption and see Section 11.4.1 for the power supply
specification.

52 Power Management

5.2.1 Introduction to the 82599 Power States

The 82599 supports the DO and D3 power states defined in the PCI Power Management and PCle
specifications. DO is divided into two sub-states: DOu (DO un-initialized), and DOa (DO active). In
addition, the 82599 supports a Dr state that is entered when PE_RST_N is asserted (including the
D3cold state).

Figure 5.1 shows the power states and transitions between them.

LAN_PWR_GOOD assertion Init done from FLR
EEPROM
Dr » DOu
Hot Reset:
PCle Reset asserted /

In-Band PCle Reset Write 00b to Enable:

Power State Master or
Slave Access

Write 11b to
Power State

The 82599 uses the AUX_PWR indication that auxiliary power is available to it, and therefore advertises
D3cold wake up support. The amount of power required for the function, which includes the entire
Network Interface Card (NIC) is advertised in the Power Management Data register, which is loaded
from the EEPROM.

Figure 5.1. Power Management State Diagram

522 Auxiliary Power Usage

163

u ®
l n tel) Intel® 82599 10 GbE Controller — Power Management and Delivery

If D3cold is supported, the PME_En and PME_Status bits of the Power Management Control/Status
Register (PMCSR), as well as their shadow bits in the Wake Up Control (WUC) register are reset only by
the power up reset (detection of power rising).

The only effect of setting AUX_PWR to 1b is advertising D3cold wake up support and changing the reset
function of PME_En and PME_Status. AUX_PWR is a strapping option in the 82599.

The 82599 tracks the PME_En bit of the PMCSR and the Auxiliary (AUX) Power PM Enable bit of the PCle
Device Control register to determine the power it might consume (and therefore its power state) in the
D3cold state (internal Dr state). Note that the actual amount of power differs between form factors.

5.2.3 Power Limits by Certain Form Factors

Table 5.1 lists the power limitations introduced by different form factors.

Table 5.1. Power Limits by Form-Factor

Form Factor
LOM PCle Card
Main N/A 25 W
Auxiliary (aux enabled) 375 mA @ 3.3V 375 mA @ 3.3V
Auxiliary (aux disabled) 20 mA @ 3.3V 20 mA @ 3.3V
Note: Auxiliary current limit only applies when the primary 3.3V voltage source is not available (the

card is in a low power D3 state).

The 82599 exceeds the allocated auxiliary power in some configuration (such as both ports running at
GbE or 10 GbE speed). The 82599 must be configured such that it meets the previously described
requirements. To do so, link speed can be restricted to GbE and one of the LAN ports can be disabled
when operating on auxiliary power. See Section 5.2.5.4.

524 Interconnects Power Management

This section describes the power reduction techniques used by the 82599’s main interconnects.

164

[®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel

524.1 PCle Link Power Management

The PCle link state follows the power management state of the device. Since the 82599 incorporates
multiple PCI functions, the device power management state is defined as the power management state
of the most awake function:

= If any function is in DO state (either DOa or DOu), the PCle link assumes the device is in DO state.

Else,
« |f the functions are in D3 state, the PCle link assumes the device is in D3 state.

Else,
= The device is in Dr state (PE_RST_N is asserted to all functions).

The 82599 supports all PCle power management link states:
* LO state is used in DOu and DOa states.
= The LOs state is used in DOa and DOu states each time link conditions apply.

e The L1 state is used in DOa and DOu states each time link conditions apply, as well as in the D3
state.

= The L2 state is used in the Dr state following a transition from a D3 state if PCI-PM PME is enabled.
= The L3 state is used in the Dr state following power up, on transition from DOa and also if PME is
not enabled in other Dr transitions.

The 82599 support for Active State Link Power Management (ASLPM) is reported via the PCle Active
State Link PM Support register loaded from EEPROM.

LAN_PWR_GOOD e
assertion N\ e e N

DOu ;
/
lt“ .'/'
{ PERST # y
{ assertion -
i\ T) N, assetion oo o N0/
LN TN S T
\\ __________________________
oo
PERST# N\ Emable
asserton N\ MmasterAccess . T .
w 00b '\,\
rite .
............ to Power State PERST # .
"""""" S assertion .
- y .
& \
."l. ..‘.
l DOa i
i H
; Write 11b |
X, e to Power State
W y ;
R //
______________)
-

Figure 5.2. Link Power Management State Diagram

165

u ®
l n tel) Intel® 82599 10 GbE Controller — Power Management and Delivery

While in LO state, the 82599 transitions the transmit lane(s) into LOs state once the idle conditions are
met for a period of time defined as follows.

LOs configuration fields are:

* LOs enable — The default value of the Active State Link PM Control field in the PCle Link Control
register is set to 00b (both LOs and L1 disabled). System software can later write a different value
into the Link Control register. The default value is loaded on any reset of the PCI configuration
registers.

e The LOS_ENTRY_LAT bit in the PCle Control Register (GCR), determines LOs entry latency. When
set to Ob, LOs entry latency is the same as LOs exit latency of the device at the other end of the
link. When set to 1b, LOs entry latency is (LOs exit Latency of the device at the other end of the link
/4). Default value is Ob (entry latency is the same as LOs exit latency of the device at the other end
of the link).

« LOs exit latency (as published in the LOs Exit Latency field of the Link Capabilities register) is loaded
from the EEPROM. Separate values are loaded when the 82599 shares the same reference PCle
clock with its partner across the link, and when the 82599 uses a different reference clock than its
partner across the link. The 82599 reports whether it uses the slot clock configuration through the
PCle Slot Clock Configuration bit loaded from the Slot_Clock_Cfg EEPROM bit.

« LOs acceptable latency (as published in the Endpoint LOs Acceptable Latency field of the Device
Capabilities register) is loaded from the EEPROM.

While in LOs state, the 82599 transitions the link into L1 state once the transmit lanes or both directions
of the link have been in LOs state for a period of time defined in PCI configuration space loaded from
the PCle Init Configuration 1 word in the EEPROM.

The following EEPROM fields control L1 behavior:

e Act_Stat PM_Sup — Indicates support for ASPM L1 in the PCle configuration space (loaded into the
Active State Link PM Support field)

= PCle PLL Gate Disable — Controls PCle PLL gating while in L1 or L2 states

e L1_Act_Ext_Latency — Defines L1 active exit latency

e L1 _Act_Acc_Latency — Defines L1 active acceptable exit latency

* Latency_To_Enter_L1 — Defines the period (in the LOs state) before transitioning into an L1 state

52.4.2 Network Interfaces Power Management

The 82599 transitions any of the XAUI interfaces into a low-power state in the following cases:
* The respective LAN function is in LAN disable mode using LANX_DIS_N pin.
= The 82599 is in Dr State, APM WolL is disabled for the port, ACPl wake is disabled for the port and
pass-through manageability is disabled for the port.
Use of the LAN ports for pass-through manageability follows this behavior:

< If manageability is disabled (MNG Enable bit in the EEPROM is cleared), then LAN ports are not
allocated for manageability.

< If manageability is enabled:

— Power up — Following EEPROM read, a single port is enabled for manageability, running at the
lowest speed supported by the interface. If APM WoL is enabled on a single port, the same port
is used for manageability. Otherwise, manageability protocols (like teaming) determine which
port is used.

— DO state — Both LAN ports are enabled for manageability.

166

[] ®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel ,

— D3 and Dr states — A single port is enabled for manageability, running at the lowest speed
supported by the interface. If WoL is enabled on a single port, the same port is used for
manageability. Otherwise, manageability protocols (like teaming) determine which port is used.

Enabling a port as a result of the previous causes an internal reset of the port.
When a XAUI interface is in low-power state, the 82599 asserts the respective TX_DIS (SDP0O[4] and
SDP1[4]) pins to enable an external PHY device to power down as well.

525 Power States

5.2.5.1 DOuninitialized State

The DOu state is a low-power state used after PE_RST_N is de-asserted following power up (cold or
warm), on hot reset (in-band reset through PCle physical layer message) or on D3 exit.

When entering DOu, the 82599 disables wake ups. If the APM Mode bit in the EEPROM's Control Word 3
is set, then APM wake up is enabled.

525.1.1 Entry to a DOu State

DOu is reached from either the Dr state (on de-assertion of internal PE_RST_N) or the D3hot state (by
configuration software writing a value of 00b to the Power State field of the PCI PM registers).

De-assertion of internal PE_RST_N means that the entire state of the device is cleared, other than
sticky bits. State is loaded from the EEPROM, followed by establishment of the PCle link. Once this is
done, configuration software can access the device.

On a transition from D3 to DOu state, the 82599 requires that software perform a full re-initialization of
the function including its PCI configuration space.

5.2.5.2 DOactive State

Once memory space is enabled, the 82599 enters an active state. It can transmit and receive packets if
properly configured by the driver. Any APM wake up previously active remains active. The driver can
deactivate APM wake up by writing to the Wake Up Control (WUC) register, or activate other wake up
filters by writing to the Wake Up Filter Control (WUFC) register.

52521 Entry to DOa State

DOa is entered from the DOu state by writing a 1b to the Memory Access Enable or the 1/0 Access
Enable bit of the PCI Command register. The DMA, MAC, and PHY of the appropriate LAN function are
enabled.

5.2.5.3 D3 State (PCI-PM D3hot)

The 82599 transitions to D3 when the system writes a 11b to the Power State field of the PMCSR. Any
wake-up filter settings that were enabled before entering this reset state are maintained. Upon
transitioning to D3 state, the 82599 clears the Memory Access Enable and 1/0 Access Enable bits of the
PCI Command register, which disables memory access decode. In D3, the 82599 only responds to PCI
configuration accesses and does not generate master cycles.

167

u ®
l n tel) Intel® 82599 10 GbE Controller — Power Management and Delivery

Configuration and message requests are the only PCle TLPs accepted by a function in the D3hot state.
All other received requests must be handled as unsupported requests, and all received completions can
optionally be handled as unexpected completions. If an error caused by a received TLP (such as an
unsupported request) is detected while in D3hot, and reporting is enabled, the link must be returned to
LO if it is not already in LO and an error message must be sent. See section 5.3.1.4.1 in the PCle Base
Specification.

A D3 state is followed by either a DOu state (in preparation for a DOa state) or by a transition to Dr
state (PCI-PM D3cold state). To transition back to DOu, the system writes a 00b to the Power State field
of the PMCSR. Transition to Dr state is through PE_RST_N assertion.

5.2.5.3.1 Entry to D3 State
Transition to D3 state is through a configuration write to the Power State field of the PCI-PM registers.

Prior to transition from DO to the D3 state, the device driver disables scheduling of further tasks to the
82599; it masks all interrupts, it does not write to the Transmit Descriptor Tail register or to the Receive
Descriptor Tail register and operates the master disable algorithm as defined in Section 5.2.5.3.2. If
wake-up capability is needed, the driver should set up the appropriate wake-up registers and the
system should write a 1b to the PME_En bit of the PMCSR or to the Auxiliary (AUX) Power PM Enable bit
of the PCle Device Control register prior to the transition to D3.

If all PCI functions are programmed into D3 state, the 82599 brings its PCle link into the L1 link state.
As part of the transition into L1 state, the 82599 suspends scheduling of new TLPs and waits for the
completion of all previous TLPs it has sent. The 82599 clears the Memory Access Enable and 1/0 Access
Enable bits of the PCI Command register, which disables memory access decode. Any receive packets
that have not been transferred into system memory is kept in the device (and discarded later on D3
exit). Any transmit packets that have not be sent can still be transmitted (assuming the Ethernet link is

up).

In preparation to a possible transition to D3cold state, the device driver might disable one of the LAN
ports (LAN disable) and/or transition the link(s) to GbE speed (if supported by the network interface).
See Section 5.2.4.2 for a description of network interface behavior in this case.

5.2.5.3.2 Master Disable

System software can disable master accesses on the PCle link by either clearing the PCI Bus Master bit
or by bringing the function into a D3 state. From that time on, the device must not issue master
accesses for this function. Due to the full-duplex nature of PCle, and the pipelined design in the 82599,
it might happen that multiple requests from several functions are pending when the master disable
request arrives. The protocol described in this section insures that a function does not issue master
requests to the PCle link after its master enable bit is cleared (or after entry to D3 state).

Two configuration bits are provided for the handshake between the device function and its driver:

= PCle Master Disable bit in the Device Control (CTRL) register — When the PCle Master Disable bit is
set, the 82599 blocks new master requests by this function. The 82599 then proceeds to issue any
pending requests by this function. This bit is cleared on master reset (LAN Power Good all the way
to software reset) to enable master accesses.

168

[®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel

= PCle Master Enable Status bits in the Device Status register — Cleared by the 82599 when the PCle
Master Disable bit is set and no master requests are pending by the relevant function (set
otherwise). Indicates that no master requests are issued by this function as long as the PCle Master
Disable bit is set. The following activities must end before the 82599 clears the PCle Master Enable
Status bit:

— Master requests by the transmit and receive engines.
— All pending completions to the 82599 are received.

Note: The device driver disables any reception to the Rx queues as described in Section 4.6.7.1.
Then the device driver sets the PCle Master Disable bit when notified of a pending master
disable (or D3 entry). The 82599 then blocks new requests and proceeds to issue any
pending requests by this function. The driver then polls the PCle Master Enable Status bit.
Once the bit is cleared, it is guaranteed that no requests are pending from this function.

The driver might time out if the PCle Master Enable Status bit is not cleared within a given
time. Examples for cases that the device might not clear the PCle Master Enable Status bit for
a long time are cases of flow control, link down, or DMA completions not making it back to
the DMA block. In these cases, the driver should check that the Transaction Pending bit (bit
5) in the Device Status register in the PCI config space is clear before proceeding. In such
cases the driver might need to initiate two consecutive software resets with a larger delay
than 1 ps between the two of them.

The PCle Master Disable bit must be cleared to enable master request to the PCle link. This
bit should be cleared through reset.

5254 Dr State

Transition to Dr state is initiated on several occasions:

= On system power up — Dr state begins with the assertion of the internal power detection circuit
(LAN_PWR_GOOD) and ends with de-assertion of PE_RST_N.

« On transition from a DOa state — During operation the system can assert PE_RST_N at any time. In
an ACPI system, a system transition to the G2/S5 state causes a transition from DOa to Dr state.

= On transition from a D3 state — The system transitions the device into the Dr state by asserting
PCle PE_RST_N.

Any wake-up filter settings that were enabled before entering this reset state are maintained.

The system can maintain PE_RST_N asserted for an arbitrary time. The de-assertion (rising edge) of
PE_RST_N causes a transition to DOu state.

While in Dr state, the 82599 can maintain functionality (for WoL or manageability) or can enter a Dr
Disable state (if no WoL and no manageability) for minimal device power. The Dr Disable mode is
described in the sections that follow.

5.254.1 Dr Disable Mode

The 82599 enters a Dr disable mode on transition to D3cold state when it does not need to maintain
any functionality. The conditions to enter either state are:

= The device (all PCI functions) is in Dr state

= APM WOL is inactive for both LAN functions

= Pass-through manageability is disabled

= ACPI PME is disabled for all PCI functions

169

u ®
l n tel) Intel® 82599 10 GbE Controller — Power Management and Delivery

Entry into Dr disable is usually done on assertion of PCle PE_RST_N. It can also be possible to enter Dr
disable mode by reading the EEPROM while already in Dr state. The usage model for this later case is
on system power up, assuming that manageability and wake up are not required. Once the device
enters Dr state on power up, the EEPROM is read. If the EEPROM contents determine that the
conditions to enter Dr disable are met, the device then enters this mode (assuming that PCle
PE_RST_N is still asserted).

Exit from Dr disable is through de-assertion of PCle PE_RST_N.

If Dr disable mode is entered from D3 state, the platform can remove the 82599 power. If the platform
removes the 82599 power, it must remove all power rails from the device if it needs to use this
capability. Exit from this state is through power-up cycle to the 82599. Note that the state of the
TX_DIS (SDPO[4] and SDP1[4]) pins is undefined once power is removed from the device.

5254.2 Entry to Dr State

Dr-entry on platform power up is as follows:

= Assertion of the internal power detection circuit (LAN_PWR_GOOD). Device power is kept to a
minimum by keeping the XAUI interfaces in low power.

< The EEPROM is then read and determines device configuration.

« If the APM Enable bit in the EEPROM's Control Word 3 is set, then APM wake up is enabled (for each
port independently).

- If the MNG Enable bit in the EEPROM word is set, pass-through manageability is not enabled.

« Each of the LAN ports can be enabled if required for WoL or manageability. See Section 5.2.4.2 for
exact condition to enable a port.

« The PCle link is not enabled in Dr state following system power up (since PE_RST_N is asserted).

Entry to Dr state from DOa state is through assertion of the PE_RST_N signal. An ACPI transition to the
G2/S5 state is reflected in a device transition from DOa to Dr state. The transition can be orderly (such
as a user selected a shut down operating system option), in which case the device driver can have a
chance to intervene. Or, it can be an emergency transition (like power button override), in which case,
the device driver is not notified.

Transition from D3 state to Dr state is done by assertion of PE_RST_N signal. Prior to that, the system
initiates a transition of the PCle link from L1 state to either the L2 or L3 state (assuming all functions
were already in D3 state). The link enters L2 state if PCI-PM PME is enabled.

5.2.6 Timing of Power-State Transitions

The following sections give detailed timing for the state transitions. In the diagrams the dotted
connecting lines represent the 82599 requirements, while the solid connecting lines represent the
82599 guarantees.

Note: The timing diagrams are not to scale. The clocks edges are shown to indicate running clocks
only and are not used to indicate the actual number of cycles for any operation.

170

Power Management and Delivery — Intel® 82599 10 GbE Controller

5.2.6.1 Transition From DOa To D3 and Back Without PE_RST_N

PCle Reference
Clock

PE_RSTn
_w DO Write e -
,,,,,,,,,,,,,,, ®—/< tee home‘[[‘»--.,.@-»-'M emory Access Enable
Reading EEPROM T Read EEPROM
03 writs / 7 G\)
PHY Reset
PCle Link | LO \ L1 \ / Lo }
L /
Wake Up Enabled l\ Any mode &\ \ APM SBMBus /
|k Y \
TX_DIS power-managed >< \
DState DOa D3 DOu Do
Note
1 Writing 11b to the Power State field of the PMCSR transitions the 82599 to D3.
2 The system can keep the 82599 in D3 state for an arbitrary amount of time.
3 To exit D3 state the system writes 00b to the Power State field of the PMCSR.
4 APM wake up or manageability can be enabled based on what is read in the EEPROM.
5 After reading the EEPROM, the LAN ports are enabled and the 82599 transitions to DOu state.
6 The system can delay an arbitrary time before enabling memory access.
7 Writing a 1b to the Memory Access Enable bit or to the 1/0 Access Enable bit in the PCI Command register transitions the
82599 from DOu to DO state.

5.2.6.2 Transition From DOa To D3 And Back With PE_RST_N

PCle Reference Clock
telkpg ® ?gclk tPwRGD-cLK
}o \\\

PE_RSTn @K
% tee \

Internal PCle Clock (
Read EEPROM
) | tpgefg " tpgres
t
Wie ©

tpgdl
tppg-clkint
@

2.5Ghz)

Internal PwrGd

Reading EEPROM

PCle Link L/2L3 | [Lo
. \\. |
Wakeup Enabled APM/SMBus }
\ [
TX_DIS power-managed \
DState Dr X DOu Doa

171

intel.

Intel® 82599 10 GbE Controller — Power Management and Delivery

Note
1 Wri_ting_ 11b to the Power State field of the PMCSR transitions the 82599 to D3. PCle link transitions to L1 state. Possible
indication to external PHYs to enter low-power mode.
> ;’Paeies.ystem can delay an arbitrary amount of time between setting D3 mode and transitioning the link to an L2 or L3
3 Following link transition, PE_RST_N is asserted.
4 The system must assert PE_RST_N before stopping the PCle reference clock. It must also wait tl2clk after link transition
to L2/L3 before stopping the reference clock.
5 On assertion of PE_RST_N, the 82599 transitions to Dr state.
6 The system starts the PCle reference clock tpwrgp-cLk before de-assertion PE_RST_N.
7 The internal PCle clock is valid and stable ty,g_cikint from PE_RST_N de-assertion.
8 The PCle internal PWRGD signal is asserted tclkpr after the external PE_RST_N signal.
9 Assertion of internal PCle PWRGD causes the EEPROM to be re-read and disables wake up.
10 APM wake-up mode can be enabled based on what is read from the EEPROM. External PHYs are enabled.
11 Link training starts after tpgtrn from PE_RST_N de-assertion.
12 A first PCle configuration access can arrive after t,g.¢q from PE_RST_N de-assertion.
13 A first PCI configuration response can be sent after tpgres from PE_RST_N de-assertion.
14 Writing a 1b to the Memory Access Enable bit in the PCI Command register transitions the device from DOu to DO state.
5.2.6.3 Transition From DOa To Dr And Back Without Transition To D3

PCle Reference Clock

PE_RSTn

Internal PCl e Clock)|
2.5Ghz(

Internal PwrGd PLL(

Reading EEPROM

PCle Link

Wake Up Enabled

172

TX_DIS

" tPwRGD-CLK

telkpg
]

tppg-clkint
4

Read EEPROM

tpgefg — tpgres

i
%
power-managed \\ \‘

\

Lo Lo

Any mode APM/SMBus

DState | DOa Dr DOu Doa

L
L] V]

]
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel

Note

1 The system must assert PE_RST_N before stopping the PCle reference clock. It must also wait tl2clk after link transition
to L2/L3 before stopping the reference clock.

> _On_ass_ertion of PE_RST_N, the 82599 transitions to Dr state and the PCle link transition to electrical idle. Possible
indication to external PHYs to enter low-power mode.

3 The system starts the PCle reference clock tpwrgp-cLk before de-assertion PE_RST_N.

4 The internal PCle clock is valid and stable ty,q_cikint from PE_RST_N de-assertion.

5 The PCle internal PWRGD signal is asserted tclkpr after the external PE_RST_N signal.

6 Assertion of internal PCle PWRGD causes the EEPROM to be re-read and disables wake up.

7 APM wake-up mode can be enabled based on what is read from the EEPROM.

8 After reading the EEPROM, external PHYs are enabled.

9 Link training starts after tpgtrn from PE_RST_N de-assertion.

10 A first PCle configuration access can arrive after tyg.rq from PE_RST_N de-assertion.

11 A first PCI configuration response can be sent after tpgres from PE_RST_N de-assertion

12 Writing a 1b to the Memory Access Enable bit in the PCI Command register transitions the device from DOu to DO state.

5.2.6.4 Timing Requirements

The 82599 requires the following start up and power state transitions.

Table 5.2. Start Up and Power State Transitions

Parameter Description Min Max. Notes

Xosc stable from power

txog stable P 10 ms

thwRGD-CLK zg\:\?eflg:;';;a“d to PCle 100 ps - According to PCle specification.

tovpaL E(éwsg_lr_alll\ls izt:(?tli(\e/eto PCle 100 ms - According to PCle specification.
External PE_RST_N signal . e .

tpgcfg to first configuration cycle 100 ms According to PCle specification.
Device programmed from

tdOmem D3h to DO state to next 10 ms According to PCI power management specification.
device access

tl2pg IF-’E Igls(TtrilnslstsIg?tit(?n Ons According to PCle specification.

tl2clk (I;fz gg:(etrri?;{gﬁget?jgiroval 100 ns According to PCle specification.
PE_RST_N assertion to

tclkpg removal of PCle reference |0 ns According to PCle specification.
clock

tpgdl PE_RST_N assertion time 100 ps According to PCle specification.

173

[®
l n tel Intel® 82599 10 GbE Controller — Power Management and Delivery

5.2.6.5 Timing Guarantees

The 82599 guarantees the following start up and power state transition related timing parameters.

Table 5.3. Start-up and Power State Transition Timing Parameters

Parameter Description Min Max. Notes

Xosc stable from power

txog stable) 10 ms
Internal power good delay

topg from valid power rail 35 ms 35 ms

tee EEPROM read duration 20 ms
PCle PE_RST_N to internal

topg-cikint PLL lock - 50 ps

t Internal PCle PWGD from 50 us

clkpr external PCle PE_RST_N w

tpgtrn ﬁr?llet;%ﬁiiZT_N to start of 20 ms According to PCle specification.
External PE_RST_N to

tpgres response to first 1 second | According to PCle specification.
configuration cycle

5.3 Wake Up

53.1 Advanced Power Management Wake Up

Advanced Power Management Wake Up, or APM Wake Up, was previously known as Wake on LAN
(Wol). It is a feature that has existed in the 10/100 Mb/s NICs for several generations. The basic
premise is to receive a broadcast or unicast packet with an explicit data pattern, and then to assert a
signal to wake up the system. In the earlier generations, this was accomplished by using a special
signal that ran across a cable to a defined connector on the motherboard. The NIC would assert the
signal for approximately 50 ms to signal a wake up. The 82599 uses (if configured to) an in-band
PM_PME message for this.

At power up, the 82599 reads the APM Enable bit from the EEPROM into the APM Enable (APME) bits of
the GRC register. This bit control the enabling of APM wake up.

When APM wake up is enabled, the 82599 checks all incoming packets for Magic Packets. See
Section 1.1.3 for a definition of Magic Packets.

Once the 82599 receives a matching Magic Packet, it:
e Sets the PME_Status bit in the PMCSR.
= Asserts PE_ WAKE_N.
* Issues a PM_PME message.

APM wake up is supported in all power states and only disabled if a subsequent EEPROM read results in
the APM Wake Up bit being cleared.
5.3.2 ACPI Power Management Wake Up

The 82599 supports ACPI power management-based wake up. It can generate system wake-up events
from three sources:

« Reception of a Magic Packet.

174

[] ®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel ,

= Reception of a network wake-up packet.
= Detection of a link change of state.
= Activating ACPI power management wake up requires the following steps:
— g]e operating system (at configuration time) writes a 1b to the PME_En bit of the PMCSR (bit

— The driver programs the Wake Up Filter Control (WUFC) register to indicate the packets it needs
to wake up and supplies the necessary data to the IPv4/v6 Address Table (IP4AT, IP6AT),
Flexible Host Filter Table (FHFT) registers. It can also set the Link Status Change Wake Up
Enable (LNKC) bit in the WUFC register to cause wake up when the link changes state. If the
SW driver enables any of the wakeup options above it should also set the WUC.PME_En bit as
well.

— Once the 82599 wakes the system, the driver needs to clear WUFC until the next time the
system goes to a low power state with wake up.

Normally, after enabling wake up, the operating system writes (11b) to the lower two bits of the PMCSR
to put the 82599 into low-power mode.

Once wake up is enabled, the 82599 monitors incoming packets, first filtering them according to its
standard address filtering method, then filtering them with all of the enabled wake-up filters. If a
packet passes both the standard address filtering and at least one of the enabled wake-up filters, the
82599:

= Sets the PME_Status bit in the PMCSR.
= If the PME_En bit in the PMCSR is set, asserts PE_WAKE_N.

If enabled, a link state change wake up causes similar results, setting PME_Status, asserting
PE_WAKE_N when the link goes up or down.

PE_WAKE_N remains asserted until the operating system either writes a 1b to the PME_Status bit of
the PMCSR register or writes a Ob to the PME_En bit.

After receiving a wake-up packet or link change event, the 82599 ignores any subsequent wake-up
packets or link change events until the driver clears the WUS register.

175

u ®
l n tel) Intel® 82599 10 GbE Controller — Power Management and Delivery

5.3.3 Wake-Up Packets

The 82599 supports various wake-up packets using two types of filters:
* Pre-defined filters
= Flexible filters

Each of these filters are enabled if the corresponding bit in the WUFC register is set to 1b.

Note: When VLAN filtering is enabled, packet s that passed any of the receive wake-up filters should
only cause a wake-up event if it also passed the VLAN filtering.

5.3.3.1 Pre-Defined Filters

The following packets are supported by the 82599's pre-defined filters:
« Directed Packet (including exact, multicast indexed, and broadcast)
= Magic Packet
= ARP/IPv4 Request Packet
= Directed IPv4 Packet
= Directed IPv6 Packet

Each of these filters are enabled if the corresponding bit in the WUFC register is set to 1b.

The explanation of each filter includes a table showing which bytes at which offsets are compared to
determine if the packet passes the filter. Both VLAN frames and LLC/SNAP can increase the given
offsets if they are present.

5.3.3.1.1 Directed Exact Packet

The 82599 generates a wake-up event after receiving any packet whose destination address matches
one of the 128 valid programmed receive addresses if the Directed Exact Wake Up Enable bit is set in
the Wake Up Filter Control (WUFC.EX) register.

Offset # of Field Value Action Comment
bytes

0 6 Destination Address Compare Match any pre-programmed address.

5.3.3.1.2 Directed Multicast Packet

For multicast packets, the upper bits of the incoming packet's destination address index a bit vector, the
Multicast Table Array (MTA) that indicates whether to accept the packet. If the Directed Multicast Wake
Up Enable bit set in the Wake Up Filter Control (WUFC.MC) register and the indexed bit in the vector is
one, then the 82599 generates a wake-up event. The exact bits used in the comparison are

programmed by software in the Multicast Offset field of the Multicast Control (MCSTCTRL.MO) register.

Offset # of Field Value Action Comment
bytes

0 6 Destination Address Compare See previous paragraph.

176

[®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel

5.3.3.1.3 Broadcast

If the Broadcast Wake Up Enable bit in the Wake Up Filter Control (WUFC.BC) register is set, the 82599
generates a wake-up event when it receives a broadcast packet.

of

Offset bytes

Field Value Action Comment

0 6 Destination Address FF*6 Compare

5.3.3.1.4 Magic Packet

A Magic Packet's destination address must match the address filtering enabled in the configuration
registers with the exception that broadcast packets are considered to match even if the Broadcast
Accept bit of the Receive Control (FCTRL.BAM) register is Ob. If APM wake up is enabled in the EEPROM,
the 82599 starts up with the Receive Address Register O (RAHO, RALO) loaded from the EEPROM. This is
to enable the 82599 to accept packets with the matching IEEE address before the driver comes up.

Offset ## of Field Value Action Comment
Bytes
0 6 Destination Address Compare ;\/I",;C; header — processed by main address
6 6 Source Address Skip
12 4 Possible VLAN Tag Skip
12 8 Possible Len/LLC/SNAP Header Skip
12 2 Type Skip
Any 6 Synchronizing Stream FF*6+ Compare
any+6 96 16 Copies of Node Address A*16 Compare ((:sﬂ*%ar;(itg)Recelve Address Register 0
Note: Accepting broadcast Magic Packets for wake-up purposes when the Broadcast Accept bit of

the Receive Control (FCTRL.BAM) register is Ob is a change from 82544, which initialized
FCTRL.BAM to 1b if APM was enabled in the EEPROM, but then required that bit to be 1b to
accept broadcast Magic Packets, unless broadcast packets passed another perfect or
multicast filter.

5.3.3.1.5 ARP/I1Pv4 Request Packet

The 82599 supports reception of ARP request packets for wake up if the ARP bit is set in the WUFC
register. Four IPv4 addresses are supported, which are programmed in the IPv4 Address Table (IP4AT).
A successfully matched packet must pass L2 address filtering, a protocol type of 0x0806, an ARP
opcode of 0x01, and one of the four programmed IPv4 addresses. The 82599 also handles ARP request
packets that have VLAN tagging on both Ethernet Il and Ethernet SNAP types.

Offset # of Field Value Action Comment
Bytes
0 6 Destination Address Compare mfecr header — processed by main address
6 6 Source Address Skip
12 4 Possible VLAN Tag Compare

177

®
l n tel Intel® 82599 10 GbE Controller — Power Management and Delivery

Offset B#;/toefs Field Value Action Comment
12 4 Possible Len/LLC/SNAP Header Skip
12 2 Type 0x0806 Compare ARP.
14 2 Hardware Type 0x0001 Compare
16 2 Protocol Type 0x0800 Compare
18 1 Hardware Size 0x06 Compare
19 1 Protocol Address Length 0x04 Compare
20 2 Operation 0x0001 Compare
22 6 Sender Hardware Address - Ignore
28 4 Sender IP Address - Ignore
32 6 Target Hardware Address - Ignore
38 4 Target IP Address IPAAT Compare Can match any of four values in IP4AT.

5.3.3.1.6 Directed IPv4 Packet

The 82599 supports reception of directed IPv4 packets for wake up if the IPV4 bit is set in the WUFC
register. Four IPv4 addresses are supported, which are programmed in the IPv4 Address Table (IP4AT).
A successfully matched packet must pass L2 address filtering, a protocol type of 0x0800, and one of the
four programmed IPv4 addresses. The 82599 also handles directed IPv4 packets that have VLAN
tagging on both Ethernet Il and Ethernet SNAP types.

Offset r;f/toefs Field Value Action Comment
0 6 Destination Address Compare ;\/I”»tké:nheader — processed by main address
6 6 Source Address Skip
12 4 Possible VLAN Tag Compare
12 8 Possible Len/LLC/SNAP Header Skip
12 2 Type 0x0800 Compare 1P
14 1 Version/ HDR length 0x4X Compare Check IPv4.
15 1 Type of Service - Ignore
16 2 Packet Length - Ignore
18 2 Identification - Ignore
20 2 Fragment Information - Ignore
22 1 Time to Live - Ignore
23 1 Protocol - Ignore
24 2 Header Checksum - Ignore
26 4 Source IP Address - Ignore
30 4 Destination IP Address IPAAT Compare Can match any of four values in IP4AT.

178

[®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel

5.3.3.1.7 Directed IPv6 Packet

The 82599 supports reception of directed IPv6 packets for wake up if the IPV6 bit is set in the WUFC
register. One IPv6 address is supported, which is programmed in the IPv6 Address Table (IP6AT). A
successfully matched packet must pass L2 address filtering, a protocol type of 0x0800, and the
programmed IPv6 address. The 82599 also handles directed IPv6 packets that have VLAN tagging on
both Ethernet Il and Ethernet SNAP types.

Offset ;/éfs Field Value Action Comment
0 6 Destination Address Compare L\/I”?ecr.header — processed by main address
6 6 Source Address Skip
12 4 Possible VLAN Tag Compare
12 8 Possible Len/LLC/SNAP Header Skip
12 2 Type 0x0800 Compare IP.

14 1 Version/ Priority 0x6X Compare Check IPV6.

15 3 Flow Label - Ignore

18 2 Payload Length - Ignore

20 1 Next Header - Ignore

21 1 Hop Limit - Ignore

22 16 Source IP Address - Ignore

38 16 Destination IP Address IP6AT Compare Match value in IP6AT.

5.3.3.2 Flexible Filter

The 82599 supports a total of six host flexible filters. Each filter can be configured to recognize any
arbitrary pattern within the first 128 bytes of the packet. To configure the flexible filter, software
programs the required values into the Flexible Host Filter Table (FHFT). These contain separate values
for each filter. Software must also enable the filter in the WUFC register, and enable the overall wake-up
functionality must be enabled by setting the PME_En bit in the PMCSR or the WUC register.

Once enabled, the flexible filters scan incoming packets for a match. If the filter encounters any byte in
the packet where the mask bit is one and the byte doesn't match the byte programmed in FHFT then
the filter fails that packet. If the filter reaches the required length without failing the packet, it passes
the packet and generates a wake-up event. It ignores any mask bits set to one beyond the required
length.

Packet that passed a wake-up flexible filter should cause a wake-up event only if it is directed to the
82599 (passed L2 and VLAN filtering).

Note: The flexible filters are temporarily disabled when read from or written to by the host. Any
packet received during a read or write operation is dropped. Filter operation resumes once
the read or write access completes.

The following packets are listed for reference purposes only. The flexible filter could be used to filter
these packets.

179

[®
l n tel Intel® 82599 10 GbE Controller — Power Management and Delivery

5.3.3.2.1 IPX Diagnostic Responder Request Packet

An IPX diagnostic responder request packet must contain a valid Ethernet MAC address, a protocol type
of 0x8137, and an IPX diagnostic socket of 0x0456. It can also include LLC/SNAP headers and VLAN
tags. Since filtering this packet relies on the flexible filters, which use offsets specified by the operating
system directly, the operating system must account for the extra offset LLC/SNAP Headers and VLAN
tags.

Offset I;;t/toefs Field Value Action Comment
0 6 Destination Address Compare
6 6 Source Address Skip
12 4 Possible VLAN Tag Compare
12 8 Possible Len/LLC/SNAP Header Skip
12 2 Type 0x8137 Compare IPX.
14 16 Some IPX Information - Ignore
30 2 IPX Diagnostic Socket 0x0456 Compare

5.3.3.2.2 Directed IPX Packet

A valid directed IPX packet contains the station's Ethernet MAC address, a protocol type of 0x8137, and
an IPX node address that equals to the station's Ethernet MAC address. It can also include LLC/SNAP
headers and VLAN tags. Since filtering this packet relies on the flexible filters, which use offsets
specified by the operating system directly, the operating system must account for the extra offset LLC/
SNAP headers and VLAN tags.

Offset # of Field Value Action Comment
Bytes
0 6 Destination Address Compare mﬁecr header — processed by main address
6 6 Source Address Skip
12 4 Possible VLAN Tag Compare
12 8 Possible Len/LLC/SNAP Header Skip
12 2 Type 0x8137 Compare IPX.
14 10 Some IPX Information - Ignore
Receive .
24 6 IPX Node Address Address 0 Compare Must match Receive Address 0.
5.3.3.2.3 IPv6 Neighbor Discovery Filter

In IPv6, a neighbor discovery packet is used for address resolution. A flexible filter can be used to check
for a neighborhood discovery packet.

180

[] ®
Power Management and Delivery — Intel® 82599 10 GbE Controller l n tel

534 Wake Up and Virtualization

When operating in a virtualized environment, all wake-up capabilities are managed by a single entity
(such as the VMM or an IOVM). In an IOV architecture, the physical driver controls wake up and none of
the Virtual Machines (VMs) has direct access to the wake-up registers. The wake-up registers are not
replicated.

181

"] ®
I n tel Intel® 82599 10 GbE Controller — Power Management and Delivery

Note: This page intentionally left blank.

182

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller

6.0

Non-Volatile Memory Map

6.1

EEPROM General Map

The following table lists the EEPROM map used by the 82599. This table lists common modules for the
EEPROM including: hardware pointers, software and firmware. Blocks are detailed in the following

sections. All addresses and pointers in this table are absolute in word units.

Word Address LBJ)s/ed Field Name LANO/ 1 Reserved
0x00 HW EEPROM Control Word 1 — Section 6.3.2.1 Shared Logic
0x01 HW EEPROM Control Word 2 — Section 6.3.2.2 Shared Logic
0x03 HW PCle Analog Configuration Module Pointer — Section 6.3.3 Shared Logic
0x04 HW Core 0 Analog Configuration Module Pointer — Section 6.3.4 Port O

0x05 HW Core 1 Analog Configuration Module Pointer — Section 6.3.4 Port 1

0x06 HW PCle General Configuration Module Pointer — Section 6.3.5 Shared Logic
0x07 HW PCle Configuration Space O Module Pointer — Section 6.3.6 Function O
0x08 HW PCle Configuration Space 1 Module Pointer — Section 6.3.6 Function 1
0x09 HW LAN Core 0 Module Pointer — Section 6.3.7 Port O

Ox0A HW LAN Core 1 Module Pointer — Section 6.3.7 Port 1

0x0B HW MAC 0 Module Pointer — Section 6.3.8 Port O

0x0C HW MAC 1 Module Pointer — Section 6.3.8 Port 1

0x0D HW CSR 0 Auto Configuration Module Pointer — Section 6.3.9 Port O

OxOE HW CSR 1 Auto Configuration Module Pointer — Section 6.3.9 Port 1

OXOF Fw Firmware Module Pointer — Section 6.4 FW

0x10 — 0x14 SwW SW Compatibility Module — Section 6.2.1 SwW

0x15 — 0x16 sSw PBA Bytes 1...4 — Section 6.2.2 Sw

0ox17 SwW iSCSI Boot Configuration Start Address — Section 6.2.3 SwW

0x18 — 0x27 SW Software Reserved SW

0x28 SW SAN MAC Addresses Pointer SW

0x29 - Ox2E SW Software Reserved SW

Ox2F OEM VPD Pointer — Section 6.2.4 Shared Logic
0x30 — 0x36 PXE PXE Word 0 (Software Use) Configuration — Section 6.2.5 SwW

0x37 SW Alternate Ethernet MAC Addresses Pointer — Section 6.2.6 SwW

0x38 HW EEPROM Control Word 3 — Section 6.3.2.3 Shared Logic
0x39 — Ox3E HW Hardware Reserved Reserved
Ox3F SW Software Checksum, Words 0x00 — Ox3F Shared Logic

183

] ®
l n tel > Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.2 EEPROM Software

6.2.1 SW Compatibility Module — Word Address 0x10-0x14

Five words in the EEPROM image are reserved for compatibility information. New bits within these fields
are defined as the need arises for determining software compatibility between various hardware
revisions.

6.2.2 PBA Number Module — Word Address Ox15-0x16

The nine-digit Printed Board Assembly (PBA) number used for Intel manufactured Network Interface
Cards (NICs) is stored in the EEPROM.

Note that through the course of hardware ECOs, the suffix field is incremented. The purpose of this
information is to enable customer support (or any user) to identify the revision level of a product.

Network driver software should not rely on this field to identify the product or its capabilities.
Current PBA numbers have exceeded the length that can be stored as hex values in these two words.

For these PBA numbers the high word is a flag (OXFAFA) indicating that the PBA is stored in a separate
PBA block. The low word is a pointer to a PBA block.

PBA Number Word 0x15 Word 0x16

G23456-003 FAFA Pointer to PBA Block

The PBA block is pointed to by word 0x16.

Word Offset Description Reserved
0x0 Length in words of the PBA block (default 0x6).
Ox1 ... Ox5 PBA number stored in hexadecimal ASCII values.

The PBA block contains the complete PBA number including the dash and the first digit of the 3-digit
suffix. For example:

PBA Number Word Offset O | Word Offset 1 | Word Offset 2 | Word Offset 3 | Word Offset 4 | Word Offset 5

G23456-003 0006 4732 3334 3536 2D30 3033

Older PBA numbers starting with (A,B,C,D,E) are stored directly in words Ox15 and Ox16. The dash
itself is not stored nor is the first digit of the 3-digit suffix, as it is always Ob for relevant products.

PBA Number Byte 1 Byte 2 Byte 3 Byte 4
123456-003 12 34 56 03
6.2.3 iSCSI Boot Configuration — Word Address 0x17

The iSCSI Boot configuration module is located using the Word pointer iSCSI Boot Configuration
Address field in word 0x17. The block length is embedded in the iSCSI Boot module.

184

[®
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l n tel ’

6.2.4 VPD Module Pointer — Word Address Ox2F

The Vital Product Data (VPD) module is located using the Word pointer VPD Pointer field in word Ox2F.
The block length is embedded in the VPD module. The VPD section size is usually 64 words, and is
initialized to O0x0 or OxFFFF. Customers write their own data in this module. During run time this module
is accessible through the VPD capability in the PCI configuration space.

6.2.5 EEPROM PXE Module — Word Address 0x30-0x36
Words 0x30 through 0x36 are reserved for configuration and version values used by PXE code.

The configuration of the Boot Agent software is controlled by several words in the EEPROM . The main
setup options for Port O are stored in this word. These options are those that can be changed by the
user using the Control-S setup menu.

Word Address Description Reserved
0x30 PXE Word 0 (Software Use) Configuration
0x31 PXE Word 1 (Software Use) Configuration
0x32 PXE Word (Software Use) PXE Version
0x33 PXE Word (Software Use) EFI Version
0x34 — 0x36 Additional PXE Reserved words (Software Use)
6.2.6 Alternate Ethernet MAC Address — Word Address Ox37

This word is used as a pointer to an EEPROM block that contains the space for two MAC addresses. The
first three words of the EEPROM block are used to store the MAC address for the first port (PCl Function
0). The second three words of the EEPROM block is used to store the MAC address for the second port
(PCI Function 1). Initial and default values in the EEPROM block should be set to OxXFFFF (for both
addresses) indicating that no alternate MAC address is present. See Section 4.6.13 for more details.

Note: Word 0x37 must be set to OXFFFF if alternate MAC addresses are not used. Also, alternate
MAC addresses are ignored by hardware and require specific software support for activation.

Word Offset Description Reserved
0x0 ... Ox2 Alternate Ethernet MAC Address 1 (port 0)
0x3 ... Ox5 Alternate Ethernet MAC Address 2 (port 1)
6.2.7 Checksum Word Calculation (Word 0Ox3F)

The checksum word (0x3F) is used to ensure that the base EEPROM image is a valid image. The value
of this word should be calculated such that after adding all the words (0x00:0x3F), including the
checksum word itself, the sum should be OXBABA. This word is used strictly by software. Hardware does
not calculate or check its content but instead checks the Signaturefield in EEPROM Control Word 1.

The first 63 words of the EEPROM have a collection of pointers to other sections of the EEPROM. To
ensure the integrity of the additional configuration parameters, their content should be included in the
EEPROM checksum word at offset Ox3F. As a result, the new algorithm for determining the checksum is
as follows:

185

[®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

Perform an EEPROM checksum of the first 63 words at 0x0-Ox3E.
Starting with word offset 0x03 (PCIE_ANALOG_PTR) read the pointer value.
If the value of the pointer is 0x0 or OXFFFF then move on to the next pointer.

A

If the pointer has a value, then read the content of where the pointer points to.

For example, if the pointer is 0x308, read the value at word offset 0x308. The value in the first word
pointed to is the length of that particular configuration data section. Note that the length value is NOT
added to the checksum value. If the value at 0x308 was 5, don’'t add 5 to the checksum value. Instead
the length is used to determine how many words after the count value should be added to the
checksum. In this example, 5 words are added to the checksum, starting at word offset 0x309. This
same logic applies to the pointers in locations 0x4 through OXE. The result of the checksum is then
subtracted from OXBABA and compared to the value at word offset Ox3F. If the values match then the
checksum is valid, if not, then the checksum is invalid.

The checksum word (Ox3F) is used to ensure that the base EEPROM image is a valid image. The
following documents the calculation.

#define 1XGBE_EEPROM_CHECKSUM Ox3F
#define 1XGBE_EEPROM_SUM OxBABA
#define IXGBE_PCIE_ANALOG_PTR 03
#define IXGBE_FW_PTR OF
static ul6 ixgbe_eeprom_calc_checksum(struct ixgbe hw *hw)
{
ul6 i;
ulé j;

ul6é checksum = 0;
ul6é length = 0;
ul6é pointer = 0;
ulé word = O;

/* Include 0x0-0x3F in the checksum */
for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {

if (ixgbe_eeprom_read(hw, i, &word) '= IXGBE_SUCCESS) {
DEBUGOUT(*'EEPROM read failed\n™);
break;

3

checksum += word;

}

/* Include all data from pointers except for the fw pointer */

for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
ixgbe_eeprom_read(hw, i, &pointer);

/* Make sure the pointer seems valid */

if (pointer !'= OxFFFF && pointer = 0) {
ixgbe_eeprom_read(hw, pointer, &length);

186

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller

if (length '= OxFFFF && length = 0) {
for (J = pointer+l; j <= pointer+length; j++) {
ixgbe_eeprom_read(hw, j, &word);
checksum += word;

}
checksum = (ul6)IXGBE_EEPROM_SUM — checksum;

return checksum;

}
6.2.8 SAN MAC Addresses Pointer — Word Address 0x28
Word 0x28 points to the Permanent SAN MAC Address block used for FCoE (SPMA and FPMA) and DCB.
Word Offset Description Reserved
0x0 ... Ox2 SAN (FCoE) MAC Address 1 (port 0)
0x3 ... Ox5 SAN (FCoE) MAC Address 1 (port 1)
6.3 EEPROM Hardware Sections

This module contains address control words and hardware pointers indicated as HW in the table of
Section 6.1.

6.3.1 EEPROM Hardware Section — Auto-Load Sequence
The following table lists sections of auto-read following device reset events.

Table 6.1. EEPROM Section Auto-Read

PCle Reset | D3 to DO
LAN_PWR |or PCle transit or SW Reset |Link Reset
— Force TCO
_GOOD Inband FLR (per (per port) | (per port)
Reset port)
PCle Analog Configuration X
PCle General Configuration X
PCle Function 0/1 Config Space X X
(for each LAN port)
LAN Core and CSRs (for each
LAN port) X X X X X
MAC Module (for each LAN port) | X (1) X (2) X (2) X (2) X

1. The MAC module is auto-read only if manageability or wake up are enabled.
2. The MAC module is auto-read only if the manageability unit is not enabled.

187

"] ®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.3.2 EEPROM Init Module

The init section (EEPROM control word 0x1, 0x2, and 0x38) are read after a LAN_PWR_GOOD reset and
PCle Reset.

6.3.2.1 EEPROM Control Word 1 — Address 0x00

Bits Name Default Description Reserved

15:12 Reserved 0x0 Reserved

These bits indicate the EEPROM’s actual size. Mapped to

11:8 EEPROM Size 00106 EEC.EE_Size (see field definition in the EEC register section).

The Signature field indicates to the 82599 that there is a valid
EEPROM present. If the Signature field is not O1b, the other bits in
this word are ignored, no further EEPROM read is performed, and
the default values are used for the configuration space IDs.

7:6 Signature O1lb

Manageability Enable. When set, indicates that the manageability
block is enabled. When cleared, the manageability block is disabled
(clock gated).

Mapped to GRC.MNG_EN

5 MNG Enable Ob

4 EEPROM Protection Ob If set to 1, EEPROM protection schemes are enabled.

Hidden EEPROM Block Size. This field defines the EEPROM area
accessible only by manageability firmware. It can also be used to
store secured data and other manageability functions. The size in
bytes of the secured area equals:

0 bytes (if HEPSize equals zero), or 2™ HEPSize bytes (2 bytes, 4
bytes, ..32 KB.)

3:0 HEPSize Ob

6.3.2.2 EEPROM Control Word 2 — Address 0x01

Bits Name Default Description Reserved
15:7 Reserved 0x0 Reserved
When set disable the gating of the Core KR_PLL in device low
. power states and Non-KR Modes
6 Core KR PLL Gate Disable | Ob
Note: In case KR_Dis bit is set, KR-PLL is disabled regardless
the value of this bit
5:3 Reserved 001b Reserved
. When set disables the gating of the Core XAUI PLL in device
2 Core XAUI Gate Disable | Ob low power states and Non-XAUI Modes.
During nominal operation this bit should be zero enabling core
clock gating.
. When set disables the gating of the core clock in low power
1 Core Clocks Gate Disable | Ob state. Setting this bit also has side affects disabling auto link
down (when both MNG and WOL are disabled) and also keeps
the LEDs active.
0 PCle PLL Gate Disable Ob When set disables the gating of the PCle PLL in L1/2 states.

188

[®
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l n tel

6.3.2.3 EEPROM Control Word 3 — Address 0x38

Bits Name Default Description Reserved

15:2 Reserved 0x0 Reserved

Initial value of advanced power management wake up enable
in the General Receive Control register (GRC.APME). Mapped
1 APM Enable Port 1 Ob to GRC.APME of port 1.

If the LAN PCI disable bit in the NVM is set for Port 1, then the
APM bit must be cleared.

Initial value of advanced power management wake up enable
in the General Receive Control register (GRC.APME). Mapped
0 APM Enable Port O Ob to GRC.APME of port 0.

If the LAN PCI disable bit in the NVM is set for Port O, then the
APM bit must be cleared.

Note: Bits 1:0 should not be set if the respective port is disabled by PCle Control 2 word bits 1:0.

6.3.3 PCle Analog Configuration Module

These sections are loaded only after LAN_PWR_GOOD only. These sections contain the analog default
configurations for the 82599's PCle analog parts. Word 0x3 is the pointer for this section (the EEPROM
address, in words).

The structure of this section is listed in the following table.

6.3.3.1 Section Length — Offset Ox00

The section length word contains the length of the section in words. Note that section length does not
include a count for the section length word.

6.3.3.2 PCle Analog Address — Offset Ox01, 0x03, 0x05...

Each odd offset word in the PCle analog section is the register address. The PCle analog registers are 2
words wide with a 12-bit address width. Bits 11:2 are the register address (in Dwords) and bit 1 select
the upper/lower word of the Dword register.

6.3.3.3 PCle Analog Data — Offset Ox02, 0x04, 0x06...

Each even offset word in the PCle analog section is the register data. After reading a pair of address
word and data word, the register specified in the address word is loaded with the data from the data
word.

6.3.4 Core 0/1 Analog Configuration Modules

These modules are loaded after LAN_PWR_GOOD only. They contain the analog default configurations
for the 82599's XAUI/KR analog parts. Words 0x4-0x5 are the pointers for these sections (the EEPROM
address, in words).

The structure of all sections is similar to the following structure.

189

[®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

Word offset Bits Description Reserved
0x0 15:0 Section Length — Section 6.3.4.1.
Ox1 15:8 Configuration Address — Section 6.3.4.2
Ox1 7:0 Configuration Data — Section 6.3.4.2
0x2 15:8 Configuration Address — Section 6.3.4.2
0x2 7:0 Configuration Data — Section 6.3.4.2

6.3.4.1 Section Length — Offset 0x00

The section length word contains the length of the section in words. Note that section length does not
include a count for the section length word.

6.3.4.2 Data and Address Words — Offset Ox01, Ox02, O0x03...

Each word in the analog configuration section has the same structure: bits 15:8 are the register
address and bits 7:0 are the register’s data. The analog registers are eight bits wide with an 8-bit
address width. After reading the EEPROM word, the register specified in bits 15:8 is loaded with the
data from bits 7:0.

6.3.5 PCle General Configuration Module

This section is loaded after a PCle Reset. It contains general configuration for the PCle interface (not
function specific) and is pointed to by word 0x06 in the EEPROM (full-byte address; must be word
aligned).

Offset Description
0x00 Section Length Section 6.3.5.1.
0x01 PCle Init Configuration 1 Section 6.3.5.2
0x02 PCle Init Configuration 2 Section 6.3.5.3
0x03 PCle Init Configuration 3 Section 6.3.5.4
0x04 PCle Control 1 Section 6.3.5.5
0x05 PCle Control 2 Section 6.3.5.6
0x06 PCle LAN Power Consumption Section 6.3.5.7
0x07 PCle Control 3 Section 6.3.5.8
0x08 PCle Sub-System ID Section 6.3.5.9
0x09 PCle Sub-System Vendor ID Section 6.3.5.10
Ox0A PCle Dummy Device ID Section 6.3.5.11
0x0B PCle Device Revision ID Section 6.3.5.12
0x0C 10V Control Word 1 Section 6.3.5.13
0x0D IOV Control Word 2 Section 6.3.5.14
OxOE Reserved

190

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller

Offset Description
OxOF Reserved
0x10 Reserved
Ox11 Serial Number Ethernet MAC Address Section 6.3.5.15
0x12 Serial Number Ethernet MAC Address Section 6.3.5.16
0x13 Serial Number Ethernet MAC Address Section 6.3.5.17
0x14 PCle L1 Exit latencies Section 6.3.5.18
0x15 Spare Section 6.3.5.19

6.3.5.1 Section Length — Offset Ox00

The section length word contains the length of the section in words. Note that section length does not
include a count for the section length word.

Bits Name Default Description Reserved

15:0 Section Length Section Length in words.

6.3.5.2 PCle Init Configuration 1 — Offset Ox01

Bits Name Default Description Reserved

15 Reserved Ob Reserved

Loaded to the Endpoint LOs Acceptable Latency field in the
14:12 LOs acceptable latency 011b Device Capabilities register as part of the PCle Configuration
registers at power up.

LOs exit latency G2S. Loaded to LOs Exit Latency field in the
Link Capabilities register as part of the PCle Configuration
registers in PCle V2.0 (5GT/s) system with a separate clock
setting.

11:9 LOs G2 Sep exit latency |111b

LOs exit latency G2C. Loaded to LOs Exit Latency field in the
Link Capabilities register as part of the PCle Configuration
registers in PCle V2.0 (5GT/s) system with a common clock
setting.

8:6 LOs G2 Com exit latency | 100b

LOs exit latency G1S. Loaded to LOs Exit Latency field in the
Link Capabilities register as part of the PCle Configuration
registers in PCle v2.0 (2.5GT/s) system with a separate clock
setting.

5:3 LOs G1 Sep exit latency |111b

LOs exit latency G1C. Loaded to LOs Exit Latency field in the
Link Capabilities register as part of the PCle Configuration
registers in PCle v2.0 (2.5GT/s) system with a common clock
setting.

2:0 LOs G1 Com exit latency |011b

6.3.5.3 PCle Init Configuration 2 — Offset Ox02

Bits Name Default Description Reserved
15:13 Reserved 0x0 Reserved
12 FLR delay disable Ob Disable the FLR value in the FLR Delay field in this word.

FLR response time in cycles defines the delay from FLR

11:8 FLR delay 0x1 assertion to its affect.

191

[®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

Bits Name Default Description Reserved

PCle Capability Version. This field must be set to 10b to use
extended configuration capability (used for a timeout
mechanism). This field is mapped to
GCR.PCle_Capability_Version.

7:6 PCI-E capability version | 10b

Loaded into the ECRC Generation Capable bit of the PCle
5 ECRC generation enable | 1b Configuration registers. At 1b the device is capable of
generating ECRC.

Loaded into the ECRC Check Capable bit of the PCle
4 ECRC check enable 1b Configuration registers. At 1b the device is capable of checking
ECRC.

FLR Capability Enable bit is loaded to the PCle Configuration

3 FLR capability enable 1b registers via the Device Capabilities register.

Cache Line Size
2 Cache line size Ob Ob = 64 bytes.
1b = 128 bytes.

Maximum payload size support for TLPs. Loaded to the PCle

1:0 Max payload size 10b Configuration registers via the Device Capabilities register.

6.3.5.4 PCle Init Configuration 3 — Offset Ox03

Bits Name Default Description Reserved
15:4 Reserved 0x0 Reserved
3 PCle Down Reset Disable | Ob Disables a core and reset when the PCle link goes down.
2:1 Act_Stat_PM_Sup 11b Active State Link PM Support is loaded to the PCle

Configuration registers via the Link Capabilities field.

Slot Clock Configuration. When set, the 82599 uses the PCle
reference clock supplied on the connector (for add-in solutions).
This bit is loaded to the “PCle configuration registers” -> “Link
Status”.

(0] Slot_Clock_Cfg 1b

6.3.5.5 PCle Control 1 —Offset Ox04

Bits Name Default Description Reserved
15:65 Reserved 0x0 Reserved
4 DIS Clock Gating in 1b Disable clock gating when LTSSM is in a disable state.

DISABLE

3 DIS Clock Gating in L2 1b Disable clock gating when LTSSM is at L2 state.
2 DIS Clock Gating in L1 1b Disable clock gating when LTSSM is at L1 state.
1 DIS Clock Gating in G2 1b Disable clock gating in PCle V2.0 (5GT/s).
(0] DIS Clock Gating in G1 1b Disable clock gating in PCle v2.0 (2.5GT/s).

6.3.5.6 PCle Control 2 — Offset Ox05

Bits Name Default Description Reserved

When set, enables a response to a request once the completion
. . timeout expired. This bit is mapped to
Completion Timeout Ob GCR.Completion_Timeout_Resend.

Resend Ob = Do not resend request on completion timeout.
1b = Resend request on completion timeout.

15

192

]
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l n tel

Bits Name Default Description Reserved

14:4 Reserved 0x0 Reserved

When the LAN Function Select field = Ob, LAN O is routed to PCI
function 0 and LAN 1 is routed to PCI function 1.

3 LAN Function Select Ob If the LAN Function Select field = 1b, LAN O is routed to PCI
function 1 and LAN 1 is routed to PCI function O.

This bit is mapped to FACTPS[30].

Controls the behavior of function 0 when disabled. See
Section 4.4.

Ob = Legacy Mode.
1b = Dummy Function Mode.

2 Dummy Function Enable | 1b

LAN PCI Disable. When set to 1b, one LAN port is disabled. The
function that is disabled is determined by the LAN Disable Select
1 LAN PCI Disable Ob bit. If the disabled function is function O, it acts as a dummy
function or the other LAN function depending on the Dummy
Function Enable setting.

LAN Disable Select
0 LAN Disable Select Ob Ob = LAN O is disabled.
1b = LAN 1 is disabled.

6.3.5.7 PCle LAN Power Consumption — Offset Ox06

Bits Name Default Description Reserved

The value in this field is reflected in the PCI Power Management
Data register of the LAN functions for DO power consumption and
15:8 LAN DO Power dissipation (Data_Select = 0 or 4).

Power is defined in 100 mW units. The power includes also the
external logic required for the LAN function.

The value in this field is reflected in the PCI Power Management
Function 0 Common Data register of function 0 when the Data_Select field is set to 8
7:5 (common function). The MSBs in the Data register that reflects the
Power . N >
power values are padded with zeros. When one port is used this
field should be set to 0.

The value in this field is reflected in the PCI Power Management
Data register of the LAN functions for D3 power consumption and
dissipation (Data_Select = 3 or 7).

Power is defined in 100 mW units. The power includes also the
external logic required for the LAN function. The MSBs in the Data
register that reflects the power values are padded with zeros.

4:0 LAN D3 Power

6.3.5.8 PCle Control 3 — Offset Ox07

Bits Name Default Description Reserved

15:13 Reserved 000b Reserved

1/0 Support (affects 1/0 BAR request). When set to 1b, 1/0 is
12 10_Sup 1b supported. When cleared the 1/0 Access Enable bit in the Command
register (as part of the Mandatory PCI Configuration) is RO at Ob.

11 Reserved Ob Reserved

Indicates a Flash size of 64 KB * 2 ~Flash Size_The Flash size impacts
10:8 Flash Size 010b the requested memory space for the Flash and expansion ROM
BARs in PCle configuration space.

7:2 Reserved 0x0 Reserved

193

"] ®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

Bits Name Default Description Reserved

When set to 1b, indicates that the function is to load its PCle sub-
1 Load Subsystem IDs 1b system ID and sub-system vendor ID from the EEPROM (offset 0x8
and 0x9 in this section).

When set to 1b, indicates that the function is to load its PCI device
ID from the EEPROM (offset OXOA in this section for dummy device
ID and offset 2 in PCle configuration space 0/1 section for active
functions).

0 Load Device ID 1b

6.3.5.9 PCle Sub-System ID — Offset Ox08

If the load sub-system IDs in offset Ox7 of this section is set, this word is read in to initialize the sub-
system ID. The default value is 0xO.

Bits Name Default Description Reserved

15:0 Sub System ID 0x0

6.3.5.10 PCle Sub-System Vendor ID — Offset Ox09

If the load sub-system IDs in offset Ox7 of this section is set, this word is read in to initialize the sub-
system vendor ID. The default value is 0x8086.

Bits Name Default Description Reserved

15:0 Sub System Vendor 0x8086

6.3.5.11 PCle Dummy Device ID — Offset Ox0A

If the Load Device ID in offset Ox7 of this section is set, this word is read in to initialize the device ID of
the dummy device in this function (if enabled). The default value is OXFOC4.

Bits Name Default Description Reserved

15:0 Sub Device_ID 0x10A6

6.3.5.12 PCle Device Revision ID — Offset Ox0B

Bits Name Default Description Reserved

15:8 Reserved 0x0 Set to 0x0

Device Rev ID. The actual device revision ID is the EEPROM value
7:0 DEVREVID Ox1 XORed with the hardware value (0x0 for the 82599 A-O and 0x1 for
the 82599 B-0).

194

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l

6.3.5.13

10V Control Word 1 — Offset Ox0C

This word controls the behavior of 10V functionality.

ntel.

Bits Name Default Description Reserved
15:11 Reserved 0x0 Reserved
. Defines the value of MaxVFs exposed in the 10V structure. Valid
10:5 Max VFs 0x63 values are 0-62. The value exposed, is the value of this field + 1.
4:3 MSI-X table ox2 Defines the size of the MSI-X table (number of requested MSI-X
vectors) — valid values are 0-2.
. . Ob = VF BARs advertise 32 bit size.
2 64-Bit Advertisement | 1b 1b = VF BARs advertise 64 bit size.
Ob = 10V memory BARS (0 and 3) are declared as non-
1 Prefetchable Ob prefetchable.
1b = IOV memory BARS (0 and 3) are declared as prefetchable.
Ob = 10V and ARI capability structures are not exposed as part of
o 10V Enabled 1b the capabilities link list. B
1b = IOV and ARI capability structures are exposed as part of the
capabilities link list.
6.3.5.14 10V Control Word 2 — Offset Ox0OD
This word defines the device ID for virtual functions.
Bits Name Default Description Reserved
15:0 VDev ID 0x10ED Virtual function device ID.
6.3.5.15 Serial Number Ethernet MAC Address — Offset Ox11
Bits Name Default Description Reserved
15:8 Serial Number Ethernet Part of the Ethernet MAC address used to generate the PCle serial
) MAC Address 0, Byte 1 number. See Section 9.4.2.
7:0 Serial Number Ethernet Part of the Ethernet MAC address used to generate the PCle serial
: MAC Address 0, Byte O number. See Section 9.4.2.
6.3.5.16 Serial Number Ethernet MAC Address — Offset Ox12
Bits Name Default Description Reserved
15:8 Serial Number Ethernet Part of the Ethernet MAC address used to generate the PCle serial
) MAC Address O, Byte 3 number. See Section 9.4.2.
7:0 Serial Number Ethernet Part of the Ethernet MAC address used to generate the PCle serial
. MAC Address 0, Byte 2 number. See Section 9.4.2.

195

[®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.3.5.17 Serial Number Ethernet MAC Address — Offset Ox13

Bits Name Default Description Reserved
15:8 Serial Number Ethernet Part of the Ethernet MAC address used to generate the PCle serial
: MAC Address 0, Byte 5 number. See Section 9.4.2
7:0 Serial Number Ethernet Part of the Ethernet MAC address used to generate the PCle serial
) MAC Address 0, Byte 4 number. See Section 9.4.2.

6.3.5.18 PCle L1 Exit latencies — Offset Ox14

Bits Name Default Description Reserved

15 Reserved Ob Reserved

Loaded to the Endpoint L1 Acceptable Latency field in the Device
14:12 L1_Act_Acc_Latency 110b Capabilities register as part of the PCle Configuration registers at
power up.

L1 exit latency G2S. Loaded to the Link Capabilities register via the
11:9 L1 G2 Sep exit latency 101b L1 Exit Latency field in PCle V2.0 (5GT/s) systems that have a
separate clock setting.

L1 exit latency G2C. Loaded to the Link Capabilities register via the
8:6 L1 G2 Com exit latency |011b L1 Exit Latency field in PCle V2.0 (5GT/s) systems that have a
common clock setting.

L1 exit latency G1S. Loaded to the Link Capabilities register via the
5:3 L1 G1 Sep exit latency 100b L1 Exit Latency field in PCle v2.0 (2.5GT/s) systems that have a
separate clock setting.

L1 exit latency G1C. Loaded to the Link Capabilities register via the
2:0 L1 G1 Com exit latency |010b L1 Exit Latency field in PCle v2.0 (2.5GT/s) systems that have a
common clock setting.

6.3.5.19 Reserved — Offset Ox15

Bits Name Default Description Reserved
15:2 Reserved Oox1 Reserved
1 MSIX Memory 1b MSIX memory ECC enable.
0 CDQ Memory 1b CDQ memory ECC enable.
6.3.6 PCle Configuration Space 0/1 Modules

Word 0x7 points to the PCle configuration space defaults of function O while word 0x8 points to function
1 defaults. Both sections are loaded after PCle reset and D3 to DO transition of the specific function.
The structures of both functions are identical as listed in the following table.

Offset Description
0x00 Section LengthSection 6.3.6.1.
Ox1 Control WordSection 6.3.6.2
0x2 Device IDSection 6.3.6.3
0x3 CDQM Memory Base 0/1 LowSection 6.3.6.4
0x4 CDQM Memory Base 0/1 HighSection 6.3.6.5
0x5 ReservedSection

196

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller

6.3.6.1

Section Length — Offset O0x00

intel.

The section length word contains the length of the section in words. Note that section length does not
include a count for the section length word.

Bits Name Default Description Reserved
15:0 Section Length 0x0 Section length in words.
6.3.6.2 Control Word — Offset Ox01
Bits Name Default Description Reserved
15:14 Reserved 00b Reserved
0b for Controls the value advertised in the Interrupt Pin field of the PCI
LANO configuration header for this device/function. Values of 00b, 01b,
13:12 Interrupt Pin " 10b and 11b correspond to INTA#, INTB#, INTC# and INTD#
1b for respectively. When one port is used this field must be set to 00b
LAN1 (using INTA#) to comply with PCI spec requirements.
When set, the class code of this port is set to 0x010000 (SCSI).
11 Storage Class 0b When cleared, the class code of this port is set to 0x020000 (LAN).
MSI per-vector masking setting. This bit is loaded to the masking
10 MSI Mask 1b bit (bit 8) in the Message Control of the MSI Configuration
Capability structure.
9 Reserved 1b Reserved
8 LAN Boot Disable 1b A va_lue of_lb disables the expansion ROM BAR in the PCI
configuration space.
7 Reserved Ob Reserved
This field specifies the number of entries in the MSI-X tables for
this function. MSI_X_N is equal to the number of entries minus
6:0 MSI_X_N Ox3F one. For example, a return value of Ox7 means eight vectors are
available. This field is loaded into the PCle MSI-X capabilities
structure. The MSI_X_N must not exceed Ox3F (64 MSI-X vectors).
6.3.6.3 Device ID — Offset Ox02 Device 1D
Bits Name Default Description Reserved
If the Load Device ID in offset 0x7 of the PCle General
15:0 Device_ID 0x10D8 configuration section is set, this word is loaded to the device ID of
the LAN function.
6.3.6.4 CDQM Memory Base 0/1 Low — Offset Ox03 [Reserved]
6.3.6.5 CDQM Memory Base 0/1 High — Offset O0x04 [Reserved]
6.3.6.6 EEPROM PCle Configuration Space 0/1 - Offset Ox05 [Reserved]
Bits Name Default Description Reserved
15:0 Reserved 0x0 Reserved

197

Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

intel.

6.3.7 LAN Core 0/1 Modules

Word 0x9 points to the core configuration defaults of LAN port O while word OxA points to LAN port 1
defaults. The section of each function is loaded at the de-assertion of its core master reset: PCle reset,
D3 to DO transition, software reset and link reset. The structures of both functions are identical as listed
in the following table.

Offset High Byte[15:8] Low Byte[7:0] Section

0x0 Section Length - Section 6.3.7.1.

Ox1 Ethernet MAC Address Byte 2 Ethernet MAC Address Byte 1 | Section 6.3.7.2.1

0x2 Ethernet MAC Address Byte 4 Ethernet MAC Address Byte 3 | Section 6.3.7.2.2

0x3 Ethernet MAC Address Byte 6 Ethernet MAC Address Byte 5 | Section 6.3.7.2.3

0x4 LED 1 configuration LED O Configuration Section 6.3.7.3.1

0x5 LED 3 Configuration LED 2 Configuration Section 6.3.7.3.2

0x6 SDP Control Section 6.3.7.4

ox7 Filter Control Section 6.3.7.5

6.3.7.1 Section Length — Offset 0x00

The section length word contains the length of the section in words. Note that section length does not
include a count for the section length word.

Bits Name Default Description Reserved
15:0 Section Length 0x0 Section length in words.
6.3.7.2 Ethernet MAC Address Registers

The Ethernet Individual Address (1A) is a 6-byte field that must be unique for each NIC or LOM and
must also be unique for each copy of the EEPROM image. The first three bytes are vendor specific. For
example, the IA is equal to [00 AA 00] or [00 A0 C9] for Intel products. The value of this field is loaded
into the Receive Address register O (RALO/RAHO).

For the purpose of this datasheet, the numbering convention is as follows:

Vendor 1 2 3 4 5 6
Intel original 00 AA 00 Variable Variable Variable
Intel new 00 AO C9 Variable Variable Variable

198

u ®
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l nt E l

6.3.7.2.1 Ethernet MAC Address Registerl — Offset Ox01

Bits Name Default Description Reserved
15:8 Eth_Addr_Byte2 0x0 Ethernet MAC address byte 2.
7:0 Eth_Addr_Bytel 0x0 Ethernet MAC address byte 1.

6.3.7.2.2 Ethernet MAC Address Register2 — Offset Ox02

Bits Name Default Description Reserved
15:8 Eth_Addr_Byte4 0x0 Ethernet MAC address byte 4.
7:0 Eth_Addr_Byte3 0x0 Ethernet MAC address byte 3.

6.3.7.2.3 Ethernet MAC Address Register3 — Offset Ox03

Bits Name Default Description Reserved
15:8 Eth_Addr_Byte6 0x0 Ethernet MAC address byte 6.
7:0 Eth_Addr_Byte5 0x0 Ethernet MAC address byte 5.

6.3.7.3 LED Configuration

The LEDCTL register defaults are loaded from two words as listed in the following tables.

6.3.7.3.1 LED Control Lower Word — Offset Ox04

Bits Name Default Description Resenved
15:8 LEDCTL1 ox0 LED 1 control.
7:0 LEDCTLO 0x0 LED O control.
6.3.7.3.2 LED control Upper Word — Offset Ox05

Bits Name Default Description Reserved
15:8 LEDCTL3 0x0 LED 3 control.
7:0 LEDCTL2 0x0 LED 2 control.
Note: The content of the EEPROM words is similar to the register content.

199

"] ®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.3.7.4 SDP Control — Offset Ox06

Bits Name Default Description Reserved

Defines the SDP1 operating mode that is mapped to
ESDP.SDP1_NATIVE loaded at power up:

15 SDP1_NATIVE 0b Ob= Operates as generic software controlled 10.
1b = Native mode operation (hardware function).

14:12 Reserved 000b Set to 000b.

11 SDPDIR[3] ob SDP3 Pin. Initial direction is mapped to ESDP.SDP3_IODIR loaded
at power up.

10 SDPDIR[2] ob SDP2 Pin. Initial direction is mapped to ESDP.SDP2_IODIR loaded
at power up.

9 SDPDIR[1] ob SDP1 Pin. Initial direction is mapped to ESDP.SDP1_IODIR loaded
at power up.

8 SDPDIR[O] ob SDPO Pin. Initial direction is mapped to ESDP.SDPO_IODIR loaded
at power up.

7:4 Reserved 0x0 Reserved

3 SDPVAL[3] ob SDP3 Pin. Initial output value is mapped to ESDP.SDP3_DATA
loaded at power up.

> SDPVAL[2] ob SDP2 Pin.Initial output value is mapped to ESDP.SDP2_DATA loaded
at power up.

1 SDPVAL[1] ob SDP1 Pin.Initial output value is mapped to ESDP.SDP1_DATA loaded
at power up.

0 SDPVAL[O] ob SDPO Pin.Initial output value is mapped to ESDP.SDPO_DATA loaded
at power up.

6.3.7.5 Filter Control — Offset Ox07

Bits Name Default Description Reserved
15:0 Reserved Oox1 Reserved
6.3.8 MAC 0/1 Modules

Word OxB points to the LAN MAC configuration defaults of function 0 while word OxC points to function
1 defaults. Both sections are loaded at the de-assertion of their core master reset. The structures of
both sections are identical; as listed in the following table.

Offset Content Section
Section Length = 0x5
Ox1 Link Mode Configuration Section 6.3.8.2
0x2 Swap Configuration Section 6.3.8.3
0x3 Swizzle and Polarity Configuration Section 6.3.8.4
Ox4 Auto Negotiation Default Bits Section 6.3.8.5
0x5 AUTOC2 Upper Half Section 6.3.8.6
0x6 SGMIIC Lower Half Section 6.3.8.7
ox7 KR-PCS configurations Section 6.3.8.8

200

]
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l n tel

6.3.8.1 Section Length — Offset O0x00

The section length word contains the length of the section in words. Note that the section length does
not include a count for the section length word.

Bits Name Default Description REBERED
15:0 Section_length 0x0 Section length in words.
6.3.8.2 Link Mode Configuration — Offset Ox01

Bits Name Default Description Reserved

000b = 1 Gb/s link (no auto-negotiation).

001b = 10 Gb/s parallel link (no auto-negotiation).

010b = 1 Gb/s link with clause 37 auto-negotiation enable.
011b = 10 Gb/s serial link (no auto-negotiation). Supports
SFI without backplane auto-negotiation.

) 100b = KX/KX4/KR backplane auto-negotiation enable.
15:13 Link Mode Select 100b 1 Gb/s (Clause 37) auto-negotiation disable.

101b = SGMII 1G/100M link.

110b = KX/KX4/KR backplane auto-negotiation enable.

1 Gb/s (Clause 37) auto-negotiation enable.

111b = KX/KX4/KR backplane auto-negotiation enable.
SGMII 1 Gb/s or 100 Mb/s (in KX) enable. These bits are
mapped to AUTOC.LMS

Restarts the KX/KX4/KR backplane auto-negotiation

12 Restart AN Ob process (self-clearing bit). Mapped to AUTOC.Restart_Auto
Negotiation.

11 RATD Ob Restarts backplane auto-negotiation on a transition to Dx.
Mapped to AUTOC.RATD and applied to AUTOC.RATD.
Disables 10 Gb/s (KX4/KR) on Dx (Dr/D3) without main

10 D1OGMP 0b power. Mapped to AUTOC.D10GMP.

9 1G PMA_PMD 1b PMA/PMD used for 1 Gb/s. Mapped to

AUTOC.1G_PMA_PMD.

PMA/PMD used for 10 Gb/s over four differential pairs for
8:7 10G PMA_PMD_ PARALLEL 0l1lb TX and RX each. Mapped to
AUTOC.10G_PMA_PMD_PARALLEL.

6:2 ANSF 00001b AN Selector Field (Debug mode). Mapped to AUTOC.ANSF

AN Ack2 field. This value is transmitted in the
Achnowledge?2 field of the Null Next Page that is

1 ANACK2 0b transmitted during next page handshake. Mapped to
AUTOC.ANACK2
0 Reserved Ob Reserved

201

] ®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.3.8.3 SWAP Configuration — Offset 0x02

Bits Name Default Description Reserved

Determines which core lane is mapped to MAC Rx lane 0.
00b = Core Rx lane 0 to MAC Rx lane 0.

01b = Core Rx lane 1 to MAC Rx lane 0.

10b = Core Rx lane 2 to MAC rx lane 0.

11b = Core Rx lane 3 to MAC Rx lane O.

Mapped to SERDESC.swap_rx_lane_0.

15:14 Swap_Rx_Lane_0 00b

Determines which core lane is mapped to MAC Rx lane 1.

13:12 Swap_Rx_Lane_1 01b Mapped to SERDESC.swap_rx_lane_1.

Determines which core lane is mapped to MAC Rx lane 2.

11:10 Swap_Rx_Lane_2 10b Mapped to SERDESC.swap_rx_lane_2.

Determines which core lane is mapped to MAC Rx lane 3.

9:8 Swap_Rx_lLane_3 11b Mapped to SERDESC.swap_rx_lane_3.

Determines the core destination tx lane for MAC Tx lane 0.
00b = MAC tx lane O to Core Tx lane O.

01b = MAC tx lane O to Core Tx lane 1.

10b = MAC tx lane O to Core Tx lane 2.

11b = MAC tx lane O to Core Tx lane 3.

Mapped to SERDESC.swap_tx_lane_O.

7:6 Swap_Tx_Lane_0 00b

Determines the core destination tx lane for MAC Tx lane 1.

5:4 Swap_Tx_Lane_1 01b Mapped to SERDESC.swap_tx_lane_1.

Determines the core destination tx lane for MAC Tx lane 2.

3:2 Swap_Tx_Lane_2 10b Mapped to SERDESC.swap_tx_lane_2.

Determines the core destination tx lane for MAC Tx lane 3.

1:0 Swap_Tx_Lane_3 11b Mapped to SERDESC.swap_tx_lane_3.

202

]
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l n tel

6.3.8.4 Swizzle and Polarity Configuration — Offset 3

Bits Name Default Description Reserved
Swizzle_Rx[0] — Swizzles the bits of MAC Rx lane 0.
Swizzle_Rx[1] — Swizzles the bits of MAC Rx lane 1.
15:12 Swizzle Rx 0x0 Sw!zzle_Rx[z] — Sw!zzles the b!ts of MAC Rx lane 2.
- Swizzle_Rx[3] — Swizzles the bits of MAC Rx lane 3.
Swizzles the bits if set to 1b.
Mapped to SERDESC.Swizzle_Rx_lanes.
Swizzle_Tx[0] — Swizzles the bits of MAC Tx lane O.
Swizzle_Tx[1] — Swizzles the bits of MAC Tx lane 1.
11-8 Swizzle Tx 0x0 Swizzle_Tx[2] — Swizzles the bits of MAC Tx lane 2.
’ - Swizzle_Tx[3] — Swizzles the bits of MAC Tx lane 3.
Swizzles the bits if set to 1b.
Mapped to SERDESC.Swizzle_Tx_lanes.
Polarity_Rx[0] — Changes the bit polarity of MAC Rx lane O
Polarity_Rx[1] — Changes the bit polarity of MAC Rx lane 1
7:4 Polarity_Rx 0x0 PoIarity_Rx[Z] — Changes the b?t polar?ty of MAC Rx lane 2
Polarity_Rx[3] — Changes the bit polarity of MAC Rx lane 3
Changes bit polarity if set to 1b.
Mapped to SERDESC.Rx_lanes_polarity.
Polarity_Tx[0] — Changes the bit polarity of MAC Tx lane 0.
Polarity_Tx[1] — Changes the bit polarity of MAC Tx lane 1.
3:0 Polarity_Tx 0x0 Polarfty_Tx[Z] — Changes the b?t polar?ty of MAC Tx lane 2.
Polarity_Tx[3] — Changes the bit polarity of MAC Tx lane 3.
Changes bit polarity if set to 1b.
Mapped to SERDESC.Tx_lanes_polarity.

6.3.8.5 Auto Negotiation Defaults — Offset 4

Bits Name Default Description Reserved

The value of these EEPROM settings are shown in bits AO:Al of the
Technology Ability field of the backplane auto-negotiation word
while A2 field is configured in the KR_support bit:

00b: A0 = 0 A1 = 0. KX not supported. KX4 not supported. Value is
15:14 KX Support 1b illegal if KR is also not supported (AUTOC.KR_support = 0b).

01b: A0 = 1 A1l = 0. KX supported. KX4 not supported.

10b: A0 = 0 A1 = 1. KX not supported. KX4 supported.

11b: AO = 1 A1 = 1. KX supported. KX4 supported.

Mapped to AUTOC.KX_support.

The value of these bits is loaded to bits D11:D10 of the link code

13:12 Pause Bits 0b word (pause data). Bit 12 is loaded to D11. Mapped to AUTOC.PB.

This bit is loaded to the RF bit in the backplane auto-negotiation

11 RF 0b word. Mapped to AUTOC.RF.

Configures the parallel detect counters.
00b = 1 ms.

Olb =2 ms.

10b = 5 ms.

11b = 8 ms.

Mapped to AUTOC.ANPDT.

10:9 AN Parallel Detect Timer | 0Ob

Enables less restricted functionality (allow 9/11 bit symbols).
Ob = Disables loose mode.

1b = Enables loose mode.

Mapped to AUTOC.ANRXLM.

8 AN RX Loose Mode Ob

203

intel.

Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

Bits Name Default Description Reserved
Enables the drift caused by PPM in the RX data.
- AN RX Drift Mode 1b Ob = Disables drift mode.
1b = Enables drift mode.
Mapped to AUTOC.ANRXDM.
Sets the threshold to determine that the alignment is stable. Sets
. how many stable symbols to find before declaring the AN_RX.
6:3 AN RX Align Threshold 0011b
10b symbol stable.
Mapped to AUTOC.ANRXAT.
FEC Ability. Configures the FO bit in the backplane auto-negotiation
base link code word. Should be set to 1b only if KR ability is set to
N 1b (AUTOC.KR = 1b).
2 FEC Ability 1b Ob = FEC not supported.
1b = FEC supported.
Mapped to AUTOC.FECA.
FEC requested. Configures the F1 bit in the backplane auto-
negotiation base link code word. Should be set to 1b only if KR
ability is set to 1b (AUTOC.KR = 1b).
1 FEC Requested Ob Ob = FEC not requested from link partner.
1b= FEC requested from link partner.
Mapped to AUTOC.FECR.
Configures the A2 bit of the Technology Ability Field in the
backplane auto-negotiation word while the A0:A1 field is configured
according to the KX_support field (bits 31:30):
0 KR Support 1b Ob= KR not supported. Value is illegal if KX and KX4 are also not
supported (AUTOC.KX_support = 00b).
1b = KR supported.
Mapped to AUTOC.KR_Support.
6.3.8.6 AUTOC2 Upper Half — Offset 5
Bits Name Default Description Reserved
Force FEC Enable. Enables FEC without dependency on the auto-
15 Force FEC Enable Ob negotiation resolution. Debug mode only. Mapped to
AUTOC2.FORCE_FEC.
. Disables the parallel detect part in the KX/KX4/KR backplane auto-
14 Parallel Detect Disable 0b negotiation process. Mapped to AUTOC2.PDD.
13 ANIGNRRXRF 1b AN Ignore Received RF Field. Mapped to SGMIIC.ANIGNRRXRF
12 Reserved Ob Reserved
11:8 Reserved 0x0 Reserved
7 Latch High 10G Aligned ob Override any de-skew alignment failures in the 10 Gb/s link (by
Indication latching high). Mapped to AUTOC2.LH1GAl.
6 Reserved Ob Reserved.
Auto Negotiationl Gb/s Timeout Enable. Mapped to PCS1GLCTL.AN
5 AN 1G TIMEOUT EN 1b 1G TIMEOUT EN
4 Reserved Ob Reserved
3 MAC DFT Override ob Override Internal Comma-Align Control. Mapped to MDFTC2.
Comma Align MACDOCA.
2 DDPT Ob Loqded to the Disable DME Pages Transmit bit in the AUTOC2
register.
1:0 10G PMA/PMD serial 00b PMA/PMD used for 10 Gb/s serial link. Mapped to
; operation AUTOC2.10G_PMA_PMD_Serial.

204

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller

intel.

6.3.8.7 SGMIIC Lower Half — Offset 6

Bits Name Default Description Reserved
15 ANSLNKTMR Ob AN SGMII Link-Timer. Mapped to SGMIIC.ANSLNKTMR.
14 ANSTRIG Ob AN SGMII Trigger. Mapped to SGMIIC.ANSTRIG.
13 ANSBYP Ob AN SGMII Bypass.Mapped to SGMIIC.ANSBYP.
12 ANSFLU100 Ob AN SGMII Force Link Up 100 Mb/s. Mapped to SGMIIC.ANSFLU100.
11:8 STXRASMP 0x0 Shift TX Rate-Adapt Sampling. Mapped to SGMIIC.STXRASMP.

) Shift RX Rate-Adapt Replicated Data Sampling. Mapped to
7:4 SRXRARSMP 0x0 SGMIIC.SRXRARSMP.

3 Shift RX Rate-Adapt Single Data Sampling. Mapped to
3:0 SRXRASSMP 0x0 SGMIIC.SRXRASSMP.
6.3.8.8 KR-PCS configurations — Offset 7

Bits Name Default Description Reserved
15 IE3_MODE 1b IEEE sync mode (debug mode). Mapped to KRPCSFC.IE3_MODE.
14:11 Reserved 0x0 Reserved

Bypass FEC signal detect (Debug mode). Mapped to KRPCSFC.

10 BYP_FEC_SIG_DET ob BYP FEC_SIG DET.
9:0 Reserved 0x0 Reserved
6.3.9 CSR 0/1 Auto Configuration Modules

Word OxD points to the CSR auto configuration of function O while word OxE points to function 1. Both
sections are loaded at the de-assertion of their core master reset.

The structures of both sections are identical; the structure is listed in the following table.

Offset High Byte[15:8] Low Byte[7:0] Section

0x0 Section Length = 3*n

Ox1 CSR Address Section 6.3.9.2
0x2 Data LSB Section 6.3.9.3
0x3 Data MSB Section 6.3.9.4
3*n —2 CSR Address Section 6.3.9.2
3*n—1 Data LSB Section 6.3.9.3
3*n Data MSB Section 6.3.9.4

Note: The 82599 blocks any write to the Analog Configuration registers through these sections.

205

] ®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.3.9.1 Section Length — Offset Ox0

The section length word contains the length of the section in words. Note that section length does not
include a count for the section length word.

Bits Name Default Description Reserved

15:0 Section_length 0x0 Section length in words.

6.3.9.2 CSR Address — Offset Ox1, Ox4, OX7...

Bits Name Default Description Reserved

15:0 CSR_ADDR 0x0 CSR address.

6.3.9.3 CSR Data LSB — Offset 0x2, Ox5, Ox8...

Bits Name Default Description Reserved

15:0 CSR_Data_LSB 0x0 CSR data LSB.

6.3.9.4 CSR Data MSB — Offset 0x3, 0x6, Ox9...

Bits Name Default Description Reserved
15:0 CSR_Data_MSB 0x0 CSR data MSB.
6.4 Firmware Module

The following table lists the EEPROM global offsets used by the 82599 firmware.

\S;vlgrbdalol}/lfglg Description
0x0 Test Configuration Pointer - Section 6.4.1
Oox1 Loader Patch Pointer - Section 6.4.2
0x2 No Manageability Patch Pointer (Patch structure identical to the Loader Patch) - Section 6.4.2
0x3 Common Firmware Parameters - Section 6.4.2
ox4 Pass Through Patch Configuration Pointer (Patch structure identical to the Loader Patch) - Section 6.4.2
0x5 Pass Through LAN O Configuration Pointer - Section 6.4.3
0x6 SideBand Configuration Pointer - Section 6.4.4
ox7 Flexible TCO Filter Configuration Pointer - Section 6.4.5
0x8 Pass Through LAN 1 Configuration Pointer - Section 6.4.3
0x9 NC-SI Microcode Download Pointer - Section 6.4.6
OxA NC-SI Configuration Pointer - Section 6.4.7

206

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller

6.4.1 Test Configuration Module
6.4.1.1 Section Header — Offset 0x0
Bits Name Default Description Reserved
15:8 Block CRC
7:0 Block Length Block length in words
6.4.1.2 SMBus Address — Offset Ox1
Bits Name Default Description Reserved
15:9 Reserved
8 SMBus Interface
Number
7:0 SMBus Slave Address
6.4.1.3 Loopback Test Configuration — Offset Ox2
Bits Name Default Description Reserved
15:2 Reserved
1 Loopback Test Use SDP
Output
o] Loopback Test Enable
6.4.2 Common Firmware Parameters — (Global MNG Offset 0x3)
Bits Name Default Description Reserved
15 Reserved Ob Reserved, should be set to Ob.
14 Redirection Sideband Ob = SMBus.
Interface 1b = NC-SI.
13:11 Reserved 000b Reserved
0x0 = None.
Ox1 = Reserved.
10:8 Manageability Mode 0x2 = Pass Through (PT) mode.
0x3 = Reserved.
0x4:0x7 = Reserved.
7 Portl Manageability 0 = Not capable
Capable 1 = Bits 3 is applicable to port 1.
6 Port0 Manageability 0 = Not capable
Capable 1 = Bits 3 is applicable to port O.
5 LAN1 Force TCO Reset ob Ob = Enable Force TCO reset on LAN1.
Disable 1b = Disable Force TCO reset on LAN1.
4 LANO Force TCO Reset ob Ob = Enable Force TCO reset on LANO.
Disable 1b = Disable Force TCO reset on LANO.
Ob = Disable.
3 Pass Through Capable 1b = Enable.
2:0 Reserved 000b Reserved

207

"] ®
(l n tel > Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.4.3 Pass Through LAN 0/1 Configuration Modules
The following sections describe pointers and structures dedicated to pass-through mode for LAN O and

LAN 1. LAN O structure is pointed by the Firmware Module pointer at offset 0x5. LAN 1 structure is
pointed by the Firmware Module pointer at offset 0x8.

6.4.3.1 Section Header — Offset Ox0

Bits Name Default Description Reserved
15:8 Block CRC8
7:0 Block Length Block length in words.

6.4.3.2 LAN O/1 IPv4 Address O (LSB) MIPAFO — Offset Ox01

Bits Name Default Description Reserved
15:8 LAN 0/1 IPv4 Address O, Byte 1.
7:0 LAN 0/1 IPv4 Address O, Byte 0.

6.4.3.3 LAN 071 IPv4 Address 0 (MSB) (MIPAFO) — Offset 0x02

Bits Name Default Description Reserved
15:8 LAN 0/1 IPv4 Address O, Byte 3.
7:0 LAN 0/1 IPv4 Address O, Byte 2.

6.4.3.4 LAN O/1 IPv4 Address 1 MIPAF1 — Offset 0x03:0x04

Same structure as LANO IPv4 Address O.

6.4.3.5 LAN O/1 IPv4 Address 2 MIPAF2 — Offset 0x05:0x06

Same structure as LANO IPv4 Address 0.

6.4.3.6 LAN O/1 IPv4 Address 3 MIPAF3 — Offset Ox07:0x08

Same structure as LANO IPv4 Address 0.

6.4.3.7 LAN O/1 Ethernet MAC Address O (LSB) MMALO — Offset Ox09

This word is loaded by Firmware to the 16 LS bits of the MMAL[O] register.

Bits Name Default Description Reserved
15:8 LAN 0/1 Ethernet MAC Address O, Byte 1.
7:0 LAN 0/1 Ethernet MAC Address 0O, Byte O.

6.4.3.8 LAN O/1 Ethernet MAC Address O (Mid) MMALO — Offset OxOA

This word is loaded by Firmware to the 16 MS bits of the MMAL[O] register.

208

u ®
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l nt E l

Bits Name Default Description Reserved
15:8 LAN 0/1 Ethernet MAC Address O, Byte 3.
7:0 LAN 0/1 Ethernet MAC Address 0O, Byte 2.

6.4.3.9 LAN O/1 Ethernet MAC Address O (MSB) MMAHO — Offset Ox0OB

This word is loaded by Firmware to the MMAH[O] register.

Bits Name Default Description Reserved
15:8 LAN 0/1 Ethernet MAC Address 0O, Byte 5.
7:0 LAN 0/1 Ethernet MAC Address O, Byte 4.

6.4.3.10 LAN O/1 Ethernet MAC Address 1 MMAL/H1 — Offset Ox0OC:0x0E

Same structure as LANO Ethernet MAC Address 0. Loaded to MMAL[1], MMAH[1].

6.4.3.11 LAN O/1 Ethernet MAC Address 2 MMAL/H2 — Offset OxOF:0x11

Same structure as LANO Ethernet MAC Address 0. Loaded to MMAL[2], MMAH[2].

6.4.3.12 LAN O/1 Ethernet MAC Address 3 MMAL/H3 — Offset 0x12:0x14

Same structure as LANO Ethernet MAC Address 0. Loaded to MMAL[3], MMAH[3].

6.4.3.13 LAN O/1 UDP Flexible Filter Ports 0:15 (MFUTP Registers) - Offset

0x15:0x24
Offset Bits Description Reserved
0x15 15:0 LAN UDP Flexible Filter Value PortO.
0x16 15:0 LAN UDP Flexible Filter Value Port1.
0ox17 15:0 LAN UDP Flexible Filter Value Port2.
0x18 15:0 LAN UDP Flexible Filter Value Port3.
0x19 15:0 LAN UDP Flexible Filter Value Port4.
Ox1A 15:0 LAN UDP Flexible Filter Value Port5.
0x1B 15:0 LAN UDP Flexible Filter Value Port6.
0ox1C 15:0 LAN UDP Flexible Filter Value Port7.
0x1D 15:0 LAN UDP Flexible Filter Value Port8.
Ox1E 15:0 LAN UDP Flexible Filter Value Port9.
Ox1F 15:0 LAN UDP Flexible Filter Value Port10.
0x20 15:0 LAN UDP Flexible Filter Value Port11.
0x21 15:0 LAN UDP Flexible Filter Value Port12.
0x22 15:0 LAN UDP Flexible Filter Value Port13.
0x23 15:0 LAN UDP Flexible Filter Value Port14.
0x24 15:0 LAN UDP Flexible Filter Value Port15.

209

[®
l n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.4.3.14 LAN O/1 VLAN Filter 0 — 7 (MAVTV Registers) - Offset O0x25:0x2C

Offset Bits Description Reserved
0x25 15:12 Reserved
0x25 11:0 LAN 0/1 VLAN filter O value.
0x26 15:12 Reserved
0x26 11:0 LAN 0/1 VLAN filter 1 value.
0x27 15:12 Reserved
0ox27 11:0 LAN 0/1 VLAN filter 2 value.
0x28 15:12 Reserved
0x28 11:0 LAN 0/1 VLAN filter 3 value.
0x29 15:12 Reserved
0x29 11:0 LAN 0/1 VLAN filter 4 value.
Ox2A 15:12 Reserved
Ox2A 11:0 LAN 0/1 VLAN filter 5 value.
0x2B 15:12 Reserved
0x2B 11:0 LAN 0/1 VLAN filter 6 value.
0x2C 15:12 Reserved
0x2C 11:0 LAN 0/1 VLAN filter 7 value.

6.4.3.15 LAN O/1 Manageability Filters Valid (MFVAL LSB) — Offset Ox2D

Bits Name Default Description Reserved
. Indicates if the VLAN filter registers (MAVTV) contain valid VLAN
15:8 VLAN) "
tags. Bit 8 corresponds to filter O, etc.
7:4 Reserved
3:0 MAC Indicates if the MAC unicast filter registers (MMAH, MMAL) contain

valid Ethernet MAC Addresses. Bit O corresponds to filter O, etc.

6.4.3.16 LAN O/1 Manageability Filters Valid (MFVAL MSB) — Offset Ox2E

Bits Name Default Description Reserved

15:12 Reserved

Indicates if the IPv6 address filter registers (MIPAF) contain valid
IPv6 addresses. Bit 8 corresponds to address 0, etc. Bit 11 (filter 3)

11:8 IPvé applies only when IPv4 address filters are not enabled
(MANC.EN_IPv4_FILTER=0).
7:4 Reserved Reserved

Indicates if the IPv4 address filters (MIPAF) contain a valid IPv4
3:0 1Pv4 address. These bits apply only when IPv4 address filters are
enabled (MANC.EN_IPv4_FILTER=1).

210

u ®
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l nt E l

6.4.3.17 LAN O/1 MANC value LSB (LMANC LSB) — Offset Ox2F

Bits Name Default Description Reserved

15:0 Reserved 0x0 Reserved

6.4.3.18 LAN O0/1 MANC Value MSB (LMANC MSB) — Offset 0x30

Bits Name Default Description Reserved

15:9 Reserved Reserved.

Enable IPv4 Address

Filters This bit is loaded to the EN_IPv4_FILTER bit in the MANC register.

Enable Xsum Filtering to This bit is loaded to the EN_XSUM_FILTER bit in the MANC register.

MNG

6 VLAN MNG Filtering This bit is loaded to the Bypass VLAN bit in the MANC register.

5 Enable MNG Packets to This bit is loaded to the EN_MNG2HOST bit in the MANC register.
Host Memory

4:0 Reserved Reserved.

6.4.3.19 LAN O/1 Receive Enable 1 (LRXEN1) — Offset Ox31

Bits Name Default Description Reserved
15:8 Receive Enable Byte 12 BMC SMBus slave address.
7 Enable BMC Dedicated

MAC

6 Reserved Reserved.Must be set to 1b.
00b = SMBus alert.

5:4 Notification Method (1)32 z gisérlihrr;?e?::_ notify.
11b = Reserved.

3 Enable ARP Response

2 Enable Status Reporting

1 Enable Receive All

0 Enable Receive TCO

6.4.3.20 LAN O/1 Receive Enable 2 (LRXEN2) — Offset 0x32

Bits Name Default Description Reserved
15:8 Receive Enable byte 14 0x0 Alert value.
7:0 Receive Enable byte 13 0x0 Interface data.

6.4.3.21 LAN O/1 MANC2H Value (LMANC2H LSB) — Offset 0x33

Bits Name Default Description Reserved

15:8 Reserved

211

"] ®
l n tel > Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

Bits Name Default Description Reserved

When set, indicates that packets routed by the manageability filters
7:0 Host Enable to the manageability block are also sent to the host. Bit O
corresponds to decision rule 0O, etc.

6.4.3.22 LAN 0/1 MANC2H Value — LMANC2H MSB - Offset 0x34

Bits Name Default Description Reserved

15:0 Reserved 0x0 Reserved

6.4.3.23 Manageability Decision Filters — MDEFO (1) - Offset 0x35

Bits Name Default Description Reserved

15:0 MDEFO_L Loaded to 16 LS bits of MDEF[O] register.

6.4.3.24 Manageability Decision Filters — MDEFO (2) - Offset Ox36

Bits Name Default Description Reserved

15:0 MDEFO_M Loaded to 16 MS bits of MDEF[O] register.

6.4.3.25 Manageability Decision Filters — MDEFO (3) - Offset 0x37

Bits Name Default Description Reserved

15:0 MDEFEXTO_L Loaded to 16 LS bits of MDEF_EXT[O] register.

6.4.3.26 Manageability Decision Filters — MDEFO (4) - Offset 0x38

Bits Name Default Description Reserved

15:0 MDEFOEXT_M Loaded to 16 MS bits of MDEF_EXT[O] register.

6.4.3.27 Manageability Decision Filters — MDEF1-6 (1-4) - Offset 0x39:0x50

Same as words 0x035...0x38 for MDEF[1] and MDEF_EXT[1]...MDEF[6] and MDEF_EXT[6]

6.4.3.28 Manageability Ethertype Filter 0.1 — METFO (1) - Offset Ox51

Bits Name Default Description Reserved

15:0 METFO_L Loaded to 16 LS bits of METF[O] register.

6.4.3.29 Manageability Ethertype Filter 0.2 — METFO (2) - Offset 0x52

Bits Name Default Description Reserved

Loaded to 16 MS bits of METF[O] register (reserved bits in the METF
15:0 METFO_M registers should be set in the EEPROM to the register’s default
values).

212

[] ®
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l n tel ’

6.4.3.30 Manageability Ethertype Filter 1...3 (1 and 2) — METF1:3 - Offset
O0x53:0x58

Same as words 0x51 and 0x52 for METF[1]...METF[3] registers.

6.4.3.31 ARP Response IPv4 Address 0 (LSB) — Offset 0x59

Bits Name Default Description Reserved
15:0 ARP Response IPv4 Address 0, Byte 1 (firmware use).
7:0 ARP Response IPv4 Address 0, Byte O (firmware use).

6.4.3.32 ARP Response IPv4 Address O (MSB) — Offset OxX5A

Bits Name Default Description Reserved
15:8 ARP Response IPv4 Address 0, Byte 3 (firmware use).
7:0 ARP Response IPv4 Address 0, Byte 2 (firmware use).

6.4.3.33 LAN O/1 IPv6 Address O (n=0...7) (MIPAF.IPV6ADDRO0O) — Offset

Ox5B:0x62
Bits Name Default Description Reserved
Loaded to MIPAF registers IPV6ADDRO: Dword offset ‘n’/2 to the
15:0 lower 16 bits for even ‘n’ and upper 16 bits for odd ‘n’. For ‘n’ =
0...7.

6.4.3.34 LAN O/1 IPv6 Address 1 (MIPAF.IPV6ADDR1) — Offset Ox63:0x6A

Same structure as LAN 0/1 IPv6 Address O.

6.4.3.35 LAN O/1 IPv6 Address 2 (MIPAF) — Offset Ox6B-0x72

Same structure as LAN 0/1 IPv6 Address O.

6.4.4 Sideband Configuration Module

This module is pointed to by global offset 0x06 of the manageability control table.

6.4.4.1 Section Header — Offset Ox0

Bits Name Default Description Reserved
15:8 Block CRC8 0x0
7:0 Block Length 0x0 Section length in words.
6.4.4.2 SMBus Maximum Fragment Size — Offset Ox01

Bits Name Default Description Reserved
15:0 Max Fragment Size 0x0 SMBus Maximum Fragment Size (bytes)

213

intel.

6.4.4.3 SMBus Notification Timeout and Flags — Offset 0x02

Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

Bits Name Default Description Reserved
158 | Simeout (msy
00b = Standard SMBus connection.
01lb = Reserved.
7:6 SMBus Connection Speed 10b = Reserved.
11b = Reserved.
5 SMBus Block Read Ob = Block read command is OxCO.
Command 1b = Block read command is 0xDO.
4 SMBus Addressing Mode (1)2 : ;T::Z;:ir:;;?g:_e'
3 Reserved Reserved
> Disab_le SMBus ARP
Functionality
1 SMBus ARP PEC
0 Reserved Reserved
6.4.4.4 SMBus Slave Addresses — Offset Ox03
Bits Name Default Description Reserved
15:9 SMBus 1 Slave Address Dual address mode only.
8 Reserved Reserved
7:1 SMBus 0 Slave Address
0 Reserved Reserved
6.4.4.5 Fail-Over Register (Low Word) — Offset Ox04
Bits Name Default Description Reserved
15:12 Gratuitous ARP Counter
11:10 Reserved Reserved
9 Enable Teaming Fail-
Over on DX
8 ggr(move Promiscuous on
7 Enable MAC Filtering
6 Enablg Repeated
Gratuitous ARP
5 Reserved Reserved
4 Enable Preferred Primary
3 Preferred Primary Port
2 Transmit Port
1:0 Reserved Reserved

214

u ®
Non-Volatile Memory Map — Intel® 82599 10 GbE Controller l nt E l

6.4.4.6 Fail-Over Register (High Word) — Offset 0x05

Bits Name Default Description Reserved

Gratuitous ARP

15:8 Transmission Interval
(seconds)
7:0 Link Down Fail-Over

Time

6.4.4.7 NC-SI Configuration Offset Ox06

Bits Name Default Description Reserved
15:11 Reserved Reserved.
10 Flow Control Ob Ob = Not supported.
9 NC-SI HW Arbitration Ob = Not supported.Must be set to Ob.
Enable 1b = Supported.
3 NC-SI HW-based Packet |, Ob = Disable.
Copy Enable 1b = Enable.
7:5 Package ID 000b
4:0 II_SN 0 Internal Channel 0x0

6.4.4.8 Reserved Words — Offset Ox07 - Ox0C

Reserved for future use.

6.4.5 Flexible TCO Filter Configuration Module

This module is pointed to by global offset 0x07 of the manageability control section.

6.4.5.1 Section Header — Offset Ox0

Bits Name Default Description Reserved
15:8 Block CRC8 0x0
7:0 Block Length 0x0 Section length in words.

6.4.5.2 Flexible Filter Length and Control — Offset Ox01

Bits Name Default Description Reserved
15:8 Ekl)?;:)sl;z Filter Length
75 Reserved Reserved
4 Last Filter
3:2 Filter Index (0-3)
1 Apply Filter to LAN 1
[0] Apply Filter to LAN O

215

"] ®
I n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.4.5.3 Flexible Filter Enable Mask — Offset Ox02 - Ox09

Bits Name Default Description Reserved

Flexible Filter Enable

15:0 Mask

6.4.5.4 Flexible Filter Data — Offset OXOA - Block Length

Bits Name Default Description Reserved
15:0 Flexible Filter Data
Note: This section loads all of the flexible filters, The control + mask + filter data are repeatable as

the number of filters. Section length in offset O is for all filters.

6.4.6 NC-SI Microcode Download Module

This module is pointed to by global offset 0x09 of the manageability control table.

6.4.6.1 Patch Data Size — Offset Ox0

6.4.6.2 Rx and Tx Code Size — Offset Ox1

Bits Name Default Description Reserved
15:8 Rx Code Length 0x0 Rx Code length in Dwords.
7:0 Tx Code Length 0x0 Tx Code length in Dwords.
6.4.6.3 Download Data — Offset Ox2 - Data Size

Bits Name Default Description Reserved
15:8 Download Data 0x0 Download data.
6.4.7 NC-SI Configuration Module

This module is pointed to by global offset OxOA of the manageability control table.

6.4.7.1 Section Header — Offset Ox0

Bits Name Default Description Reserved
15:8 Block CRC8 0x0
7:0 Block Length 0x0 Section length in words.

6.4.7.2 Rx Mode Controll (RR_CTRL[15:0]) — Offset Ox1

Bits Name Default Description Reserved

15:8 Reserved Set to OxO.

216

Non-Volatile Memory Map — Intel® 82599 10 GbE Controller

intel

Bits Name Default Description Reserved
7:4 Reserved Reserved
When set, the NC-SI MAC speed is 100 Mb/s. When reset, NC-SI
s NC-SI Speed MAC speed is 10 Mb/s.
> Receive Without Leading If set, packets without leading zeros (J/K/ symbols) between TXEN
Zeros assertion and TXD the first preamble byte can be received.
Should be set when the Rx path is stuck because of an overflow
1 Clear Rx Error .
condition.
When set, enables NC-SI Tx-to-Rx loop. All data that is transmitted
o] NC-SI Loopback Enable from NC-SI is returned to it. No data is actually transmitted from
NC-SI.
6.4.7.3 Rx Mode Control2 (RR_CTRL[31:16]) — Offset Ox2
Bits Name Default Description Reserved
15:0 Reserved 0x0
6.4.7.4 Tx Mode Controll (RT_CTRL[15:0]) — Offset 0x3
Bits Name Default Description Reserved
15:3 Reserved Set to OxO.
g . When set, sends leading zeros (J/K/ symbols) from CRS_DV
2 ;Larrgssmlt With Leading assertion to the start of preamble (PHY mode). When de-asserted,
does not send leading zeros (MAC mode).
1 Clear Tx Error Shou_lc_i be set when Tx path is stuck because of an underflow
condition. Cleared by hardware when released.
0 Enable Tx Pads When set, the NC-SI TX pads are driving; otherwise, they are
isolated.
6.4.7.5 Tx Mode Control2 (RT_CTRL[31:16]) — Offset Ox4
Bits Name Default Description Reserved
15:0 Reserved 0x0 Set to OxO.
6.4.7.6 MAC Tx Control Regl (TxCntrlRegl (15:0]) — Offset Ox5
Bits Name Default Description Reserved
15:7 Reserved 0x0 Set to OxO.
6 NC-SI enable Enable the MAC internal NC-SI mode of operation (disables external
= NC-SI gasket).
Two_part_deferral When set, performs the optional two part deferral.
4 Append_fcs When set, computes and appends the FCS on Tx frames.
3 Pad_enable Pad the TX frames, which are less than the minimum frame size.
2:1 Reserved Reserved
Tx Channel Enable.
This bit can be used to enable the Tx path of the MAC. This bit is for
(0] Tx_ch_en T
- = debug only and the recommended way to enable the Tx path is via
the RT_UCTL_CTRL.TX_enable bit.

217

"] ®
I n tel Intel® 82599 10 GbE Controller — Non-Volatile Memory Map

6.4.7.7 MAC Tx Control Reg2 (TxCntrlRegl (31:16]) — Offset Ox6

Bits Name Default Description Reserved

15:0 Reserved Reserved.Should be set to 0x0.

6.4.7.8 NC-SI Settings — Offset Ox7

Bits Name Default Description Reserved

15:9 Reserved 0x0 Set to 0xO0.

Configuration of the NC-SI out slew-rate control.
00b = Slowest

8:7 RMM Out Slew Rate 01b 01b = Slow

10b= Fast

11b= Fastest

Configuration of the NC-SI out buffer strength.
000001b= 2 mA

000011b =4 mA

6:1 RMM Out Buffer Strength | 011111b | 000111b = 6 mA

001111b = 8 mA

011111b =10 mA

111111b = 12 mA

0 Reserved Ob Set to Ob.

218

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.0 Inline Functions

7.1 Receive Functionality

Packet reception consists of:

Recognizing the presence of a packet on the wire

Performing address filtering

DMA queue assignment

Storing the packet in the receive data FIFO

Transferring the data to assigned receive queues in host memory
Updating the state of a receive descriptor.

A received packet goes through three stages of filtering as depicted in Figure 7.1. The Figure describes
a switch-like structure that is used in virtualization mode to route packets between the network port
(top of drawing) and one of many virtual ports (bottom of drawing), where each virtual port might be
associated with a Virtual Machine (VM), an IOVM, a VMM, or the like. The three stages are:

1.

2.

First stage — Ensure that the packet should be received by the port. This is done by a set of L2
filters and is described in detail in Section 7.1.1.

Second stage — This stage is specific to virtualization environments and defines the virtual ports
(called pools in this document) that are the targets for the Rx packet. A packet can be associated
with any number of ports/pools and the selection process is described in Section 7.1.2.2.

Third stage — A receive packet that successfully passed the Rx filters is associated with one of
many receive descriptor queues as described in this section.

In addition to the filtering rules, a packet must also meet the following criteria:

1.

Normally, only good packets are received (packets with none of the following errors: Under Size
Error, Over Size Error, Packet Error, Length Error and CRC Error). However, if the store-bad-packet
bit is set (FCTRL.SBP), then bad packets that don't pass the filter function are stored in host
memory. Packet errors are indicated by error bits in the receive descriptor (RDESC.ERRORS). It is
possible to receive all packets, regardless of whether they are bad, by setting the promiscuous
enables bit and the store-bad-packet bit.

. Min Packet Size (Runt packets) — Rx packets, smaller than 21 bytes, cannot be posted to host

memory regardless of save bad frame setting.

Max Packet Size — Any Rx packet posted from the MAC unit to the DMA unit cannot exceed
15.5 KB.

Note: CRC errors before the SFD are ignored. All packets must have a valid SFD in order to be

recognized by the device (even bad packets).

219

"] ®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

g

Figure 7.1. Stages in Packet Filtering

7.1.1 Packet Filtering

The receive packet filtering role is to determine which of the incoming packets are allowed to pass to
the local machine and which of the incoming packets should be dropped since they are not targeted to
the local machine. Received packets that are targeted for the local machine can be destined to the host,
to a manageability controller, or to both. This section describes how host filtering is done, and the
interaction with management filtering.

As depicted in Figure 7.1, host filtering is done in three stages:

1. Packets are filtered by L2 filters (Ethernet MAC address, unicast/multicast/broadcast). See
Section 7.1.1.1.

2. Packets are filtered by VLAN if a VLAN tag is present. See Section 7.1.1.2.
3. Packets are filtered by the manageability filters (port, IP, flex, other). See Section 10.3.

A packet is not forwarded to the host if any of the following occurs:
= The packet does not pass L2 filters, as described in Section 7.1.1.1.
« The packet does not pass VLAN filtering, as described in Section 7.1.1.2.

= The packet passes manageability filtering and the manageability filters determine that the packet
should not pass to the host as well (see MANC2H register).

220

Inline Functions — Intel® 82599 10 GbE Controller

Reveive Packet

L2
Filter

~——F ail

Pass

VLAN
Filter

-——F ail

Pass

A

Fail

[wne
\ Filter

Pass
MANC2H -

Y A
Discard To MNG To Host
Packets

Rx Filtering Flow Chart

Figure 7.2.

7.1.1.1 L2 Filtering
A packet passes successfully through L2 Ethernet MAC address filtering if any of the following

conditions are met:
= Unicast packet filtering — Promiscuous unicast filtering is enabled (FCTRL.UPE=1b) or the packet

passes unicast MAC filters (host or manageability).
= Multicast packet filtering — Promiscuous multicast filtering is enabled by either the host or
manageability (FCTRL.MPE=1b or MANC.MCST_PASS_L2 =1b) or the packet matches one of the

multicast filters.

221

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

= Broadcast packet filtering to host — Promiscuous multicast filtering is enabled (FCTRL.MPE=1b) or
Broadcast Accept Mode is enabled (FCTRL.BAM = 1b).

= Broadcast packet filtering to manageability — Always enabled depending on the MDEF filters.

7.1.1.1.1 Unicast Filter

The Ethernet MAC address is checked against the 128 host unicast addresses, 4 KB hash-based unicast
address filters and four management unicast addresses (if enabled). The host unicast addresses are
controlled by the host interface (the manageability controller must not change them). The other four
addresses are dedicated to management functions and are only accessed by the manageability. The
destination address of an incoming packet must exactly match one of the pre-configured host address
filters or the manageability address filters. These addresses can be unicast or multicast. Those filters
are configured through Receive Address Low (RAL), Receive Address High (RAH), Manageability
Ethernet MAC Address Low (MMAL) and Manageability Ethernet MAC Address High (MMAH) registers. In
addition, there are 4 KB unicast hash filters used for host defined by the PFUTA registers. The unicast
hash filters are useful mainly for virtualization settings in those cases that more than 128 filters might
be required.

Promiscuous Unicast — Receive all unicasts. Promiscuous unicast mode can be set/cleared only through
the host interface (not by the manageability controller) and it is usually used when the LAN device is
used as a sniffer.

7.1.1.1.2 Multicast Filter (Partial)

The 12-bit portion of the incoming packet multicast address must exactly match the multicast filter
address in order to pass multicast filter. These bits (out of 48 bits of the destination address) can be
selected by the MO field in the MCSTCTRL register. The entries can be configured only by the host
interface and cannot be controlled by the manageability controller.

Promiscuous Multicast — Receive all multicasts. Promiscuous multicast mode can be set/cleared only
through the host interface (not by the manageability controller) and it is usually used when the LAN
device is used as a sniffer.

7.1.1.2 VLAN Filtering

The 82599 provides exact VLAN filtering for host traffic and manageability traffic, as follows:
« Host VLAN filters are programmed by the VFTA[n] registers.

< Manageability VLAN filters are activated by the MDEF filters. One of eight VLAN tags are
programmed by the MAVTV[7:0] registers while enabled by the MFVAL register.

< A VLAN match might relate to the CFI bit in the VLAN header. It is enabled for host filtering only by
the VLNCTRL.CFIEN while the expected value is defined by the VLNCTRL.CFI.

If double VLAN is enabled (see Section 7.4.5), filtering is done on the second (internal) VLAN tag. All
the filtering functions of the 82599 ignore the first (external) VLAN in this mode.

Receive packet that passes L2 layer filtering successfully is subjected to VLAN header filtering as
illustrated in Figure 7.3:
1. If the packet does not have a VLAN header, it passes to the next filtering stage.

2. Else, if the packet is broadcast and MANC.RCV_TCO_EN bit is set, then it passes to the next filtering
stage.

3. Else, if the packet passes a valid manageability VLAN filter and at least one VLAN_AND bit is set in
the MDEF[n] registers, then it passes to the next filtering stage.

222

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

4. Else, if host VLAN filters are not enabled (VLNCTRL.VFE = 0Ob), the packet is forwarded to the next
filtering stage.

5. Else, if the packet matches an enabled host VLAN filter and CFI checking (if enabled), the packet is
forwarded to the next filtering stage.

6. Else, if manageability VLAN filtering is not required (MANC.Bypass_VLAN is set), the packet is
forwarded to the next filtering stage as a potential candidate only for manageability.

7. Otherwise, the packet is dropped.

(MAC Address Filtering)

NO

Packet has
VLAN header

MANC.RCV_TCO_EN

YES Broadcast /

< packet and RCV
TCO enabled Active MDEF[n].2 at least in
one register & Match to a

NO valid MAVTV[n]

<—YES< MNG VLAN filtering
is enabled & Pass Rx VLAN
VLNCTRL.VFE
NO is set

< filtering
is enabled

NO Host VLAN>A/

Match to a valid
YES VFTAIN]

YES Pass Host —
VLAN filtering

Active MANC.22
(Bypass VLAN)

/

YES Bypass MNG
Candidate only for MNG VLAN filtering

A
Pass — to MNG / Host FAIL - Discard Packet
Filtering

Figure 7.3. VLAN Filtering

<

223

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.1.1.3 Manageability / Host Filtering

Packets that pass the MAC address filters and VLAN address filters described in the previous sections
are subjected to MNG / Host filtering shown in Figure 7.4. The Manageability filters are described in
Section 10.3. Packets that are not accepted for Manageability become automatically candidates for the
host queue filters described in Section 7.1.2. Packets that pass the Manageability filters may still be
posted to the host as well if they match the BMC to host filters defined by the MANC2H register.

C MNG / Host Filtering >

Pass
MNG Filters

/\
Pass YES
—><MNG to Host>—>
Criteria
\/

A A,
(Packet to MNG > C Packet to Host >

Figure 7.4. Manageability /7 Host Filtering

7.1.2 Rx Queues Assignment

The following filters/mechanisms determine the destination of a received packet. These filters are
described briefly while more detailed descriptions are provided in the following sections:

< Virtualization — In a virtual environment, DMA resources are shared between more than one
software entity (operating system and/or device driver). This is done by allocating receive
descriptor queues to virtual partitions (VMM, I0OVM, VMs, or VFs). Allocating queues to virtual
partitions is done in sets, each with the same number of queues, called queue pools, or pools.
Virtualization assigns to each received packet one or more pool indices. Packets are routed to a pool
based on their pool index and other considerations such as DCB and RSS. See Section 7.1.2.2 for
more on routing for virtualization.

« DCB — DCB provides QoS through priority queues, priority flow control, and congestion
management. Packets are classified into one of several (up to eight) Traffic Classes (TCs). Each TC
is associated with a single unique packet buffer. Packets that reside in a specific packet buffer are
then routed to one of a set of Rx queues based on their TC value and other considerations such as
RSS and virtualization. See Section 7.7 for details on DCB.

— DCB is enabled via the RT Enable bit

* Receive Side Scaling (RSS) — RSS distributes packet processing between several processor cores
by assigning packets into different descriptor queues. RSS assigns to each received packet an RSS
index. Packets are routed to one of a set of Rx queues based on their RSS index and other
considerations such as DCB and virtualization. See Section 7.1.2.8 for details.

e L2 Ethertype Filters — These filters identify packets by their L2 Ethertype and assigns them to
receive queues. Examples of possible uses are LLDP packets, and 802.1X packets. See
Section 7.1.2.3 for details. The 82599 incorporates eight Ethertype filters.

 FCoE Redirection Table — FCoE packets that match the L2 filters might be directed to a single
legacy Rx queue or multiple queues to ease multi-core processing. See Section 7.1.2.4 for details.
See also Section 7.13.3.3 for Large FC receive and direct data placement.

224

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

L3/L4 5-tuple Filters — These filters identify specific L3/L4 flows or sets of L3/L4 flows. Each filter
consists of a 5-tuple (protocol, source and destination IP addresses, source and destination TCP/
UDP port) and routes packets into one of the Rx queues. The 82599 incorporates 128 such filters.
See Section 7.1.2.5 for details.

Flow Director Filters — These filters are an expansion of the L3/L4 5-tuple filters that provides up
to additional 32 K filters. See Section 7.1.2.7 for details.

TCP SYN Filters — The 82599 might route TCP packets with their SYN flag set into a separate
queue. SYN packets are often used in SYN attacks to load the system with numerous requests for
new connections. By filtering such packets to a separate queue, security software can monitor and
act on SYN attacks. See Section 7.1.2.6 for details.

A received packet is allocated to a queue based on the above criteria and the following order:

Queue by L2 Ethertype filters (if match)

Queue by FCoE redirection table (relevant for FCoE packets)
If SYNQF.SYNQFP is zero, then

— Queue by L3/L4 5-tuple filters (if match)

— Queue by SYN filter (if match)

If SYNQF.SYNQFP is one, then

— Queue by SYN filter (if match)

— Queue by L3/L4 5-tuple filters (if match)

Queue by flow director filters

Define a pool (in case of virtualization)

Queue by DCB and/or RSS as described in Section 7.1.2.1.

7.1.2.1 Queuing in a Non-virtualized Environment

Table 7.1 lists the queuing schemes. Table 7.2 lists the queue indexing. Selecting a scheme is done via
the Multiple Receive Queues Enable field in the MRQ register.

Table 7.1. RXx Queuing Schemes Supported (No Virtualization)

DCB RSS DCB / RSS Queues Special Filters®
1 queue
No No q Supported
Rx queue O
No Yes 16 RSS queues Supported

Yes No 4 TCs x 1 queue Supported

8 TCs x 1 queue

RSS assign Rx queue 0 of each TC

Yes Yes

8 TCs x 16 RSS

4 TCs x 16 RSS Supported

1.

Special filters include: L2 filters, FCoE redirection, SYN filter and L3/L4 5-tuple filters. When possible, it is recommended to assign
Rx queues not used by DCB/RSS queues.

225

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Table 7.2. Queue Indexing lllustration in Non-virtualization Mode

Queue Index bits 6 5 4 3 2 1 0
RSS 0 0 0 RSS
DCB(4) + RSS TC 0 RSS
DCB(8) + RSS TC RSS

A received packet is assigned to a queue in the following ordering (illustrated in Figure 7.6):
* L2 Ethertype filters — Each filter identifies one of 128 Rx queues.
« SYN filter — Identifies one of 128 Rx queues.
e L3/L4 5-tuple filters — Each filter identifies one of 128 Rx queues.
« Flow director filters — Each filter identifies one of 128 Rx queues.

< DCB and RSS filters and FCoE redirection — Packets that do not meet any of the previous
conditions are assigned to one of 128 queues as listed in Table 7.1. The following modes are
supported:

— No DCB, No RSS and No FCoE redirection — Queue O is used for all packets.

— RSS only — A set of 16 queues is allocated for RSS. The queue is identified through the RSS
index. Note that it is possible to use a subset of these queues.

— DCB only — A single queue is allocated per TC to a total of eight queues (if the number of TCs
is eight), or to a total of four queues (if the number of TCs is four). The queue is identified
through the TC index.

— DCB with RSS — A packet is assigned to one of 128 queues (8 TCs x 16 RSS) or one of 64
queues (4 TCs x 16 RSS) through the DCB traffic class of the packet and the RSS index. The TC
index is used as the MS bit of the Rx queue index, and the LSBits are defined by the RSS index.

— FCoE redirection — Up to eight queues can be allocated for FCoE traffic by the FCoE redirection
table defined by FCRETA[N] registers.

When operating in conjunction with DCB, the number of RSS queues can vary per DCB TC. Each TC can
be configured to a different number of RSS queues (0/1/2/4 queues). The output of the RSS redirection
table is masked accordingly to generate an RSS index of the right width. When configured to less than
the maximum number of queues, the respective MS bits of the RSS index are set to zero. The number
of RSS queues per TC is configured in the RQTC register.

e Example — Assume a 4 TCs x 16 RSS configuration and that the number of RSS queues for TC=3 is
set to 4. The queue numbers for TC=3 are 32, 33, 34, and 35 (decimal).

Figure 7.5 depicts an example of allocation of Rx queues by the various queue filters previously
described for the following case:

< DCB and RSS enabled to 4 TCs x 16 RSS queues

e RSS is used at various width per TC

= SYN filter allocated

- Ethertype filters are used

226

®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

= 5-tuple filters are used

TCO TC1 TC2 TC3

AN A AN A
4 Y T Y B

RSS 5- tuple RSS RSS 5-tuple RSS
1 v v ¢
0 15 32 47 64 79 96 111
EtherType 5-tuple SYN
/_A_\/ AL l
~

16 31 48 63 80 95 112 127

Figure 7.5. Example of Rx Queue Allocation (Non-Virtualized)

227

®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Rx Packet

Rx queue is defined by
Note: Filter Match in this flow the L2 Ethertype filter
diagram means that Rx packets
match filters that assigns Rx queue
for these packets atch FCo Rx queue is defined
filters by the FCoE filters
Rx queue is defined
by the SYN filter
Rx queue is defined
by the 5-Tuple filters
Rx queue is defined by
the Flow Director filters
RSS queue, Packet match RSS criteria and RSS enabled
RSS Index = | 0, Else
TC Index ={ Rx User Priority, Reedtown enabled
0, Else
i A 4
Queue num = TC Index | RSS Index Rx Queue
Assigned

Figure 7.6. Rx Queuing Flow (Non-Virtualized)

7.1.2.2 Queuing in a Virtualized Environment

The 128 Rx queues are allocated to a pre-configured number of queue sets, called pools. In non-10V
mode, system software allocates the pools to the VMM, an IOVM, or to VMs. In IOV mode, each pool is
associated with a VF.

Incoming packets are associated with pools based on their L2 characteristics as described in
Section 7.10.3. This section describes the following stage, where an Rx queue is assigned to each
replication of the Rx packet as determined by its pools association.

Table 7.3 lists the queuing schemes supported with virtualization. Table 7.4 lists the queue indexing.

228

Inline Functions — Intel® 82599 10 GbE Controller

intel.

Table 7.3. Rx Queuing Schemes Supported with Virtualization
DCB RSS DCB / RSS Queues Special Filters®
16 pools x 1 queue
2 | 1
No No 32 pools x 1 queue Supported
64 pools x 1 queue
- Rx queue 0 of each pool
32 pools x 4 RSS
N Yes? S ted
° s 64 pools x 2 RSS upporte
16 pools x 8 TCs
Y N S ted
s © 32 pools x 4 TCs upporte
Yes Yes Not supported

1. Special filters include: L2 filters, FCoE redirection, SYN filter and L3/L4 5-tuble filters. When possible, it is recommended to assign
Rx queues not used by DCB/RSS queues.

2. RSS might not be useful for IOV mode since the 82599 supports a single RSS table for the entire device.

Table 7.4. Queue Indexing lllustration in Virtualization Mode
Queue Index bits 6 5 4 3 1
VT(64) + RSS VF Index RSS
VT(32) + RSS VF Index | RSS
VT(16) + RSS Not Supported
VT(32) + DCB(4) VF Index | TC
VT(16) + DCB(8) VF Index TC

Selecting a scheme is done in the following manner:
= Non-I0OV mode
— Selected via the Multiple Receive Queues Enable field in the MRQC register.

e 10V mode

— Determine the number of pools: the number must support the value configured by the
operating system in the PCle NumVFs field (see Section 9.4.4.5). Therefore, the number of
pools is min of {16, 32, 64} that is still >= NumVFs.

— Determine DCB mode via the RT Enable CSR field.
— Note that RSS is not supported in IOV mode since there is only a single RSS hash function in
the hardware.
A received packet is assigned to a queue within a pool in the following ordering (illustrated in
Figure 7.7):

= L2 Ethertype filters — each filter identifies a specific queue, belonging to some pool (the queue
designation determines the pool, usually allocated to the VMM or a service operating system).

= FCOE redirection — the redirection table assign up to 8 of 128 Rx queues.
= L3/L4 5-tuple filters — each filter is associated with a single Rx queue, belonging to a specific pool.

= Flow Director Filters — each filter identifies one of 128 Rx queues.

229

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

DCB and RSS filters — The supported modes are listed in Table 7.3 and detailed as follows. The
associated queue indexes are listed in Table 7.4.

— No DCB, No RSS — A single queue is allocated per pool with either 32 or 64 pools enabled. In
64 pools setting, queues '2xN'..."2xN+1" are allocated to pool 'N'; In 32 pools setting, queues
'AxN'..."4xN+3" are allocated to pool 'N'.

— RSS only — All 128 queues are allocated to pools. Several configurations are supported: 32
pools with 4 RSS queues each, and 64 pools with 2 queues each. Note that it is possible to use
a subset of the RSS queues in each pool. The LSBits of the queue indexes are defined by the
RSS index, and the pool index is used as the MS bits.

— DCB only — All 128 queues are allocated to pools. Several configurations are supported: 16
pools with 8 TCs each, or 32 pools with 4 TCs each. The LSBits of the queue indexes are defined
by the TC index, and the pool index is used as the MS bits.

When operating in conjunction with RSS, the number of RSS queues can vary per pool as defined by the
PSRTYPE[Nn].RQPL. Each pool can be configured to a different number of RSS queues (0/1/2/4 queues)
up to the maximum possible queues in the selected mode of operation. The output of the RSS
redirection table is masked accordingly to generate an RSS index of the right width. When configured to
less than the maximum number of queues, the respective MS bits of the RSS index are set to zero.

Rx Packet

Rx queue is defined by the
L2 Ethertype filter

atch FCo
filters

Rx queue is defined by the
FCoE filters

Note: Filter Match in this flow diagram
means that Rx packets match filters that
assigns Rx queue for these packets

Rx queue is defined by the
SYN filter

Discard packet

Rx Queue = Pool Index |
Queue Index defined by
the 5-tuple filters

Rx queue is defined by the
Flow Director filters

Pool Index | RSS queue, VT + RSS mode & Packet match RSS criteria - Q‘:Jeue
Rx Queue ={ Pool Index | Rx User Priority, VT + DCB mode & VLAN header present @

Pool Index | O, Else

Figure 7.7. Rx Queuing Flow (Virtualization Case)

230

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.1.2.3 L2 Ethertype Filters
These filters identify packets by their L2 Ethertype, 802.1Q user priority and optionally assign them to
a receive queue. The following possible usages have been identified at this time:
= DCB LLDP packets — Identifies DCB control packets
IEEE 802.1X packets — Extensible Authentication Protocol (EAPOL) over LAN
Time sync packets (such as IEEE 1588) — ldentifies Sync or Delay_ Req packets

FCoE packets (possibly two UP values)

The L2 type filters should not be set to IP packet type as this might cause unexpected results

The 82599 incorporates eight Ethertype filters defined by a set of two registers per filter: ETQF[n] and
ETQSIn].

The L2 packet type is defined by comparing the Ether-Type field in the Rx packet with the
ETQF[n].EType (regardless of the pool and UP matching). The Packet Type field in the Rx descriptor
captures the filter number that matched with the L2 Ethertype. See Section 7.1.6.2 for a description of
the Packet Type field.

The following flow is used by the Ethertype filters:
1. If the Filter Enable bit is cleared, the filter is disabled and the following steps are ignored.

2. Receive packet matches any ETQF filters if the EtherType field in the packet matches the EType
field of the filter and User Priority field in the packet matches the UP field in the filter. The User
Priority field is meaningful only if the UP Enable bit in the filter is set. Note that the following steps
are ignored if the packet does not match the ETQF filters.

3. Packets that match any ETQF filters is a candidate for the host. If the packet also matches the
manageability filters, it is directed to the host as well regardless of the MANC2H register setting.

4. If the FCOE field is set, the packet is identified as an FCoE packet.
5. If the 1588 Time Stamp field is set, the packet is identified as an IEEE 1588 packet.

6. If the Queue Enable bit is cleared, the filter completed its action on the packet. Else, the filter is
also used for queuing purposes as described in the sections that follow.

7. If the Pool Enable field is set, the Pool field of the filter determines the target pool for the packet.
The packet can still be mirrored or replicated to other pools as described in Section 7.10.3. See the
sections that follow for more details on the use of the Pool field.

8. The RX Queue field determines the destination queue for the packet. In case of mirroring or
replication, only the copy of the packet that is targeted to the pool defined by the Pool field in the
ETQF register is routed according to the Rx Queue field.

Setting the ETQF[n] registers is described as follows:

= The Filter Enable bit enables identification of Rx packets by Ethertype according to this filter. If this
bit is cleared, the filter is ignored.

= The EType field contains the 16-bit Ethertype compared against all L2 type fields in the Rx packet.

= The UP Enable bit enables filtering by 802.1Q user priority as defined by the UP field. When
enabled, an Rx packet must match both the EType field and the UP field.

= The FCoE bit indicates that the Ethertype defined in the EType field is an FCOE EType. Packets that
match this filter are identified as FCoE packets.

231

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

- The 1588 Time Stamp bit indicates that the Ethertype defined in the EType field is identified as IEEE
1588 EType. Packets that match this filter are time stamped according to the IEEE 1588
specification.

= The Pool field defines the target pool for a packet that matches the filter.

— It applies only in virtualization modes. The pool index is meaningful only if the Pool Enable bit is
set.

— If the Pool Enable bit is set then the Queue Enable bit in the ETQS register must be set as well.
In this case, the Rx Queue field in the ETQS must be part of the pool number defined in the
ETQF.
Setting the ETQS[n] registers is described as follows:

< The Queue Enable bit enables routing of the Rx packet that match the filter to Rx queue as defined
by the Rx Queue field.

< The Rx Queue field contains the destination queue (one of 128 queues) for the packet.
= The Low Latency Interrupt bit enables LL interrupt assertion by the Rx packet that matches this
filter.
Special considerations for virtualization modes:

« Packets that match an Ethertype filter are diverted from their original pool (as defined by the VLAN
and Ethernet MAC address filters) to the pool defined in the Pool field in the ETQF registers.

= The same applies for multicast packets. A single copy is posted to the pool defined by the filter.
« Mirroring rules

— In case of a pool being mirrored, the Pool field is used to determine if a packet that matches the
filter should be mirrored.

— The Ethertype filter does not take part in the decision on the destination of the replicated
packet (such as the packet generated by mirroring).

7.1.2.4 FCoE Redirection Table

The FCoOE redirection table is a mechanism to distribute received FCoE packets into several descriptor
queues. Software might assign each queue to a different processor, sharing the load of packet
processing among multiple processors. The FCoE redirection table assigns Rx queues to packets that
are identified as FCoE in the ETQF[n] registers but not assigned to queues in the ETQS[n] registers.

Figure 7.8 illustrates the computing of the assigned Rx queue index by the FCoE redirection table.

= The Rx packet is parsed extracting the OX_ID or the RX_ID depending on the Exchange Context in
the F_CTL field in the FC header. At zero the RX_ID is used; at one the OX_ID is used.

= The three LSBits of the OX_ID or RX_ID are used as an address to the redirection table (FCRETA[N]
register index).

< The FCOE redirection table is enabled by the FCRECTL.ENA bit. If enabled, the content of the
selected FCRETA[N] register is the assigned Rx queue index.

232

Inline Functions — Intel® 82599 10 GbE Controller

Rx OX_ID, FC Initiator Redirection
Rx RX_ID, FC Responder Table
16 FCRETA[0]
FCRETA[1
| 3 LS bits > 0]
v e
9 LS bits FCRETA[7]
7%
Flow ID Assigned Rx Queeu
Index

Figure 7.8. FCoE Redirection Table

7.1.2.5 L3/L4 5-tuple Filters

These filters identify specific L3/L4 flows or sets of L3/L4 flows and routes them to dedicated queues.
Each filter consists of a 5-tuple (protocol, source and destination IP addresses, source and destination
TCP/UDP/SCTP port) and routes packets into one of the Rx queues.

The 82599 incorporates 128 such filters, used also to initiate Low Latency linterrupts (LLI). The specific
filtering rules are:
= Filtering rules for IPv6 packets:

— If a filter defines at least one of the IP source and destination addresses, then an IPv6 packet
always misses such a filter.

— If a filter masks both the IP source and destination addresses, then an IPv6 packet is compared
against the remaining fields of the filter.

= Packets with tunneling (any combination of IPv4 and IPv6) miss the 5-tuple filters.
= Fragmented packets miss the 5-tuple filters.

In a virtualized environment, any 5-tuple filters is associated with a unique pool:

= The packet must first match the L2 filters described in Section 7.10.3.3 and Section 7.10.3.4. The
outcome of the L2 filters is a set of pool values associated with the packet. The Pool field of the 5-

tuple filter is then compared against the set of pools to which the packet is steered. A filter match is
considered only to the indicated pool in the filter.

If a packet matches more than one 5-tuple filter, then:

« For queuing decision — The priority field identifies the winning filter and therefore the destination
queue.

= For queuing decision — If the packet matches multiple filters with the same priority, the filters
with the lower index takes affect.

= For Low Latency Interrupt (LLI) — An LLI is issued if one or more of the matching filters are set for
LLI.

233

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

The 5-tuple filters are configured via the FTQF, SDPQF, L34TIMIR, DAQF, and SAQF registers, as follows
(described by filter):

= Protocol — Identifies the IP protocol, part of the 5-tuple. Enabled by a bit in the mask field.
Supported protocol fields are TCP, UDP, SCTP or other (neither TCP nor UDP nor SCTP).

e Source address — ldentifies the IP source address, part of the 5-tuple. Enabled by a bit in the
mask field. Only IPv4 addresses are supported.

- Destination address — ldentifies the IP destination address, part of the 5-tuple. Enabled by a bit
in the mask field. Only IPv4 addresses are supported.

e Source port — ldentifies the TCP/UDP/SCTP source port, part of the 5-tuple. Enabled by a bit in

the mask field.

- Destination port — Identifies the TCP/UDP/SCTP destination port, part of the 5-tuple queue filters.
Enabled by a bit in the mask field.

= Queue Enable — Enables the packets routing to queues based on the Rx Queue index of the filter.
e Rx Queue — Determines the Rx queue for packets that match this filter.

= Pool — Applies only in the virtualized case (while Pool Mask bit = Ob). This field must match one of
the pools enabled for this packet in the L2 filters.

— In non-virtualized case the Pool Mask bit must be set to 1b.

— In the virtualized case, the pool must be defined (Pool Mask = Ob and Pool = valid index). The
Rx Queue field defines the absolute queue index. In case of mirroring or replication, only the
copy of the packet destined to the matched pool in the filter is routed according to the Rx
Queue field.

» Mask — A 5-bit field that masks each of the fields in the 5-tuple (L4 protocol, IP addresses, TCP/
UDP ports). The filter is a logical AND of the non-masked 5-tuple fields. If all 5-tuple fields are
masked, the filter is not used for queue routing.

« Priority — A 3-bit field that defines one of seven priority levels (001b-111b), with 111b as the
highest priority. Software must insure that a packet never matches two or more filters with the
same priority value.

Note: There are 128 different 5-tuple filter configuration registers sets, with indexes [0] to [127].
The mapping to a specific Rx queue is done by the Rx Queue field in the L34TIMIR register,
and not by the index of the register set.

7.1.2.6 SYN Packet Filters

The 82599 might route TCP packets whose SYN flag is set into a separate queue. SYN packets are used
in SYN attacks to load the system with numerous requests for new connections. By filtering such
packets to a separate queue, security software can monitor and act on SYN attacks.

The following rules apply:

< A single SYN filter is provided.

The SYN filter is configured via the SYNQF register as follows:
= The Queue Enable bit enables SYN filtering capability.

< The Rx Queue field contains the destination queue for the packet (one of 128 queues). In case of
mirroring (in virtualization mode), only the original copy of the packet is routed according to this
filter.

234

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.1.2.7 Flow Director Filters

The flow director filters identify specific flows or sets of flows and routes them to specific queues. The
flow director filters are programmed by FDIRCTRL and all other FDIR registers. The 82599 shares the
Rx packet buffer for the storage of these filters. Basic rules for the flow director filters are:

= |P packets are candidates for the flow director filters (meaning non-IP packets miss all filters)

= Packets with tunneling (any combination of IPv4 and IPv6) miss all filters

= Fragmented packets miss all filters

« In VT mode, the Pool field in FDIRCMD must be valid. If the packet is replicated, only the copy that
goes to the pool that matches the Pool field is impacted by the filter.

The flow director filters cover the following fields:

= VLAN header

« Source IP and destination IP addresses

= Source port and destination port numbers (for UDP and TCP packets)

e IPv4 / IPv6 and UDP / TCP or SCTP protocol match

= Flexible 2-byte tuple anywhere in the first 64 bytes of the packet

= Target pool number (relevant only for VT mode)

The 82599 support two types of filtering modes (static setting by the FDIRCTRL.Perfect-Match bit):

= Perfect match filters — The hardware checks a match between the masked fields of the received
packets and the programmed filters. Masked fields should be programmed as zeros in the filter
context. The 82599 support up to 8 K perfect match filters.

= Signature filters — The hardware checks a match between a hash-based signature of the masked
fields of the received packet. The 82599 supports up to 32 K signature filters.

= Denote — The Perfect Match fields and Signature field are denoted as Flow ID fields.
The 82599 supports masking / range for the previously described fields. These masks are defined
globally for all filters in the FDIR...M register.

= The following fields can be masked per bit enabling power of two ranges up to complete enable /
disable of the fields: IPv4 addresses and L4 port numbers.

= The following fields can be masked per byte enabling lower granularity ranges up to complete
enable / disable of the fields: IPv6 addresses. Note that in perfect match filters the destination IPv6
address can only be compared as a whole (with no range support) to the IPGAT.

= The following fields can be either enabled or disabled completely for the match functionality: VLAN
ID tag; VLAN Priority + CFI bit; Flexible 2-byte tuple and target pool. Target pool can be enabled by
software only when VT is enabled as well.

Flow director filters have the following functionality in virtualization mode:

= Flow director filters are programmed by the registers in the PF described in Section 7.1.2.7.11 and
Section 7.1.2.7.12.

235

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.1.2.7.1 Flow Director Filters Actions

Flow director filters might have one of the following actions programmed per filter in the FDIRCTRL
register:

= Drop packet or pass to host as defined by the Drop bit.

— Matched packets to a flow director filter is directed to the assigned Rx queue only if the packet
does not match the L2 filters for queue assignment nor the SYN filter for queue assignment nor
the 5-tuple filters for queue assignment.

— Packets that match pass filters are directed to the Rx queue defined in the filter context as
programmed by the FDIRCMD.Rx-Queue. In a non-VT setting, the Rx Queue field defines the
absolute queue number. In VT setting, the Rx Queue field defines the relative queue number
within the pool.

— Packets that match drop filters are directed to the Rx queue defined per all filters in the
FDIRCTRL.DROP-Queue. The 82599 drops these packets if software does not enable the
specific Rx queue.

= Trigger low latency interrupt is enabled by the INT bit.

— Matched packets to a flow director filter can generate LLI if the packet does not match the L2
filters for queue assignment nor the SYN filter for queue assignment nor the 5-tuple filters for
queue assignment.

7.1.2.7.2 Flow Director Filters Status Reporting

Shared status indications for all packets:

e The 82599 increments the FDIRMATCH counter for packets that match a flow director filter. It also
increments the FDIRMISS counter for packets that do not match any flow director filter.

= The Flow Director Filter Match (FLM) bit in the Extended Status field of the Rx descriptor is set for
packets that match a flow director filter.

= The flow ID parameters are reported in the Flow Director Filter ID field in the Rx descriptor if
enabled by the FDIRCTRL.Report-Status. When the Report-Status bit is set, the RXCSUM.PCSD bit
should be set as well. This field is indicated for all packets that match or do not match the flow
director filters. Note that it is required to set the FDIRCTRL.Report-Status bit to enable the FLM
status indication as well as any Flow Director error indications in the receive descriptor.

— For packets that do not match a flow director filter, the Flow Director Filter ID field can be used
by software for future programming of a matched filter.

— For packets that match a flow director filter, the Flow Director Filter ID field can be used by
software to identify the flow of the Rx packet.

Too long linked list exception (linked list and too long terms are illustrated in Figure 7.9):
» The maximum recommended linked list length is programmed in the FDIRCTRL.Max-Length field
* The length exception is reported in the FDIRErr field in the Rx descriptor

« Packets that do not match any flow director filter, reports this exception if the length of the existing
linked list is already at the maximum recommended length. Software can use it to avoid further
programming of additional filters to this linked list before other filters are removed.

= Packets that match a pass filter report this exception if the distance of the matched filter from the
beginning of the linked list is higher than the above recommended length.

« Packets that match a drop filter are posted to the Rx queue programmed in the filter context
instead of the global FDIRCTRL.Rx-Queue. The drop exception is reported in addition to the length
exception (in the same field in the Rx descriptor).

236

Inline Functions — Intel® 82599 10 GbE Controller

Collision exception:

intel

= Packets that matches a collided filter report this exception in the FDIRErr field in the Rx descriptor.

= Collision events for signature-based filters should be rare. Still it might happen because multiple
flows can have the same hash and signature values. Software might leave the setting as is while
the collided flows are handled according to the actions of the first programmed flow. On the other
hand, software might choose to resolve the collision by programming the collided flows in the 5-
tuples filters. Only one flow (out of the collided ones) might remain in the flow director filters. In
order to clear the collision indication in the programmed filter, software should remove the filter and
then re-program it once again.

= Collision events for a perfect match filter should never happen. A collision error might indicate a
programming fault that software might decide to fix.

7.1.2.7.3 Flow Director Filters Block Diagram

The following figure shows a block diagram of the flow director filters. Received flows are identified to
buckets by a hash function on the relevant tuples as defined by the FDIR...M registers. Each bucket is
organized in a linked list indicated by the hash lookup table. Buckets can have a variable length while
the last filter in each bucket is indicated as a last. There is no upper limit for a linked list length during
programming; however, a received packet that matches a filter that exceeds the FDIRCTRL.Max-Length
are reported to software (see Section 7.1.2.7.5).

Logic AND of Rx Packet tuples with
the Flexible filters Mask registers

~350

Hash
15 bit output

15 bit address

15 bit output

Hash (Signature)

—> Flow ID Field in “Signature mode”

Flow ID Fields in “Perfect Match mode”

Addr

32K

Bucket Valid First Filter PTR

Bucket Valid First Filter PTR

Bucket Valid First Filter PTR

Bucket Valid First Filter PTR

Hash-Index = 0 Hash-Index = 1 Hash-Index =N i Hash-Index = N+1
Flow ID fields Flow ID fields Flow ID fields Flow ID fields
Filter Action Filter Action Filter Action Filter Action
Collision flag Collision flag Collision flag Collision flag
Next Filter PTR Next Filter PTR Next Filter PTR Next Filter PTR

Bucket 0 (linked list 0)
Hash-Index = 0 Hash-Index = 1

Bucket Valid First Filter PTR

Hash Lookup Table
Shares the Rx

packet buffer memory space

Flow ID fields Flow ID fields
Filter Action / Filter Action
Collision flag Collision flag

Next Filter PTR Next Filter PTR

Bucket M (linked list M)

‘too long’
Linked list

Max recommended linked list length
(FDIRCTRL.Max-Length)

Flexible Filters table - Shares the Rx packet buffer memory space

Figure 7.9. Flow Director Filters Block Diagram

237

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.1.2.7.4 Rx Packet Buffer Allocation

Flow director filters can consume zero space (when disabled) up to ~256 KB of memory. As shown in
Figure 7.9, flow director filters share the same memory with the Rx packet buffer. Setting the PBALLOC
field in the FDIRCTRL register, the software might enable and allocate memory for the flow director
filters. The memory allocated to reception is the remaining part of the Rx packet buffer.

Table 7.5. Rx Packet Buffer Allocation

Supported Flow Director Filters

Effective Rx _Packet Flow Director -
PBALLOC (2) Buffer Size Filters Memor Signature Perfect Match
(see following note) Y

Filters Bucket Hash Filters Bucket Hash
00 . - 512 KB 0 0 n/a 0 n/a
Flow Director is disabled
01 448 KB 64 KB 8 K 13 bits 2K 11 bits
10 384 KB 128 KB 16 K 14 bits 4K 12 bits
11 256 KB 256 KB 32K 15 bits 8 K 13 bits
Note: It is the user responsibility to ensure that sufficient buffer space is left for reception. The

required buffer space for reception is a function of the number of traffic classes, flow control
threshold values and remaining buffer space in between the thresholds. If flow director is
enabled (such as PBALLOC > 0), software should set the RXPBSIZE[n] registers according to
the total remaining part of the Rx packet buffer for reception.

For example, if PBALLOC equals one and there is only one buffer in the system, software
should set RXPBSIZE[O] to Ox70000 (448 K) and RXPBSIZE[1...7] to zero. Another example
is if PBALLOC equals two and DCB is enabled with four traffic classes then software might set
RXPBSIZE[O...3] to 0x10000 (64 K) and RXPBSIZE[4...7] to zero. Refer to Section 3.7.7.3.2
through Section 3.7.7.3.5 for recommended setting of the Rx packet buffer sizes and flow
control thresholds.

7.1.2.7.5 Flow Director Filtering Reception Flow

« Rx packet is digested by the filter unit which parse the packet extracting the relevant tuples for the
filtering functionality.

= The 82599 calculates a 15-bit hash value out of the masked tuples (logic mask of the tuples and the
relevant mask registers) using the hash function described in Section 7.1.2.7.15.

= The address in the hash lookup table points to the selected linked list of the flow director filters.

= The 82599 checks the Bucket Valid flag. If it is inactive, then the packet does not match any filter.
Otherwise, Bucket Valid flag is active, proceed for the next steps.

» The 82599 checks the linked list until it reaches the last filter in the linked list or until a matched
filter is found.

e Case 1: matched filter is found:
— Increment the FDIRMATCH statistic counter.

— Process the filter's actions (queue assignment and LLI) according to queue assignment priority.
Meaning, the actions defined in this filter takes place only if the packet did not match any L2
filter or SYN filter or 5-tuple filter that assigns an Rx queue to the packet.

— Rx queue assignment according to the filter context takes place if Queue-EN is set. In VT mode,
the Rx queue in the filter context defines a relative queue within the pool.

— LLI is generated if the INT bit is set in the filter context.

— Post the packet to host including the flow director filter match indications as described in
Section 7.1.2.7.2.

238

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

e Case 2: matched filter is not found:
— Increment the FDIRMISS statistic counter.

— Post the packet to host including the flow director filter miss indications as described in
Section 7.1.2.7.2.

7.1.2.7.6 Add Filter Flow

The software programs the filters parameters in the registers described in Section 7.1.2.7.12 and
Section 7.1.2.7.13 while keeping the FDIRCMD.Filter-Update bit inactive. As a result, the 82599 checks
the bucket valid indication in the hash lookup table (that matches the FDIRHASH.Hash) for the
presence of an existing linked list. Following are the two programming flows that handle a presence of
an existing linked list or creating a new linked list.

= Case 1: Add a filter to existing linked list:

The 82599 checks the linked list until it reaches the last filter in the list or until a matched filter is
found. Handle the filter programming in one of the following cases:

— Matched filter is found (equal flow ID) with the same action parameters — The programming is
discarded silently. This is a successful case since the programmed flow is treated as requested.

— Matched filter is found (equal flow ID) with different action parameters — The 82599 keeps the
old setting of the filter while setting the Collision flag in the filter context and increments the
COLL counter in the FDIRFREE register (see Section 7.1.2.7.2 for software handling of collision
during packet reception).

— Matched filter is found (equal flow ID) with different action parameters and the Collision flag is
already set — The programming is discarded silently. Software gets the same indications as the
previous case.

— Matched filter is not found (no collision) — The 82599 checks for a free space in the flow
director filters table.

— No space case — Discard programming; increment the FADD counter in the FDIRFSTAT register
and assert the flow director interrupt. Following this interrupt software should read the
FDIRFSTAT register and FDIRFREE.FREE field, for checking the interrupt cause.

— Free space is found — Good programming case: Add the new filter at the end of the linked list
while indicating it as the last one. Program the Next Filter PTR field and then clear the Last flag
in the filter that was previously the last one.

e Case 2 — Create a new linked list:
The 82599 looks for an empty space in the flow director filters table:

— Handle no empty space the same as in Case 1.

— Good programming case: Add the new filter while indicating it as the last one in the linked list.
Then, program the hash lookup table entry by setting the Valid flag and the First Filter PTR
pointing to the new programmed filter.

Additional successful add flow indications:

« Increment the ADD statistic counter in the FDIRUSTAT register.

= Reduce the FREE counter in the FDIRFREE register and then indicate the number of free filters. If
the FREE counter crosses the full-thresh value in the FDIRCTRL register, then assert the flow
director filter interrupt. Following this interrupt software should read the FDIRFSTAT register and
FDIRFREE.FREE field, for checking the interrupt cause.

= Compare the length of the new linked list with MAXLEN in the FDIRLEN register. If the new linked
list is longer than MAXLEN, update the FDIRLEN by the new flow.

Note: The 82599 also reports the number of collided filters in FDIRFREE.COLL. Software might
monitor this field periodically as an indication for the filters efficiency.

239

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.1.2.7.7 Update Filter Flow

In some applications, it is useful to update the filter parameters, such as the destination Rx queue.
Programing filter parameters is described in Section 7.1.2.7.6.
Setting the Filter-Update bit in the FDIRCMD register has the following action:

- Case 1: Matched filter does not exist in the filter table — Setting the Filter-Update bit has no impact
and the command is treated as add filter.

- Case 2: Matched filter already exists in the filter table — Setting the Filter-Update bit enables filter
parameter’s update while keeping the collision indication as is.

7.1.2.7.8 Remove Filter Flow

Software programs the filter Hash and Signature / Software-Index in the FDIRHASH register. It then
should set the FDIRCMD.CMD field to Remove Flow. Software might use a single 64-bit access to the
two registers for atomic operation. As a result, the 82599 follows these steps:

e Check if such a filter exists in the flow director filters table.

< If there is no flow, then increment the FREMOVE counter in the FDIRFSTAT register and skip the
next steps.

- If the requested filter is the only filter in the linked list, then invalidate its entry in the hash lookup
table by clearing the Valid bit.

« Else, if the requested filter is the last filter in the linked list, then invalidate the entry by setting the
Last flag in the previous filter in the linked list.

« Else, invalidate its entry by programming the Next Filter PTR in the previous filter in the linked list,
pointing it to the filter that was linked to the removed filter.

Additional indications for successful filter removal:
= Increment the remove statistic counter in the FDIRUSTAT register.
« Increment the FREE counter in the FDIRFREE register.

7.1.2.7.9 Remove all Flow Director Filters

In some cases there is a need to clear the entire flow director table. It might be useful in some
applications that might cause the flow director table becoming too occupied. Then, software might clear
the entire table enabling its re-programming with new active flows.

Following are steps required to clear the flow director table:

« Poll the FDIRCMD.CMD until it is zero indicating any previous pending commands to the flow
director table is completed (at worst case the FDIRCMD.CMD should be found cleared on the second
read cycle). Note that the software must not initiate any additional commands (add / remove /
query) before this step starts and until this flow completes.

e Clear the FDIRFREE register (set the FREE field to 0x8000 and COLL field to zero).
 Set FDIRCMD.CLEARHT to 1b and then clear it back to Ob

e Clear the FDIRHASH register to zero

= Re-write FDIRCTRL by its previous value while clearing the INIT-Done flag.

< Poll the INIT-Done flag until it is set to one by hardware.

e Clear the following statistic registers: FDIRUSTAT; FDIRFSTAT; FDIRMATCH; FDIRMISS; FDIRLEN
(note that some of these registers are read clear and some are read write).

240

Inline Functions — Intel® 82599 10 GbE Controller

intel.

7.1.2.7.10 Flow Director Filters Initializing Flow

Following a device reset, the flow director is enabled by programming the FDIRCTRL register, as
follows:

= Set PBALLOC to non-zero value according to the required buffer allocation to reception and flow
director filter (see Section 7.1.2.7.4). All other fields in the register should be valid as well
(according to required setting) while the FDIRCTRL register is expected to be programmed by a
single cycle. Any further programming of the FDIRCTRL register with non-zero value PBALLOC
initializes the flow director table once again.

= Poll the INIT-Done flag until it is set to one by hardware (expected initialization flow should take
about 55 ps at 10 Gb/s and 550 ps at 1 Gb/s (it is 5.5 ms at 100 Mb/s; however, this speed is not
expected to be activated unless the 82599 is in a sleep state).

7.1.2.7.11 Query Filter Flow

Software might query specific filter settings and bucket length using the Query command.

= Program the filter Hash and Signature/Software-Index in the FDIRHASH register and set the CMD
field in the FDIRCMD register to 11b (Query Command). A single 64-bit access can be used for this
step.

* As a result, the 82599 provides the query result in the FDIRHASH, FDIRCMD and FDIRLEN registers
(described in the sections as follows).

= Hardware indicates query completion by clearing the FDIRCMD.CMD field. The following table lists
the query resulit.

the linked list

Query Outcome FDIRHASH -> FDIRCMD -> FDIRLEN -> FDIRCMD -> FDIRCMD ->
Y Bucket Valid Filter Valid Bucket Length Filter ID Fields Filter Action

Empty Bucket 0 0 0]

Valid Bucket, Matched Bucket linked list) 0

Filter Not Found length

Found Signature Filter Filter index within 0 Filter's parameters

Found perfect Match
Filter

Filter index within
the linked list

Filter's parameters

Filter's parameters

7.1.2.7.12 Signature Filter Registers

The signature flow director filter is programmed by setting the FDIRHASH and FDIRCMD registers.
These registers are located in consecutive 8-byte aligned addresses. Software should use a 64-bit
register to set these two registers in a single atomic operation. Table 7.6 lists the recommended
setting.

Table 7.6. Signature Match Filter Parameters

Filter Bucket Parameters — FDIRHASH

Hash function used to define a bucket of filters. This parameter is part of the flow director filter ID that
Hash can be reported in the Rx descriptor. The size of this field can be 15 bits, 14 bits or 13 bits as explained in
Section 7.1.2.7.4. Non-used upper bits (MS bits) should be set to zero.

Valid Should be set to 1b.

Flow ID — FDIRHASH

16-bit hash function used as the flow matching field. This parameter is also part of the flow director filter

Signature ID that can be reported in the Rx descriptor.

FDIRCMD — Programming Command and Filter action — Set Section 8.2.3.21.22 for all fields descriptions.

241

] ®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.1.2.7.13 Perfect Match Filter Registers

Perfect match filters are programmed by the following registers: FDIRSIPv6[n]; FDIRVLAN; FDIRPORT;
FDIRIPDA; FDIRIPSA; FDIRHASH; FDIRCMD. Setting the FDIRCMD register, generates the actual
programming of the filter. Therefore, write access to this register must be the last cycle after all other
registers contain a valid content. Table 7.7 lists the recommended setting.

Note: Software filter programming must be an atomic operation. In a multi-core environment,
software must ensure that all registers are programmed in a sequence with no possible
interference by other cores.

Table 7.7. Perfect Match Filter Parameters

Filter Bucket Parameters and Software Index — FDIRHASH

Hash function used to define a bucket of filters. This parameter is part of the flow director filter ID that
Hash can be reported in the Rx descriptor. The size of this field can be 13 bits, 12 bits or 11 bits as explained
in Section 7.1.2.7.4. Non-used upper bits (MS bits) should be set to zero.

Valid Should be set to 1b.

15-bit index provided by software at filter programming used by software to identify the matched flow.
This parameter is also part of the flow director filter ID that can be reported in the Rx descriptor.
Note that the Software-Index is used as the filter identifier. Therefore, it must be within the range of
supported filters while any filter must have a single unique Software-Index value.

Software-Index

FDIRCMD — Programming Command and Filter Action See Section 8.2.3.21.22 for All Fields Descriptions

Flow ID — Perfect Match Flow ID Parameters are Listed in the Following Registers and Fields

FDIRSIPVE[O...2].IP6SA Three MS DWord of the source IPv6. Meaningful for IPv6 flows depending on the FDIRIP6M.SIPM

setting.
FDIRVLAN.VLAN VLAN fields are meaningful depending on the FDIRM.VLANID and FDIRM.VLANP setting.
FDIRVLAN.FLEX Flexible 2-byte field at offset FDIRCTRL.Flex-Offset. Meaningful depending on FDIRM.FLEX setting.

L4 source port. Meaningful for TCP and UDP packets depending on the FDIRTCPM.SportM and

FDIRPORT.Source FDIRUDPM.SportM setting.

L4 destination port. Meaningful for TCP and UDP packets depending on the FDIRTCPM.SportM and

FDIRPORT.Destination FDIRUDPM.SportM setting.

FDIRIPDA.IP4DA IPv4 destination address. Meaningful depending on the FDIRDIP4M.IP-EN setting.

IPv4 source address or LS DWord of the source IPv6 address. Meaningful for IPv4 flows depending on

FDIRIPSA.IPASA the FDIRSIP4M.IP-EN setting and for IPv6 flows depending on the FDIRIP6M.SIPM setting.

7.1.2.7.14 Multiple CPU Cores Considerations

Perfect match filters programming and any query cycles requires access to multiple registers. In order
to avoid races between multiple cores, software might need to use one of the following programming
methods:

- Use a software-based semaphore between the multiple cores for gaining control over the relevant
CSR registers for complete programming or query cycles.

< Manage all programming and queries of the flow director filters by a single core.
Programming signature filters requires only the FDIRHASH and FDIRCMD registers. These two registers
are located in 8-byte aligned adjacent addresses. Software could use an 8-byte register for the

programming of these registers in a single atomic operation, which avoids the need for any semaphore
between multiple cores.

242

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.1.2.7.15 Flow Director Hash Function

The 82599 supports programmable 16-bit hash functions based on two 32-bit keys, one for the lookup
table identifying a bucket of filters and another one for the signature (FDIRHKEY and FDIRSKEY). The
hash function is described in the sections that follow. In some cases, a smaller hash value than 16 bits
is required. In such cases, the LS bits of the hash value are used.

For (i=0 to 350) { if (Ext_K[i]) then Hash[15 : 0] = Hash[15 : 0] XOR Ext_S[15+i :i] }
While using the following notations:

'XOR' - Bitwise XOR of two equal length strings

If (xxx) - Equals ‘true’ if xxx = ‘1’ and equals ‘false’ if xxx = ‘0’

S[335:0] - The input bit string of the flow director tuples: 42 bytes listed in Table 7.8 AND-logic
with the filters masks.

Ext_S[n] - S[14:0] | S[335:0] | S[335:321] // concatenated

K[31:0] - The hash key as defined by the FDIRHKEY or FDIRSKEY registers.
Tmp_K[11*32-1:0] - (Temp Key) equals K[31:0] | K[31:0] ... // concatenated Key 11 times
Ext_K[350:0] - (Extended Key) equals Tmp_K[351:1]

The input bit stream for the hash calculation is listed in the Table 7.8 while byte O is the MSByte (first
on the wire) of the VLAN, byte 2 is the MSByte of the source IP (IPv6 case) and so on.

Table 7.8. Input Bit Stream for Hash Calculation
Bytes Field
Bytes 0...1 VLAN tag
Bytes 2...17 Source IP (16 bytes for IPv6; 12 bytes of zero's | source IP for IPv4)
Bytes 18...33 Destination IP (16 bytes for IPv6; 12 bytes of zero's | source IP for IPv4)

L4 source port number | L4 destination port number

34...37 Meaningful for TCP and UDP packets and zero bytes for SCTP packets

38...39 Flexible bytes

40 00b | pool number (as defined by FDIRCMD.Pool)

41 00000b | IPv6/IPV4 type | L4 type (as defined by FDIRCMD.IPV6 and FDIRCMD.L4TYPE, respectively)

7.1.2.8 Receive-Side Scaling (RSS)

RSS is a mechanism to distribute received packets into several descriptor queues. Software then
assigns each queue to a different processor, therefore sharing the load of packet processing among
several processors.

As described in Section 7.1, the 82599 uses RSS as one ingredient in its packet assignment policy (the
others are the various filters, DCB and virtualization). The RSS output is an RSS index. The 82599
global assignment uses these bits (or only some of the LSBs) as part of the queue number.

Figure 7.10 shows the process of computing an RSS output:

1. The receive packet is parsed into the header fields used by the hash operation (such as IP
addresses, TCP port, etc.)

2. A hash calculation is performed. The 82599 supports a single hash function, as defined by MSFT
RSS. The 82599 therefore does not indicate to the device driver which hash function is used. The
32-bit result is fed into the packet receive descriptor.

243

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

3. The seven LSBs of the hash result are used as an index into a 128-entry redirection table. Each
entry provides a 4-bit RSS output index.
When RSS is enabled, the 82599 provides software with the following information as:
1. Required by Microsoft* (MSFT) RSS
2. Provided for device driver assist:

« A Dword result of the MSFT RSS hash function, to be used by the stack for flow classification, is
written into the receive packet descriptor (required by MSFT RSS).

* A 4-bit RSS Type field conveys the hash function used for the specific packet (required by MSFT
RSS).
Enabling rules:
 RSS is enabled in the MRQC register.
< RSS enabling cannot be done dynamically while it must be preceded by a software reset.

= RSS status field in the descriptor write-back is enabled when the RXCSUM.PCSD bit is set (fragment
checksum is disabled). RSS is therefore mutually exclusive with UDP fragmentation checksum
offload.

= Support for RSS is not provided when legacy receive descriptor format is used.

Disabling rules:
« Disabling RSS on the fly is not allowed, and the 82599 must be reset after RSS is disabled.

< When RSS is disabled, packets are assigned an RSS output index = zero.

When multiple request queues are enabled in RSS mode, un-decodable packets are assigned an RSS
output index = zero. The 32-bit tag (normally a result of the hash function) equals zero.

Parsed receive packet

|

Redirection Table
RSS hash 128 x 4
7LS v
bits o
32 0
4
\ 4

RSS Disable or (RSS

Packet Descriptor & not decodable)

RSS output index

Figure 7.10. RSS Block Diagram

244

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.1.2.8.1 RSS Hash Function

This section provides a verification suite used to validate that the hash function is computed according
to MSFT nomenclature.

The 82599’s hash function follows the MSFT definition. A single hash function is defined with several
variations for the following cases:

= TcplPv4 — The 82599 parses the packet to identify an IPv4 packet containing a TCP segment per
the following criteria. If the packet is not an IPv4 packet containing a TCP segment, RSS is not done
for the packet.

= IPv4 — The 82599 parses the packet to identify an IPv4 packet. If the packet is not an IPv4
packet, RSS is not done for the packet.

= TcplPv6 — The 82599 parses the packet to identify an IPv6 packet containing a TCP segment per
the following criteria. If the packet is not an IPv6 packet containing a TCP segment, RSS is not done
for the packet.

= IPv6 — The 82599 parses the packet to identify an IPv6 packet. If the packet is not an IPv6
packet, RSS is not done for the packet.

Note: Tunneled IP to IP packets are considered for the RSS functionality as IP packets. The RSS
logic ignores the L4 header while using the outer (first) IP header for the RSS hash.

The following additional cases are not part of the MSFT RSS specification:
= UdplPV4 — The 82599 parses the packet to identify a packet with UDP over IPv4.
= UdplPV6 — The 82599 parses the packet to identify a packet with UDP over IPv6.

A packet is identified as containing a TCP segment if all of the following conditions are met:
= The transport layer protocol is TCP (not UDP, ICMP, IGMP, etc.).

= The TCP segment can be parsed (such as IPv4 options or IPv6 extensions can be parsed, packet not
encrypted, etc.).

= The packet is not fragmented (even if the fragment contains a complete L4 header).
Bits[31:16] of the Multiple Receive Queues Command (MRQC) register enable each of the above hash

function variations (several might be set at a given time). If several functions are enabled at the same
time, priority is defined as follows (skip functions that are not enabled):

« |IPv4 packet
— Try using the TcplPv4 function
— Try using UdplPv4 function
— Try using the IPv4 function

= |IPv6 packet
— Try using the TcplPv6 function.
— Try using UdplPv6 function.
— Try using the IPv6 function

The following combinations are currently supported:

= Any combination of IPv4, TcplPv4, and UdplPv4.

And/Or:
= Any combination of either IPv6, TcplPv6, and UdplIPv6.

245

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

When a packet cannot be parsed by the previous rules, it is assigned an RSS output index = zero. The
32-bit tag (normally a result of the hash function) equals zero.

The 32-bit result of the hash computation is written into the packet descriptor and also provides an
index into the redirection table.

The following notation is used to describe the following hash functions:

= Ordering is little endian in both bytes and bits. For example, the IP address 161.142.100.80
translates into 0xal8e6450 in the signature.

e A" ™" denotes bit-wise XOR operation of same-width vectors.

e @x-y denotes bytes x through y (including both of them) of the incoming packet, where byte O is
the first byte of the IP header. In other words, we consider all byte-offsets as offsets into a packet
where the framing layer header has been stripped out. Therefore, the source IPv4 address is
referred to as @12-15, while the destination v4 address is referred to as @16-19.

e @x-y, @v-w denotes concatenation of bytes x-y, followed by bytes v-w, preserving the order in
which they occurred in the packet.

All hash function variations (IPv4 and IPv6) follow the same general structure. Specific details for each
variation are described in the following section. The hash uses a random secret key of length 320 bits
(40 bytes); the key is stored in the RSS Random Key Register (RSSRK).

The algorithm works by examining each bit of the hash input from left to right. Our nomenclature
defines left and right for a byte-array as follows: Given an array K with k bytes, our nomenclature
assumes that the array is laid out as follows:

- K[O] K[1] K[2] ... K[k-1]

K[O] is the left-most byte, and the MSB of K[0] is the left-most bit. K[k-1] is the right-most byte, and
the LSB of K[k-1] is the right-most bit.

ComputeHash(input[], N)

For hash-input input[] of length N bytes (8N bits) and a random secret key K of 320 bits
Result = 0;

For each bit b in input[] {

if (b == 1) then Result "= (left-most 32 bits of K);

shift K left 1 bit position;

}

return Result;

7.1.2.8.1.1 Pseudo-Code Examples

The following four pseudo-code examples are intended to help clarify exactly how the hash is to be
performed in four cases, IPv4 with and without ability to parse the TCP header, and IPv6 with and
without a TCP header.

Hash for IPv4 with TCP

Concatenate SourceAddress, DestinationAddress, SourcePort, DestinationPort into one single byte-
array, preserving the order in which they occurred in the packet: Input[12] = @12-15, @16-19, @20-
21, @22-23.

Result = ComputeHash(lnput, 12);

246

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Hash for IPv4 with UDP

Concatenate SourceAddress, DestinationAddress, SourcePort, DestinationPort into one single byte-
array, preserving the order in which they occurred in the packet: Input[12] = @12-15, @16-19, @20-
21, @22-23.

Result = ComputeHash(lnput, 12);

Hash for IPv4 without TCP

Concatenate SourceAddress and DestinationAddress into one single byte-array
Input[8] = @12-15, @16-19

Result = ComputeHash(lInput, 8)

Hash for IPv6 with TCP

Similar to above:

Input[36] = @8-23, @24-39, @40-41, @42-43
Result = ComputeHash(lnput, 36)

Hash for IPv6 with UDP

Similar to above:

Input[36] = @8-23, @24-39, @40-41, @42-43
Result = ComputeHash(lnput, 36)

Hash for IPv6 without TCP

Input[32] = @8-23, @24-39

Result = ComputeHash(lnput, 32)

7.1.2.8.2 Redirection Table
The redirection table is a 128-entry structure, indexed by the seven LSBs of the hash function output.

System software might update the redirection table during run time. Such updates of the table are not
synchronized with the arrival time of received packets. Therefore, it is not guaranteed that a table
update takes effect on a specific packet boundary.

7.1.2.8.3 RSS Verification Suite

Assume that the random key byte-stream is:
0Ox6d, Ox5a, 0x56, Oxda, 0x25, Ox5b, OxOe, Oxc2,
0x41, 0x67, 0x25, 0x3d, 0x43, Oxa3, O0x8f, 0OxbO,
0xd0, Oxca, Ox2b, Oxcb, Oxae, Ox7b, 0x30, Oxb4,
0x77, Oxcb, 0x2d, Oxa3, 0x80, 0x30, Oxf2, OxOc,
Ox6a, 0x42, Oxb7, O0x3b, Oxbe, Oxac, 0x01, Oxfa

247

intel.

Intel® 82599 10 GbE Controller — Inline Functions

Table 7.9. 1Pv4

Destination Address/Port Source Address/Port 1Pv4 only 1Pv4 with TCP
161.142.100.80 :1766 66.9.149.187 :2794 0x323e8fc2 Ox51cccl78
65.69.140.83 :4739 199.92.111.2 :14230 0xd718262a 0xc626b0ea
12.22.207.184 :38024 24.19.198.95 :12898 Oxd2dOa5de 0x5c2b394a
209.142.163.6 :2217 38.27.205.30 :48228 0x82989176 Oxafc7327f
202.188.127.2 :1303 153.39.163.191 :44251 0x5d1809c5 0x10e828a2

The IPv6 address tuples are

only for verification purposes,

and may not make sense as a tuple.

Table 7.10. 1Pv6

Destination Address/Port Source Address/Port I1Pv6 only IPv6 with TCP
3ffe:2501:200:3::1 (1766) 3ffe:2501:200: 1fff::7 (2794) 0x2cc18cd5 0x40207d3d
ff02::1 (4739) 3ffe:501:8::260:97ff:fe40:efab (14230) 0x0f0c461c Oxdde51bbf
fe80::200:f8ff:fe21:67cf (38024) ?ffzzé??c’:““:35200:f8ﬂ:f921:67°f 0x4b61985 0x02d1feef

7.1.3 MAC Layer Offloads

7.1.3.1 CRC Strip

The 82599 potentially strips the L2 CRC on incoming packets.

CRC strip is enabled by the HLREGO.RXCRCSTRP bit. When set, CRC is stripped from all received
packets.
The policy for CRC strip is as follows:

< When RSC is enabled on any queue, the global CRC strip bit should be set (HLREGO.RXCRCSTRP =
1).

= When either LinkSec or IPsec are enabled, the global CRC strip bit should be set
(HLREGO.RXCRCSTRP= 1b), since the payload of the packet changes and the CRC value is stale due
to it.

7.1.4 Receive Data Storage in System Memory

The 82599 posts receive packets into data buffers in system memory.

The following controls are provided for the data buffers:

= The SRRCTL[n].BSIZEPACKET field defines the data buffer size. See section Section 7.1.2 for
packet filtering by size.

« The SRRCTL.BSIZEHEADER field defines the size of the buffers allocated to headers (advanced
descriptors only).

« Each queue is provided with a separate SRRCTL register.

Receive memory buffer addresses are word (2 x byte) aligned (both data and headers).

248

Inline Functions — Intel® 82599 10 GbE Controller

intel.

7.1.5 Legacy Receive Descriptor Format

A receive descriptor is a data structure that contains the receive data buffer address and fields for
hardware to store packet information. Upon receipt of a packet for this device, hardware stores the
packet data into the indicated buffer and writes the length, status and errors to the receive descriptor.
If SRRCTL[n].DESCTYPE = zero, the 82599 uses the Legacy Rx descriptor as listed in Table 7.11. The
shaded areas indicate fields that are modified by hardware upon packet reception (so-called descriptor
write-back).

Legacy descriptors should not be used when advanced features are enabled: SCTP, Virtualization, DCB,
LinkSec, IPSec, FCoE or RSC. Packets that match these cases might be dropped from queues that use
legacy receive descriptors.

Refer to Table 7.11 and the field descriptions that follow.

Table 7.11. Legacy Receive Descriptor (RDESC) Layout
63 48 47 40 | 39 32 | 31 16 | 15 0
Buffer Address [63:0]
VLAN Tag ‘ Errors ‘ Status ‘ Fragment Checksum Length

Buffer Address (64-bit offset O, 1st line)
Physical address in host memory of the received packet buffer.
Length Field (16-bit offset 0, 2nd line)

The length indicated in this field covers the data written to a receive buffer including CRC bytes (if any).
Software must read multiple descriptors to determine the complete length for packets that span
multiple receive buffers.

Fragment Checksum (16-bit offset 16, 2nd line)

This field is used to provide the fragment checksum value. This field is equal to the unadjusted 16-bit

ones complement of the packet. Checksum calculation starts at the L4 layer (after the IP header) until
the end of the packet excluding the CRC bytes. In order to use the fragment checksum assist to offload
L4 checksum verification, software might need to back out some of the bytes in the packet. For more

details see Section 7.1.13.

Status Field (8-bit offset 32, 2nd line)

Status information indicates whether the descriptor has been used and whether the referenced buffer is
the last one for the packet. Error status information is listed in Table 7.13.

Table 7.12. Receive Status (RDESC.STATUS) Layout

7 6 5 4 3 2 1 (0]

PIF IPCS L4Cs UDPCS VP Reserved EOP DD

EOP (End of Packet) and DD (Descriptor Done)
Refer to the following table:

DD EOP Description

Software setting of the descriptor when it hands it to the hardware.

249

®
n tel Intel® 82599 10 GbE Controller — Inline Functions

DD EOP Description

0 1 Reserved (invalid option).

A completion status indication for non-last descriptor of a packet that spans across multiple
1 0 descriptors. It means that the hardware is done with the descriptor and its buffers while only
the Length fieldis valid on this descriptor.

A completion status indication of the entire packet. Software might take ownership of its
descriptors while all fields in the descriptor are valid.

VP (VLAN Packet)

The VP field indicates whether the incoming packet's type is a VLAN (802.1q). It is set if the
packet type matches VLNCTRL.VET while RXDCTL.VME bit is set. It also indicates that VLAN
has been stripped in the 802.1q packet. For a further description of 802.1q VLANSs please see
Section 7.4.

IPCS (Ipv4 Checksum), L4CS (L4 Checksum), UDPCS (UDP Checksum)

these bits are described in the following table. In 1/0 mode: switched packets from a local VM
that do not use the Tx IP checksum offload by hardware have the IPCS equal to zero;
switched packets from a local VM that do not use the Tx L4 checksum offload by hardware
have the L4CS and UDPCS equal to zero.

L4CS UDPCS IPCS Functionality

(0] (o] o] Hardware does not provide checksum offload.

Hardware provides IPv4 checksum offload. Pass/fail indication is

0 0 1 provided in the Error field — IPE.
Hardware provides IPv4 checksum offload if IPCS is active along with

1 (o] 1/0 TCP checksum offload. Pass/fail indication is provided in the Error field —
IPE and TCPE
Hardware provides IPv4 checksum offload if IPCS is active along with

1 1 1/0 UDP checksum offload. Pass/fail indication is provided in the Error field —

IPE and TCPE

See Section 7.1.11 for a description of supported packet types for receive checksum
offloading. IPv6 packets do not have the IPCS bit set, but might have the L4ACS bit and UDPCS
bit set if the 82599 recognizes the transport header.

PIF (Non Unicast Address)

The PIF bit is set on packets with a non-unicast destination Ethernet MAC address —
multicast and broadcast.

Error Field (8-bit offset 40, 2nd line)

Table 7.13 and the following text describes the possible errors reported by the hardware.

Table 7.13. Receive Errors (RDESC.ERRORS) Layout

7

6 5 4 3 2 1 [0}

IPE

TCPE Reserved Reserved Reserved Reserved Reserved RXE

250

IPE (Ipv4 Checksum Error)

The IP checksum error is valid only when the IPCS bit in the Status field is set (indicating that
the hardware validated the IP checksum). This bit is meaningful only on the last descriptor of
a packet while the EOP bit is set as well. Packets with IP error are posted to host memory
regardless of the store bad packet setting (FCTRL.SBP).

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

TCPE (TCP/UDP Checksum Error)

The TCP/UDP checksum error is valid only when the L4CS bit in the Status field is set
(indicating that the hardware validated the L4 checksum). This bit is meaningful only on the
last descriptor of a packet while the EOP bit is set as well. Packets with a TCP/UDP error are
posted to host memory regardless of the store bad packet setting (FCTRL.SBP).

RXE

The RXE error bit is an indication for any MAC error. It is a logic or function of the following
errors:

e CRC or symbol error might be a result of receiving a /V/ symbol on the TBI interface, /FE/
symbol on the GMII/XGMII interface, RX_ER assertion on GMII interface, bad EOP or loss of
sync during packet reception.

= Undersize frames shorter than 64 bytes.
= Oversize frames larger than the MFS definition in the MAXFRS register.

= Length error in 802.3 packet format. Packets with an RXE error are posted to host memory
only when store bad packet bit (FCTRL.SBP) is set.

VLAN Tag Field (16-bit offset 48, 2nd line)

If the RXDCTL.VME is set and the received packet type is 802.1q (as defined by VLNCTRL.VET) then the
VLAN header is stripped from the packet data storage. In this case the 16 bits of the VLAN tag, priority
tag and CFI from the received packet are posted to the VLAN Tag field in the receive descriptor.
Otherwise, the VLAN Tag field contains 0x0000.

Table 7.14. VLAN Tag Field Layout (for 802.1q Packet)

15 13 12 11 0}

PRI CFI VLAN

Priority and CFI are part of 803.1Q specifications. The VLAN field is provided in network order.
7.1.6 Advanced Receive Descriptors

7.1.6.1 Advanced Receive Descriptors — Read Format

Table 7.15 lists the advanced receive descriptor programming by the software. The SRRCTL[n].
DESCTYPE should be set to a value other than 000 when using the advanced descriptor format.

Table 7.15. Descriptor Read Format

63 1 (6]
Packet Buffer Address [63:1] AO/NSE
8 Header Buffer Address [63:1] DD

251

Intel® 82599 10 GbE Controller — Inline Functions

intel.

Packet Buffer Address (64)
This is the physical address of the packet buffer. The lowest bit is AO (LSB of the address).
Header Buffer Address (64)

The physical address of the header buffer with the lowest bit being Descriptor Done (DD). When a
packet spans in multiple descriptors, the header buffer address is used only on the first descriptor.
During the programming phase, software must set the DD bit to zero (see the description of the DD bit
in this section). This means that header buffer addresses are always word aligned.

When a packet spans in more than one descriptor, the header buffer address is not used for the second,
third, etc. descriptors; only the packet buffer address is used in this case.

Note: The 82599 does not support null descriptors meaning packet or header addresses are zero.

7.1.6.2 Advanced Receive Descriptors — Write-Back Format

When the 82599 writes back the descriptors, it uses the format listed in Table 7.16. The SRRCTL[n].
DESCTYPE should be set to a value other than 000 when using the advanced descriptor format.

Table 7.16. Descriptor Write-Back Format

63 48 47 32 31 30 21 20 17 16 3 (0]
RSS Hash / Fragment Checksum / RTT /
0 PCoE_PARAM / Flow Director Filters ID SPH HDR_LEN RSCCNT Packet Type RSS Type
8 VLAN Tag PKT_LEN Extended Error Extended Status / NEXTP
63 48 47 32 31 20 19 (o]

RSS Type (4-bit offset 0, 1st line)

The 82599 must identify the packet type and then choose the appropriate RSS hash function to be used
on the packet. The RSS type reports the packet type that was used for the RSS hash function.

RSS Type Description
0x0 No hash computation done for this packet
Ox1 HASH_TCP_IPv4
ox2 HASH_IPv4
0x3 HASH_TCP_IPVv6
Ox4 Reserved
0x5 HASH_IPv6
0x6 Reserved
0ox7 HASH_UDP_IPv4
0x8 HASH_UDP_IPv6
0x9 — OxE Reserved
OxF Packet reports flow director filters status

252

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Packet Type (13-bit at offset 4, 1st line)

The Packet Type field reports the packet type identified by the hardware as follows. Note that some of
the fields in the receive descriptor are valid for specific packet types. For example, the FCOE_PARAM
field (multiplexed with the RSS) is valid only for FCoE packets.

Bit Index Bit11 =0 Bit 11 = 1 (L2 packet)
0 IPV4 — IPv4 header present
Ethertype — ETQF register index that matches the

1 IPVAE — IPv4 with extensions packet. Special types are defined for 802.1x, 1588, and
2 IPV6 — IPv6 header present FCoE.
3 IPV6E- IPV6 with extensions Reserved for extension of the EtherType field.
4 TCP — TCP header present Reserved for extension of the EtherType field.
5 UDP — UDP header present Reserved
6 SCTP — SCTP header Reserved
7 NFS — NFS header Reserved
8 IPSec ESP — IPSec encapsulation Reserved
9 IPSec AH — IPSec encapsulation Reserved
10 LinkSec — LinkSec encapsulation LinkSec — LinkSec encapsulation
11 Ob = non L2 packet 1b = L2 packet
12 Reserved Reserved

Note: UDP, TCP and IPv6 indications are not set in an IPv4 fragmented packet.

In IOV mode, packets might be received from other local VMs. the 82599 does not check the
L5 header for these packets and does not report NFS header. If such packets carry IP
tunneling (IPv4 — IPv6), they are reported as IPV4E. The packets received from local VM
are indicated by the LB bit in the status field.

RSC Packet Count- RSCCNT (4-bit offset 17, 1st line)

The RSCCNT field is valid only for RSC descriptors while in non-RSC it equals zero. RSCCNT minus one
indicates the number of coalesced packets that start in this descriptor. RSCCNT might count up to 14
packets. Once 14 packets are coalesced in a single buffer, RSC is closed enabling accurate coalesced
packet count. If the RSCCNTBP bit in RDRXCTL is set, coalescing might proceed beyond the 14 packets
per buffer while RSCCNT stops incrementing beyond OxF.

Note: Software can identify RSC descriptors by checking the RSCCNT field for non-zero value.
HDR_LEN (10-bit offset 21, 1st line)

The HDR_LEN reflects the size of the packet header in byte units (if the header is decoded by the
hardware). This field is meaningful only in the first descriptor of a packet and should be ignored in any
subsequent descriptors. Header split is explained in Section 7.1.10 while the packet types for this
functionality are enabled by the PSRTYPE[n] registers.

253

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Split Header — SPH (1-bit offset 31, 1st line)

When set to 1b, indicates that the hardware has found the length of the header. If set to Ob, the header
buffer may be used only in split always mode. The header buffer length as well as split header support
is indicated in the following table. If the received header size is greater or equal to 1024 bytes, the SPH
bit is not set and header split functionality is not supported. The SPH bit is meaningful only on the first
descriptor of a packet. See additional details on SPH, PKT_LEN and HDR_LEN as a function of split
modes in Table 7.20.

Header Length (includes all fields up to .
Packet Type the field specified) Header Split
Unrecognized Ethertype only with / without SNAP .
and with / without VLAN or VLAN header(s) if present No
packets that match the L2 filters (MTQF) other Else, EtherType field
than FCoE with / without VLAN.
FCoE packet without ESP option header FC header including FC options N/A (1)
FCoE packet with ESP option header FC header excluding FC options N/A (1)
IPv4 only or fragmented IPv4 with any payload
including IPv4-I1Pv6 tunneling IPv4 header Enabled
Non-fragmented IPv4, TCP / UDP / SCTP L4 header Enabled
IPv4-1Pv6, only or fragmented IPv4-IPv6 at IPv6 | IPv6 header (up to the fragment extension
: : . Enabled
header with any payload header if exist)
IPv4-1Pv6,TCP / UDP / SCTP L4 header Enabled
IPv4 / IPv6 / IPv4-IPv6, TCP / UDP, NFS L5 header Enabled

Notes: (1) Header split is not permitted in queues that might receive FCoE packets.

RSS Hash or FCOE_PARAM or Flow Director Filters ID (32-bit offset 32, 1st line) / Fragment Checksum
(16-bit offset 48, 1st line)

This field has multiplexed functionality according to the received packet type (reported on the Packet
Type field in this descriptor) and device setting.

FCoE_PARAM

For FCoE packets that matches a valid DDP context, this field holds the PARAM field in the
DDP context after processing the received packet. If the Relative Offset Present bit in the
F_CTL was set in the data frames, the PARAM field indicates the size in bytes of the entire
exchange inclusive the frame reported by this descriptor.

Fragment Checksum

For non-FCoE packets, this field might hold the UDP fragment checksum (described in
Section 7.1.13) if both the RXCSUM.PCSD bit is cleared and RXCSUM. The IPPCSE bit is also
set. This field is meaningful only for UDP packets when the UDPV bit in the Extended Status
word is set.

RSS Hash / Flow Director Filters ID

For non-FCoE packets, this field might hold the RSS hash value or flow director filters ID if
the RXCSUM.PCSD bit is set. Further more, if the FDIRCTRL.Report-Status bit is set, then the
flow director filters ID is reported; otherwise, the RSS hash is reported.

RSS Hash
The RSS hash value is required for RSS functionality as described in Section 7.1.2.8.

254

Inline Functions — Intel® 82599 10 GbE Controller

intel.

Flow Director Filters ID

The flow director filters ID is reported only when the received packet matches a flow directory
filter (see Section 7.1.2.7). The flow director filter ID field has a different structure for
signature-based filters and perfect match filters as follows:

Filter Type 31 30 29 28 16 15 13 12 0
Hash-based Flow Director Filter ID Rsv Bucket Hash Signature
Perfect Match Flow Director Filter ID Rsv Hash Rsv SW-Index

Bucket Hash

A hash value that identifies a flow director bucket. When the flow director table is
smaller than 32 K filters the bucket hash is smaller than 15 bits. In this case the upper
bit(s) are set to zero.

Signature
A hash value used to identify flow within a bucket.
SW-Index

The SW-Index that is taken from the filter context, programmed by software. It is
meaningful only when the FLM bit in the Extended Status is set as well.

Rsv
Reserved.

Extended Status / NEXTP (20-bit offset 0, 2nd line)

Status information indicates whether the descriptor has been used and whether the referenced buffer is
the last one for the packet. Table 7.17 lists the extended status word in the last descriptor of a packet
(EOP bit is set). Table 7.18 lists the extended status word in any descriptor but the last one of a packet
(EOP bit is cleared).

Table 7.17. Receive Status (RDESC.STATUS) Layout of Last Descriptor
19 18 17 16 15 14 13 12 11 10
Rsv LB SECP TS Rsv LLINT UDPV
IPCS L4l UDPCS
VEXT Rsv PIF VP FLM EOP DD
FCEOFs FCSTAT
9 8 7 6 5 4 3 2 1 0
Table 7.18. Receive Status (RDESC.STATUS) Layout of Non-Last Descriptor
19 4 3:2 1 0
Next Descriptor Pointer — NEXTP Rsv EOP = Ob DD

Rsv (8), Rsv (15:12), Rsv(19) — Reserved at zero.

FLM(2) — Flow director filter match indication is set for packets that match these filters.
VP(3), PIF (7) — These bits are described in the legacy descriptor format in Section 7.1.5.
EOP (1) and DD (0) — End of Packet and Done bits are listed in the following table:

255

256

®
n tel Intel® 82599 10 GbE Controller — Inline Functions

DD EOP Description

0 0 Software setting of the descriptor when it hands it to hardware.

o] 1 Reserved (invalid option)

A completion status indication for a non last descriptor of a packet (or multiple packets in the case of
RSC) that spans across multiple descriptors. In a single packet case the DD bit indicates that the
hardware is done with the descriptor and its buffers. In the case of RSC, the DD bit indicates that

1 0 the hardware is done with the descriptor but might still use its buffers (for the coalesced header)
until the last descriptor of the RSC completes.

Only the Length fields are valid on this descriptor. In the RSC case, the next descriptor pointer is
valid as well.

A completion status indication of the entire packet (or the multiple packets in the case of RSC) and
1 1 software might take ownership of its descriptors.

All fields in the descriptor are valid (reported by the hardware).

UDPCS(4), L4l (5) / FCSTAT (5:4) — This field has multiplexed functionality for FCoE and
non-FCoE packets. Hardware identifies FCOE packets in the filter unit and indicates it in the
Packet Type field in the Rx descriptor. For non-FCoE packets this field is UDPCS and L4l. The
UDPCS (UDP checksum) is set when hardware provides UDP checksum offload. The L4l (L4
Integrity) is set when hardware provides any L4 offload as: UDP checksum, TCP checksum or
SCTP CRC offload. For FCoE packets, this field represents the FCSTAT (FCoE Status) as
follows:

FCSTAT Meaning
00 No match to any active FC context
o1 FCqE frame mqtches an active FC context with no DDP. The entire frame is posted to the receive buffer
indicated by this descriptor.
10 FCP_RSP frame received that invalidates an FC read context or last data packet in a sequence with

sequence initiative set that invalidates an FC write context.

FCoE frame matches an active FC context and found liable for DDP by the filter unit. The packet's data
11 was posted directly to the user buffers if no errors were found by the DMA unit as reported in the FCERR
field. If any error is found by the DMA unit the entire packet is posted to the legacy queues.

IPCS(6), FCEOFs (6) — This bit has multiplexed functionality for FCoE and non-FCoE
packets. The hardware identifies FCOE packets in the filter unit and indicates it in the Packet
Type field in the Rx descriptor. For non-FCoE packets it is IPCS as described in Legacy Rx
descriptor (in Section 7.1.5). For FCoE packets, this bit and the FCEOFe bit in the Extended
Error field indicates the received EOF code as follows:

FCEOFe FCEOFs Description and Digested meaning and Device Behavior
0 0 EOFn. Nominal operation, DDP is enabled.
(0] 1 EOFt. Nominal operation (end of sequence), DDP is enabled.
1 0 Unexpected EOFn-EOFt or SOFi-SOFn. No DDP while filter context is updated by the
packet.
1 1 EOFa, EOFni or un-recognized EOF / SOF. No DDP while filter context is invalidated.

VEXT (9) — Outer-VLAN is found on a double VLAN packet. This bit is valid only when
CTRL_EXT.EXTENDED_VLAN is set. See more details in Section 7.4.5.

UDPV (10) — The UDP Checksum Valid bit indicates that the incoming packet contains a
valid (non-zero value) checksum field in an incoming fragmented (non-tunneled) UDP IPv4
packet. It means that the Fragment Checksum field in the receive descriptor contains the UDP
checksum as described in Section 7.1.13. When this field is cleared in the first fragment that
contains the UDP header, it means that the packet does not contain a valid UDP checksum
and the checksum field in the Rx descriptor should be ignored. This field is always cleared in
incoming fragments that do not contain the UDP header.

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

LLINT (11) — The Low Latency Interrupt bit indicates that the packet caused an immediate
interrupt via the low latency interrupt mechanism.

TS (16) — The Time Stamp bit is set when the device recognized a time sync packet. In such
a case the hardware captures its arrival time and stores it in the Time Stamp register. For
more details see Section 7.9.

SECP (17) — Security processing bit indicates that the hardware identified the security
encapsulation and processed it as configured.

LinkSec processing — This bit is set each time LinkSec processing is enabled
regardless if a matched SA was found.
IPsec processing — This bit is set only if a matched SA was found. Note that hardware

does not process packets with an IPv4 option or IPv6 extension header and the SECP
bit is not set. This bit is not set for IPv4 packets shorter than 70 bytes, IPv6 ESP
packets shorter than 90 bytes, or IPv6 AH packets shorter than 94 bytes (all excluding
CRC). Note that these packet sizes are never expected and set the length error
indication in the SECERR field.

LB (18) — This bit provides a loopback status indication which means that this packet is sent
by a local VM (VM to VM switch indication).

NEXTP (19:4) — Large receive might be composed of multiple packets and packets might
span in multiple buffers (descriptors). These buffers are not guaranteed to be consecutive
while the NEXTP field is a pointer to the next descriptor that belongs to the same RSC. The
NEXTP field is defined in descriptor unit (the same as the head and tail registers). The NEXTP
field is valid for any descriptor of a large receive (the EOP bit is not set) except the last one.
It is valid even in consecutive descriptors of the same packet. In the last descriptor (on which
the EOP bit is set), NEXTP is not indicated but rather all other status fields previously
described in this section.

Extended Error (12-bit offset 21, 2nd line)

Table 7.19 and the following text describe the possible errors reported by hardware.

Table 7.19. Receive Errors (RDESC.ERRORS) Layout

11

10 9 8 7 6 5 4 3 2:0

IPE

USE CE Rsv

L4E Rsv HBO

FCEOFe

RXE SECERR Rsv Rsv FCERR / FDIRERR

FCERR (2:0) — Defines error cases for FCoE packets. Note that hardware indicates FCoE packet
recognition on the Packet Type field in the Rx descriptor. Packets with FCERR are posted to host
memory regardless of the store bad packet setting in the Filter Control register.

FCERR Code Meaning
000 No exception errors found
001 Bad FC CRC. Hardware does not check any other FC fields in the packet.
One of the following error indications found by the filter unit (hardware auto-invalidates a matched DDP filter
context if exists):
010 1. Received non-zero abort sequence condition in the F_CTL field in FC read packet.
2. Received EOFa or EOFni or any un-recognized EOF or SOF flags.
The DMA unit gets FCoE packets that match a DDP context while it missed the packet that was marked as first
011 by the filter unit. Filter context parameters might be updated while DMA context parameters are left intact (see

error code 101b).

257

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

FCERR Code Meaning

One of the following cases:
1. Unsupported FCoE version. FCSTAT equals to 00b.

100
2. Out of order reception (SEQ_CNT does not match expected value) of a packet that matches an active DDP
context. The filter unit might set the FCSTAT to O1b, 10b or 11b.
No DMA resources due to one of the following cases listed while the hardware auto-invalidates the DDP DMA
context. Software should invalidate the filter context before it can reuse it.
101 (1) Last buffer exhausted (no space in the user buffers).

(2) Legacy receive queue is not enabled or no legacy receive descriptor.
(3) Some cases of a missed packet as described in FCERR code 011b.
This code should be ignored when FCSTAT equals 00b (meaning no context match).

Filter context valid and DMA context invalid. Indicates that some packet(s) were lost by the DMA context due to
110 lack of legacy receive descriptors or were missed by the Rx packet buffer. Note that the software might ignore
this error when FCSTAT equals 00b.

111 Reserved

FDIRERR (2:0) — This field is relevant for non-FCoE packets when the flow director filters are
enabled.

FDIRErr(0O) - Length — If the flow director filter matches the Length bit, this indicates that the
distance of the matched filter from the hash table exceeds the FDIRCTRL.Max-Length. If there is no
matched filter, the Length bit is set if the flow director linked list of the matched hash value exceeds the
FDIRCTRL.Max-Length.

FDIRErr(1) - Drop — The Drop bit indicates that a received packet matched a flow director filter with
a drop action. In the case of perfect mode filtering, it is expected to find the drop indication only when
the linked list in the flow director bucket exceeds the permitted Max-Length. In this case, the packet is
not dropped. Instead, it is posted to the Rx queue (indicated in the filter context) for software handling
of the Max-Length exception. In the case of hash mode filtering, it is expected that the drop queue is
always a valid queue so all packets that match the drop filter are visible to software.

FDIRErr(2) - Coll — A matched flow director filter with a collision indication was found. The collision
indicates that software attempted to step over this filter with a different action that was already
programmed.

HBO (3) — The Header Buffer Overflow bit is set if the packet header (calculated by hardware) is
bigger than the header buffer (defined by PSRCTL.BSIZEHEADER). HBO reporting might be used by
software to allocate bigger buffers for the headers. It is meaningful only if the SPH bit in the receive
descriptor is set as well. The HDR_LEN field is valid even when the HBO bit is set. Packets with HBO
error are posted to host memory regardless of the store bad packet setting (FCTRL.SBP). Packet DMA
to its buffers when the HBO bit is set, depends on the device settings as follows:

SRRCTL.DESCTYPE DMA Functionality

Header Split (010b) The header is posted with the rest of the packet data to the packet buffer.

The header buffer is used as part of the data buffers and contains the first PSRCTL.BSIZEHEADER

Always Split Mode (101b) bytes of the packet.

Rsv (5:4) — Reserved at zero.

SECERR (8:7): Security error indication for LinkSec or IPsec. This field is meaningful only if the SECP
bit in the extended status is set.

258

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

SECERR LinkSec Error Reporting IPsec Error Reporting
00 No errors found or no security No errors found while an active SA found or no security processing.
processing
o1 No SA match Invalid IPsec Protocol: IPsec protocol field (ESP or AH) in the received IP header

does not match expected one stored in the SA table.

Length error: ESP packet is not 4-bytes aligned or AH/ESP header is truncated (for
example, a 28-byte IPv4 packet with IPv4 header + ESP header that contains only
10 Replay error SPI and SN) or AH Length field in the AH header is different than 0x07 for IPv4 or
0x08 for IPv6 or the entire packet size excluding CRC is shorter than 70 bytes for
IPv4 or 90 bytes for IPv6 ESP or 94 bytes for IPv6 AH.

Authentication failed: Bad

11 .
signature

Authentication failed: Bad signature.

RXE (9) — RXE is described in the legacy descriptor format in Section 7.1.5.

L4E (10) — L4 integrity error is valid only when the L4l bit in the Status field is set. It is active if L4
processing fails (TCP checksum or UDP checksum or SCTP CRC). Packets with L4 integrity error are
posted to host memory regardless of the store bad packet setting (FCTRL.SBP).

FCEOFe(11) 7/ IPE(11) — This bit has multiplexed functionality. FCoE packets are indicated as such
in the Packet Type field in the Rx descriptor.

Non-FCoE Packet FCoE Packet

IPE (IPv4 checksum error)
is described in
Section 7.1.5.

FC EOF Exception (FCEOFe). This bit indicates unexpected EOF or SOF flags. The specific error is
defined by the FCEOF bit in the extended status previously described.

PKT_LEN (16-bit offset 32, 2nd line)

PKT_LEN holds the number of bytes posted to the packet buffer. The length covers the data written to a
receive buffer including CRC bytes (if any). Software must read multiple descriptors to determine the
complete length for packets that span multiple receive buffers. If SRRCTL.DESCTYPE = 2 (advanced
descriptor header splitting) and the buffer is not split because the header is bigger than the allocated
header buffer, this field reflects the size of the data written to the data buffer (header + data).

VLAN Tag (16-bit offset 48, 2nd line)

This field is described in the legacy descriptor format in Section 7.1.5.
7.1.7 Receive Descriptor Fetching

7.1.7.1 Fetch On Demand

The 82599 implements a fetch-by-demand mechanism for descriptor fetch. Descriptors are not fetched
in advance, but rather fetched after a packet is received. Such a strategy eliminates the need to store
descriptors on-die for each and every descriptor queue in anticipation for packet arrival.

259

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.1.8 Receive Descriptor Write-Back

The 82599 writes back the receive descriptor immediately following the packet write into system
memory. It is therefore possible for a single descriptor to be written at a time into memory. However, if
aggregation occurs during descriptor fetch (see Section 7.1.7), then the descriptors fetched in the
aggregated operation are written back in a single write-back operation. In Receive Coalescing (RSC), all
the descriptors except the last one are written back when they are completed. This does not have to be
on packet boundaries but rather when the next descriptor of the same RSC is fetched. See

Section 7.11.5.1 for more on RSC.

Note: Software can determine if a packet has been received by checking the receive descriptor DD
bit in memory or by checking the value of the receive head pointer in the RDH/RDL registers.
Checking through DD bits eliminates a potential race condition: all descriptor data is posted
internally prior to incrementing the head register and a read of the head register could
potentially pass the descriptor waiting inside the 82599.

7.1.9 Receive Descriptor Queue Structure

Figure 7.11 shows the structure of each of the receive descriptor rings. Note that each ring uses a
contiguous memory space.

Circular Buffer Queues

Base f\

| e—Head \

Receive
> Queue

—Tail /

Base + Size

"

Figure 7.11. Receive Descriptor Ring Structure

260

]
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Software inserts receive descriptors by advancing the tail pointer(s) to refer to the address of the entry
just beyond the last valid descriptor. This is accomplished by writing the descriptor tail register(s) with
the offset of the entry beyond the last valid descriptor. The 82599 adjusts its internal tail pointer(s)
accordingly. As packets arrive, they are stored in memory and the internal head pointer(s) is
incremented by the 82599.

When RSC is not enabled, the visible (external) head pointer(s) reflect the internal ones. On any
receive queue that enables RSC, updating the external head pointer might be delayed until interrupt
assertion. When the head pointer(s) is equal to the tail pointer(s), the queue(s) is empty. The 82599
stops storing packets in system memory until software advances the tail pointer(s), making more
receive buffers available.

Software writes a Head
descriptor to the
Base 12 memory ring and First Descriptor added
Base +1) !
1 Head &Tail moves the tail 2
Base Together Tail

Base + size >

Software writes another
descriptor to the memory ring

Head
Head oldest first to
oldest first to /) be added
be added
3 4 > Second
newest latest descriptor to
to be added be added
Tail newest latest
The tail moves down after the newest T to be added
descriptor was inserted between the old tail Tail
location and the new tail location Previous Head Head moves towards the tail and
Head location frees-up the buffer to the SW.

Data from the packet represented by
his descriptor is stored in memory

5 »6

A

Previous Head locatio|

Data from the packet represented by
this descriptor is stored in memory

o

Original Head location Tail

Head moves towards the tail and
7 frees-up the buffer to the SW 8
4’ Head and
Tail
Tail Together

Figure 7.12. Descriptors and Memory Rings

The 82599 writes back used descriptors just prior to advancing the head pointer(s). Head and tail
pointers wrap back to base when the number of descriptors corresponding to the size of the descriptor
ring have been processed.

261

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

The receive descriptor head and tail pointers reference to 16-byte blocks of memory. Shaded boxes in
Figure 7.12 represent descriptors that have stored incoming packets but have not yet been recognized
by software. Software can determine if a receive buffer is valid by reading descriptors in memory rather
than by 1/0 reads. Any descriptor with a DD bit set has been used by the hardware, and is ready to be
processed by software.

Note: The head pointer points to the next descriptor that is to be written back. At the completion of
the descriptor write-back operation, this pointer is incremented by the number of descriptors
written back. Hardware owns all descriptors between [head... tail]. Any descriptor not in this
range is owned by software.

The receive descriptor rings are described by the following registers:

= Receive Descriptor Base Address registers (RDBA) — This register indicates the start of the
descriptor ring buffer; this 64-bit address is aligned on a 16-byte boundary and is stored in two
consecutive 32-bit registers. Hardware ignores the lower 4 bits.

« Receive Descriptor Length registers (RDLEN) — This register determines the number of bytes
allocated to the circular buffer. This value must be a multiple of 128 (the maximum cache line size).
Since each descriptor is 16 bytes in length, the total number of receive descriptors is always a
multiple of 8.

- Receive Descriptor Head registers (RDH) — This register holds a value that is an offset from the
base, and indicates the in-progress descriptor. There can be up to 64K-8 descriptors in the circular
buffer. Hardware maintains a shadow copy that includes those descriptors completed but not yet
stored in memory.

Software can determine if a packet has been received by either of two methods: reading the DD bit
in the receive descriptor field or by performing a PIO read of the Receive Descriptor Head register.
Checking the descriptor DD bit in memory eliminates a potential race condition. All descriptor data
is written to the 1/0 bus prior to incrementing the head register, but a read of the head register
could pass the data write in systems performing 1/0 write buffering. Updates to receive descriptors
use the same 1/0 write path and follow all data writes. Consequently, they are not subject to the
race.

« Receive Descriptor Tail registers (RDT) — This register holds a value that is an offset from the
base, and identifies the location beyond the last descriptor hardware can process. This is the
location where software writes the first new descriptor.

For testability purpose only: If the tail pointer is larger then the ring length, then the 82599 reads
the descriptor ring in an endless loop until the queue is disabled. Prior to setting such a tail pointer
value, it is required to initialize all the descriptors of the ring and set the RDWBOFST register.
During reception, hardware does not write back the Rx descriptors on the Rx ring since they are
needed for the endless reception. Instead, hardware writes back the Rx descriptors at the Rx
descriptor offset plus RDWBOFST. RDWBOFST is defined in descriptor units as the head and tail
registers while that there is a single value defined for all Rx descriptor rings.

If software statically allocates buffers, and uses a memory read to check for completed descriptors, it
simply has to zero the status byte in the descriptor to make it ready for re-use by hardware. This is not
a hardware requirement, but is necessary for performing an in-memory scan. This is relevant only to
legacy descriptors.

All the registers controlling the descriptor rings behavior should be set before receive is enabled, apart
from the tail registers which are used during the regular flow of data.

7.1.9.1 Low Receive Descriptors Threshold

As previously described, the size of the receive queues is measured by the number of receive
descriptors. During run time, software processes descriptors and upon completion of descriptors,
increments the Receive Descriptor Tail registers. At the same time, the hardware may post new
received packets incrementing the Receive Descriptor Head registers for each used descriptor.

262

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

The number of usable (free) descriptors for the hardware is the distance between the Tail and Head
registers. When the tail reaches the head, there are no free descriptors and further packets might be
either dropped or block the receive FIFO. In order to avoid this situation, the 82599 might generate a
low latency interrupt (associated to the relevant Rx queue) once there are less equal free descriptors
than specified by a low level threshold. The threshold is defined in 64 descriptors granularity per queue
in the SRRCTL[n].RDMTS field.

7.1.10 Header Splitting

7.1.10.1 Purpose

This feature consists of splitting a packet header to a different memory space. This helps the host to
fetch headers only for processing: headers are posted through a regular snoop transaction in order to
be processed by the host CPU. It is recommended to perform this transaction with DCA enabled (see
Section 7.5).

The packet (header + payload) is stored in memory. Later, an IOAT transaction moves the payload from
the driver space to the application memory.

The 82599’s support for header split is controlled by the DESCTYPE field of the Split Receive Control
registers (SRRCTL). The following modes exist in both split and non-split modes:

= 000b: Legacy mode - Legacy descriptors are used, headers and payloads are not split.

= 001b: Advanced mode, no split - Advanced descriptors are in use, header and payload are not split.

= 010b: Advanced mode, header split - Advanced descriptors are in use, header and payload are split
to different buffers.

= 101b: Advanced mode, split always - Advanced descriptors are in use, header and payload are split
to different buffers. If no split is done, the first part of the packet is stored in the header buffer.
When using a split always descriptor type, the header buffer size (BSIZEHEADER) should be set to
four which equals to 256 bytes.

The 82599 uses packet splitting when the SRRCTL[n].DESCTYPE is greater than one.

263

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.1.10.2 Description

63 32 31 0
0 Packet Buffer addjess
8 Header Buffer addﬂe,ss
\';‘
Packet Header ‘:~\
“\ ~~\
N s“
\‘ ‘Q
Header, ‘.\ ‘.‘I‘ Header
N *3. Buffer
\‘ “‘
\“ \
.
| \‘
.
7 Packet Payload .,
\.::‘ Data
Payload ‘J‘Buffer
)
h
Host memory

Figure 7.13. Header Splitting Diagram

The physical address of each buffer is written in the Buffer Addresses fields:
« The packet buffer address includes the address of the buffer assigned to the packet data.
 The header buffer address includes the address of the buffer that contains the header information.
The receive DMA module stores the header portion of the received packets into this buffer.
The sizes of these buffers are statically defined in the SRRCTL[n] registers:
< The BSIZEPACKET field defines the size of the buffer for the received packet.

< The BSIZEHEADER field defines the size of the buffer for the received header. If header split is
enabled, this field must be configured to a non-zero value. The 82599 only writes the header
portion into the header buffer. The header size is determined by the options enabled in the PSRTYPE
registers.

When header split is selected, the packet is split only on selected types of packets. A bit exists for each
option in PSRTYPE[n] registers, so several options can be used in conjunction. If one or more bits are
set, the splitting is performed for the corresponding packet type. See Section 8.2.3.7.4 for details on
the possible header types supported. In virtualization mode, a separate PSRTYPE register is provided
per pool up to the number of pools enabled. In non-virtualization mode, only PSRTYPE[O] is used.
Rules regarding header split:

= Packets that have headers bigger than 1023 bytes are not split.

 The header of a fragmented IPv6 packet is defined until the fragmented extension header.

< Header split must not be used in a queue used for a FCoE large receive.

« An IP packet with more than a single IP header (such as any combination of IPv4 and IPv6
tunneling) is not split.

= Packet header cannot span across buffers, therefore, the size of the header buffer must be larger
than any expected header size. In case of header split mode (SRRCTL.DESCTYPE = 010b), a packet
with a header larger than the header buffer is not split.

264

]
Inline Functions — Intel® 82599 10 GbE Controller l n tel

= If an IPsec header is present in the receive packet, the following rules apply:
— IPsec packets handled in the 82599 always include IPsec header in a split done at IP boundary.

— IPsec packets handled in software must never do header split.

Table 7.20 lists the behavior of the 82599 in the different modes.

Table 7.20. Behavior in Header Split Modes

DESCTYPE Condition SPH | HBO PKT_LEN HDR_LEN Header and Payload DMA

Min(packet length, Header + Payload --> Packet

1. Header can't be decoded |0 0 buffer size) 0x0 Buffer
. 2. Header <= Min (payload length, . Header --> Header Buffer
Split BSIZEHEADER 10 | puffer size)3 Header size | po1ioad -> Packet Buffer
3. Header > BSIZEHEADER | 1 1 Min (packet length, Header size5 | Header + Payload > Packet

buffer size) Buffer

1. Header can't be decoded
and packet length <= 0 o] 0x0 Packet length
BSIZEHEADER

Header + Payload --> Header
Buffer

2. Header can’t be decoded Min (packet length — Header + Pavload --> Header +
_ and packet length >)) BSIZEHEADER, data Undefined vio
Split — always B Packet Buffers
use header BSIZEHEADER buffer size)
buffer 3. Header <= 1 o Min (payload length, Header Size Header --> Header Buffer
BSIZEHEADER data buffer size) Payload --> Packet Buffer
Min (packet length — ~
4. Header > BSIZEHEADER |1 1 BSIZEHEADER, data Header Sized | Header + Payload --> Header +
: Packet Buffer
buffer size)
Notes:

1. Partial means up to BSIZEHEADER.

HBO is set to 1b if the header size is bigger than BSIZEHEADER and zero otherwise.

In a header only packet (such as TCP ACK packet), the PKT_LEN is zero.

If the packet spans more than one descriptor, only the header buffer of the first descriptor is used.

HDR_LEN doesn't reflect the actual data size stored in the header buffer. It reflects the header size determined by the parser.

ghreN

7.1.11 Receive Checksum Offloading

The 82599 supports the offloading of three receive checksum calculations: the fragment checksum, the
IPv4 header checksum, and the TCP/UDP checksum.

For supported packet/frame types, the entire checksum calculation can be offloaded to the 82599. The
82599 calculates the IPv4 checksum and indicates a pass/fail indication to software via the IPv4
Checksum Error bit (RDESC.IPE) in the ERROR field of the receive descriptor. Similarly, the 82599
calculates the TCP or UDP checksum and indicates a pass/fail condition to software via the TCP/UDP
Checksum Error bit (RDESC.TCPE). These error bits are valid when the respective status bits indicate
the checksum was calculated for the packet (RDESC.IPCS and RDESC.LACS, respectively).

Similarly, if RFCTL.Ipv6_DIS and RFCTL.IP6Xsum_DIS are cleared to zero, the 82599 calculates the TCP
or UDP checksum for IPv6 packets. It then indicates a pass/fail condition in the TCP/UDP Checksum
Error bit (RDESC.TCPE).
Supported frame types:

= Ethernet Il

e Ethernet SNAP

265

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Table 7.21. Supported Receive Checksum Capabilities

Packet Type Hardware IP Hardware TCP/UDP
yp Checksum Calculation Checksum Calculation

IP header’s protocol field contains a protocol # other than TCP or UDP. Yes No
IPv4 + TCP/UDP packets. Yes Yes
IPv6 + TCP/UDP packets. No (N/A) Yes
IPv4 packet has IP options (IP header is longer than 20 bytes). Yes Yes
IPv6 packet with next header options:
Hop-by-hop options. No (N/A) Yes
Destinations options (without home address). No (N/A) Yes
Destinations options (with home address). No (N/A) No
Routing (with segment left 0). No (N/A) Yes
Routing (with segment left > 0). No (N/A) No
Fragment. No (N/A) No
Packet has TCP or UDP options. Yes Yes
Ipv4 tunnels:

IPv4 packet in an IPv4 tunnel. No No

IPv6 packet in an IPv4 tunnel. Yes (IPv4) No
IPv6 tunnels:

IPv4 packet in an IPv6 tunnel. No No

IPv6 packet in an IPv6 tunnel. No No
Packet is an IPv4 fragment. Yes UDP checksum assist
Packet is greater than 1522 bytes. Yes Yes
Packet has 802.3ac tag. Yes Yes

The previous table lists general details about what packets are processed. In more detail, the packets
are passed through a series of filters to determine if a receive checksum is calculated.

Ethernet MAC Address Filter

This filter checks the MAC destination address to be sure it is valid (that is 1A match, broadcast,
multicast, etc.). The receive configuration settings determine which Ethernet MAC addresses are
accepted. See the various receive control configuration registers such as FCTRL, MCSTCTRL (RTCL.UPE,
MCSTCTRL.MPE, FCTRL.BAM), MTA, RAL, and RAH for details.

SNAP/VLAN Filter

This filter checks the next headers looking for an IP header. It is capable of decoding Ethernet 11,
Ethernet SNAP, and IEEE 802.3ac headers. It skips past any of these intermediate headers and looks
for the IP header. The receive configuration settings determine which next headers are accepted. See
the various receive control configuration registers such as VLNCTRL.VFE, VLNCTRL.VET, and VFTA for
more details.

IPv4 Filter
This filter checks for valid IPv4 headers. The version field is checked for a correct value (4).

IPv4 headers are accepted if they are any size greater than or equal to five (Dwords). If the IPv4
header is properly decoded, the IP checksum is checked for validity.

266

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

IPv6 Filter

This filter checks for valid IPv6 headers, which are a fixed size and have no checksum. The IPv6
extension headers accepted are: Hop-by-hop, destination options, and routing. The maximum
extension header size supported is 256 bytes. The maximum total header size supported is 1 KB.

IPv6 Extension Headers

IPv4 and TCP provide header lengths, which enable hardware to easily navigate through these headers
on packet reception for calculating checksum and CRC, etc. For receiving IPv6 packets, however, there
is no IP header length to help hardware find the packet's ULP (such as TCP or UDP) header. One or
more IPv6 extension headers might exist in a packet between the basic IPv6 header and the ULP
header. Hardware must skip over these extension headers to calculate the TCP or UDP checksum for
received packets.

The IPv6 header length without extensions is 40 bytes. The IPv6 field Next Header Type indicates what
type of header follows the IPv6 header at offset 40. It might be an upper layer protocol header such as
TCP or UDP (next header type of 6 or 17, respectively), or it might indicate that an extension header
follows. The final extension header indicates with it's Next Header Type field the type of ULP header for
the packet.

IPv6 extension headers have a specified order. However, destinations must be able to process these
headers in any order. Also, IPv6 (or IPv4) might be tunneled using IPv6, and thus another IPv6 (or
IPv4) header and potentially its extension headers might be found after the extension headers.

The IPv4 next header type is at byte offset 9. In IPv6, the first next header type is at byte offset 6.

All IPv6 extension headers have the next header type in their first eight bits. Most have the length in
the second eight bits (Offset Byte[1]) as follows:

Table 7.22. Typical IPv6 Extended Header Format (Traditional Representation)

1 2 3
01234567890(01234567890| 01234567890

Next Header Type Length

Table 7.23 lists the encoding of the Next Header Type field and information on determining each header
type's length. Other IPv6 extension headers - not indicated in Table 7.23 - are not recognized by the
82599. Any processing of packet content that follows such extension headers is not supported.

Table 7.23. Header Type Encoding and Lengths

Header Next Header Type Header Length ('umts are .bytes unless
otherwise specified)
IPv6 6 Always 40 bytes
ff its[7:4
IPva 4 O _set bits[7:4]
Unit = 4 bytes
ff B 12].Bits[7:4
TCp 6 O _set yte[12].Bits[7:4]
Unit = 4 bytes
UDP 17 Always 8 bytes
Hop-by-Hop Options O - Note 1 8+0Offset Byte[1]

267

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Table 7.23. Header Type Encoding and Lengths

Header Next Header Type Header Lﬁ?ﬁér\,\fgzi;gﬁi%t)es unless
Destination Options 60 8+O0ffset Byte (note 1)
Routing 43 8+O0ffset Byte (note 1)
Fragment 44 Always 8 bytes
Authentication 51 Note 3
Encapsulating Security Payload 50 Note 3
No Next Header 59 Note 2

Notes:

1. Hop-by-hop options header is only found in the first next header type of an IPv6 header.

2. When no next header type is found, the rest of the packet should not be processed.

3. Encapsulated security payload packet handled by software — The 82599 cannot offload packets with this header type.

UDP/TCP Filter

This filter checks for a valid UDP or TCP header. The prototype next header values are Ox11 and 0x06,
respectively.

7.1.12 SCTP Receive Offload

If a receive packet is identified as SCTP, the 82599 checks the CRC32 checksum of this packet and
identifies this packet as SCTP. Software is notified of the CRC check via the L4l and L4E bits in the
Extended Status field and Extended Error field in the Rx descriptor. The detection of an SCTP packet is
indicated via the SCTP bit in the Packet Type field of the Rx descriptor. SCTP CRC uses the CRC32c
polynomial as follows (Ox11EDC6F41):

X321t XogtXo7+ X6+ X5+ X231t X002+ X0+ X191 X181 X141 X131 X11+X 10+ Xg+Xg+Xg+X0

The checker assumes the following SCTP packet format.

Table 7.24. SCTP Header

1 2 3
01234567 89012345 67890123 45678901

Source Port Destination Port

Verification Tag

CRC Checksum (CRC32c)

Chunks 1..n

7.1.13 Receive UDP Fragmentation Checksum

The 82599 might provide a receive fragmented UDP checksum offload for IPv4 non-tunneled packets.
The RXCSUM.PCSD bit should be cleared and the RXCSUM.IPPCSE bit should be set to enable this
mode.

The following table lists the outcome descriptor fields for the following incoming packets types.

268

]
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Incoming Packet Type Fragment Checksum UDPV UDPCS 7/ L4CS
Non-IP packet 0 0] 0
IPv6 Packet Depends on transport
0 0 UbP:1/1
Non fragmented IPv4 packet TCP:0/1

1 if the UDP header
checksum isvalid (not [1/0

Fragmented IPv4 with protocol =

UDP, first fragment (UDP protocol The unadjusted 1’s complement

checksum of the IP payload

present) 0)
Fragmented IPv4, when not first The unadjusted 1’s complement

0 1/0
fragment checksum of the IP payload

When the driver computes the 16-bit ones complement sum on the incoming packets of the UDP
fragments, it should expect a value of OxFFFF. Refer to Section 7.1.2.8.3 for supported packet formats.

269

"] ®
I n tel Intel® 82599 10 GbE Controller — Inline Functions

Note: This page intentionally left blank.

270

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.2 Transmit Functionality

7.2.1 Packet Transmission

Transmit packets are made up of data buffers in host memory that are indicated to hardware by pointer
and length pairs. These pointer and length pairs are named as transmit descriptors that are stored in
host memory as well.

Software prepares memory structures for transmission by assembling a list of descriptors. It then
indicates this list to hardware for updating the on-chip transmit tail pointer. Hardware transmits the
packet only after it has completely fetched all packet data from host memory and deposited it into the
on-chip transmit FIFO. This store and forward scheme enables hardware-based offloads such as TCP or
UDP checksum computation, and many other ones detailed in this document while avoiding any
potential PCle under-runs.

7.2.1.1 Transmit Storage in System Memory

A packet (or multiple packets in transmit segmentation) can be composed of one or multiple buffers.

Each buffer is indicated by a descriptor. Descriptors of a single packet are consecutive, while the first

one points to the first buffer and the last one points to the last buffer (see Figure 7.14). The following
rules must be kept:

= Address alignment of the data buffers can be on any byte boundary.

= Data buffers of any transmitted packet must include at least the 12 bytes of the source and
destination Ethernet MAC addresses as well as the 2 bytes of the Type/Len field.

= A packet (or multiple packets in transmit segmentation) can span any number of buffers (and their
descriptors) up to a limit of 40 minus WTHRESH minus 2 (see Section 7.2.3.3 for Tx Ring details
and section Section 7.2.3.5.1 for WTHRESH details). For best performance it is recommended to
minimize the number of buffers as possible.

Tx Data in host memory

Tx Buffer 1 ‘ TxBuffer2 | Tx Buffer N
Tx Descriptor 1 j r

Tx Descriptor 2

Tx Descriptor N }

Figure 7.14. Tx Packet in Host Memory

7.2.1.2 Transmit Path in the 82599

The transmit path in the 82599 consists of the following stages:

= Descriptor plane

— The 82599 maintains a set of 128 on-die descriptor queues. Each queue is associated with a
single descriptor ring in system memory. See Section 7.2.3.3 for more details on the Tx
descriptor rings. Each on-die descriptor queue must be able to store up to 40 descriptors in
order to achieve the desired performance.

271

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

— A fetch mechanism loads Tx descriptors from the descriptor rings in system memory to the
respective descriptor queues in the 82599. A descriptor fetch arbiter determines the order in
which descriptors are fetched into the various on-die descriptor queues. See Section 7.2.3.4 for
more details on the fetch mechanism.

— An arbitration scheme determines the order in which descriptors are processed and requests
are generated for data reads. These requests load packet data from system memory into a set
of Tx packet buffers. The arbitration mechanism varies with configuration and is shown in
Figure 7.17.

— Once a packet has been fetched into a packet buffer, status is (optionally) written back into
system memory. See Section 7.2.3.5 for more details.

- Packet plane (data plane)

— Packet data is stored in up to eight packet buffers. The number and size of packet buffers vary
with the mode of operation and is described in Section 7.2.1.2.2.

— If more than a single packet buffer is enabled, an arbitration scheme determines the order in
which packets are taken out of the packet buffers and sent to the MAC for transmission.The
arbitration mechanism is shown in Figure 7.17.

7.2.1.2.1 Tx Queues Assignment

The 82599 supports a total of 128 queues per LAN port. Each Tx queue is associated with a packet
buffer and the association varies with the operational mode. The following mechanisms impact the
association of the Tx queues. These are described briefly in this section, and in full details in separate
sections:

< Virtualization (VT) - In a virtualized environment, DMA resources are shared between more than
one software entity (operating system and/or device driver). This is done through allocation of
transmit descriptor queues to virtual partitions (VMM, I0VM, VMs, or VFs). Allocation of queues to
virtual partitions is done in sets of queues of the same size, called queue pools, or pools. A pool is
associated with a single virtual partition. Different queues in a pool can be associated with different
packet buffers. For example, in a DCB system, each of the queues in a pool might belong to a
different TC and therefore to a different packet buffer. The PFVFTE register contains a bit per VF.
When the bit is set to Ob, packet transmission from the VF is disabled. When set to 1b, packet
transmission from the VF is enabled.

< DCB — DCB provides QoS through priority queues, priority flow control, and congestion
management. Queues are classified into one of several (up to eight) Traffic Classes (TCs). Each TC
is associated with a single unique packet buffer.

« Transmit fanout — A single descriptor queue might be enough for a given functionality. For
example, in a VT system, a single Tx queue can be allocated per VM. However, it is often the case
that the data rate achieved through a single buffer is limited. This is especially true with
10 GbE, and traffic needs to be divided into several Tx queues in order to reach the desired data
rate. Therefore, multiple queues might be provided for the same functionality.

Table 7.25 lists the queuing schemes. Selection of a scheme is done via the MTQC register.

272

Inline Functions — Intel® 82599 10 GbE Controller

Table 7.25. Tx Queuing Schemes

intel

VT DCB Queues Allocation Packet Buffers allocation
A single set of 64 queues is assigned to a
No No single packet buffer. Queues 64...127 should | A single packet buffer for all traffic
not be used.
Eight TCs mode — allocation of 32-32-16-16-
8-8-8-8 queues for TCO-TC1-...- TC7, .
No Yes respectively. A separate packet buffer is allocated to each
. TC (total of four or eight).
Four TCs mode — allocation of 64-32-16-16
queues for TCO-TC1-...- TC3, respectively.
32 pools x 4 queues, or .)
Yes No P 9 A single packet buffer for all traffic.
64 pools x 2 queues
Yes Yes 16 pools x 8 TCs, or A separate packet buffer is allocated to each
32 pools x 4 TCs TC (total of four or eight).

Note:

Software can use any number of queues per each TC or per each pool within the allocated

ranges previously described by disabling any unused queue.

Note:

Programming MTQC must be done only during the init phase while software must also set

RTTDCS.ARBDIS before configuring MTQC and then clear RTTDCS.ARBDIS afterwards.

Allocating descriptor queues to VFs uses a consistent indexing over the different Tx queuing schemes.

The most significant bits of the queue index represent the VF index, and the least significant bits are

either the TC index or are used by software to dispatch traffic according to a Transmit Side Scaling
(TSS) algorithm — similar to RSS in the Rx path.

The Tx queue numbers associated with the TCs are listed in the following tables: Table 7.26 and

Table 7.27.

Table 7.26. Tx Queues Indexing When VT-on

VT mode Allocation of queue index bits according to
6 5 4 3 2 1 o
64 VFs + TSS VF (63..0) TSS
32 VFs + TSS or 4 TCs VF (31 ..0) TSS/TC
16 VFs + 8 TCs VF (15 ..0) TC

Table 7.27. Tx Queues Indexing When VT-off and DCB-on

TC mode TCn # of Qs Queues attached to TCn
TCO 64 OXXXXXX
TC1 32 LOXXXXX
4 TCs
TC2 16 110XXXX
TC3 16 11IXXXX

273

"] ®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Table 7.27. Tx Queues Indexing When VT-off and DCB-on (Continued)

TC mode TCn # of Qs Queues attached to TCn
TCO 32 OOXXXXX
TC1 32 OIXXXXX
TC2 16 100XXXX
TC3 16 101IxXXXX
8 TCs
TC4 8 1100xxx
TC5 8 1101xxx
TC6 8 1110xxX
TC7 8 1111xxXX

Note: “x” refers to both O or 1, and is used by software to dispatch Tx flows via TSS algorithm.

7.2.1.2.2 Tx Packet Buffers

As previously described, the following modes exist for the 82599 packet buffers:

« A single 160 KB packet buffer that serves all Tx descriptor queues, leading to one single (or no) TC
enabled, TCO

= Four 40 KB packet buffers, one per enabled TC, leading to four TCs, TCO to TC3
« Eight 20 KB packet buffers, one per enabled TC, leading to eight TCs, TCO to TC7

The size of the Tx packet buffer(s) is programmed via the TXPBSIZE registers, one register per TC.
Null-sized packet buffer corresponds to a disabled TC.

Note: Setting the packet buffers’ size leads to a different partition of a shared internal memory and
must be done during boot, prior to communicating, and followed by a software reset.

274

Inline Functions — Intel® 82599 10 GbE Controller

LAN Port 0/ 1
Tx Tx Tx Tx Tx Tx Tx Tx Tx
queue queue queue queue queue queue queue queue queue
0 1 2 3 4 5 6 7 127

00000000 O

Transmit Descriptor Rings (queues). Each queue has a cache of 40 descriptors

The 82599 Has up to 8 Packet
Buffers

The size of all of the packet buffers together is 160 KB
The 82599 can have any number of packet buffers less than or
equal to eight.

The packet buffer size is specified for each packet buffer in the
TXPBSIZE registers.

Figure 7.15. Tx Arbitration Schemes

7.2.1.2.3 Tx Arbitration Schemes

There are basically four Tx arbitration schemes, one per each combination of the DCB and Virtualization
(VT) enabled/disabled modes. They are configured via the MTQC.MTQE register field.

DCB-on/VT-on

When both DCB and virtualization are enabled, queues are allocated to the packet buffers in a fixed
manner, the same number of queues per each TC. Two DCB modes are supported, four TCs or eight TCs
mode, according to coherent configuration made in registers TXPBSIZE and MTQC.

Descriptor Plane Arbiters and Schedulers:

= Transmit Rate-Scheduler — Once a frame has been fetched out from a transmit rate-limited
queue, the next time another frame could be fetched from that queue is regulated by the transmit
rate-scheduler. In the meantime, the queue is considered as if it was empty (such as switched-off)
for the subsequent arbitration layers.

275

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

VM Weighted Round Robin Arbiter — Descriptors are fetched out from queues attached to the
same TC in a frame-by-frame weighted round-robin manner, while taking into account any rate
limitation as previously described. Weights or credits allocated to each queue are configured via the
RTTDT1C register. Bandwidth unused by one queue is reallocated to the other queues within the TC,
proportionally to their relative bandwidth shares. TC bandwidth limitation is distributed across all
the queues attached to the TC, proportionally to their relative bandwidth shares. Details on
weighted round-robin arbiter between the queues can be found in Section 7.7.2.3. It is assumed
traffic is dispatched across the queues attached to a same TC in a straightforward manner,
according to the VF to which it belongs.

TC Weighted Strict Priority Arbiter — Descriptors are fetched out from queues attached to
different TCs in a frame-by-frame weighted strict-priority manner. Bandwidth unused by one TC is
reallocated to the others, proportionally to their relative bandwidth shares. Link bandwidth
limitation is distributed across all the TCs, proportionally to their relative bandwidth shares. Details
on weighted strict-priority arbiter between the TCs can be found at Section 7.7.2.3. It is assumed
(each) driver dispatches traffic across the TCs according to the 802.1p User Priority field inserted by
the operating system and according to a user priority-to-TC Tx mapping table.

Packet Plane Arbiters:

276

TC Weighted Strict Priority Arbiter — Packets are fetched out from the different packet buffers
in a frame-by-frame weighted strict-priority manner. Weights or credits allocated to each TC (such
as to each packet buffer) are configured via RTTPT2C registers, with the same allocation done at
the descriptor plane. Bandwidth unused by one TC and link bandwidth limitation is distributed over
the TCs as in the descriptor plane. Details on weighted strict-priority arbiter between the TCs can
be found in Section 7.7.2.3.

Priority Flow Control packets are inserted with strict priority over any other packets.

Manageability packets are inserted with strict priority over data packets from the same TC, with
respect to the bandwidth allocated to the concerned TC. TCs that belong to manageability packets
are controlled by MNGTXMAP.MAP.

®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Descriptor
etch Arbite

Descriptor
Queues

BCN
Rate-Scheduler

\

-= Weighted Data read
request Data

VM Arbiters, i
one per TC

Descriptor Plane |]
TC Arbiter
Packet
Buffers
Packet Plane Traffic Class 0 Weighted Traffic Class 7
TC Arbiter
Flow Control per TC
MAC Manageability packets
Figure 7.16. Transmit Architecture DCB-on/VT-on — Eight TCs Mode
Note: Replication of TC arbiters before and after the packet buffers is required to provide arbitration

whether PCI bandwidth is smaller or greater than the link bandwidth, respectively.
DCB-on/VT-off

When DCB is enabled and virtualization disabled, queues are allocated to the packet buffers in a fixed
manner according to the number of TCs. Two DCB modes are supported, four TCs or eight TCs mode,
according to coherent configuration made in registers TXPBSIZE and MTQC. In Figure 7.17, eight TCs
mode is shown.

« The unique difference with the DCB-on/VT-on arbitration scheme previously described is that the
VM weighted round-robin arbiters are degenerated into simple frame-by-frame round-robin arbiters
across the queues attached to the same TC. It is assumed driver dispatches traffic across the
queues attached to a same TC according to hashing performed on MAC destination addresses. This
is aimed to minimize crosstalk between transmit rate-limited and non-rate-limited flows.

277

®
I n tel Intel® 82599 10 GbE Controller — Inline Functions

Descriptor
etch Arbitel

Descriptor
Queues
BCN n
Rate-Scheduler
Queues Arbiters, [Data read
one per TC request Data
Descriptor Plane | I
TC Arbiter
Packet
Buffers
CEVCZENCE | fraffic Class O | Weighted Traffic Class 7
TC Arbiter

Flow Control per TC
MAC Manageability packets

Figure 7.17. Transmit Architecture DCB-on/VT-off — Eight TCs Mode
DCB-off/VT-on

When DCB is disabled and virtualization enabled, all the 128 queues are allocated to a single packet
buffer PB(0). Queues are grouped into 32 or 64 pools of 4 or 2 queues, respectively. The number of
queue pools corresponds to the number of VFs exposed. Queues are attached to pools according to
consecutive indexes

— For the 32 pools case, queues 0, 1, 2, 3 are attached to VFO, queues 4, 5, 6, 7 are attached to
VF1, and so forth up to VF31.

— For the 64 pools case, queues 0 and 1 are attached to VFO, queues 2 and 3 are attached to VF1,
and so forth up to VF63.

Descriptor Plane Arbiters:

= Descriptor Queues Round Robin Arbiter — Descriptors are fetched out from the internal
descriptor queues attached to the same pool in a frame-by-frame round-robin manner. It is
assumed driver dispatches traffic across the queues of a same pool according to some Transmit
Side Scaling (TSS) algorithm similarly to what is done by hardware in the Rx path with RSS.

278

Inline Functions — Intel® 82599 10 GbE Controller

VM Weighted Round Robin Arbiter — Descriptors are fetched out from queues attached to

intel.

different pools in a frame-by-frame weighted round-robin manner. Weights or credits allocated to a

pool are those allocated for the lowest queue of the pool via the RTTDT1C register. Bandwidth

unused by one pool is reallocated to the others proportionally to their relative bandwidth shares.

Link bandwidth limitation is distributed across all the pools, proportionally to their relative
bandwidth shares. Details on weighted round-robin arbiter between the pools can be found in

Section 7.7.2.3.

Packet Plane Arbiter:

= Manageability packets are inserted with strict priority over data packets.

Descriptor
etch Arbite
Vi
« 4 a— ¥ —
D D pl|p D pl|o D Descriptor
Q Q Qf|Q Q Qlle Q
e S Sl | o | o I Queues
Pool 0 Pool 1 Pool 31

Round-Robin

Round-Robin

Round-Robin
/ Data read
Weighted request Data
VM Arbiter el I |

Packet
Buffer

Manageability packets

MAC

Figure 7.18. Transmit Architecture DCB-off/VT-on — 32 VFs

When both DCB and virtualization features are disabled, a single set of up to 64 queues is allocated to

a single packet buffer PB(0).

Descriptor Plane Arbiter:

* Descriptor Queues Round Robin Arbiter — Descriptors are fetched out from the internal

descriptor queues in a frame-by-frame round-robin manner. It is assumed driver dispatches traffic
across the queues according to some TSS algorithm similarly to what is done by hardware in the Rx

path with RSS.

Packet Plane Arbiter:

= Manageability packets are inserted with strict priority over data packets.

279

®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Descriptor
etch Arbite

Descriptor
Queues

Data read
request Data
Round-Robin]

Packet
Buffer

Manageability packets

MAC

Figure 7.19. Transmit Architecture DCB-off/VT-off

7.2.2 Transmit Contexts

The 82599 provides hardware checksum offload and TCP segmentation facilities. These features enable
TCP and UDP packet types to be handled more efficiently by performing additional work in hardware,
thus reducing the software overhead associated with preparing these packets for transmission. Part of
the parameters used to control these features are handled through contexts.

A context refers to a set of parameters providing a particular offload functionality. These parameters
are loaded by unique descriptors named transmit context descriptors. A transmit context descriptor is
identified by the DTYP field (described later in this section) equals to 0x2.

The 82599 supports two contexts for each of its 128 transmit queues. The IDX bit contains an index to
one of these two contexts. Each advanced data descriptor that uses any of the advanced offloading
features must refer to a context by the IDX field.

Contexts can be initialized with a transmit context descriptor and then used for a series of related
transmit data descriptors. Software can use these contexts as long lived ones, while one of the two
contexts is used for checksum offload and the other one for transmit segmentation detailed in the
following sections. The contexts should be modified when new offload parameters are required.

280

Inline Functions — Intel® 82599 10 GbE Controller

7.2.3 Transmit Descriptors

7.2.3.1 Introduction
The 82599 supports legacy descriptors and advanced descriptors.

Legacy descriptors are intended to support legacy drivers, in order to enable fast platform power up
and to facilitate debug. The legacy descriptors are recognized as such based on DEXT bit (see the
sections that follow). Legacy descriptors are not supported together with DCB, virtualization, LinkSec,
and IPsec. These modes are recognized by a dedicated enable bit for each.

In addition, the 82599 supports two types of advanced transmit descriptors:

1. Advanced transmit context descriptor, DTYP = 0010b

2. Advanced transmit data descriptor, DTYP = 0011b

Note: DTYP = 0000b and 0001b are reserved values.

The transmit data descriptor (both legacy and advanced) points to a block of packet data to be
transmitted. The advanced transmit context descriptor does not point to packet data. It contains
control/context information that is loaded into on-chip registers that affect the processing of packets for
transmission. The following sections describe the descriptor formats.

7.2.3.2 Transmit Descriptors Formats

7.2.3.2.1 Notations

This section defines the structure of descriptors that contain fields carried over the network. At the
moment, the only relevant field is the VLAN Tag field.

The rule for VLAN tag is to use network ordering (also called big endian). It appears in the following
manner in the descriptor:

Table 7.28. VLAN Tag

Byte address N + 1 -> first byte on the wire Byte address N -> second byte on the wire
Bit 7 — first on the wire <- Bit O Bit 7 -> last on the wire — Bit O
PRI (3 bits) ’ CFI | VID (4 bits) VID (8 bits)

7.2.3.2.2 Legacy Transmit Descriptor Format

To select legacy mode operation, bit 29 (TDESC.DEXT) should be set to Ob. In this case, the descriptor
format is defined as listed in Table 7.29. Address and length must be supplied by software on all
descriptors. Bits in the command byte are optional, as are the CSO, and CSS fields.

Table 7.29. Transmit Descriptor (TDESC) Layout — Legacy Mode

63 48 47 40 39 36 35 32 | 31 24 | 23 16 15 o)
0 Buffer Address [63:0]
8 VLAN css ‘ Rsvd ’ STA CMD cso Length

281

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Table 7.30. Transmit Descriptor Write-Back Format — Legacy Mode

63 48 47 40 39 36 35 32 | 31 24 | 23 16 15 0
0 Reserved Reserved
8 VLAN | css ‘ Rsvd | STA cMD ‘ cso Length

Buffer Address (64) and Length (16)

The buffer address is a byte-aligned address. Length (TDESC.LENGTH) specifies the length in bytes to
be fetched from the buffer address provided. The maximum length associated with a single descriptor is
15.5 KB while the total frame size must meet the maximum supported frame size. There is no limitation
for the minimum buffer size.

Note: Descriptors with zero length (null descriptors) transfer no data. Null descriptors might appear
only between packets and must have their EOP bits set.

Checksum Offset and Start — CSO (8) and CSS (8)

A Checksum Offset (TDESC.CSO) field indicates where, relative to the start of the packet, to insert a
TCP checksum if this mode is enabled. A Checksum Start (TDESC.CSS) field indicates where to begin
computing the checksum. Note that CSO and CSS are meaningful only in the first descriptor of a
packet.

Both CSO and CSS are in units of bytes. These must both be in the range of data provided to the device
in the descriptor. This means for short packets that are padded by software, CSO and CSS must be in
the range of the unpadded data length, not the eventual padded length (64 bytes). The allowed ranges
for CSO and CSS are:

14 < CSS < unpadded packet length minus 1
CSS + 2 < CSO < unpadded packet length minus 4

For the 802.1Q header, the offset values depend on the VLAN insertion enable bit — the VLE bit. If they
are not set (VLAN tagging included in the packet buffers), the offset values should include the VLAN
tagging. If these bits are set (VLAN tagging is taken from the packet descriptor), the offset values
should exclude the VLAN tagging.

Hardware does not add the 802.1q Ethertype or the VLAN field following the 802.1Q Ethertype to the
checksum. So for VLAN packets, software can compute the values to back out only on the encapsulated
packet rather than on the added fields.

Note: UDP checksum calculation is not supported by the legacy descriptor because the legacy
descriptor does not support the translation of a checksum result of 0x0000 to OxFFFF needed
to differentiate between an UDP packet with a checksum of zero and an UDP packet without
checksum.

Because the CSO field is eight bits wide, it puts a limit on the location of the checksum to 255 bytes
from the beginning of the packet.

Note: CSO must be larger than CSS.

Software must compute an offsetting entry to back out the bytes of the header that should not be
included in the TCP checksum and store it in the position where the hardware computed checksum is to
be inserted.

282

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

Hardware adds the checksum at the byte offset indicated by the CSO field. Checksum calculations are
for the entire packet starting at the byte indicated by the CSS field. The byte offset is counted from the
first byte of the packet fetched from host memory.

Command Byte — CMD (8)

The CMD byte stores the applicable command and has the fields listed in Table 7.31.

Table 7.31. Transmit Command (TDESC.CMD) Layout

7

6 5 4 3 2 1 (0]

RSV

VLE DEXT RSV RS IC IFCS EOP

e RSV (bit 7) — Reserved

« VLE (bit 6) — VLAN Packet Enable
When set to 1b, VLE indicates that the packet is a VLAN packet and hardware adds the VLAN header
to the Tx packet. The VLAN Ethertype is taken from DMATXCTL.VT and the 802.1q VLAN tag is
taken from the VLAN field in the Tx descriptor. See Section 7.4.5 for details about double VLAN.

Table 7.32. VLAN Tag Insertion Decision Table for VLAN Mode Enabled

VLE Action
0 Send generic Ethernet packet.
1 Send 802.1Q packet; the Ethernet Type field comes from the VET field of the VLNCTRL register and the VLAN data
comes from the VLAN field of the TX descriptor.
Note: This table is relevant only if VMVIR.VLANA = 00b (use descriptor command) for the queue.

= DEXT (bit 5) — Descriptor extension (zero for legacy mode)
* RSV (bit 4) — Reserved

* RS (bit 3) — Report Status - RS signals hardware to report the DMA completion status indication as
well as triggering ITR. Hardware indicates a DMA completion by setting the DD bit in the Rx
descriptor when TDWBAL[n].Head_WB_En = Ob or by Head Write-back if Head_WB_En = 1b (see
Section 7.2.3.5.2). The RS bit is permitted only on descriptors that has the EOP bit set (last
descriptor of a packet).

Note:

Software should not set the RS bit when TXDCTL.WTHRESH is greater than zero. Instead, the
hardware reports the DMA completion according to the WTHRESH rules (explained in
Section 7.2.3.5.1). This note is relevant only for descriptor write back while in head write-
back mode. WTRESH must also be set to zero.

When TXDCTL.WTHRESH = zero, software must set the RS bit on the last descriptor of every
packet.

There are some exceptions for descriptor completion indication in head write-back mode. For
more details see Section 7.2.3.5.2.

* IC (bit 2) — Insert Checksum - Hardware inserts a checksum at the offset indicated by the CSO
field if the Insert Checksum bit (IC) is set.

* IFCS (bit 1) — Insert FCS - When set, hardware appends the MAC FCS at the end of the packet.
When cleared, software should calculate the FCS for proper CRC check. There are several cases in
which software must set IFCS as follows:

— Transmitting a short packet while padding is enabled by the HLREGO.TXPADEN bit.
— Checksum offload is enabled by the IC bit in the TDESC.CMD.

283

] ®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

— VLAN header insertion enabled by the VLE bit in the TDESC.CMD or by the PFVMVIR registers.
— TSO or TCP/IP checksum offload using a context descriptor.
— LinkSec offload is requested.

Note that TSO, Transmit Rate Scheduler, and LinkSec offload are relevant only to advanced Tx
descriptors.

 EOP (bit 0) — End of Packet - A packet can be composed of multiple buffers (each of them indicated
by its own descriptor). When EOP is set, it indicates the last descriptor making up the packet.

Note: VLE, IFCS, and IC fields should be set in the first descriptor of a packet. The RS bit can be set
only on the last descriptor of a packet. The DEXT bit must be set to zero for all descriptors.
The EOF bit is meaningful in all descriptors.

Transmitted.Status — STA (4)
DD (bit 0) — Descriptor Done Status

This bit provides a status indication that the DMA of the buffer has completed. Software might re-use
descriptors with the DD bit set and any other descriptors processed by the hardware before this one.
The other bits in the STA field are reserved.

Rsvd — Reserved (4)
VLAN (16)

The VLAN field is used to provide the 802.19/802.1ac tagging information. The VLAN field is qualified
on the first descriptor of each packet when the VLE bit is set to 1b. The VLAN field is provided in
network order and is meaningful in the first descriptor of a packet. See Section 7.2.3.2.1 for more
details.

Table 7.33. VLAN Field (TDESC.VLAN) Layout

15 13 12 11 [0}

PRI CFI VLAN

7.2.3.2.3 Advanced Transmit Context Descriptor

Table 7.34. Transmit Context Descriptor (TDESC) Layout — (Type = 0010)

63 48 | 47 | 42 | 41 32 | 31 16 | 15 9|8 (0]
0 RSV FCoEF IPsec SA Index VLAN MACLEN IPLEN/HEADLEN
| O
8 MSS LALEN RSV | O BCNTLEN 5 RSV DTYP TUCMD IPsec ESP_LEN
A T|
3 |33 2 2|2
63 48 (47 40 d |44 35 30 d 28 24 3lo 19 9|8 (0]

284

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

IPLEN/HEADLEN (9)

« IPLEN — for IP packets:
This field holds the value of the IP header length for the IP checksum offload feature. If an offload
is requested, IPLEN must be greater than or equal to 20, and less than or equal to 511. For IP
tunnel packets (IPv4-1Pv6) IPLEN must be defined as the length of the two IP headers. The
hardware is able to offload the L4 checksum calculation while software should provide the IPv4
checksum. For IPsec packets, it is the sum of IP header length plus IPsec header length.

= HEADLEN — for FCoE packets:
This field indicates the size (in bytes) of the FCoE frame header. The frame header includes the MAC
header, optional VLAN and FCoE header(s) as shown in Figure 7.48. HEADLEN does not include the
LinkSec header if it exists. HEADLEN is meaningful only if transmit FCoE offload is enabled by
setting the FCoOE bit in the TUCMD field. HEADLEN that matches Figure 7.48 equals 56 or 64 for
packets without FC extended headers or packets with VFT header respectively. The 82599 supports
FC extended headers only for single send. Segmentation offload can be used only when extended
headers are not present.

MACLEN (7)

= For nonFCoE packets:
This field indicates the length of the MAC header. When an offload is requested, the TSE bit (in the
advanced transmit data descriptor) or IXSM bit or TXSM bit are set, MACLEN must be larger than or
equal to 14, and less than or equal to 127. This field should include only the part of the L2 header
supplied by the driver and not the parts added by hardware. The following table lists the value of
MACLEN in the different cases.

SNAP Regular VLAN Extended VLAN MACLEN
No By hardware or no No 14
No By hardware or no Yes 18
No By software No 18
No By software Yes 22
Yes By hardware or no No 22
Yes By hardware or no Yes 26
Yes By software No 26
Yes By software Yes 30

« For FCoOE packets:

This field is a byte offset to the last Dword of the FCoE header (supplied by the driver) that includes
the SOF flag. The FC frame header starts four bytes after the MACLEN as shown in Figure 7.48. The
MACLEN that matches Figure 7.48 equals 28.

VLAN (16)

This field contains the 802.1Q VLAN tag to be inserted in the packet during transmission. This VLAN tag
is inserted when a packet using this context has its DCMD.VLE bit is set. This field should include the
entire 16-bit VLAN field including CFl and priority fields as listed in Table 7.33.

Note that the VLAN field is provided in network order. See Section 7.2.3.2.1.

Ipsec SA IDX (10) — IPsec SA Index. If an IPsec offload is requested for the packet (IPSEC bit is set
in the advanced Tx data descriptor), indicates the index in the SA table where the IPsec key and SALT
are stored for that flow.

285

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

FCoEF (6) — see the following:

e EOF (bits 1:0) — End of frame delimiter index.

e ORIE (bit 4) — Orientation relative to the last frame in an FC sequence.
The EOF and ORIE fields define the EOF that is inserted by hardware. In a single packet send, the EOF
field is defined completely by the EOF setting while in TSO mode, the EOF field is defined by the EOF

and the ORIE bits as listed in the following table. The values EOFO0...EOF3 are taken from the EOFF
register.

FCoOE Large send
E-EOF code in a

EOF bits (1:0 ORIE bit (4 single packet
@ @ gd . E-EOF code in the E-EOF code in other | 50 that ends
sen last frame frames up in a single
packet

0 (not a sequence

00 (EOFnN) end) EOFO (EOFn) EOFO (EOFN) EOFO (EOFnN) EOFO (EOFnN)
00 (EOFnN) 1 (sequence end) | EOFO (EOFn) EOF1 (EOFt) EOFO (EOFn) EOF1 (EOFt)
01 (EOFt) 1 (don’t care) EOF1 (EOFt) n/a n/a EOF1 (EOFt)
10 (EOFni) 1 (don’t care) EOF2 (EOFni) n/a n/a EOF2 (EOFni)
11 (EOFa) 1 (don’t care) EOF3 (EOFa) n/a n/a EOF3 (EOFa)

e SOF (bit 2) — Start of frame delimiter index.

= ORIS (bit 5) — Orientation relative to the first frame in an FC sequence.

In a single packet send, SOF is taken from the data buffer. In TSO, hardware places the SOF in the
transmitted packet replacing the data buffer content. The SOF and ORIS bits in the context descriptor
define the SOF that is placed by the hardware as listed in the following table. The values SOF0...SOF3
are taken from the SOFF register.

SOF bit (2) ORIS bit (5) fSr(a)‘lr:n(;ode in the first ;Sr(;ﬁqzosde in other g(a)(l::kg?de in a single
1 (Class 3) 1 (sequence start) SOF1 (SOFi3) SOF3 (SOFn3) SOF1 (SOFi3)
1 (Class 3) 0 (not a sequence start) SOF3 (SOFN3) SOF3 (SOFN3) SOF3 (SOFn3)
0 (Class 2) 1 (sequence start) SOFO (SOFi2) SOF2 (SOFn2) SOFO (SOFi2)
0 (Class 2) 0 (not a sequence start) SOF2 (SOFNn2) SOF2 (SOFn2) SOF2 (SOFn2)

« PARINC (bit 3) — When this bit is set, hardware relates to the PARAM field in the FC header as
relative offset. In this case, hardware increments the PARAM field in TSO by an MSS value on each
transmitted packet of the TSO. Software should set the PARINC bit when it sets the Relative Offset
Present bit in the F_CTL.

RSV(16)
Reserved

IPS_ESP_LEN(9) - Size of the ESP trailer and ESP ICV appended by software. Meaningful only if the
IPSEC_TYPE bit is set in the TUCMD field and to single send packets for which the IPSEC bit is set in
their advanced Tx data descriptor.

286

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

TUCMD (11)
* RSV (bit 10-7) — Reserved

= FCoE (bit 6) — This bit defines the context descriptor and the associated data descriptors as FCoE
frame type. See Section 7.13.2 for a description of the offload provided by the hardware while
transmitting a single frame and TSO.

= Encryption (bit 5) — ESP encryption offload is required. Meaningful only to packets for which the
IPSEC bit is set in their advanced Tx data descriptor.

e IPSEC_TYPE (bit 4) — Set for ESP. Cleared for AH. Meaningful only to packets for which the IPSEC
bit is set in their advanced Tx data descriptor.

e LA4T (bit 3:2) — L4 Packet TYPE (00: UDP; 01: TCP; 10: SCTP; 11: RSV)
* IPV4(bit 1) — IP Packet Type: When 1b, IPv4; when Ob, IPv6
= SNAP (bit 0) — SNAP indication

DTYP (4)

This field is always 0010b for this type of descriptor.

RSV(1)

Reserved

DEXT (1) — Descriptor extension (one for advanced mode)
BCNTLEN(6) — For rate limited queues this field must be set to Ox3F
IDX (1)

The context descriptor is posted to a context table in hardware. There are two context tables per
queue. The IDX is the index of the context tables.

Note: Because the 82599 supports only two context descriptors per queue, the two MS bits are
reserved and should be set to Ob.

RSV(1)
LALEN(8)

This field holds the layer 4 header length. If TSE is set, this field must be greater than or equal to 8 and
less than or equal to 255. Otherwise, this field is ignored. Note that for UDP segmentation the L4
header size equals 8 and for TCP segmentation (with no TCP options) it equals 20.

MSS (16)

This field controls the Maximum Segment Size. This specifies the maximum protocol payload segment
sent per frame, not including any header. MSS is ignored when DCMD.TSE is not set.

TCP / UDP Segmentation

The total length of each frame (or segment) excluding Ethernet CRC as follows. Note that the last
packet of a TCP segmentation might be shorter.

MACLEN + 4(if VLE set) + IPLEN + LALEN + MSS + [PADLEN + 18] (if ESP packet)

287

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

PADLEN ranges from zero to three in Tx and is the content of the ESP Padding Length field that is
computed when offloading ESP in cipher blocks of 16 bytes (AES-128) with respect to the following
alignment formula:

[LALEN + MSS + PADLEN + 2] modulo(4) = 0

For a single send the IPS_ESP_LEN equals to PADLEN + 18.

Note: The headers lengths must meet the following: MACLEN + IPLEN + LALEN <= 512
FCoE Segmentation

The total length of each frame (or segment) excluding Ethernet CRC equals to:

MACLEN + 4(if VLE set) + 8 (FC CRC + EOF)

Note: For FCoE packets, the maximum segment size defines the FC payload size in all packets but
the last one, which can be smaller.

The context descriptor requires valid data only in the fields used by the specific offload options. The
following table lists the required valid fields according to the different offload options.

Table 7.35. Valid Fields by Offload Option

~
z S
u 2
A 5| & z z 5
zZ =}]
[T < Z = > X i} i}
Context o m z 4 L i < N E § 51 8 -1 8 g §
Fields -> Slold |l gl s|s|gle]3|g|low|<<|als=s]z
e s > 3 3} %) %) %) @) 8
] UCJ o | m ©
i = o
o o
- 0
O
VLAN s s
insertion y 4
1Pv4 XSUM n/a | n/a yes | yes 1 yes 0
L4 XSUM n/a | n/a yes | yes yes yes (o]
% TCP/UDP Seg | n/a | n/a yes | yes | yes | yes | yes | yes yes | yes (6]
% FCoE CRC yes | yes yes | yes | nf/a | nf/a | nf/a | nfa | nfa | n/fa | n/a | n/a yes 1
3 FCoOE Seg yes | yes yes | yes | nfa | nfa | nfa | nf/a | nfa | nfa | n/fa | n/fa | yes | yes 1
n% IPSec ESP n/a | n/a yes | yes yes yes | yes | yes | yes yes 1
o IPSec AH n/a | n/a yes | yes yes yes | yes | yes | n/a yes 1
Tx switch n/a | n/a yes | yes | yes yes | yes | nfa | nfa | nfa | n/a yes 1
Note: All fields that are not used in the context descriptor must be set to zero.

288

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

7.2.3.2.4 Advanced Transmit Data Descriptor

Table 7.36. Advanced Transmit Data Descriptor Read Format

0 Address[63:0]
8 PAYLEN POPTS CcC IDX STA DCMD DTYP MAC RSV DTALEN
63 46 (45 40| 39 | 3836 | 3532 2411 23 20 19 18 17 16 150

Table 7.37. Advanced Transmit Data Descriptor Write-back Format

0 RSV
8 RSV STA RSV
63 36 35 32 31 [0}

General Rule for all Fields

When a packet spreads over multiple descriptors, all of the descriptor fields are valid only on the first
descriptor of the packet, except for RS and EOP bits, which are set on the last descriptor of the packet.

Address (64)

This field holds the physical address of a data buffer in host memory, which contains a portion of a
transmit packet. This field is meaningful in all descriptors.

DTALEN (16)

This field holds the length in bytes of data buffer at the address pointed to by this specific descriptor.
This field is meaningful in all descriptors. The maximum length is 15.5 KB with no limitations on the
minimum size. Refer to the comment on descriptors with zero length described in the sections that
follow.

RSV(2)
Reserved

MAC (2) — see the following. This field is meaningful on the first descriptor of the packet(s).

= ILSec (bit 0) — Apply LinkSec on packet. When set, hardware includes the LinkSec header
(SecTAG) and LinkSec header digest (signature). The LinkSec processing is defined by the Enable
Tx LinkSec field in the LSECTXCTRL register. The ILSec bit in the packet descriptor should not be set
if LinkSec processing is not enabled by the Enable Tx LinkSec field. If the ILSec bit is set
erroneously while the Enable Tx LinkSec field is set to 00b, then the packet is dropped.

= 1588 (bit 1) — IEEE1588 time stamp packet.
DTYP (4)
0011b for advanced data descriptor. DTYP should be valid in all descriptors of the packet(s).

DCMD (8) — see the following:

= TSE (bit 7) — Transmit Segmentation Enable - This bit indicates a TCP or FCOE segmentation
request. When TSE is set in the first descriptor of a TCP or FCoE packet, hardware must use the
corresponding context descriptor in order to perform segmentation.

289

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Note: It is recommended that HLREGO.TXPADEN be enabled when TSE is used since the last frame
can be shorter than 60 bytes — resulting in a bad frame.

« VLE (bit 6) — VLAN Packet Enable - This bit indicates that the packet is a VLAN packet (hardware
must add the VLAN Ethertype and an 802.1q VLAN tag to the packet).

« DEXT (bit 5) — Descriptor Extension - This bit must be one to indicate advanced descriptor format
(as opposed to legacy).

e Rsv (bit 4) — Reserved

» RS (bit 3) — Report Status: See the description in the legacy transmit descriptor in
Section 7.2.3.2.2.

* Rsv (bit 2) — Reserved

 IFCS (bit 1) — Insert FCS - When this bit is set, the hardware appends the MAC FCS at the end of
the packet. When cleared, software should calculate the FCS for proper CRC check. There are
several cases in which software must set IFCS as follows:

— Transmitting a short packet while padding is enabled by the HLREGO.TXPADEN bit.

— Checksum offload is enabled by the either IC, TXSM or IXSM bits in the TDESC.DCMD.
— VLAN header insertion enabled by the VLE bit in the TDESC.DCMD.

— FC CRC (FCoE) offload is enabled by the FCoE bit in the transmit context descriptor.
— TCP or FCoE segmentation offload enabled by the TSE bit in the TDESC.DCMD.

e EOP (bit 0) — End of Packet - A packet might be composed of multiple buffers (each of them is
indicated by its own descriptor). When EOP is set, it indicates the last descriptor making up the
packet. In transmit segmentation (explained later on in this section) the EOP flag indicates the last
descriptor of the last packet of the segmented transmission.

Note: TSE, VLE and IFCS fields should be set in the first descriptor of the packet(s). The RS bit can
be set only on the last descriptor of the packet. The EOP bit is valid in all descriptors. The
DEXT bit must be set to 1b for all descriptors.

Descriptors with zero length, transfer no data. If the RS bit in the command byte is set, then
the DD field in the status word is not written when hardware processes them.
STA (4)
e Rsv (bit 3:1) — Reserved

e DD (bit 0) — Descriptor Done: The DD bit provides a status indication that the DMA of the buffer
has completed. Software might re-use descriptors with the DD bit set, and any other descriptors
processed by hardware before this one. In TSO, the buffers that include the TSO header are used
multiple times during transmission and special considerations should be made as described in
Section 7.2.4.2.2.

IDX (3)

This field holds the index into the hardware context table to indicate which of the two per-queue
contexts should be used for this request. If no offload is required and the CC bit is cleared, this field is
not relevant and no context needs to be initiated before the packet is sent. See Table 7.35 for details of
which packets requires a context reference. This field is relevant only on the first descriptor of the
packet(s).

cC (1)

Check Context bit — When set, a Tx context descriptor indicated by IDX index should be used for this
packet(s). The CC bit should be set in the following cases:

1. Non-zero BCNTLEN field is required (defined in the context descriptor).

2. Any FCoE offload is required.

290

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

3. Tx switching is enabled in IOV mode.
POPTS (6)

This field is relevant only on the first descriptor of the packet(s).
* Rsv (bits 5:3) — Reserved
= IPSEC (bit 2) — Ipsec offload request.

e TXSM (bit 1) — Insert TCP/UDP Checksum: When set to 1b, the L4 checksum must be inserted. In
this case, TUCMD.LP4 indicates whether the checksum is TCP or UDP or SCTP. When DCMD.TSE is
set, TXSM must be set to as well. If this bit is set, the packet should at least contain an L4 header.

* IXSM (bit 0) — Insert IP Checksum: This field indicates that IP checksum must be inserted. In IPv6
mode, it must be reset to Ob. If DCMD.TSE and TUCMD.IPV4 are set, IXSM must be set as well. If
this bit is set, the packet should at least contain an IP header.

PAYLEN (18)

PAYLEN indicates the size (in byte units) of the data buffer(s) in host memory for transmission. In a
single-send packet, PAYLEN defines the entire packet size fetched from host memory. It does not
include the fields that hardware adds such as: optional VLAN tagging, Ethernet CRC or Ethernet
padding. When LinkSec offload is enabled, the PAYLEN field does not include the LinkSec encapsulation.
When IPsec offload is enabled, the PAYLEN field does not include the ESP trailer added by hardware. In
TSO (regardless if it is transmitted on a single or multiple packets), the PAYLEN defines the protocol
payload size fetched from host memory. In TCP or UDP segmentation offload, PAYLEN defines the TCP/
UDP payload size. In FCoE offload (single send and segmentation), the PAYLEN field defines the FC
payload size. It includes the FC option headers (if present) and the FC data payload but excludes the
FCoE trailer containing the FC CRC and EOF.

This field is relevant only on the first descriptor of the packet(s). The minimum transmitted packet size
excluding VLAN padding and CRC bytes is 17 and the PAYLEN size should meet this limitation. On a
single-packet send, the maximum size of the PAYLEN is dictated by the maximum allowed packet size
which is 15.5 KB. On TSO, the maximum PAYLEN can be up to 218-1.

7.2.3.3 Transmit Descriptor Ring

The transmit descriptor ring structure (shown in Figure 7.20) uses a contiguous memory space. A set of
four registers (described later in this section) maintain the transmit descriptor ring in the host memory.
Hardware maintains internal circular queues of 40 descriptors per queue to hold the descriptors that
were fetched from the software ring.

Descriptors handled to hardware should not be manipulated by software until hardware completes its
processing. It is indicated by advancing the head pointer beyond these descriptors.

291

®
n tel > Intel® 82599 10 GbE Controller — Inline Functions

Base -~
. descriptor currently
Descriptors processed by HW
Head — Owned by SW —
> -
Transmit |- Descriptors | Last descriptor
Queue | Owned by HW | added by SW
| A B
Tail L |
| Descriptors _|
| Owned by SW |
Base + Length

\J

Figure 7.20. Transmit Descriptor Ring Structure

The transmit descriptor ring is defined by the following registers:

292

Transmit Descriptor Base Address register (TDBA 0-127) — This register indicates the start address
of the descriptor ring buffer in the host memory; this 64-bit address is aligned on a 16-byte
boundary and is stored in two consecutive 32-bit registers. Hardware ignores the lower four bits.

Transmit Descriptor Length register (TDLEN 0-127) — This register determines the number of bytes
allocated to the circular buffer. This value must be 0 modulo 128.

Transmit Descriptor Head register (TDH 0-127) — This register holds a value that is an offset from
the base and indicates the in-progress descriptor. There can be up to 64 K minus 8 descriptors in
the circular buffer. The transmit queue consists of the descriptors between the head and tail
pointers. Transmission starts with the descriptor pointer by the head registers. When the DMA
engine processes a descriptor, it might optionally write back the completed descriptor and then
advance the head pointer. It then processes the next descriptor up to the point that the head
pointer reaches the tail. Head equals tail means that the transmit queue in host memory is empty.
Reading this register indicates the hardware progress to the software. All descriptors behind the
head pointer and in front of tail register are owned by the software. The other descriptors are
owned by the hardware and should not be modified by the software.

Transmit Descriptor Tail register (TDT 0-127) — This register holds a value, which is an offset from
the base, and indicates the location beyond the last descriptor hardware can process. Software
adds new descriptors to the ring by writing descriptors in the circular buffer pointed by the tail
pointer. The new descriptor(s) are indicated to hardware by updating the tail pointer one descriptor
above the last added descriptor. Note that a single packet or TSO might be composed of multiple
descriptors. The transmit tail pointer should never point to the middle of a packet or TSO, which
might cause undesired software/hardware races.

— For testability purpose only: If the tail pointer is larger then the ring length, then the 82599
reads the descriptor ring in an endless loop until the queue is disabled. Prior to setting such a
tail pointer value, it is required to initialize all the descriptors of the ring.

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

Software might detect which packets have already been processed by hardware using the following:

= Read the TDH head register to determine which packets (those logically before the head) have been
transferred to the on-chip FIFO or transmitted. This method is not recommended as races between
the internal update of the head register and the actual write back of descriptors can occur.

= When head write back is enabled (TDWBAL[n].Head_WB_En = 1b) software might read the image
of the head pointer in host memory at the address defined by TDWBAH[Nn]/TDWBAL[N] pair.
Hardware updates the head image in host memory by completed descriptors as described in
Section 7.2.3.5.2.

= When head write back is not enabled (TDWBAL[n].Head_WB_En = 0b), software might track the
DD bits in the descriptor ring. Descriptor write back is controlled by the RS bit and the WTHRESH
setting as well as interrupt assertion.

= Issue an interrupt. An interrupt condition is generated each time a packet was transmitted or
received and a descriptor was write back or transmit queue goes empty (EICR.RTxQ[0-19]). This
interrupt can either be enabled or masked.

All of the registers controlling the descriptor rings behavior should be set before transmit is enabled.

7.2.3.4 Transmit Descriptor Fetching

The 82599 fetches new descriptors as required for packet transmission depending on its on-die
descriptor buffer state:
Fetch — The on-chip descriptor buffer is empty or contains less descriptors than a complete packet.
= A fetch starts as soon as any descriptors are made available (host writes to the tail pointer).
= A request is issued for any available descriptors up to the size of the on-die buffer.

= Once the sum of on-die descriptors and requested descriptors is more than required for a single
packet, the buffer transitions to the pre-fetch state.

= If several on-chip descriptor queues are empty simultaneously, queues are served in round robin
arbitration except the queues indicated as strict priority which are served first.

Pre-Fetch — The on-chip descriptor buffer becomes almost empty while there are enough descriptors
in the host memory.

= The on-chip descriptor buffer is defined as almost empty if it contains less descriptors then the
threshold defined by TXDCTL[n].PTHRESH

= The transmit descriptor contains enough descriptors if it includes more ready descriptors than the
threshold defined by TXDCTL[n].HTHRESH

= In pre-fetch mode descriptors are fetched only after there are no other DMA activity of greater
priority as: transmit descriptor fetch; status write-backs or packet data transfers)

= Arequest is issued for any available descriptors up to the capacity of the on-die buffer.

= If several on-chip descriptor queues are in this situation simultaneously, queues are served in round
robin arbitration except the queues indicated as strict priority which are served first.

Idle — Requests are not issued. This is the state reached when none of the previous states apply.

Note: Software must update the Tail register on packet boundaries. That is, the last valid descriptor
might not be a context descriptor and must have the EOP bit set.

7.2.3.4.1 Transmit Descriptor Fetch and Write-back Settings

This section describes the settings of transmit descriptor thresholds. It relates to fetch thresholds
described above as well as the write-back threshold (WTHRESH) when operating in descriptor write-
back mode which is described in Section 7.2.3.5.1.

293

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

= Transmit descriptor fetch setting is programmed in the TXDCTL[n] register per queue. The default
settings of PTHRESH, HTHRESH and WTHRESH are zero’s.

< In order to reduce transmission latency, it is recommended to set the PTHRESH value as high as
possible while the HTHRESH and WTHRESH as low as possible (down to zero).

« In order to minimize PCle overhead the PTHRESH should be set as low as possible while HTHRESH
and WTHRESH should be set as high as possible.

e The sum of PTHRESH plus WTHRESH must not be greater than the on-chip descriptor buffer size
= Some practical rules

— CPU cache line optimization: Assume ‘N’ equals the CPU cache line divided by 16 (descriptor
size). Then, in order to align descriptors pre-fetch to CPU cache line (in most cases), it is
advised to set PTHRESH to the on-chip descriptor buffer size minus ‘N’ and HTHRESH to ‘N’. In
order to align descriptor write back to the CPU cache line it is advised to set WTHRESH to either
'N' or even 2 times 'N'. Note that partial cache line writes might significantly degrade
performance. Therefore, it is highly recommended to follow this advice.

— Minimizing PCle overhead: As an example, setting PTHRESH to the on-chip descriptor buffer
size minus 16 and HTHRESH to 16 minimizes the PCle request and header overhead to ~20%
of the bandwidth required for the descriptor fetch.

— Minimizing transmission latency from tail update: Setting PTHRESH to the on-chip descriptor
buffer size minus ‘N’ (‘N’ previously defined) while HTHRESH and WTHRESH to zero.

— Threshold settings in DCB mode: Note that only values of PTHRESH equals on-chip descriptor
buffer size minus 8 and HTHRESH equals 4 were thoroughly tested.

Note: As previously described, device setting is a trade off between overhead (translated to
performance) and latencies. It is expected that some level of optimization is done at software
driver development phase. Customers who want better performance might need to adjust the
threshold values according to the previous guidelines while optimizing to specific platform
and targets.

7.2.3.5 Transmit Write Back
The 82599 periodically updates software on its progress in processing transmit buffers. Two methods
are described for doing so:

- Updating by writing back into the Tx descriptor
- Update by writing to the head pointer in system memory

7.2.3.5.1 Tx Descriptor Write Back

When the TXDCTL[n].WTHRESH equals zero, descriptors are written back for those descriptors with the
RS bit set. When the TXDCTL[n].WTHRESH value is greater than zero, descriptors are accumulated until
the number of accumulated descriptors equals the TXDCTL[n].WTHRESH value, then these descriptors
are written back. Accumulated descriptor write back enables better use of the PCle bus and memory
bandwidth.

Any descriptor write back includes the full 16 bytes of the descriptor.

Descriptors are written back in one of three cases:
e TXDCTL[n].WTHRESH = 0 and a descriptor that has RS set is ready to be written back.
e TXDCTL[Nn].WTHRESH > 0 and TXDCTL[n].WTHRESH descriptors have accumulated.

e TXDCTL[n].WTHRESH > 0 and the corresponding EITR counter has reached zero. The timer
expiration flushes any accumulated descriptors and sets an interrupt event (TXDW).

294

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

An additional mode in which transmit descriptors are not written back at all and the head pointer of the
descriptor ring is written instead is described in the following section.

7.2.3.5.2 Tx Head Pointer Write Back

In legacy hardware, transmit requests are completed by writing the DD bit to the transmit descriptor
ring. This causes cache thrash since both the driver and hardware are writing to the descriptor ring in
host memory. Instead of writing the DD bits to signal that a transmit request is complete, hardware can
write the contents of the descriptor queue head to host memory. The driver reads that memory location
to determine which transmit requests are complete. In order to improve the performance of this
feature, the driver needs to program DCA registers to configure which CPU will be processing each TX
queue.

The head pointer is reflected in a memory location that is allocated by software for each queue.

Rules for head pointer write back:

= Head write back occurs if TDWBAL[n].Head_WB_En is set for this queue, and the RS bit is set in the
Tx descriptor, following its corresponding data upload into packet buffer.

— If the head write-back feature is enabled, software must set WTHRESH to Ox0 while only
descriptors with the RS bit set, generate header write back.

— Note that the head pointer write back does not hold transmission. Instead, if packets with the
RS bit are transmitted fast enough, it might happen that the header pointer write back is not
updated for each and every packet. In addition, it might happen that the head pointer write
back might be updated up to descriptors that do not have the RS bit set. In such cases,
hardware might report a completion of a descriptor that might not be the last descriptor in a
TSO or even the last descriptor in a single packet.

The driver has control of this feature per queue through the TDWBAL and TDWBAH registers.

The low register's LSB hold the control bits.

= The Head_WB_EN bit enables activation of tail write back. In this case, no descriptor write back is
executed.

= The 30 upper bits of this register hold the lowest 32 bits of the head write-back address, assuming
that the two last bits are zero.

The high register holds the high part of the 64-bit address.

Note: Hardware writes a full Dword when writing this value, so software should reserve enough
space for each head value and make sure the TDBAL value is Dword-aligned.

7.2.4 TCP and UDP Segmentation

Hardware TCP segmentation is one of the offloading options supported by the Windows* and Linux*
TCP/IP stack. This is often referred to as Large Send offloading or TSO. This feature enables the TCP/IP
stack to pass to the network device driver a message to be transmitted that is bigger than the
Maximum Transmission Unit (MTU) of the medium. It is then the responsibility of the device driver and
hardware to divide the TCP message into MTU size frames that have appropriate layer 2 (Ethernet), 3
(IP), and 4 (TCP) headers. These headers must include sequence number, checksum fields, options and
flag values as required. Note that some of these values (such as the checksum values) are unique for
each packet of the TCP message, and other fields such as the source IP address is constant for all
packets associated with the TCP message.

Similar to TCP segmentation, the 82599 also provides a capability to offload UDP segmentation. Note
that current UDP segmentation offload is not supported by any standard OS.

295

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Note: CRC appending (HLREGO.TXCRCEN) must be enabled in TCP / UDP segmentation mode
because CRC is inserted by hardware.

Padding (HLREGO.TXPADEN) must be enabled in TCP / UDP segmentation mode, since the
last frame might be shorter than 60 bytes — resulting in a bad frame if TXPADEN is disabled.

The offloading of these mechanisms to the device driver and the 82599 saves significant CPU cycles.
The device driver shares the additional tasks to support these options with the 82599.

7.2.4.1 Assumptions and Restrictions

The following assumptions apply to the TCP / UDP segmentation implementation in the 82599:

< To limit the internal cache dimensions, software is required to spread the header onto a maximum
four descriptors, while still allowed to mix header and data in the last header buffer. This limitation
stands for up to Layer 4 header included, and for IPv4 or IPv6 independently.

= The maximum size of a single TSO can be as large as defined by the PAYLEN field in the Tx data
descriptor (such as up to 256 KB).

= The RS bit operation is not changed. Interrupts are set after data in the buffers pointed to by
individual descriptors is transferred (DMA'ed) to hardware.

< SNAP packets are supported for segmentation with the following restriction. The location of the
802.3 length field in 802.3+SNAP packets is at MACLEN minus eight bytes (MACLEN is indicated in
the context descriptor).

« IP tunneled packets are not supported for offloading under TSO operation.

« Software must enable the Ethernet CRC offload in the HLREGO.TXCRCEN register since CRC must
be inserted by hardware after the checksum has been calculated.

- Software must initialize the appropriate checksum fields in the packet’s header.

7.2.4.2 Transmission Process

The transmission process involves the following:
= The protocol stack receives from an application a block of data that is to be transmitted.

= The protocol stack calculates the number of packets required to transmit this block based on the
MTU size of the media and required packet headers.

= The stack interfaces with the device driver and passes the block down with the appropriate header
information: Ethernet, IP, optional IPSec and TCP / UDP headers.

« The stack interfaces with the device driver and commands the driver to send the individual packet.
The device driver sets up the interface to the hardware (via descriptors) for the TCP / UDP
segmentation.

296

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

= The hardware transfers (DMA's) the packet data and performs the Ethernet packet segmentation
and transmission based on offset and payload length parameters in the TCP/IP or UDP/IP context
descriptor including:

— Packet encapsulation
— Header generation and field updates including 1Pv4/1Pv6 and TCP/UDP checksum generation.

= The driver returns ownership of the block of data to the NOS when the hardware has completed the
DMA transfer of the entire data block.

7.2.4.2.1 TCP and UDP Segmentation Data Fetch Control

To perform TCP / UDP segmentation in the 82599, the DMA must be able to fit at least one packet of the
segmented payload into available space in the on-chip packet buffer. The DMA does various
comparisons between the remaining payload and the packet buffer available space, fetching additional
payload and sending additional packets as space permits.

The 82599 enables interleaving between different TSO requests at an Ethernet packet level. In other
words, the 82599 might fetch part of a TSO from a queue, equivalent to one or more Ethernet packets,
then transition to another queue and fetch the equivalent of one or more packets (TSO or not), then
move to another queue (or the first queue), etc. The 82599 decides on the order of data fetched based
on its QoS requirements (such as bandwidth allocation and priority).

In order to enable interleaving between descriptor queues at the Ethernet frame resolution inside TSO
requests, the frame header pointed by the so called header descriptors are re-read from system
memory for every TSO segment (once per packet), storing in an internal cache only the header’s
descriptors instead of the header’s content.

— Since the header buffers are read multiple times, it is guaranteed on most platforms that by the
second read, the data does not reside in the CPU caches any more. In that case, it is possible to
avoid snooping the CPU cache during subsequent accesses to the same buffer.

7.2.4.2.2 TCP and UDP Segmentation Write-back Modes

TCP / UDP segmentation mode uses the buffers that contain the header of the packet multiple times
(once for each transmitted segment). Software should guarantee that the header buffers are available
throughout the entire TSO transmission. Therefore, software should not re-use any descriptors of the
TSO header during the TSO transmission.

7.2.4.3 TCP and UDP Segmentation Performance

Performance improvements for a hardware implementation of TCP / UDP segmentation offload include:
= The stack does not need to partition the block to fit the MTU size, saving CPU cycles.
= The stack only computes one Ethernet, IP, and TCP / UDP header per segment, saving CPU cycles.
= The stack interfaces with the device driver only once per block transfer, instead of once per frame.
= Larger PCI bursts are used, which improves bus efficiency (such as lowering transaction overhead).
= Interrupts are easily reduced to one per TCP / UDP message instead of one per packet.
= Fewer 1/0 accesses are required to command the hardware.

7.2.4.4 Packet Format

Typical TCP/IP transmit window size is 8760 bytes (about six full size frames). Today the average size
on corporate Intranets is 12-14 KB, and normally the maximum window size allowed is 64 KB (unless
Windows Scaling — RFC 1323 is specified). A TCP / UDP message can be as large as 256 KB and is

297

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

generally fragmented across multiple pages in host memory. The 82599 partitions the data packet into
standard Ethernet frames prior to transmission. The 82599 supports calculating the Ethernet, IP, TCP,
and even UDP headers, include checksum, on a frame-by-frame basis.

Table 7.38. TCP/IP and UDP/IP Packet Format Sent by Host

Pseudo Header Data

Ethernet 1Pv4/1PVv6 TCP/UDP DATA (full TCP message)

Table 7.39. Packets Format Sent by Device

Pseudo Header Data (first Pseudo Header Data (Next

(updated) MSS) FCS (updated) MSS) FCs

Frame formats supported by the 82599 include:
« Ethernet 802.3
e IEEE 802.1Q VLAN (Ethernet 802.3ac)
- Ethernet Type 2
 Ethernet SNAP
= IPv4 headers with options
* IPv4 headers without options with one AH/ESP IPsec header
« IPv6 headers with extensions
= TCP with options
- UDP with options

VLAN tag insertion is handled by hardware.

Note: UDP (unlike TCP) is not a reliable protocol and fragmentation is not supported at the UDP
level. UDP messages that are larger than the MTU size of the given network medium are
normally fragmented at the IP layer. This is different from TCP, where large TCP messages
can be fragmented at either the IP or TCP layers depending on the software implementation.
The 82599 has the ability to segment UDP traffic (in addition to TCP traffic); however,
because UDP packets are generally fragmented at the IP layer, the 82599's segmentation
capability might not be used in practice for UDP.

7.2.4.5 TCP and UDP Segmentation Indication

Software indicates a TCP / UDP segmentation transmission context to the hardware by setting up a
TCP/IP or UDP/IP context transmit descriptor (see Section 7.2.3). The purpose of this descriptor is to
provide information to the hardware to be used during the TCP / UDP segmentation offload process.

Setting the TSE bit in the DCMD field to one (in the data descriptor) indicates that this descriptor refers
to the segmentation context (as opposed to the normal checksum offloading context). This causes the
checksum offloading, packet length, header length, and maximum segment size parameters to be
loaded from the descriptor into the device.

The TCP / UDP segmentation prototype header is taken from the packet data itself. Software must
identity the type of packet that is being sent (IPv4/1Pv6, TCP/UDP, other), calculate appropriate
checksum off loading values for the desired checksums, and then calculate the length of the header
that is prepended. The header can be up to 240 bytes in length.

298

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

Once the TCP / UDP segmentation context has been set, the next descriptor provides the initial data to
transfer. This first descriptor(s) must point to a packet of the type indicated. Furthermore, the data it
points to might need to be modified by software as it serves as the prototype header for all packets
within the TCP / UDP segmentation context. The following sections describe the supported packet types
and the various updates that are performed by hardware. This should be used as a guide to determine
what must be modified in the original packet header to make it a suitable prototype header.

The following summarizes the fields considered by the driver for modification in constructing the
prototype header.

IP Header

For IPv4 headers:
= ldentification field should be set as appropriate for first packet of send (if not already).
= Header checksum should be zeroed out unless some adjustment is needed by the driver.

TCP Header
= Sequence number should be set as appropriate for first packet of send (if not already).

= PSH, and FIN flags should be set as appropriate for LAST packet of send.

= TCP checksum should be set to the partial pseudo-header checksum as follows (there is a more
detailed discussion of this in Section 7.2.4.6:

Table 7.40. TCP Partial Pseudo-header Checksum for 1Pv4

IP Source Address

IP Destination Address

Zero Layer 4 Protocol ID Zero

Table 7.41. TCP Partial Pseudo-header Checksum for IPv6

IPv6 Source Address

IPv6 Final Destination Address

Zero

Zero Next Header

UDP Header

= Checksum should be set as in TCP header, as previously explained.
The following sections describe the updating process performed by the hardware for each frame sent
using the TCP segmentation capability.
7.2.4.6 Transmit Checksum Offloading with TCP and UDP Segmentation

The 82599 supports checksum offloading as a component of the TCP / UDP segmentation off-load
feature and as stand-alone capability. Section 7.2.5 describes the interface for controlling the checksum
off-loading feature. This section describes the feature as it relates to TCP / UDP segmentation.

The 82599 supports IP and TCP header options in the checksum computation for packets that are
derived from the TCP segmentation feature.

299

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Two specific types of checksum are supported by the hardware in the context of the TCP / UDP
segmentation off-load feature:

e IPv4 checksum
e TCP / UDP checksum

Each packet that is sent via the TCP / UDP segmentation off-load feature optionally includes the IPv4
checksum and/or the TCP / UDP checksum.

All checksum calculations use a 16-bit wide one's complement checksum. The checksum word is
calculated on the outgoing data.

Table 7.42. Supported Transmit Checksum Capabilities

Packet Type HW IP Checksum Calculation HW TCP / UDP Checksum Calculation

IPv4 packets Yes Yes
IPv6 packets NA Yes
(no IP checksum in IPpv6)
Packet has 802.3ac tag Yes Yes
Packet has IP options

. Yes Yes
(IP header is longer than 20 bytes)
Packet has TCP options Yes Yes
IP header’s protocol field contains a protocol # Yes No
other than TCP or UDP

7.2.4.7 IP/TCP / UDP Header Updating

IP/TCP and IP/UDP header is updated for each outgoing frame based on the header prototype that
hardware DMA's from the first descriptor(s). The checksum fields and other header information are
later updated on a frame-by-frame basis. The updating process is performed concurrently with the
packet data fetch.

The following sections define what fields are modified by hardware during the TCP / UDP segmentation
process by the 82599.

7.2.4.7.1 TCP/IP/UDP Header for the First Frame

The hardware makes the following changes to the headers of the first packet that is derived from each
TCP segmentation context.

MAC Header (for SNAP)

* Type/Len field = MSS + MACLEN + IPLEN + L4LEN — 14
IPv4 Header

e IP Total Length = MSS + L4LEN + IPLEN

« Calculates the IP Checksum
IPv6 Header

- Payload Length = MSS + L4LEN + IPV6_HDR_extensiont

1. IPV6_HDR_extension is calculated as IPLEN — 40 bytes.

300

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

TCP Header
= Sequence Number: The value is the sequence number of the first TCP byte in this frame.

= The flag values of the first frame are set by logic AND function between the flag word in the pseudo
header and the DTXTCPFLGL.TCP_flg_first_seg. The default values of the
DTXTCPFLGL.TCP_flg_first_seg are set. The flags in a TSO that ends up as a single segment are
taken from the in the pseudo header in the Tx data buffers as is.

e Calculates the TCP checksum.
UDP Header

e Calculates the UDP checksum.

7.2.4.7.2 TCP/IP Header for the Subsequent Frames

The hardware makes the following changes to the headers for subsequent packets that are derived as
part of a TCP segmentation context:

Number of bytes left for transmission = PAYLEN — (N * MSS). Where N is the number of frames that
have been transmitted.

MAC Header (for SNAP packets)
Type/Len field = MSS + MACLEN + IPLEN + L4ALEN — 14

IPv4 Header
= |IP ldentification: incremented from last value (wrap around)
« |IP Total Length = MSS + L4LEN + IPLEN
= Calculate the IP Checksum
IPv6 Header
= Payload Length = MSS + L4LEN + IPV6_HDR_extension’

TCP Header

= Sequence Number update: Add previous TCP payload size to the previous sequence number value.
This is equivalent to adding the MSS to the previous sequence number.

* The flag values of the subsequent frames are set by logic AND function between the flag word in the
pseudo header with the DTXTCPFLGL.TCP_FIg_mid_seg. The default values of the
DTXTCPFLGL.TCP_FIlg_mid_seg are set.

e Calculate the TCP checksum

UDP Header

« Calculates the UDP checksum.

301

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.2.4.7.3 TCP/IP Header for the Last Frame

Hardware makes the following changes to the headers for the last frame of a TCP segmentation
context:

Last frame payload bytes = PAYLEN — (N * MSS).

MAC Header (for SNAP packets)
« Type/Len field = Last frame payload bytes + MACLEN + IPLEN + LALEN — 14

IPv4 Header
< |IP Total length = last frame payload bytes + L4LEN + IPLEN
< |IP identification: incremented from last value (wrap around based on 16-bit width)
= Calculate the IP checksum

IPv6 Header
- Payload length = last frame payload bytes + LALEN + IPV6_HDR_extension®

TCP Header

= Sequence number update: Add previous TCP payload size to the previous sequence number value.
This is equivalent to adding the MSS to the previous sequence number.

= The flag values of the last frames are set by logic AND function between the flag word in the pseudo
header and the DTXTCPFLGH.TCP_FIg_Ist_seg. The default values of the
DTXTCPFLGH.TCP_FIg_Ist_seg are set. The flags in a TSO that ends up as a single segment are
taken from the in the pseudo header in the Tx data buffers as is.

e Calculate the TCP checksum

UDP Header

e Calculates the UDP checksum.

7.2.5 Transmit Checksum Offloading in Non-segmentation Mode

The previous section on TCP / UDP segmentation offload describes the IP/TCP/UDP checksum offloading
mechanism used in conjunction with segmentation. The same underlying mechanism can also be
applied as a stand-alone checksum offloading. The main difference in a single packet send is that only
the checksum fields in the IP/TCP/UDP headers are calculated and updated by hardware.

Before taking advantage of the 82599's enhanced checksum offload capability, a checksum context
must be initialized. For a single packet send, DCMD.TSE should be set to zero (in the data descriptor).
For additional details on contexts, refer to Section 7.2.3.3.

Enabling checksum offload, software must also enable Ethernet CRC offload by the HLREGO.TXCRCEN
since CRC must be inserted by hardware after the checksum has been calculated.

As mentioned in Section 7.2.3, transmit descriptors, it is not necessary to set a new context for each
new packet. In many cases, the same checksum context can be used for a majority of the packet
stream. In this case, some performance can be gained by only changing the context on an as needed
basis or electing to use the off-load feature only for a particular traffic type, thereby avoiding all context
descriptors except for the initial one.

Each checksum operates independently. Insertion of the IP and TCP / UDP checksum for each packet
are enabled through the transmit data descriptor POPTS.TXSM and POPTS.IXSM fields, respectively.

302

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.2.5.1 IP Checksum

Three fields in the transmit context descriptor set the context of the IP checksum offloading feature:

= TUCMD.IPV4
= IPLEN
= MACLEN

TUCMD.IPV4=1 specifies that the packet type for this context is IPv4, and that the IP header checksum
should be inserted. TUCMD.IPV4=0 indicates that the packet type is IPv6 (or some other protocol) and
that the IP header checksum should not be inserted.

MACLEN specifies the byte offset from the start of the DMA'ed data to the first byte to be included in
the checksum, the start of the IP header. The minimal allowed value for this field is 14. Note that the
maximum value for this field is 127. This is adequate for typical applications.

Note: The MACLEN+IPLEN value must be less than the total DMA length for a packet. If this is not
the case, the results are unpredictable.

IPLEN specifies the IP header length. Maximum allowed value for this field is 511 bytes.

MACLEN+IPLEN specify where the IP checksum should stop. The sum of MACLEN+IPLEN must be
smaller equals to the first 638 (127+511) bytes of the packet and obviously must be smaller or equal to
the total length of a given packet. If this is not the case, the result is unpredictable.

Note: For IPsec packets offloaded by hardware in Tx, it is assumed that IPLEN provided by software
in the Tx context descriptor is the sum of the IP header length and the IPsec header length.
Thus, for the IPv4 header checksum offload, hardware could no longer rely on the IPLEN field
provided by software in the Tx context descriptor, but should rely on the fact that no IPv4
options is present in the packet. Consequently, for IPsec offload packets, hardware computes
IP header checksum over a fixed amount of 20 bytes.

For IP tunnel packets (IPv4-1Pv6), IPLEN must be defined as the length of the two IP headers.
Hardware is able to offload the L4 checksum calculation while software should provide the IPv4
checksum.

The 16-bit IPv4 header checksum is placed at the two bytes starting at MACLEN+10.

As mentioned in Section 7.2.3.2.3, transmit contexts, it is not necessary to set a new context for each
new packet. In many cases, the same checksum context can be used for a majority of the packet
stream. In this case, some performance can be gained by only changing the context on an as needed
basis or electing to use the off-load feature only for a particular traffic type, thereby avoiding all context
descriptors except for the initial one.

7.2.5.2 TCP and UDP Checksum
Three fields in the transmit context descriptor set the context of the TCP / UDP checksum offloading
feature:
< MACLEN
e IPLEN
e TUCMD.L4T
TUCMD.L4T=01b specifies that the packet type is TCP, and that the 16-bit TCP header checksum should

be inserted at byte offset MACLEN+IPLEN+16. TUCMD.L4T=00b indicates that the packet is UDP and
that the 16-bit checksum should be inserted starting at byte offset MACLEN+IPLEN+6.

303

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

MACLEN+IPLEN specifies the byte offset from the start of the DMA'ed data to the first byte to be
included in the checksum, the start of the UDP/TCP header. See MACLEN table in Section 7.2.3.2.3 for
its relevant values.

Note: The MACLEN-+IPLEN+L4LEN value must be less than the total DMA length for a packet. If this
is not the case, the results are unpredictable.

The TCP/UDP checksum always continues to the last byte of the DMA data.

Note: For non-TSO, software still needs to calculate a full checksum for the TCP/UDP pseudo-
header. This checksum of the pseudo-header should be placed in the packet data buffer at the
appropriate offset for the checksum calculation.

7.2.5.3 SCTP Transmit Offload
For SCTP packets, a CRC32 checksum offload is provided.

Three fields in the transmit context descriptor set the context of the STCP checksum offloading feature:
e MACLEN
= IPLEN
e TUCMD.LAT

TUCMD.L4T=10b specifies that the packet type is SCTP, and that the 32-bit STCP CRC should be
inserted at byte offset MACLEN+IPLEN+8.

IPLEN+MACLEN specifies the byte offset from the start of the DMA'ed data to the first byte to be
included in the checksum, the start of the STCP header. The minimal allowed value for this sum is 26.

The SCTP CRC calculation always continues to the last byte of the DMA data.

The SCTP total L3 payload size (PAYLEN - IPLEN - MACLEN) should be a multiple of four bytes (SCTP
padding not supported).

Note: TSO is not available for SCTP packets.
Software must initialize the SCTP CRC field to zero (0x00000000).

7.2.5.4 Checksum Supported per Packet Types

The following table lists which checksums are supported per packet type.

Note: TSO is not supported for packet types for which IP checksum and TCP / UDP checksum cannot
be calculated.

304

Inline Functions — Intel® 82599 10 GbE Controller

Table 7.43. Checksums Supported by Packet Type

intel.

Packet Type

HW IP Checksum Calculation

HW TCP/UDP/SCTP Checksum
Calculation

IPv4 packets Yes Yes
IPv6 packets No (n/a) Yes
IPv6 packet with next header options:
= Hop-by-hop options No (n/a) Yes
« Destinations options No (n/a) Yes
= Routing (with len 0) No (n/a) Yes
* Routing (with len >0) No (n/a) No
= Fragment No (n/a) No
= Home option No (n/a) No
* Security option (AH/ESP) No (n/a) Yes
IPv4 tunnels:
* Ipv4 packet in an IPv4 tunnel No No
* Ipv6 packet in an IPv4 tunnel No Yes
IPv6 tunnels:
* |IPv4 packet in an IPv6 tunnel No No
= IPv6 packet in an IPv6 tunnel No No
Packet is an IPv4 fragment Yes No
Packet has 802.3ac tag Yes Yes
IPv4 packet has IP options and no IPSec header (IP Yes Yes
header is longer than 20 bytes)
IPv4 packet has IPSec header without IP options Yes Yes
Packet has TCP or UDP options Yes Yes
IP header’s protocol field contains protocol # other Yes No

than TCP or UDP

305

"] ®
I n tel Intel® 82599 10 GbE Controller — Inline Functions

Note: This page intentionally left blank

306

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

7.3 Interrupts

The 82599 supports the following interrupt modes. Mapping of interrupts causes is different in each of
these modes as described in this section.

« PCI legacy interrupts or MSI or MSI-X and only a single vector is allocated — selected when
GPIE.Multiple_MSIX is set to Ob.

= MSI-X with multiple MSI-X vectors in non-10OV mode — selected when GPIE.Multiple_MSIX is set to
1b and GPIE.VT_Mode is set to 00b.

= MSI-X in IOV mode — selected when GPIE.Multiple_MSIX is set (as previously stated) and
GPIE.VT_Mode DOES NOT equal 0Ob.

The following sections describe the interrupt registers and device functionality at all operation modes.

7.3.1 Interrupt Registers
Physical Function (PF) Registers

The PF interrupt logic consists of the registers listed in the Table 7.44 followed by their description:

Table 7.44. PF Interrupt Registers

Acronym Complete Name
EICR Extended Interrupt Cause register
EICS Extended Interrupt Cause Set register (enables software to initiate interrupts)
EIMS Extended Interrupt Mask Set/Read register
EIMC Extended Interrupt Mask Clear register
EIAC Extended Interrupt Auto Clear register (following interrupt assertion)
EIAM Extended Interrupt Auto Mask register (auto set/clear of the EIMS)
EITR Extended Interrupt Throttling register [throttling and Low Latency Interrupt (LLI) setting]
IVAR Interrupt Vector Allocation Registers (described in Section 7.3.4)
IVAR_MISC | Miscellaneous Interrupt Vector Allocation Register (described in Section 7.3.4)

These registers are extended to 64 bits by an additional set of two registers. EICR has an additional two
registers EICR(1)... EICR(2) and so on for the EICS, EIMS, EIMC, EIAM and EITR registers. The EIAC
register is not extended to 64 bits as this extended interrupt causes are always auto cleared. Any
reference to EICR... EIAM registers as well as any global interrupt settings in the GPIE register relates
to their extended size of 64 bits.

The legacy EICR[15:0] mirror the content of EICR(1)[15:0]. In the same manner the lower 16 bits of
EICS, EIMS, EIMC, EIAC, EIAM mirror the lower 16 bits of EICS(1), EIMS(1), EIMC(1), EIAM(1). For
more details on the use of these registers in the various interrupt modes (Legacy, MSI, MSI-X) see
Section 7.3.4.

Top Secret 307

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Virtual Function (VF) Registers

The VF interrupt logic has the same set of interrupt registers while each of them has three entries for
three interrupt causes. The names and functionality of these registers are the same as those of the PF
with a prefix of VT as follows: VFEICR, VFEICS, VFEIMS, VFEIMC, VFEIAM, VFEITR. The VFEIAC
registers are not supported since interrupt causes are always auto cleared. Although each VF can
generate up to three interrupts, only the first two registers are capable of interrupt throttling and are
associated to VFEITR registers (see Section 7.3.4.3.2 for its proper usage). Each VF also has the
mapping registers VFIVAR and VFIVAR_MISC. Note that any global interrupt setting by the GPIE
register affect both interrupt settings of the PF as well as the VFs.

7.3.1.1 Extended Interrupt Cause (EICR) Registers

This register records the interrupt causes to provide software information on the interrupt source. Each
time an interrupt cause happens, the corresponding interrupt bit is set in the EICR registers. An
interrupt is generated each time one of the bits in these registers is set, and the corresponding
interrupt is enabled via the EIMS registers. The possible interrupt causes are as follows:

= Each RTxQ bit represents the following events: Tx or Rx descriptor write back; Rx queue full and Rx
descriptor queue minimum threshold.

— The RTxQ interrupts can be throttled by ITR or LLI as configured in the EITR register (LLI does
not impact Tx). Following interrupt assertion, software cannot distinguish between ITR or LLI
events.

— Mapping the Tx and Rx queues to EICR is done by the IVAR registers as described in
Section 7.3.4. Each bit might represent an event on a single Tx or Rx queue or could represent
multiple queues according to the IVAR setting. In the later case, software might not be able to
distinguish between the interrupt causes other than checking all associated Tx and Rx queues.

— The Multiple_MSIX = 1b setting is useful when multiple MSI-X vectors are assigned to the
device. When the GPIE.Multiple_MSIX bit is set, the RTxQ bits are associated with dedicated
MSI-X vectors. Bit 0 is Tx / Rx interrupt associated with MSI-X vector O and bit 15 is Tx / Rx
interrupt associated with MSI-X vector 15.

= Bits 29:16 in the EICR are named in the EAS as the “other” interrupt causes. Please refer to the
EICR register definition for the exact interrupt causes included in this group. All these causes are
mapped to the same interrupt even in Multiple_MSIX mode. In Multiple_MSIX mode the “other”
interrupt causes are mapped to a specific MSI-X vector by the INT_Alloc[1] in the IVAR_MISC
register.

< Bit 30 in the EICR register is the “TCP Timer” interrupt usually used to wake the SW driver
periodically according to the TCPTIMER setting. In Multiple_MSIX mode the “TCP Timer” interrupt is
mapped to a specific MSI-X vector by the INT_Alloc[0] in the IVAR_MISC register.

Writing a 1b to any bit in the register clears it. Writing a Ob to any bit has no effect. The EICR is also
cleared on read if GPIE.OCD bit is cleared. When the GPIE.OCD bit is set, then only bits 16...29 are
cleared on read. The later setting is useful for MSI-X mode in which the Tx and Rx and possibly the
timer interrupts do not share the same interrupt with the other causes. Bits in the register can be auto
cleared depending on the EIAC register setting (detailed in Section 7.3.1.4).

7.3.1.2 Extended Interrupt Cause Set (EICS) Register

This register enables software to initiate a hardware interrupt. Setting any bit on the EICS sets its
corresponding bit in the EICR register while bits written to Ob have no impact. It then causes an
interrupt assertion if enabled by the EIMS register. Setting any bit generates either LLI or throttled
interrupt depending on the GPIE.EIMEN setting: When the EIMEN bit is set, then setting the EICS
register causes an LLI interrupt; When the EIMEN bit is cleared, then setting the EICS register causes
an interrupt after the corresponding interrupt throttling timer expires.

308 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

Note: The EIMEN bit can be set high only when working in auto-mask mode (EIAM bit of the
associated interrupt is set).

7.3.1.2.1 EICS Affect on RSC Functionality

Setting EICS bits causes interrupt assertion (if enabled). EICS settings have the same impact on RSC
functionality as nhominal operation:

* In ITR mode (GPIE.EIMEN = 0b), setting the EICS bits impact the RSC completion and interrupt
assertion the same as any Rx packet. The functionality depends on the EICS setting schedule
relative to the ITR intervals as described in Section 7.3.2.1.1.

* In LLI mode (GPIE.EIMEN = 1b), setting the EICS bits impact the RSC completion and interrupt
assertion the same as any LLI Rx packet. Device behavior is described in Section 7.3.2.2.3 starting
with the 2nd step.

7.3.1.3 Extended Interrupt Mask Set and Read (EIMS) Register, and Extended
Interrupt Mask Clear (EIMC) Register

The Extended Interrupt Mask Set and Read (EIMS) register enables the interrupts in the EICR. When
set to 1b, each bit in the EIMS register, enables its corresponding bit in the EICR. Software might
enable each interrupt by setting bits in the EIMS register to 1b. Reading EIMS returns its value.
Software might clear any bit in the EIMS register by setting its corresponding bit in the Extended
Interrupt Mask Clear (EIMC) register. Reading the EIMC register does not return any meaningful data.

This independent mechanism of setting and clearing bits in the EIMS register saves the need for read
modify write and also enables simple programming in multi-thread, multi-CPU core systems.

Note: The EICR register stores the interrupt events regardless of the state of the EIMS register.

7.3.1.4 Extended Interrupt Auto Clear Enable (EIAC) Register

Each bit in this register enables auto clearing of its corresponding bit in EICR following interrupt
assertion. It is useful for Tx and Rx interrupt causes that have dedicated MSI-X vectors. When the Tx
and Rx interrupt causes share an interrupt with the other or a timer interrupt, the relevant EIAC bits
should not be set. Bits in the EICR register that are not enabled by auto clear, must be cleared by either
writing a 1b to clear or a read to clear.

Note that there are no EIAC(1)...EIAC(2) registers. The hardware setting for interrupts 16...63 is
always auto clear.

Note: Bits 29:16 should never be set to auto clear since they share the same MSI-X vector.

Writing to the EIAC register changes the setting of the entire register. In IOV mode, some of
the bits in this register might affect VF functionality (VF-56...VF-63). It is recommended that
software set the register in PF before VF’s are enabled. Otherwise, a software semaphore
might be required between the VF and the PF to avoid setting corruption.

7.3.1.5 Extended Interrupt Auto Mask Enable (EIAM) Register
Each bit in this register enables auto clearing and auto setting of its corresponding bit in the EIMS
register as follows:

= Following a write of 1b to any bit in the EICS register (interrupt cause set), its corresponding bit in
the EIMS register is auto set as well enabling its interrupt.

= A write to clear the EICR register clears its corresponding bits in the EIMS register masking further
interrupts.

Top Secret 309

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

« A read to clear the EICR register, clears the EIMS bits (enabled by the EIAM) masking further
interrupts. Note that if the GPIE.OCD bit is set, Tx and Rx interrupt causes are not cleared on read
(bits 0:15 in the EICR). In this case, bits 0:15 in the EIMS are not cleared as well.

< In MSI-X mode the, auto clear functionality can be driven by MSI-X vector assertion if GPIE.EIAME
is set.

Note: Bits 29:16 should never be set to auto clear since they share the same MSI-X vector.

Writing to the EIAM register changes the setting of the entire register. In IOV mode, some of
the bits in this register might affect VF functionality. It is recommended that software set the
register in PF before VF’s are enabled. Otherwise, a software semaphore might be required
between the VF and the PF to avoid setting corruption.

If any of the Auto Mask enable bits is set in the EIAM registers, the GPIE.EIAME bit must be
set as well.

7.3.2 Interrupt Moderation

Interrupt rates can be tuned by the EITR register for reduced CPU utilization while minimizing CPU
latency. In MSI or legacy interrupt modes, only EITR register O can be used. In MSI-X, non-1OV mode,
the 82599 includes 64 EITR registers 0...63 that are mapped to MSI-X vectors 0...63, respectively. In
10V mode, there are an additional 65 EITR registers that are mapped to the MSI-X vectors of the virtual
functions. The mapping of MSI-X vectors to EITR registers are described in Section 7.3.1.1.

The EITR registers include two types of throttling mechanisms: ITR and LLI. Both are described in the
sections that follow.

7.3.2.1 Time-based Interrupt Throttling — ITR

Time-based interrupt throttling is useful to limit the maximum interrupt rate regardless of network
traffic conditions. The ITR logic is targeted for Rx/Tx interrupts only. It is assumed that the timer, other
and mail box (I0V mode) interrupts are not moderated. In non-10V mode, all 64 interrupts can be
associated with ITR logic. In IOV mode, the ITR logic is shared between the PF and VFs as shown in
Figure 7.21. The ITR mechanism is based on the following parameters:

« ITR Interval field in the EITR registers — The minimum inter-interrupt interval is specified in 2 us
units (at 1 Gb/s or 10 Gb/s link). When the ITR Interval equals zero, interrupt throttling is disabled
and any event causes an immediate interrupt. The field is composed of nine bits enabling a range of
2 ps up to 1024 ps. These ITR interval times correspond to interrupt rates in the range of 500 K
INT/sec to 980 INT/sec. When operating at 100 Mb/s link, the ITR interval is specified in 20 us
units.

— Due to internal synchronization issues, the ITR interval can be shortened by up to 1 us at
10 Gb/s or 1 Gb/s link and up to 10 us at 100 Mb/s link when it is triggered by packet write
back or interrupt enablement or the last interrupt was LLI.

« ITR Counter partially exposed in the EITR registers — Down counter that is loaded by the ITR
interval each time the associated interrupt is asserted.

— The counter is decremented by one each 2 pus (at 1 Gb/s or 10 Gb/s link) and stops
decrementing at zero. At 100 Mb/s link, the speed of the counter is decremented by one each
20 ps.

— If an event happens before the counter is zero, it sets the EICR. The interrupt can be asserted
only when the ITR time expires (counter is zero).

— Else (no events during the entire ITR interval), the EICR register is not set and the interrupt is
not asserted on ITR expiration. The next event sets the EICR bit and generates an immediate
interrupt. See Section 7.3.2.1.1 for interrupt assertion when RSC is enabled.

310 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

— Once the interrupt is asserted, the ITR counter is loaded by the ITR interval and the entire cycle
re-starts. The next interrupt can be generated only after the ITR counter expires once again.

7.3.2.1.1 ITR Affect on RSC Functionality

Interrupt assertion is one of the causes for RSC completion (see Section 7.11.6). When RSC is enabled
on specific Rx queues, the associated ITR interval with these queues must be enabled and must be
larger (in time units) than RSC delay. The ITR is divided to the two time intervals that are defined by
the ITR interval and RSC delay. RSC completion is triggered after the first interval completes and the
interrupt is asserted when the second interval completes.

The RSC Delay field is defined in the GPIE registers. RSC Delay can have one of the following eight
values: 4 pus, 8 ps, 12 ps... 32 us.

= The first ITR interval equals ITR interval minus RSC delay. The internal ITR counter starts at ITR
interval value and counts down until it reaches the RSC delay value. Therefore, the ITR interval
must be set to a larger value than the RSC delay.

= The second ITR interval equals RSC delay. The internal ITR counter continues to count down until it
reaches zero.

= RSC completion can take some time (usually in the range of a few micro seconds). This time is
composed by completing triggering latency and completing process latency. These delays should be
considered when tuning the RSC delay. The clock frequency of the RSC completion logic depends on
the link speed. As a result, the completion delay can as high as ~0.8 us at 10 Gb/s link and
~8 us at 1 Gb/s link. The RSC completion logic might take additional ~50 ns at 10 Gb/s link and
~0.5 ps at 1 Gb/s link per RSC. In addition, there is the PCle bus arbitration latency as well as
system propagation latencies from the device up to host memory.

* Recommended RSC delay numbers are: 8 us at 10 Gb/s link and 28 ps at 1 Gb/s link.
= RSC is not recommended when operating at 100 Mb/s link.

Following are cases of packet reception with respect to the ITR intervals:

= Packets are received and posted (including their status) to the Rx queue in the first ITR interval. In
this case, RSC completion is triggered at the end of the first ITR interval and the interrupt is
asserted at the second interval expiration.

= a packet (and its status) is received and posted to the Rx queue only after the first ITR interval has
expired (either on the second interval or after the entire ITR interval has expired). In this case, RSC
completion is triggered almost instantly (other than internal logic latencies). The interrupt is
asserted at RSC delay time after the non-coalesced Rx status is queued to be posted to the host.

« Due to internal synchronization issues, the RSC delay can be shorten by up to 1 us when it is
triggered by packet write back.

7.3.2.2 LLI

LLI provides low latency service for specific packet types, bypassing the ITR latency. LLIs are bound by
a credit-based throttling mechanism that limits the maximum rate of low latency events that require a
fast CPU response. Low latency events are triggered by the write back of the LLI packets. It then
generates an immediate interrupt if LLI credits are not exhausted. See more details on the credit
mechanism in the Section 7.3.2.2.2. Note also that in the case of RSC, the interrupt is not immediate
as described in Section 7.3.2.2.3.

Top Secret 311

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.3.2.2.1 LLI Filters and Other Cases

Following is a list of all Rx packets that are defined as low latency events (LLI packets):

e LLI by 5-tuple / TCP flags / frame size — The 82599 supports a set of 128 filters that initiate
LLI by a 5-tuple value and frame size. An LLI is issued if any of the filters are set for LLI matches
against the enabled fields of 5-tuple, TCP flags, and frame size. Configuration is done via the FTQF,
SDPQF, L34TIMIR, DAQF, and SAQF registers as follows per filter (more details about these filters
can be found in Section 7.1.2.5). Note that if a packet matches multiple 5-tuple filters an LLI is
initiated if it is enabled by any of the matched filters:

« 5-tuple fields (protocol, IP address, port) and mask options for these fields
= Pool and pool mask

« SizeThresh — A frame with a length below this threshold triggers an interrupt. Unlike other fields,
the SizeThresh field is shared by all filters (like there is a single copy of it). Matching the frame
size is enabled by the Size_BP bit.

= Size_BP bit, when set to Ob, equates to a match that is performed against the frame size.
e LLI field — When set, an LLI is issued for packets that match the filter.

e LLI by Ethertype — The 82599 supports eight Ethertype filters. Any filter has an LLI action
defined by the LLI field in the ETQS registers.

e LLI by VLAN priority — The 82599 supports VLAN priority filtering as defined in the IMIRVP
register. Packets with VLAN header that have higher priority tagging than the one defined by
IMIRVP register generates an LLI.

e LLI by FCoE — FCoE FCP_RSP packets can trigger LLI as defined in the FCRXCTRL.RSCINT bit. The
82599 identifies FCoE packets by the Ethertype filters defined by the ETQF registers. FCP_RSP
packets recognition is explained in Section 7.13.3.3.10.

The 82599 might initiate an LLI when the receive descriptor ring is almost empty (Rx descriptors below
a specific threshold). The threshold is defined by SRRCTL[n].RDMTS per Rx queue. This mechanism can
protect against memory resources being used up during reception of a long burst of short packets.

7.3.2.2.2 LLI Parameters

LLI generation is based on the following parameters:

e LLI Moderation bit in the EITR registers — When the LLI Moderation bit is cleared, any low latency
event generates an immediate interrupt. When set, LLI moderation is based on the LLI credit and
LLI interval.

« LLI Credit field in the EITR register — LLI packets might generate immediate interrupts as long as
the LLI credits counter is greater than one (positive credit).

— The credit counter is incremented by one on each LL interval with a maximum ceiling of 31
credits. It then stops incrementing.

— If an LLI packet is received and the credit counter is greater than zero, an immediate interrupt
is triggered internally. The interrupt is asserted externally when an interrupt is enabled (EIMS
setting) and PCI credits are available. Once the interrupt is asserted, the credit counter is
decremented by one Note that the counter never goes below zero.

— LLI assertion might be delayed due to: interrupt enablement, lack of LLI credits or lack of PCI
credits. Each time the interrupt is asserted, the LLI credit is decremented by one regardless of
the number of received LLI packets and regardless if the ITR timer expires in the mean time.

— If an LLI packet is received and the credit counter is zero (no credits), an interrupt can be
asserted only on the next LL interval or when the ITR timer expires, whichever comes first.

— The LLI credit counter is not affected by the ITR timer. Conversely, LLI assertion initializes the
ITR timer to its timer interval.

— Note that during nominal operation software may not need to access the LL credit field.

312 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

* LL interval is defined in units of 4 us (at 1 Gb/s or 10 Gb/s link) in the GPIE register. At 100 Mb/s
link speed, the LL interval is defined in units of 40 us. This parameter defines the clock that
increments the LLI credit counter. The maximum rate of the LLI interrupts per second is bound by
the LL interval, which equals to 1/LL Interval. When LLI moderation is enabled, the ITR interval of
the same interrupt must be greater than the LL interval.

7.3.2.2.3 LLIs Affect on RSC Functionality

LLI packet reception requires instant CPU processing. Software might be able to access a specific
descriptor only if all its proceeding descriptors complete. If RSC’s are enabled, some of the preceding
descriptors might be incomplete at the time that the LLI packet is received. Hardware overcomes this
problem by:

= Following LLI packet completion, all RSC’s on the same queue are completed as well.
= Then, the associated interrupt is asserted.

= Concurrently, hardware triggers RSC completion in all Rx queues associated with the same
interrupt.

= Most likely these RSC(s) are completed to host memory after the interrupt is already asserted. In
this case, it is guaranteed that an additional interrupt is asserted when the ITR expires.

7.3.3 TCP Timer Interrupt

7.3.3.1 Introduction

In order to implement TCP timers for 10AT, software needs to take action periodically (every 10 ms).
Today, the driver must rely on software-based timers, whose granularity can change from platform to
platform. This software timer generates a software NIC interrupt, which then enables the driver to
perform timer functions, avoiding cache thrash and enabling parallelism. The timer interval is system-
specific.

It would be more accurate and more efficient for this periodic timer to be implemented in hardware.
The driver would program a timeout value (usual value of 10 ms), and each time the timer expires,

hardware sets a specific bit in the EICR register. When an interrupt occurs (due to normal interrupt

moderation schemes), software reads the EICR register and discovers that it needs to process timer
events.

The timeout should be programmable by the driver, and the driver should be able to disable the timer
interrupt if it is not needed.

7.3.3.2 Description

A stand-alone, down-counter is implemented. An interrupt is issued each time the value of the counter
is zero.

Software is responsible for setting an initial value for the timer in the Duration field. Kick-starting is
done by writing a 1b to the KickStart bit.

Following kick starting, an internal counter is set to the value defined by the Duration field. Then the
counter is decreased by one each ms. When the counter reaches zero, an interrupt is issued. The
counter re-starts counting from its initial value if the Loop field is set.

7.3.4 Mapping of Interrupt Causes

The following sections describe legacy, MSI and MSI-X interrupt modes.

Top Secret 313

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.3.4.1 Legacy and MSI Interrupt Modes

In legacy and MSI modes, an interrupt cause is reflected by setting one of the bits in the EICR register,
where each bit reflects one or more causes. All interrupt causes are mapped to a single interrupt signal:
either legacy INTA/B or MSI. This section describes the mapping of interrupt causes (that is a specific
Rx or Tx queue event or any other event) to bits in the EICR.

The TCP timer and all other interrupt causes are mapped directly to EICR[30:16]. Note that the
IVAR_MISC register is not used in legacy and MSI modes.

Mapping the Tx and Rx queues to interrupt bits in the EICR register is programmed in the IVAR
registers as shown in Figure 7.21. Each entry in the IVAR registers is composed of two fields that
identify the associated bit in the EICR[15:0] register. Software might map multiple Tx and Rx queues to
the same EICR bit.

INT_Alloc - Defines one of the bits (0...15) in the EICR register that reflects the interrupt status
indication.

INT_Alloc_val - Valid bit for this interrupt cause.

Cause 0—» 0 =
- e —» EITRO
Queue &= 8 m
Related @ B %: 8 I}
causes o N 23
. a3 @
Cause 255—» 15 L INT(A/B)
. / MSI
Timer » 16 Other
and all . Interrupt
Other . causes
Interrupt
causes . » 30| TCP timer

Figure 7.21. Cause Mapping in Legacy and MSI Modes

Mapping between the Tx and Rx queue to the IVAR registers is hardwired as shown in the Figure 7.22
below:

IVAR 0 IVAR 1 IVAR 2 IVAR 62 IVAR 63
Rx 0 Rx 2 Rx 4 Rx 124 Rx 126
Tx 0 Tx 2 Tx 4 Tx 124 Tx 126
Rx 1 Rx 3 Rx 5 - Rx 125 Rx 127
Tx 1 Tx 3 x5 Tx 125 Tx 127

Figure 7.22. Rx and Tx Queue Mapping to IVAR Registers

7.3.4.2 MSI-X Mode in Non-10V Mode

MSI-X defines a separate optional extension to basic MSI functionality. The number of requested MSI-X
vectors is loaded from the MSI_X_N fields in the EEPROM up to maximum of 64 MSI-X vectors.

314 Top Secret

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

= Hardware indicates the number of requested MSI-X vectors in the table size in the MSI-X capability
structure in the configuration space. This parameter is loaded from the MSI_X _N field in the
EEPROM. The operating system might allocate any number of MSI-X vectors to the device from a
minimum of one up to the requested number of MSI-X vectors.

= Enables interrupts causes allocation to the assigned MSI-X vectors. Interrupt allocation is
programmed by the IVAR registers and are described in this section.

= Each vector can use an independent address and data value as programmed directly by the
operating system in the MSI-X vector table.

= Each MSI-X vector is associated to an EITR register with the same index (MSI-X 0 to EITR[0], MSI-
X 1 to EITR[1],...).

For more information on MSI-X, refer to the PCI Local Bus Specification, Revision 3.0.

MSI-X vectors can be used for several purposes:

1. Dedicated MSI-X vectors per interrupt cause (avoids the need to read the interrupt cause register).
2. Load balancing by MSI-X vectors assignment to different CPUs.

3. Optimized interrupt moderation schemes per MSI-X vector using the EITR registers.

The MSI-X vectors are used for Tx and Rx interrupt causes as well as the other and timer interrupt
causes. The remainder of this section describes the mapping of interrupt causes (such as a specific Rx
or Tx queue event or any other event) to the interrupts registers and the MSI-X vectors.

The TCP timer and other events are reflected in EICR[30:16] the same as the legacy and MSI mode. It
is then mapped to the MSI-X vectors by the IVAR_MISC register as shown in Figure 7.23. The
IVAR_MISC register includes two entries for the timer interrupt and an additional entry for all the other
causes. The structure of each entry is as follows:

INT_Alloc - Defines the MSI-X vector (0...63) assigned to this interrupt cause.
INT_Alloc_val - Valid bit for the this interrupt cause.

The Tx and Rx queues are associated to the IVARO...IVAR63 the same as legacy and MSI mode shown
in Figure 7.22. The Tx and Rx queues are mapped by the IVAR registers to EICR(1),...EICR(2) registers
and MSI-X vectors 0...63 illustrated in Figure 7.23. The IVAR entries have the same structure as the
IVAR_MISC register previously shown. Each bit in EICR(1...2) registers is associated to MSI-X vector
0...63 as follows:

= EICR(i).bit_num is associated to MSI-X vector (n x 32 + bit_num).

= The legacy EICR[15:0] mirror the content of EICR(1)[15:0]. In the same manner the lower 16 bits
of EICS, EIMS, EIMC, EIAC, EIAM mirror the lower 16 bits of EICS(1), EIMS(1), EIMC(1), EIAC(1),
EIAM(1). The use of these registers depends on the number of assigned MSI-X interrupts as
follows:

» 16 Tx and Rx Interrupts - When using up to 16 Tx and Rx interrupts, software might access the
Tx and Rx interrupt bits in the legacy EICR, EICS,... registers.

= More than 16 Tx and Rx Interrupts - When using more then 16 Tx and Rx interrupts, software
must use EICS(1)...EICS(2), EIMS(1)...EIMS(2),... In the later case, software should avoid
modifying the lower 16 bits in the SEIC, EICS... registers when it accesses the higher bits of these
registers as follows:

— EICR, EICS, EIMS and EIMC — When software programs the higher 16 bits of these registers, it
should set their lower 16 bits to zero’s keeping the EICR(1), EICS(1), EIMS(1) and EIMC(1)
unaffected.

— EIAM — When software programs the higher 16 bits, it should keep the lower 16 bits at their
previous setting so the EIAM(1) is unaffected.

— EIAC — When software programs the higher 16 bits, it should set the lower 16 bits to one’s.

Top Secret 315

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Single MSI-X vector - If the operating system allocates only a single MSI-X vector, the driver might
use the non-MSI-X mapping method (setting the GPIE.Multiple_MSIX to 0b). In this case, the INT_Alloc
field in the IVAR registers might define one of the lower 16 bits in the EICR register while using MSI-X
vector 0. The IVAR_MISC should be programmed to MSI-X vector O.

EITR 0...63
Cause 0——» 0 = m

Queue - g o

Related & = 3 = MSI-X
causes: @ > g : 9 : Vectors
Rx0...127 g2 5 I 0..63
Tx 0...127 @

X Cause 255—» 63 ed

Timer — > 16 Other —

A A

and all . Interrupt —» %

Other . causes [

Interrupt =

causes o s | TCPtimer | ———» | 8

EICR

Figure 7.23. Cause Mapping in MSI1-X Mode (non-10V)

7.3.4.3 MSI-X Interrupts In 10OV Mode

In IOV mode, interrupts must be implemented by MSI-X vectors. The 82599 supports up to 64 virtual
functions VF(0...63). Each VF can generate up to three MSI-X vectors. The number of requested MSI-X
vectors per VF is loaded from the MSI-X Table field in the EEPROM. It is reflected in the Table Size field
in the PCle MSI-X capability structure of the VF's. In addition, the PF requires its own interrupts. The
number of requested MSI-X vectors for the PF is loaded from the MSI_X_N fields in the EEPROM up to
maximum of 64 MSI-X vectors. It is reflected in the Table Size field in the PCle MSI-X capability
structure.

7.3.4.3.1 MSI-X Vectors Used by Physical Function (PF)

PF is responsible for the timer and other interrupt causes that include the VM to PF mailbox cause
(explained in the virtualization sections). These events are reflected in EICR[30:16] and MSI-X vectors
are the same as the non-10V mode (illustrated in Figure 7.21). When there are less than the maximum
possible active VF’s, some of the Tx and Rx queues can be associated with the PF. These queues can be
used for the sake of additional VM’s serviced by the hypervisor (the same as VMDg mode) or some
Kernel applications handled by the hypervisor. Tx and Rx mapping to the IVAR registers is shown in
Figure 7.22 and mapping to the EICR, EICR(1),...EICR(2) registers as well as the MSI-X vectors is
shown in Figure 7.23. See Section 7.3.4.3.3 for MSI-X vectors mapping of PF and VF’s to the EITR
registers.

Note: Software should not assign MSI-X vectors in the PF to Tx and Rx queues that are assigned to
other VF’s. In the case that VF’'s become active after the PF used the relevant Tx and Rx
queues, it is the responsibility of the PF driver to clear all pending interrupts of the associated
MSI-X vectors.

316 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

7.3.4.3.2 MSI-X Vectors Used by Virtual Functions (VFs)

Each of the VFs in IOV mode is allocated separate IVAR(s) called VFIVAR registers, and a separate
IVAR_MISC called VFIVAR_MISC register. The VFIVAR_MISC maps the mailbox interrupt of the VF to its
VFEICR and the MSI-X vector. The VFIVAR registers map the Tx and Rx interrupts of the VF to its
VFEICR and the MSI-X vector. The mapping is similar to the mapping in the PF as shown in Figure 7.24
with the following comments:

= Each VF cannot have more than three MSI-X vectors. It has only three active bits in the VFEICR
register while VFEICR.bit_num is associated with MSI-X vector (bit_num).

= The Tx and Rx interrupt can be mapped only to MSI-X 0 and MSI-X 1 (associated with VFEICR.0 and
VFEICR.1).

= The mailbox interrupt can be mapped to any of the three MSI-X vectors. However, when all three of
them are allocated by the operating system, software should map the mailbox to MSI-X 2
(associated with VFEICR.2). This rule should be kept since only VFEICR.0 and VFEICR.1 have ITR
registers (VFEITR-0 and VFEITR-1).

* Association between the Tx and Rx queues and the VFIVAR registers is shown in the Figure 7.24,
Figure 7.25 and Figure 7.26 for I0V-64 (64 VF’s), I0OV-32 and I0V-16. The colored boxes in the
figures show the mapping between VF Rx and Tx queues to VFIVAR registers while the dashed
boxes show the physical IVAR registers and the associated physical Rx and Tx queues.

Queue Cause 0——» S EITR 0
Related a5|—» ——» EITR1
causes: @)<>
Rx0...7 o 0 =
x0 . a2 | g » MSI-X0
Tx0...7 c 15 T <
ause 15— 2 e | —L—» MSIX1
< 8o
=] & X
. g)<>) 2 ——w» MSI-X2
e) R =
3=
»
O
Figure 7.24. VF Interrupt Cause Mapping (MSI-X, 10V)
VF 0 VF 1 VF 63
VFIVAR 0 VFIVAR 0 VFIVAR 0
VF Queues HW Queeus VF Queues HW Queeus VF Queues HW Queeus
Rx 0 Rx 0 Rx 0 Rx 2 Rx 0 Rx 126
Tx 0 Tx 0 Tx 0 Tx 2 P Tx 0 Tx 126
Rx 1 Rx 1 Rx 1 Rx 3 Rx 1 Rx 127
Tx 1 Tx 1 Tx 1 Tx 3 Tx 1 Tx 127

Figure 7.25. VF Mapping of Rx and Tx Queue to VFIVAR in 64 VF’s Mode

Top Secret 317

ntel.

Intel® 82599 10 GbE Controller — Inline Functions

VF 0 VF 1
VFIVAR 0 VFIVAR 0
VF Queues HW Queeus VF Queues HW Queeus
Rx 0 Rx 0 Rx 0 Rx 4
Tx 0 Tx 0 Tx0 Tx 4
Rx 1 Rx 1 Rx 1 Rx 5
Tx 1 Tx 1 Tx 1 Tx5
VFIVAR 1 VFIVAR 1
VF Queues HW Queeus VF Queues HW Queeus
Rx 2 Rx 2 Rx 2 Rx 6
Tx 2 Tx 2 Tx 2 Tx 6
Rx 3 Rx 3 Rx 3 Rx 7
Tx 3 Tx 3 Tx 3 Tx7

VF 31
VFIVAR 0
VF Queues HW Queeus
Rx 0 Rx 124
Tx 0 Tx 124
Rx 1 Rx 125
Tx 1 Tx 125
VFIVAR 1
VF Queues HW Queeus
Rx 2 Rx 126
Tx 2 Tx 126
Rx 3 Rx 127
Tx 3 Tx 127

Figure 7.26. VF Mapping of Rx and Tx Queue to VFIVAR in 32 VF’s Mode

VF 0 VF 1
VFIVAR 0 VFIVAR 0
VF Queues HW Queeus VF Queues HW Queeus
Rx 0 Rx 0 Rx 0 Rx 8
Tx 0 Tx 0 Tx 0 Tx 8
Rx 1 Rx 1 Rx 1 Rx 9
Tx 1 Tx 1 Tx 1 Tx9
VFIVAR 1 VFIVAR 1
VF Queues HW Queeus VF Queues HW Queeus
Rx 2 Rx 2 Rx 2 Rx 10
Tx 2 Tx 2 Tx 2 Tx 10
Rx 3 Rx 3 Rx 3 Rx 11
Tx 3 Tx 3 Tx 3 Tx 11
VFIVAR 2 VFIVAR 2
VF Queues HW Queeus VF Queues HW Queeus
Rx 4 Rx 4 Rx 4 Rx 12
Tx 4 Tx 4 Tx 4 Tx 12
Rx 5 Rx 5 Rx 5 Rx 13
Tx5 Tx5 Tx 5 Tx 13
VFIVAR 3 VFIVAR 3
VF Queues HW Queeus VF Queues HW Queeus
Rx 6 Rx 6 Rx 6 Rx 14
Tx 6 Tx 6 Tx 6 Tx 14
Rx 7 Rx 7 Rx 7 Rx 15
Tx7 Tx7 Tx7 Tx 15

VF 15
VFIVAR 0
VF Queues
Rx 0 Rx 120
Tx 0 Tx 120
Rx 1 Rx 121
Tx 1 Tx 121
VFIVAR 1
VF Queues
Rx 2 Rx 122
Tx 2 Tx 122
Rx 3 Rx 123
Tx 3 Tx 123
VFIVAR 2
VF Queues
Rx 4 Rx 124
Tx 4 Tx 124
Rx 5 Rx 125
Tx 5 Tx 125
VFIVAR 3
VF Queues
Rx 6 Rx 126
Tx 6 Tx 126
Rx 7 Rx 127
Tx7 Tx 127

Figure 7.27. VF Mapping of Rx and Tx Queue to VFIVAR in 16 VF’s Mode

318

Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

7.3.4.3.3 MSI-X Vectors Mapping to EITR

EITR registers are aimed for Tx and Rx interrupt throttling. In IOV mode, the Tx and Rx queues might
belong to either the PF or to the VF’s. EITR(1...63) are multiplexed between the PF and the VF's as
configured by the EITRSEL register. Figure 7.28 and Table 7.45 show the multiplexing logic and
required software settings. For any active VF (starting from VF32 and above), software should program
the matching bit in the EITRSEL to 1b. For any EITR that belongs to a VF, software should not map any
interrupt causes in the PF to an MSI-X vector that is associated with the same EITR register.

PF EITR VF EITR
Registers Registers
MSI-X 0 » EITR O
MSI-X 1 T
MSI-X 2
PF EITR 1 EITR O
Vectors x VF 63
MSI-X 62 — EITR 2 EITR 1
MSI-X 63 X
MSI-X 0 — Sel
VF 63 MSI-X 1 — «— EITRSEL
MSI-X 2 >
\ 4
— EITR 63 EITRO
MSI-X 0 iq VF 32
VF 32 MSI-X 1 » EITR 64 EITR 1
MSI-X 2 F—»
MSI-X 0 > EITR 65 EITR O
VF 31 MSI-X 1 » EITR 66 EITR1 VF31
MSI-X 2 L 5
MSI-X 0 » EITR 127 EITR O
VF 0 MSI-X 1 » EITR 128 EITR1 VF 0
MSI-X 2 F—»
MSI-X 2 on each VF has no associated EITR register. It is useful
for the mailbox interrupts that do not require interrupt moderation.

Figure 7.28. PF / VF MSI-X Vectors Mapping to EITR

Table 7.45. PF / VF MSI-X Vectors Mapping Table to EITR Registers

VM Active EITRSEL.N Setting MSI-X Routing to EITR
Non-10V or VF(32...63) inactive EITRSEL must be set to 0x0000 MSI-X(1...63) -> EITR(1...63)
VF(32) active EITRSEL[O] must be set to 1b VF(32) MSI-X(0) -> EITR(63)
. VF(33) MSI-X(1) -> EITR(62) VF(33) MSI-X(0)
VF(33) active EITRSEL[1] must be set to 1b > EITR(61)
VF(34) active EITRSEL[2] must be set to 1b VF(34) MSI-X(1) __Z EEIITI_';((%%))VF(SAD MSI-X(0)

Top Secret 319

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Table 7.45. PF / VF MSI-X Vectors Mapping Table to EITR Registers

VF(62) active EITRSEL[30] must be set to 1b VF(62) MSI-X(1) 'Z 'IEE'ITTT?((‘;)) VF(62) MSI-X(0) -
VF(63) active EITRSEL[31] must be set to 1b VF(63) MSI-X(1) -> EE'ITTF;((Zl)) VF(63) MSI-X(0) -
7.4 802.1q VLAN Support

The 82599 provides several specific mechanisms to support 802.1q VLANSs:
* Optional adding (for transmits) and stripping (for receives) of IEEE 802.1q VLAN tags.
= Optional ability to filter packets belonging to certain 802.1q VLANSs.

7.4.1 802.19g VLAN Packet Format

The following table compares an untagged 802.3 Ethernet packet with an 802.1q VLAN tagged packet:

802.3 Packet #Octets 802,19 VAN #Octets
DA 6 DA 6
SA 6 SA 6
Type/Length 2 802.1q Tag 4
Data 46-1500 Type/Length 2

CRC 4 Data 46-1500
CRC* 4

Note: The CRC for the 802.1q tagged frame is re-computed, so that it covers the entire tagged
frame including the 802.1q tag header. Also, maximum frame size for an 802.1q VLAN packet
is 1522 octets as opposed to 1518 octets for a normal 802.3z Ethernet packet.

7.4.2 802.1q Tagged Frames

For 802.1q, the Tag Header field consists of four octets comprised of the Tag Protocol Identifier (TPID)
and Tag Control Information (TCI); each taking two octets. The first 16 bits of the tag header makes up
the TPID. It contains the protocol type that identifies the packet as a valid 802.1q tagged packet.
The two octets making up the TCI contain three fields as follows:

= User Priority (UP)

« Canonical Form Indicator (CFl). Should be set to Ob for transmits. For receives, the device has the
capability to filter out packets that have this bit set. See the CFIEN and CFI bits in the VLNCTRL

« VLAN ldentifier (VID)

Octet 1 Octet 2

UP CFI VID

320 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.4.3 Transmitting and Receiving 802.1g Packets

Since the 802.1q tag is only four bytes, adding and stripping of tags can be done completely in
software. (In other words, for transmits, software inserts the tag into packet data before it builds the
transmit descriptor list, and for receives, software strips the 4-byte tag from the packet data before
delivering the packet to upper layer software). However, because adding and stripping of tags in
software adds overhead for the host, the 82599 has additional capabilities to add and strip tags in
hardware. See Section 7.4.3.1 and Section 7.4.3.2.

7.4.3.1 Adding 802.1g Tags on Transmits

Software might instruct the 82599 to insert an 802.1q VLAN tag on a per-packet basis. If the VLE bit in
the transmit descriptor is set to 1b, then the 82599 inserts a VLAN tag into the packet that it transmits
over the wire. The Tag Protocol Identifier — TPID (VLAN Ether Type) field of the 802.1q tag comes
from the DMATXCTL.VT, and the Tag Control Information (TCI) of the 802.1q tag comes from the VLAN
field of the legacy transmit descriptor or the VLAN Tag field of the advanced data transmit descriptor.

7.4.3.2 Stripping 802.1q Tags on Receives

Software might instruct the 82599 to strip 802.1q VLAN tags from received packets. The policy whether
to strip the VLAN tag is configurable per queue.

If the RXDCTL.VME bit for a given queue is set to 1b, and the incoming packet is an 802.1q VLAN
packet (that is, its Ethernet Type field matched the VLNCTRL.VET), then the 82599 strips the 4-byte
VLAN tag from the packet, and stores the TCI in the VLAN Tag field of the receive descriptor.

The 82599 also sets the VP bit in the receive descriptor to indicate that the packet had a VLAN tag that
was stripped. If the RXDCTL.VME bit is not set, the 802.1q packets can still be received if they pass the
receive filter, but the VLAN tag is not stripped and the VP bit is not set.

7.4.4 802.1q VLAN Packet Filtering

VLAN filtering is enabled by setting the VLNCTRL.VFE bit to 1b. If enabled, hardware compares the Type
field of the incoming packet to a 16-bit field in the VLAN Ether Type (VET) register. If the VLAN Type
field in the incoming packet matches the VET register, the packet is then compared against the VLAN
Filter Table Array for acceptance.

The VLAN filter register VTFA, is a vector array composed of 4096 bits. The VLAN ID (VID) is a 12-bit
field in the VLAN tag that is used as an index pointer to this vector. If the VID in a received packet
points to an active bit (set to 1b), the packet matches the VLAN filter. The 4096-bit vector is comprised
of 128 x 32 bit registers. The upper 7 bits of the VID selects one of the 128 registers while the lower 5
bits map the bit within the selected register.

Two other bits in the VLNCTRL register, CFIEN and CFI, are also used in conjunction with 802.1q VLAN
filtering operations. CFIEN enables the comparison of the value of the CFI bit in the 802.1q packet to
the Receive Control register CFI bit as acceptance criteria for the packet.

Note: The VFE bit does not effect whether the VLAN tag is stripped. It only effects whether the
VLAN packet passes the receive filter.

Top Secret 321

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.4.5 Double VLAN and Single VLAN Support

The 82599 supports a mode where all received and sent packets have at least one VLAN tag in addition
to the regular tagging that might optionally be added. In this document, when a packet carries two
VLAN headers, the first header is referred to as an outer VLAN and the second header as an inner VLAN
header (as listed in the table that follows). This mode is used for systems where the near end switch
adds the outer VLAN header containing switching information. This mode is enabled by the following
configuration:

« This mode is activated by setting the DMATXCTL.GDV and the Extended VLAN bit in the CTRL_EXT
register.

= The Ethertype of the VLAN tag used for the additional VLAN is defined in the VET EXT field in the
EXVET register.

Cross functionality with Manageability

The 82599 does not provide any stripping or adding VLAN header(s) to manageability packets.
Therefore, packets that are directed to/from the manageability controller should include the VLAN
headers as part of the Rx/Tx data. The manageability controller should know if the 82599 is set to
double VLAN mode as well as the VLAN Ethertype(s). When operating in a double VLAN mode, control
packets sent by the manageability controller with no VLAN headers should not activate any hardware
offload other than LinkSec encapsulation.

Table 7.46. Transmit Handling of Packets with VLAN Header(s)

Ethernet
CRC

MAC Outer Inner

Address VLAN VLAN L2 Payload

Transmit functionality on the outer VLAN header
- A packet with a single VLAN header is assumed to have only the outer VLAN.
 The outer VLAN header must be added by software as part of the Tx data buffers.

« Hardware does not relate to the outer VLAN header other than the capability of skipping it for
parsing inner fields.

= Hardware expects that any transmitted packet (see the disclaimer that follows) has at least the
outer VLAN added by software. For any offload that hardware might provide in the transmit data
path, hardware assumes that the outer VLAN is present. For those packets that an outer VLAN is
not present, any offload that relates to inner fields to the Ethertype might not be provided.
Transmit functionality on the inner VLAN header
« The inner VLAN header can be added by software in one of the following methods:
— The header is included in the transmit data buffers.

— The 16-bit portion of the header that includes the priority tag, CFl and VLAN ID are included in
the transmit descriptor. The VLAN Ethertype is taken from the VT field in the DMATXCTL
register.

— In IOV mode, the priority tag, CFl and VLAN ID can be taken from the PFVMVIR (see details in
Section 7.10.3.9.2)

- Hardware identifies and skips the VLAN header for parsing inner fields.

< DCB — The user priority of the packet is taken from the inner VLAN. The traffic class is dictated by
the Tx queue.

322 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

= Pool Filtering — Destination pool(s) and anti-spoofing functionality is based on the Ethernet MAC
address and inner VLAN (if present) as described in Section 7.10.3.4 and Section 7.10.3.9.2.

7.4.5.1 Receive Handling of Packets with VLAN Header(s)

Receive functionality on the outer VLAN header
= If the packet carries a single VLAN header, it is assumed as the outer header and is treated as such.

= Hardware checks the Ethertype of the outer VLAN header against the programmed value in the
EXVET register. VLAN header presence is indicated in the Status.VEXT bit in the Rx descriptor. In
the case of mismatch, the packet is handled as unknown packet type at which time hardware does
not provide any offloads other than LinkSec processing. Also, hardware skips the header for parsing
inner fields and provides any supported offload functions.

= The outer VLAN header is posted as is to the receive data buffers.

Receive functionality on the inner VLAN header

= Hardware checks the Ethertype of the inner VLAN header against the programmed value in the
VLNCTRL.VET. VLAN header presence is indicated in the Status.VP bit in the Rx descriptor.

= If the RXDCTL.VME is set, the inner VLAN is stripped by hardware while the priority tag, CFl and
VLAN ID are indicated in the VLAN Tag field in the Rx descriptor.

= Hardware identifies and skips the VLAN header for parsing inner fields and provides any supported
offload functions.

* L2 packet filtering is based on the VLAN ID in the inner VLAN header.

* Pool Filtering — Destination pool(s) are defined by the Ethernet MAC address and inner VLAN (if
presence) as described in Section 7.10.3.3.

= DCB — The user priority of the packet is taken from the inner VLAN. In the absence of inner VLAN,
the packet is assumed as user priority O (least priority). See Section 7.4.5.2 for the absence of any
VLAN headers.

7.4.5.2 Packets with no VLAN headers in Double VLAN Mode

There are some cases when packets might not carry any VLAN headers, even when extended VLAN is
enabled. A few examples for packets that might not carry any VLAN header are: flow control and
priority flow control, LACP, LLDP, GMRP, and optional 802.1x packets. When it is expected to transmit
untagged packets by software in double VLAN mode the software must not enable VLAN anti-spoofing
and VLAN validation nor transmit to receive switching.

Transmitted functionality

DCB — The traffic class in the Tx data path is directed by the Tx queue of the transmitted packet.
Transmit offload functionality — Software should not enable any offload functions other than LinkSec.
Receive functionality

DCB — Assume user priority O (lowest priority).

Receive offload functionality — pool and queue are selected by the Ethernet MAC address or ETQF/
ETQS registers. LinkSec offload is functional. Filtering to host and manageability remains functional.

The Extended VLAN bit in the CTRL_EXT register and DMATXCTL.GDV are not set. Hardware expects
that Rx and Tx packets might not carry a VLAN header or a single VLAN header. Hardware does not
relate to the programming of the VET EXT field in the EXVET register. Tx and Rx handling of packets
with double VLAN headers is unexpected.

Top Secret 323

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.4.5.3 Packet Priority in Single and Double VLAN Modes

This section summarizes packet handling in both single and double VLAN modes. The user priority of a
packet is meaningful in DCB mode when multiple traffic classes are enabled as well as LLIs. The user
priority is extracted from the packets as listed in the following table.

Table 7.47. Packet Handling in Single and Double VLAN Modes

Packet type Single VLAN Double VLAN

Packet with no VLAN User priority = 0 User priority = 0

The user priority field in the VLAN header in the

Packet with 1 VLAN User priority = 0

packet
. Erroneous case: The user priority field in the The user priority field in the inner VLAN
Packet with 2 VLANs outer VLAN header in the packet header in the packet
7.5 Direct Cache Access (DCA)

DCA is a method to improve network 1/0 performance by placing some posted inbound writes directly
within CPU cache. DCA potentially eliminates cache misses due to inbound writes.

CPU
1 CPU demand read
Cache

A
3 DCA
BIL-DCA triggered

HW
MCH —Prefetet™ Memory

A

Memng Write

DMA Write

NIC

Figure 7.29. Diagram of DCA Implementation on FSB System

As Figure 7.29 illustrates, DCA provides a mechanism where the posted write data from an 1/0 device,
such as an Ethernet NIC, can be placed into CPU cache with a hardware pre-fetch. This mechanism is
initialized upon a power good reset. A device driver for the 1/0 device configures the 1/0 device for DCA
and sets up the appropriate CPU ID and bus ID for the device to send data. The device then
encapsulates that information in PCle TLP headers, in the tag field, to trigger a hardware pre-fetch to
the CPU cache.

DCA implementation is controlled by separate registers (DCA_RXCTRL and DCA_TXCTRL) for each
transmit and receive queue. In addition, a DCA disable bit can be found in the DCA_CTRL register, and
a DCA_ID register can be found for each port, in order to make the function, device, and bus numbers
visible to the driver.

324 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

The DCA_RXCTRL and DCA_TXCTRL registers can be written by software on the fly and can be changed
at any time. When software changes the register contents, hardware applies changes only after all the
previous packets in progress for DCA have completed.

However, in order to implement DCA, the 82599 has to be aware of the IOAT version used. The
software driver initializes the 82599 to be aware of the bus configuration. The DCA Mode field in the
DCA_CTRL register defines the system configuration:

1. Legacy DCA: The DCA target ID is derived from CPU ID.
2. DCA 1.0: The DCA target ID is derived from APIC ID.

Both modes are described as follows.

7.5.1 PCle TLP Format for DCA

Figure 7.30 shows the format of the PCle TLP for DCA.

+0 +1 +2 +3
‘6‘5‘4‘3‘2‘1‘0 7‘6‘5‘4‘3‘2‘1‘0765‘4 3‘21‘0 7‘6‘5‘4‘3‘2‘1‘0
R F;":: Type=00000b ‘ R‘ TC ‘ Rsv g E Atr | R Length
Requester ID DCA Preferences Last DW BE | First DW BE
Address [63:32]
Address [32:2] R

Length specific data

Length specific data

TLP digest

Figure 7.30. PCle Message Format for DCA
The DCA preferences field has the following formats.

For legacy DCA systems:

Bits Name Description

Ob = DCA disabled.

0 DCA indication 1b = DCA enabled.

4:1 DCA target ID The DCA target ID specifies the target cache for the data.

Top Secret 325

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

For DCA 1.0 systems:

Bits Name Description
70 DCA target 1D 0000.0000b: DCA is dlsal?led.
Other: Target core ID derived from APIC 1D.25915
Note: All functions within a the 82599 have to adhere to the tag encoding rules for DCA writes. Even

if a given function is not capable of DCA, but other functions are capable of DCA, memory
writes from the non-DCA function must set the tag field to 00000000b.

7.6 LEDs

The 82599 implements four output drivers intended for driving external LED circuits per port. Each of
the four LED outputs can be individually configured to select the particular event, state, or activity,
which is indicated on that output. In addition, each LED can be individually configured for output
polarity as well as for blinking versus non-blinking (steady-state) indication.

The configuration for LED outputs is specified via the LEDCTL Register. Furthermore, the hardware-
default configuration for all LED outputs can be specified via EEPROM fields thereby supporting LED
displays configurable to a particular OEM preference.

Each of the four LED's can be configured to use one of a variety of sources for output indication. For
more information on the MODE bits see LEDCTL register (see Section 8.2.3.1.5).

The IVRT bits enable the LED source to be inverted before being output or observed by the blink-control
logic. LED outputs are assumed to normally be connected to the negative side (cathode) of an external
LED.

The BLINK bits control whether the LED should be blinked (on for 200 ms, then off for 200 ms) while
the LED source is asserted. The blink control can be especially useful for ensuring that certain events,
such as ACTIVITY indication, cause LED transitions, which are sufficiently visible by a human eye.

Note: The LINK/ACTIVITY source functions slightly different from the others when BLINK is enabled.
The LED is:

e Off if there is no LINK
e On if there is LINK and no ACTIVITY
e Blinks if there is LINK and ACTIVITY

326 Top Secret

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

7.7 Data Center Bridging (DCB)

See Section 4.6.11 for the DCB configuration sequence and Section 11.5 for the expected performance
of DCB functionality.

7.7.1 Overview

DCB is a set of features that improve the capability of Ethernet to handle multiple traffic types (such as
LAN, storage, IPC) by answering the various needs of those types. DCB enables multiple traffic types
that have different requirements of packet delivery, bandwidth allocation and delay. Each traffic type
can have one or several user priorities, or Traffic Classes (TCs). For example, IPC might have a high
priority class for synchronization messages between servers and lower priority traffic class for bulk
traffic exchange between servers. Most of the DCB functions impact the transmit traffic generated from
the end node to the network (traffic generation). The receive data path needs be compliant with the
requirements of DCB and provide the required functions as a traffic termination point.

DCB system requirements include:

1. Bandwidth grouping — For effective multiplexing that simulates a separate link for the separate
types of traffic, DCB requires that traffic types be recognized as groups in the bandwidth and
priority handling by nodes in the network. Traffic types are associated to Bandwidth Groups
(BWGSs). The system needs to be able to allocate bandwidth to the BWGs in a way that emulates
that group being on its own separate link.

2. Bandwidth fairness — DCB multiplexing functions (transmit) and de-multiplexing functions
(receive) need to guarantee minimum allocation of bandwidth to traffic types and traffic classes.
Fairness between groups comes first, then fairness between TCs. If system resources (such as PCle
bandwidth) limit total throughput, then the available bandwidth should be distributed among
consumers proportionally to their allocations.

3. Latency of operation — DCB multiplexing and de-multiplexing functions need to allow minimum
latency for some TCs. Arbitration mechanisms, packet buffers, descriptor queues and flow control
algorithm need to be defined and designed to allow this. The best example is the control/sync
traffic in IPC. The expectation for end-to-end IPC control is measured in the low 10's of us for the
82599 and is expected to drop to a singe digit us later. Some elements in multimedia traffic also
bear similar requirements. Although some of the end-to-end delays can be quite long, the
individual contribution of the arbitration in each node must be kept to a minimal. End-to-end
budgets do not comprehend large delays within transmission nodes.

4. No-drop behavior and network congestion management — The end node must be able to guarantee
no-drop behavior for some TCs or some packets within TCs. As a termination point in receive, it is
the end node’s responsibility to properly control traffic coming from the network to achieve this
end. For traffic generation in transmit, the end station must be able to positively respond to flow
control from the network as the must have tool to prevent packet drop. It also needs to participate
in network congestion management.

5. Compatibility with existing systems. — The DCB implementation needs to be usable by IT using
known configurations and parameters, unless new ones are made expressly available. For example,
DCB implementation cannot assume new knowledge regarding bandwidth allocation of traffic types
that do not have known bandwidth requirements.

Top Secret 327

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

The layer 2 features of DCB implemented in the 82599 are:

1. Multi-class priority arbitration and scheduling — The 82599 implements an arbitration mechanism
on its transmit data path. The arbitration mechanism allocates bandwidth between TC in BWGs and
between Virtual Machines (VMs) or Virtual Functions (VFs) in a virtualization environment. The
BWGs can be used to control bandwidth and priority allocated to traffic types. Typically BWGs
should be used to represent traffic types. TC arbitration allows control of bandwidth and priority
control within BWGs as well as within the entire link bandwidth. The arbitration is designed to
respect the bandwidth allocations to BWGs. The priority allocation allows minimization of delay for
specific TCs. In the 82599, TCs and user priorities are processed on a packet-by-packet basis based
on the 802.1p identifier in the 802.1Q-tag.

2. Class-based flow control (PFC — Priority Flow Control) — Class-based flow control functionality is
similar to the IEEE802.3X link flow control. It is applied separately to the different TCs.

« Transmit response to class-based flow control from the ingress switch it is connected to.

= Receive class-based flow control commands to the switch in response to packet buffers filling
status.

3. DMA queuing per traffic type — Implementation of the DCB transmit, minimization of software
processing and delays require implementation of separate DMA queues for the different traffic
types. The 82599 implements 128 descriptor queue in transmit and 128 descriptor queues in
receive.

4. Multiple Buffers — The 82599 implements separate transmit and receive packet buffers per TC.
5. Rate-limiter per Tx queue — limiting the transmit data rate for each Tx queue.

Latency requirements:
Quantitative latency requirements are defined for a single 64-byte packet at the highest priority traffic
class. Latency is defined separately for transmit and receive:

« Transmit latency — measured from a tail update until the packet is transmitted on the wire. It is
assumed that a single packet is submitted for this TC and its latency is then measured in the
presence of traffic belonging to other TCs.

- Receive latency — measured from packet reception from the wire and until the descriptor is
updated on PCle.

328 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

Figure 7.31 shows the latency requirements as previously defined.

—e— Transmit

/ —m— Receive

10
5 | /

O T T T T T
0 5000 10000 15000 20000 25000 30000 35000

Segment Size (Bytes)

Latency (usec)
- N
o O

Figure 7.31. Latency Requirements

Note: In DCB mode, it is assumed all traffic is tagged (contains a VLAN header) — except for Layer2
frames with special Ethernet MAC addresses that goes untagged. GMRP frames (special
Ethernet MAC addresses starting with 0x0180c20000) must, however, go tagged. Untagged
packets must be delivered to the host and are assumed to belong to User Priority 7.

Note that any BCN signaling is terminated at the network's edge. At initialization, every component
exchanges its capabilities with its peer via a Capability Exchange (DCX) protocol carried over dedicated
Link Layer Discovery Protocol (LLDP) frames. Support for these protocols is transparent to the hardware
implementation, and as a result, is not described in this document.

7.7.2 Transmit-side Capabilities

Note: When configured for DCB mode, the the 82599 driver should only use advanced transmit
descriptors. Refer to Section 7.2.3.2.3. Using legacy transmit descriptors is not allowed.

Top Secret 329

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.7.2.1 Transmit Rate Scheduler (RS)

7.7.2.1.1 Basic Rate Control Operation

Rate control is defined in terms of maximum payload rate, and not in terms of maximum packet rate.
This means that each time a rate controlled packet is sent, the next time a new packet can be sent out
of the same rate controlled queue is relative to the packet size of the last packet sent. The minimum
spacing in time between two starts of packets sent from the same rate controlled queue is recalculated
in hardware on every packet again, by using the following formula:

MIFS = PL x RF

Where:

- Packet Length (PL), is the Layer2 length (such as without preamble and IPG) in bytes of the
previous packet sent out of that rate controller. It is an integer ranging from 64 to 9 K (at least 14-
bits).

e RF = 10 Gb/s / target rate (rate factor) is the ratio between the nominal link rate and the target
maximum rate to achieve for that rate-controlled queue. It is dynamically updated either by
software via the RTTBCNRC register, or by hardware via the rate-drift mechanism, as described in
Section 7.7.2.1.2. It is a decimal number ranging from 1 to 1,000 (10 Mb/s minimum target rate).
For example, at least 10-bits before the hexadecimal point and 14-bits after as required for the
maximum packet length by which it is multiplied. For links at 1 Gb/s, the rate factor must be
configured relatively to the link speed, replacing 10 Gb/s by 1 Gb/s in the above formula.

e Minimum Inter Frame Space (MIFS) is the minimum delay in bytes units, between the starting of
two Ethernet frames issued from the same rate-controlled queue. It is an integer ranging from 76
to 9,216,012 (at least 24-bits). In spite of the 8-byte resolution provided at the internal data path,
the byte-level resolution is required here to maintain an acceptable rate resolution (at 1% level) for
the small packets case and high rates.

Note: It might be that a pipeline implementation causes the MIFS calculated on a transmitted
packet to be enforced only on the subsequent transmitted packet.

Time Stamps — A rate-scheduling table contains the accumulated interval MIFS, for each rate-
controlled descriptor queue separately, and is stored as an absolute Time Stamp (TS) relative to an
internal free running timer. The TS value points to the time in the future at which a next data read
request can be sent for that queue. Whenever updating a TimeStamp:

TimeStamp(new) = TimeStamp(old) + MIFS

When a descriptor queue starts to be rate controlled, the first interval MIFS value is equal to 0 (TS
equal to the current timer value) — without taking into account the last packet sent prior to rate
control. When the TS value stored becomes equal to or smaller than the current free running timer
value, it means that the switch is on and that the queue starts accumulating compensation times from
the past (referred as a negative TS). When the TS value stored is strictly greater than the current free
running timer value, it means that the switch is off (referred as a positive TS.

(CurrentTime) < TimeStamp <--> switch is “off”
(CurrentTime) >= TimeStamp <--> switch is “on”
MMW — The ability to accumulate negative compensation times that saturates to a Max Memory

Window (MMW) time backward. MMW size is configured per TC via the MMW_SIZE field of the
RTTBCNMR register, and is expressed in 1 KB units of payload, ranging from O up to 2 KB units (at least

330 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

11-bits). The MMW_SIZE configured in KB units of payload has to be converted in time interval
MMW_TIME expressed in KB, before a new time stamp is checked for saturation. It is computed for
each queue according to its associated Rate Factor (RF) using the following formula:

MMW_TIME = MMW_SIZE x RF

Note: MMW_TIME is rounded by default to a 1 KB precision level and must be at least 31 bits long.
Hence, the time stamp byte-level values stored must be at least 32-bits long for properly
handling the wrap-around case. 29-bits are required for the internal free running timer
clocked once every 8 bytes.

Whenever updating a time stamp verify:

TimeStamp(old) + MIFS >= (CurrentTime) — MMW_TIME

and then the time stamp is updated according to the non-saturated formula:

TimeStamp(new) = TimeStamp(old) + MIFS

Otherwise, enforced saturation by assigning:

TimeStamp(new) = (CurrentTime) — MMW_TIME + MIFS

Note: Non-null MMW introduces some flexibility in the way controlled rates are enforced. It is
required to avoid overall throughput losses and unfairness caused by rate-controlled packets
over-delayed, consequently to packets inserted in between. Between two rate-limited packets
spaced by at least the MIFS interval, non-rate-limited packets, or rate-limited packets from
other rate-controlled queues, might be inserted. If a rate controlled packet has been delayed
by more time than it was required for rate control (because of arbitration between VMs or
TCs), the next MIFS accumulates from the last time the queue was switched on by the rate
scheduling table — and not from the current time. Refer to Figure 7.32 for visualizing the
effect of MMW.

MMW_SIZE set to O must be supported as well.

Top Secret 331

®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

A - No Memory Window:

Time from which Time from which | Time from which | Time from which |

P2 can be sent P3 can be sent \ P4 can be sent PS5 can be sent
—MIFS1- —MIFS2—>- MIFS3 > —MIFS4—>
&PL1> N\ | &PL2D> &—PL3—> &PLA» time

\ |
N Packet from other DQs inserted
because DQ or DCB arbitration

B - Unlimited Memory Window (or infinite Memory Window):

—MIFS1—>—MIFS2—> MIFS3 >—MIFS4—>
7 - v |
&PLL> &PL2D> é—PL3—> &PLAS time

C - Non-null Max Memory Window (MMW):

MMW_TIME from P2

MMW_TIME from P3 MMW_TIME from P4
——MIFS1—>—MIFS2—> MIFS3 >——MIFS4—> —MIFS4—>
&PLID &PL2> &—PL3—> &PLAS time

MIFS accumulation cannot result in a time
point older than MMW_TIME backward

Figure 7.32. Minimum Inter-Frame Spacing for Rate-Controlled Frames (in Orange)

7.7.2.1.2 Rate Drift

Periodically, at fixed intervals in time, the rate factors of all rate-controlled queues must be increased
internally by a small amount. The periodic interval in time at which rate drift mechanism is triggered is
configured via the DRIFT_INT field in RTTBCNRD register. the rate-drift mechanism done in hardware is
enabled by setting the DRIFT_ENA bit in RTTBCNRD register; otherwise, it is assumed that it is handled
by software.

The rate-drift mechanism is essential for fairness and rate recovery of rate-controlled flows reduced to
very low rates.

Note: For providing accurate rate-drift intervals, the rate-drift mechanism must be started

immediately once the interval in time has elapsed — without waiting for the next time stamp
table scan cycle to start.

332 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

Rates are increased in a multiplicative manner, by multiplying the rates with a fixed value slightly
greater than unity. It is thus similar to multiplying the rate factors by a fixed value slightly smaller than
unity, which is referred to as the drift factor. It is configured via the DRIFT_FAC field in RTTBCNRD
register. The rate-drift mechanism saturates if the full line rate has been recovered (when the rate
factor has been decreased down to unity):

Rate-Factor(new) = max(1, Rate-Factor(old) x Drift-Factor)

For example, if a periodic rate increase of 3% is desired, then a drift factor of 1/1.03=0.97087... must
be configured.

Note: One disadvantage of the multiplicative rate increase method results in smaller increases for
low-rated flows and larger increases for high-rated flows. An additive method has been
envisaged instead, increasing the rate factors by small additive steps on each interval, but it
has been dropped off because it had poor chances of being standardized by IEEE 802.1au.

A queue that has recovered the full line rate via the rate-drift mechanism (rate factor
decreased down to one) is not considered as a rate-controlled queue, its corresponding
RS_ENA bit in the RTTBCNRC register must be internally self-cleared, and it should stop
tagging its frames with the RLT option. Refer to Section 7.7.2.1 for further details on CM-
tagging.

7.7.2.2 User Priority to Traffic Class Mapping

DCB-enabled software is responsible for classifying any Tx packet into one of the eight 802.1p user
priorities, and to assure it is tagged accordingly by either software or hardware. The driver dispatches
classified Tx traffic into the Tx queues attached to the proper TC, according to a UP-to-TC Tx mapping
policy decided by the IT manager.

Note: When configured for DCB mode or when using the Tx rate-limiting functionality, the 82599
software driver should only use advanced transmit descriptors. Refer to Section 7.2.3.2.3. DO
NOT use legacy transmit descriptors.

Caution: When translating XON/XOFF priority flow control commands defined per UP into commands to
the Tx packet buffers, the 82599 is required to use the same UP-to-TC Tx mapping table that
software is using. The RTTUP2TC register must be configured by software accordingly. Refer
to Section 3.7.7.1.3 for details on priority flow control.

7.7.2.3 VM-Weighted Round-Robin Arbiters

The 82599 implements VM-weighted arbiter(s) for virtualized environments and according to the
following case:

= |If DCB is enabled, there is one such arbiter per TC, arbitrating between the descriptor queues
attached to the TC (one queue per VF). Bandwidth allocation to VMs is enforced at the descriptor
plane, per each TC separately. The VM arbiter instantiated for each TC is aimed to elect the next
queue for which a data read request is sent in case the TC is elected for transmission by the next
level arbiter. For example, the TC weighted strict priority descriptor plane arbiter.

- |If DCB is disabled, there is one single VM weighted arbiter, arbitrating between pools of descriptor
queues, where a pool is formed by the queues attached to the same VF. Bandwidth allocation to
VMs is enforced at the descriptor plane, between the pools, where queues within a pool are served
on a frame-by-frame round-robin manner.

Refer to the different arbitration schemes where virtualization is enabled, as shown in Figure 7.17.

Note: In this section, VM is considered a generic term used to refer to the arbitrated entity, whether
it is a Tx descriptor queue within the TC or whether it is a pool of Tx descriptor queues. In the

Top Secret 333

"] ®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

later case, pool parameters are allocated only to the lowest indexed queue within the pool,
taken as the representation of the entire pool.

334 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

7.7.2.3.1 Definition and Description of Parameters

Credits: Credits regulate the bandwidth allocated to VMs. As part of the Weighted Round Robin (WRR)
algorithm, each VM has pre-allocated credits. They are decremented upon each transmission and
replenished cyclically. The ratio between the credits of the VMs represents the relative bandwidth
percentage allocated to each VM (within the TC for the DCB enabled case). The 82599 effectively
maintains one table that represents these ratios. Note that credits can get negative values down to the
maximum sized frame allowed on the TC/pool.

Note: The absolute value of the credits has no direct bearing on the allocation of bandwidth. The
ratio between the credits does. However, since credits can accumulate only up to twice the
credit refills, the refills should be allocated as low as possible but must be set greater than
the maximum sized frame allowed on the TC or on the pool.

WRR: The algorithm implemented in the 82599 for VM arbitration.

Table 7.48 (T1) defines the VMs and their bandwidth allocation. The following elements are defined in
this table:

Table 7.48. Bandwidth Allocation to VMs

T1: VM Bandwidth Allocation
VMy VM Refill VM Max Credits VM Min Credits
0 MSS:1,024 KB 2xXMSS:2,048 KB -MSS
1 MSS:1,024 KB 2xMSS:2,048 KB -MSs
2 MSS:1,024 KB 2xMSS:2,048 KB -MSSs
3 MSS:1,024 KB 2xXMSS:2,048 KB -MSS
15 MSS:1,024 KB 2xMSS:2,048 KB -MSSs
T Due to a pipelined implementation, the VM credits range is enlarged by one MSS, beyond negative limits.
Tt All values are implemented with 64-byte granularity (a value of one corresponds to 64 bytes of credit).

VM: Configuration — The unique Tx descriptor queue attached to a VF within a TC, or the pool of Tx
descriptor queues attached to the same VF.

VM Credit Refill: Configuration — The 82599's WRR algorithm implement credit refill as the technique
for percentage allocation to VMs. The credits refill are added to each VM credit count on each
completion of the full round of the algorithm (after all the VMs had their chance to send what they had
in store or at least one frame).

The 82599's driver needs to calculate the VM credit refill to match the percent allocated through
management (such as in the MIB). Since the WRR arbitration is self timed, the ratio between the credits
refill is the only defining parameter for the VMs. However, the refills must be greater or equal to the
maximum sized frame allowed on the TC or on the pool in order to guaranty transmission of at least
one frame on each recycling round. The 82599 allows a value of 1.5 KB to 1,024 KB for a dynamic
range of x1000.

VM Maximum Accumulated Credits: Deducted from Refill Configuration — In order to prevent the
use of stale credits, the number of credits each VM can accumulate upon refill is limited. The credits for
each VM can only reach twice their refill. The maximum range for the credits is thus -9.5 KB to

2,048 KB, assuming negative credits can accumulate up to a maximum sized frame (9.5 KB [9728
bytes] if jJumbo frames are allowed), and where positive credits can accumulate up to twice the
maximum credit refill.

Top Secret 335

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

VM Credits: Run time parameter — VM credits is a running counter for each VM. It holds the nhumber
of available credits in 64-byte units. The algorithm runs sequentially between the VMs and enables
transmission for those VMs that have enough pending credits (their credit number is greater than zero).

Table 7.49. Registers Allocation for Tx VM Arbiters

Attribute Tx VM Arbiter
VM Control registers RTTDT1C
VMC Status registers RTTDT1S
VM credit refill CRQ
VM credits CccC

7.7.2.3.2 WRR Arbiter Algorithm

Low Latency TC Condition - When a TC is dedicated to low-latency traffic, there is a drive to always
keep spare TC bandwidth for the VMs that are quiet, for serving them with minimum latency when they
resume offering a workload. This avoids overloaded VMs to overtake the ability to serve the TC with low
latency. This feature is enabled per TC by setting the corresponding bit in the RTTDCS.LLTC bitmap.
When enabled on a TC, the associated VM arbiter does not replenish unless there is at least half the
MaxCredits in the TC’s credits account (if the TC is not LSP):

T2[TC].Credits >= (T2[TC].MaxCredits / 2), if IT2[TC].LSP
Refer to next section for the details on TC’s credits accounts.

Note: This feature should be combined with configuring at least twice the sum of T1[VM]. Refills
over a TC to its corresponding T2.[TC]MaxCredits. See Section 4.6.11.5.1 for details.

Round Robin — The round-robin aspect of the VM WRR arbiter resides in the fact that once a VM has
been granted for a data read request, the next VMs are checked in a cyclic round-robin order, even if
the granted VM still has credits for another data read request.

Start
Replenish all VMs credits

Saturated to twice T1[VM].Refill
For all the VMs:
T1[VM].Credits :=

VM := first VM in the TC; Min((T1[VM].Credits + T1[VM].Refill), 2 x T1[VM].Refill)

Decrement T1[VM].Credits N — A Il VMs in t_ha(
are either empty, switched-off by BCN
or have no credits?

Cyclic VM ++

s sent (from this VIM)?

is empty O
itched-off by BCN?
Y
N
Select VM for next TA[VM].Credits > 07 WRR Arbiters

data read request v

Figure 7.33. Tx VM WRR Arbiters Operation

336 Top Secret

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.7.2.4 Tx TC Weighted Strict Priority Arbiters

In DCB, multiple traffic types are essentially multiplexed over the Ethernet 10 Gb/s network. There is a
need to allow different behavior to different traffic flows as they pass through multiple Ethernet
switches and links. For example, for LAN, SAN and IPC connections are consolidated on a single
Ethernet link. Each traffic type (BWG) is guaranteed the bandwidth it has been allocated and is
prevented from usurping bandwidth from other types. However, if a BWG does not use its bandwidth,
that bandwidth is made available to the other BWGs. The same holds for TCs within a BWG. If allocated
some bandwidth, TCs are guaranteed to have it, and if unused, that bandwidth can be used by the
other TCs within the BWG. Information regarding bandwidth allocation for some TCs might not be
available. In the case of LAN, the entire allocation of bandwidth within the LAN link is typically
undefined in today's networks. The arbitration scheme includes Group Strict Priorities (GSP) to cover
for that. TCs for which the GSP bit is set are limited by the total throughput allocated to their BWG
rather than to TC allocation.

Link bandwidth is divided among the BWGs for guaranteed minimum behavior. For example: LAN:

4 Gb/s, SAN: 4 Gb/s, IPC: 2 Gb/s. The 82599 supports two types of bandwidth allocation within BWGs.
TCs can be either allocated bandwidth or be used as in strict priority. If a TC does not use all of its
allocated bandwidth, that bandwidth is recycled to other TCs in the BWG.

The 82599 implements two replications of the weighted TC arbiter:

= One in the descriptor plane, arbitrating between the different descriptor queues, deciding which
queue is serviced next. It is aimed to enforce the TC bandwidth allocation and prioritization scheme
for a case when PCle bandwidth is smaller than the link bandwidth.

= A second in the packet plane, at the output of the packet buffers, deciding which packet to transmit
next. It is aimed to enforce the TC bandwidth allocation and prioritization scheme for a case when
PCle bandwidth is greater than the link bandwidth.

The condition for entry into the bandwidth allocation algorithm sequence differs for the descriptor and
data arbiters:

= The descriptor arbiter queries whether there is at least one queue attached to a TC that is not
empty, not switched off by the rate scheduler, with positive VM weighted arbiter credits (when
relevant), and for which the destined packet buffer has room for the worst case maximum sized
frame. This last condition is controlled by RTTDCS.BPBFSM.

= The packet arbiter queries whether the packet buffer has a packet to send and whether it is not
stalled by priority flow control.

7.7.2.4.1 Definition and Description of Parameters

User Priority (UP): There are eight traffic priorities, determined by 802.1p tag bits on an Ethernet
link. The Q-Tag field holds UP’s. Per 802.1p, Priority #7 is the highest priority. User priorities are
assigned by the application or the system to certain usage classes, such as manageability, IPC control
channel, VolP. And additional bit from the S-Tag format defines whether the packet has a no drop
requirement. This bit is not being used by DCB mechanisms.

User Bandwidth Group (UBWG): a user bandwidth group is a management parameter that is a
binding of user priorities into bandwidth groups for provisioning purposes. The hardware
implementation does not recognize the UBWG entity.

Traffic Class (TC): incoming packets are placed in traffic classes. Per the DCB functional specification,
there might be a 1:1 mapping between UP and TC, or more than one priority can be grouped into a
single class. Such grouping does not cross boundaries of traffic BWGs. the 82599 implements eight or
four TCs and maps them to UP's according to a programmable register. This provides the best flexibility
for the IT manager. However, when more than one UP is mapped to the same TC, they must have the
same no-drop policy network wide.

Top Secret 337

Intel® 82599 10 GbE Controller — Inline Functions

intel.

Packet Buffer (PB): TCs are mapped to packet buffers in a straightforward 1:1 mapping. Packets are
also placed in packet buffers based on their class assignments.

Traffic Bandwidth Group (BWG): For bandwidth allocation and grouping, one or more TC can be
grouped into a Traffic Bandwidth Group (BWG). A BWG is a logical association at a node, and has no
markings inside a packet header. End stations and switches are independent in their definition and
allocation of grouping of different TCs. Consistency of behavior throughout the network is handled by
the UBWG provisioning mechanism.

One or more TCs can be grouped in a BWG. BWGs are allocated a percentage of bandwidth of available
Ethernet link. The allocated bandwidth for BWG can be further divided among the TCs that are inside
the BWG.

Credits: Credits regulate the bandwidth allocated to BWGs and TCs. As part of the WSP algorithm,
each BWG and TC has pre-allocated credits. Those are decremented upon each transmission and
replenished cyclically. The ratio between the credits of the BWGs represents the relative bandwidth
percentage allocated to each BWG. The ratio between the credits of the TCs represents the relative
bandwidth percentage allocated to each TC within a BWG. The 82599 effectively maintains one table
that represents both ratios at once. Note that credits can get negative values down to the maximum
sized frame allowed on the TC.

Maximum Credit Value: The maximum credit value establishes a limit for the running sum of credits
allotted to a class or group. This value prevents stacking up stale credits that can be added up over a
relatively long period of time and then used by TCs all at once, altering fairness and latency.

Note: The absolute value of the credits has no direct bearing on the allocation of bandwidth. The
ratio between the credits does. However, the absolute value might have substantial impact on
the algorithm behavior. Larger absolute values can impact the latency of high priority queues
and their ability to serve bursts with minimum latency, whereas too small credit values might
impact the correct functionality in presence of jumbo frames. The speed of the algorithm
implementation should also be taken into account. The value of the maximum credit limit are
also in principle not part of the main WSP algorithm. However, they impact the fairness of
bandwidth reallocation between queues in case some queues do not transmit the full amount
they have been permitted to. Also, small values prevent correct functionality of jumbo
frames. From high-level simulations it appears that credits should be allocated as low as
possible based on the speed of the algorithm. Maximum credit values for TCs should be 1.5x
to 2x the size of the maximum entity expected in that TC.

Weighted Strict Priority (WSP): The algorithm implemented in the 82599 for TC arbitration.
Group Strict Priority (GSP): Refer to the sections that follow for details.
Link Strict Priority (LSP): Refer to the sections that follow for details.

Table 7.50 (T2) defines the TCs, their association to BWGs and their bandwidth allocation. The following
elements are defined in this table:

Table 7.50. Bandwidth Allocation to TCs and BWGs

T2:
Traffic Class Bandwidth Allocation Within a BWG
. . TC Min Credits (according to

TCn BWG TC Refill TC Max Credits LSP GSP GSP 0/1)

0 1 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

1 2 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

2 0 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB
338 Top Secret

Inline Functions — Intel® 82599 10 GbE Controller

Table 7.50. Bandwidth Allocation to TCs and BWGs

intel

Traffic Class Bandwidtil—,zé\.llocation Within a BWG

3 1 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

4 2 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

5 3 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

6 1 64 bytes to 32 KB 64 bytes to 256 KB 0/1 1/1 -MSS / -2,048 KB

7 0 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

T Due to a pipelined implementation, the TC credits range is enlarged by one MSS in both directions, beyond its positive and

negative limits.
Tt All values are implemented with 64-byte granularity (a value of one corresponds to 64 bytes of credit).

TC: Configuration — The traffic type associated to the packet buffer where incoming packets are kept
before transmission (or discard — not implemented in transmit in the 82599). TC7 is the highest
priority TC.

BWG: Configuration — Traffic BWG that a TC belongs to.

TC Credit Refill: Configuration — The 82599's WSP algorithm implements credit refill as the technique
for traffic class percentage allocation. The credits refill are added to each TC credit count on each
completion of the full round of the algorithm (after all TCs had their chance to send what they had in
store and if they had credits for it).

Top Secret 339

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

The 82599's driver needs to calculate the TC Credit refill to match the percentage allocated through
management (in the MIB). The TC credit refill table includes, in one table both the TC and the BWG.
Since the WSP arbitration is self timed, the ratio between the credits refill is the only defining
parameter for the TC and BWG. The absolute values of the refill have significance as to the rate of
distribution between the queues and can have impact on latency and on the momentary stability of the
bandwidth fairness. Results from simulations indicate that the quantum for the refill should be small to
prevent large swings. It should not be too small as to create overhead in the mechanism due to the
execution time; however. The 82599 allows a value of 64 bytes to 32 KB, A dynamic range of x500. The
usage model is likely to call for a smallest refill value of 256 bytes to 512 bytes. This leaves a dynamic
range of 80x-200x. For example, if a queue is assigned 1% and this is translated into a 256-byte
increment, another assigned with 99% would have a refill value of 25344 bytes.

TC MaxCredit: Configuration — In order to prevent use of stale credits, the number of credits each TC
can accumulate upon refill is limited. The TC credit can only reach MaxCredit, beyond that its value gets
recycled to other queues. Refer to the recycling mode for more details. The maximum range for the
MaxCredit is 256 KB. This high range value was inherited from the 82598 that had to deal with entire
LSOs, but is not really necessary for the 82599.

Note: Full testing of many values for maximum value is unnecessary. Hierarchical testing should be
applied. For the random test, four to six values should be sufficient. It is important that the
testing includes values that are relevant to the interesting zone of maximum value. For
example, in the 0.8x to 2x the relevant largest entity in the class. Although class with an
expected shorter packet could use a smaller MaxCredit, it is recommended that testing fully
covers the cases where all the classes have similar values of MaxCredit, as it is a possible
variant use of the algorithm.

Link Strict Priority (LSP): Configuration — If set, this bit specifies that this TC can transmit without
any restriction of credits. This effectively means that this TC can take up the entire link bandwidth,
unless preempted by higher priority traffic. If this bit is set, then TC.CreditRefill must be set to Ob to
ensure fair bandwidth allocation. Preferably, the algorithm implementation should disregard non-zero
values in all its calculations.

Group Strict Priority (GSP): Configuration — This bit defines whether strict priority is enabled or
disabled for this TC within its BWG. If TC.GSP is set to 1b, the TC is scheduled for transmission using
strict priority. It does not check for availability of TC.Credits. It does check whether the BWG of this TC
has credits (such as the amount of traffic generated from this TC is still limited by the BWG allocated for
the BWG (T3. BWGP). If this bit is set, then TC.CreditRefill values can be set to Ob, if a non-zero value
is configured, TC credits are reduced first from the GSP TC and if reached to zero from other TCs in the
group, if the refill credits are configured to zero the TC credits are reduced from the other TCs in the
BWG.

Note: Since the TC.GSP parameter relates to individual TCs, some BWGs might have both TC's with
bandwidth allocation and TC's with GSP. This is a hybrid usage mode that is complex to
validate and is possibly secondary in importance.

Usage Note — It is possible that a TC using LSP dominates the link bandwidth if there are no packets
waiting and eligible in higher priority TC's. To guarantee correct bandwidth allocation, all TC's with the
unlimited bit set should be in the same traffic BWG (high priority group). Note that this is different than
a typical DCB deployment considered where BWG is created with functional grouping, like LAN, SAN,
and IPC etc. TC's with the LSP bit set should be the first to be considered by the scheduler (the first
TC's). For example, from queue 7 to queue 5 with the other five TC's for groups with bandwidth
allocation. These are not strict requirements, if these rules are not followed, undesirable behavior could
occur in some cases. A group containing only TC's with the unlimited bit set effectively has zero BWG
credits since TC's with the LSP unlimited bit set should have TC credits set to zero. Use of LSP / TC.GSP
should be restricted to UP/TC's that service trusted applications.

340 Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

TC Credits: Run-time parameter — TC credits is a running algebraic counter for each TC. It holds the
number of available credits in 64-byte units. The algorithm runs sequentially between the TC's and
enables transmission for those TCs that have positive pending credits. Note that credits can get
negative values down to the maximum sized frame allowed on the TC.

Table 7.51 (T3) defines the hierarchy of BWG similarly to T2 defining the hierarchy within the BWG's. T3
implementation should include eight rows.

Table 7.51. Line Bandwidth Allocations to Bandwidth Groups (BWG) (with example)

T3:

Line bandwidth allocation to Traffic Bandwidth Groups (BWG)
BWG BWG Refill Credits BWG MaxCredit BWG Credit Description
0] = 3[TC] Credit Refill = 3[TC]. MaxCredit -/+ 2,048 KB IPC
1 = 3[TC] Credit Refill = 3[TC]. MaxCredit -/+ 2,048 KB SAN
2 = 3[TC] Credit Refill = 3[TC]. MaxCredit -/+ 2,048 KB LAN
3 = 3[TC] Credit Refill = 3[TC]. MaxCredit -/+ 2,048 KB Manageability
7
T Due to a pipelined implementation, the BWG credits range is enlarged by one MSS in both directions, beyond its positive and

negative limits.

BWG: Configuration — This is the number of the traffic BWG that is three bits wide. This field
corresponds to the TC.BWG field in Table 7.50.

BWG Refill Credits: A virtual number — The credits provisioned for this BWG. The credits ratio
between the BWG's should reflect the ratio of bandwidth between the BWG's. In the actual
implementation, this number is the sum of the credit Refills of the TC's associated with this BWG.

BWG MaxCredit: A virtual number — The maximum credits for a BWG. Credits in the BWG.Credit
counter are limited to this value. Credits that should have been refilled above this value are lost. In
effect, due to the self-timed cyclic nature of the WSP algorithm, those credits are distributed between
all BWG's. In the actual implementation, this number is the sum of the MaxCredit of the TC's associated
with this BWG.

BWG.Credit: Run-time parameter — A running algebraic counter that is decremented for each
transmission. At the end of each cycle, this counter is synchronized with the sum of the TC.Credit
counter associated with this BWG. The synchronization algorithm depends on the recycling mode. refer
to the sections that follow for details about arbitration configurations. Note that credits can get negative
values down to the maximum sized frame allowed on the BWG.

7.7.2.4.2 Arbiters Conventions

The WSP scheme previously described is written with the data plane arbiter in mind. However, the same
scheme is used by the transmit descriptor plane arbiter and a subset of it is used by the receive data
arbiter. To distinguish between the two arbiters, attributes of the each arbiter are prefixed as depicted
in Table 7.52.

Top Secret 341

intel.

Intel® 82599 10 GbE Controller — Inline Functions

Table 7.52. Attributes of Tx Arbiters

Attribute

Tx Packet Arbiter

Tx Descriptor Arbiter

TC

P-TC

D-TC

BWG

P-BWG

D-BWG

TC Credit Refill

P-TC Credit Refill

D-TC Credit Refill

TC MaxCredit

P-TC MaxCredit

D-TC MaxCredit

LSP P-LSP D-LSP
GSP P-GSP D-GSP
TC Credits P-TC Credits D-TC Credits

BWG Refill Credits

P-BWG Refill Credits

D-BWG Refill Credits

BWG MaxCredits

P-BWG MaxCredits

D-BWG MaxCredits

BWG Credits

P-BWG Credits

D-BWG Credits

Table 7.53 lists the register fields that contain the relevant attributes

Table 7.53. Registers Allocation for Tx TC Arbiters

from Table 7.52.

Attribute Tx Packet Arbiter Tx Descriptor Arbiter

TC Control registers RTTPT2C Reserved

TC Status registers RTTPT2S RTTDT2S

BWG BWG BWG

TC credit refill CRQ CRQ

TC MaxCredit MCL MCL

LSP LSP LSP

GSP GSP GSP

TC credits CCccC CCccC

7.7.2.4.3 Tx TC WSP Arbitration Configurations

RR /7 WSP: Global Configuration bits — When this bit is set, the arbitration is in WSP mode. When
reset, the arbitration is in flat frame-based round robin mode. In RR mode, one frame is transmitted
from each packet buffer in its turn. BWG and TC parameters do not apply.

Recycle Mode: Global Configuration bits.

Architecture Overview of Recycle — As a result of GSP transmits and TCs that reach their maximum
credit limit, the credit count of a BWG might not match the total credit count of its TCs (refer to the
sections that follow for more details). It is not merely an arithmetic issue. The WSP algorithm, dual
hierarchy behaves as a maximum allocation algorithm within the BWG's and minimum allocation
algorithm between the BWG's. Since the recycle is self timed, when a BWG does not transmit all of its
allocated bandwidth within a cycle, at the end of the cycle its bandwidth is in effect reallocated to all
BWG's. This results in a minimum allocation behavior. Inside the BWG's; however, this notion of self
timing does not exist. Some explicit mechanism is required to recycle bandwidth within a BWG rather
than to all the BWG's — The requirement to have a minimum allocation behavior.

< A BWG credit count might not match the total credit count of its TCs in the following cases:

— A TC is defined as GSP — when a GSP is selected, the BWG credits are decremented but no TC
is deducted. Therefore, the BWG credit count would be lower that the credit count of its TCs.

342

Top Secret

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

— Max credits during refill — If a TC reaches its max credits value during refill, then some credits
are lost for that TC. However, the BWG for that TC is provided with the full refill count.
Therefore, the BWG credit count would be higher that the credit count of its TCs.

= One bit per TC arbiter governs the recycle mode of the WSP algorithm:

— 0O: No Recycling — At the end of each full arbitration cycle all TC's are refilled with their
TC.Refill up to their TC.MaxCredits values. All BWG.Credit are loaded by the sum of the BWG
TC.Credit.

— 1: Recycle — TC credits for TC's that have reached their maximum are recycled to other TC's
of the BWG. The operation is calculated based on the BWG.Credit and the TC.Credits after their
refill. The difference between them is the BWG.Recycle value.

Positive BWG.Recycle - The recycle algorithm adds credits from the BWG.Recycle to the
TC.Credits starting from the highest priority TC in the BWG down, considering the
TC.MaxCredit, until BWG.Recycle is zero.

Negative BWG.Recycle - The recycle algorithm subtracts credits from the BWG.Recycle to the
TC.Credits starting from the lowest priority TC in the BWG up, until BWG.Recycle is zero.

A separate set of configuration parameters exists for each of the three TC arbiters as listed in
Table 7.54.

Table 7.54. Configuration Parameters for the Tx and Rx TC Arbiters

Parameter Tx Packet Arbiter Tx Descriptor Arbiter Rx Packet Arbiter
RTTPCS RTTDCS RTRPCS
RR / WSP mode TPPAC TDPAC RAC
Recycle mode TPRM TDRM RRM

7.7.2.4.4 Tx TC WSP Arbiter Algorithm

The Transmit Packet Plane Arbitration Control (TPPAC) bit in the RTTPCS registers determines the
scheduler type (RR or WSP).

Strict Priority — The strict-priority aspect of the TC WSP arbiter resides in the fact that once a TC has
been granted for a data read request or for transmission, the highest priority TCs are checked (again)
in a strict-priority order, starting from TC7, even if the granted TC still has credits for another data read
request or transmission.

Note: The descriptor plane arbiter can't issue a data read request unless there is an unused request
for data. Therefore the arbiter stalls in its current state each time there are no data read
requests available. The next arbitration decision is only done once there is at least one free
data read request.

Top Secret 343

®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

P Replenish All BWG & Traffic Class Credits
- Saturated to a Max Value with Recycle to Group

Update BWG Credits to Max
AllBWG
T3[BWG].Credits :=
Min ((T3[BWG].Credits + T3[BWG].Refill),
T3[BWG].MaxCredit)

Update TC Credits to Max
Al TC:
T2[TC].Credits :=
A Min((T2[TC].Credits + T2[TC].Refill), T2[TC].MaxCredit)

Decrement Credits

If (IT2[TC]LSP) then {
Decrement T2[TC].Credits
DecrementT3[BWG].Credits

Are stall condition
in place *?

Recycle unused BW & Sync TC’s to BWG:
for each BWG:
T3[BWG].Recycle :=T3[BWG].Credits - B(T2[TC].Credits)
if T3[BWG].Recycle > 0 then / Some TC(s) have saturated
for (TC =7 to 0) & TC B BWG)
T2Recycle:= Min(T3[BWG].Recycle,
(T2[TC].MaxCredit -T2[TC].Credits))
T2[TC].Credits += T2Recycle
T3[BWG].Recycle -= T2Recycle
end

| BWG = T2[TCL.BWG |
Tx Packet |<—

G].Credits
0 GSP in the BWG?

Descriptor Plane Arbiter

Al descriptor queues attached to that TC are either empty,
and/or switched-off by the transmit rate scheduler, and/or no
place in PB[TC] (for example, it is filled with more KB than
TXPBSIZE.THRESH.

Data Plane Arbiter
PB[TC] is either empty, and/or paused by Priority Flow Control

Tx WSP Arbiter

Figure 7.34. Tx TC WSP Arbiters Operation
7.7.3 Receive-Side Capabilities

7.7.3.1 User Priority to Traffic Class Mapping

To enable different TC support for incoming packets and proper behavior per TC, the 82599’s receive
packet buffer is segmented into several packet buffers. The 82599 supports the following configurations
of packet buffer segmentation:

DCB disabled — Single buffer of 512 KB

DCB enabled with 4 TCs — 4 buffers, 128 KB each

DCB enabled with 8 TCs — 8 buffers, 64 KB each

DCB enabled with 8 TCs — 8 buffers, buffers 3:0 are 80 KB and buffers 7:4 are 48 KB

Incoming packets are transferred from the packet buffers into data buffers in system memory. Data
buffers are arranged around descriptor rings described in Section 7.1.9. Each descriptor queue is
assigned dynamically to a given TC (and therefore to a packet buffer) as described in Section 7.1.2.

344 Top Secret

Inline Functions — Intel® 82599 10 GbE Controller

intel.

Configuration registers:

= The size of each buffer is defined by the RXPBSIZE[0-7] registers. Note that it is possible to
configure the buffers at 1 KB granularity

= A received packet is assigned by the 82599 to a TC, and is thus routed to the corresponding Rx
packet buffer according to its User Priority field in the 802.1Q tag and according to a UP to TC
mapping table loaded into the RTRUP2TC register.

Caution: Different UP to TC mappings can be loaded in each direction Tx and Rx, as per RTTUP2TC and
RTRUP2TC registers, respectively. But in such a case, when a packet is looped back by the
internal VM to VM switch, it is routed to the Rx packet buffer that corresponds to the TC that
was used in TxX.

7.7.3.2 Rx PB Weighted Strict Priority Arbiter

The 82599's Rx arbiter determines the order in which packets are written from the different packet
buffers into system memory. Note that each packet buffer by itself is drained in the order packets
arrived, as long as it deals with packets destined to the same Rx queue.

The arbitration algorithm between the receive packet buffers is WSP, similar to the TC scheme on the
transmit side. Motivation for this scheme is as follows:

1. The major consideration is to prevent any delay in delivery of high-priority traffic.

2. Allocation of credits controls the bandwidth allocated to the different packet buffers.

3. A secondary mean of bandwidth allocation is the priority flow control. By altering the flow control
high watermark, the 82599 can effectively (if coarsely) regulate bandwidth allocation to types of
traffic.

Table 7.55 (T4) defines the TCs and their bandwidth allocation. The following elements are defined in
this table:

Table 7.55. Bandwidth Allocation to Traffic Classes and Bandwidth Groups

Packet Buffer Bandwidt-:—fAllocation Within a BWG

PB BWG PB Refill PB Max Credits LSP |GsP ggp'v'g}lc)redits (according to
0 1 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

1 2 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

2 0 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

3 1 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

4 2 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

5 3 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

6 1 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

7 (6] 64 bytes to 32 KB 64 bytes to 256 KB 0/1 0/1 -MSS / -2,048 KB

T Due to a pipelined implementation, the PB credits range is enlarged by one MSS in both directions, beyond its positive and

negative limits.
Tt All values are implemented with 64-byte granularity (a value of one corresponds to 64 bytes of credit).

Table 7.56 (T5) defines the hierarchy of BWG similarly to T4 defining the hierarchy within the BWG's. T4
implementation should include eight rows.

Top Secret 345

intel.

Intel® 82599 10 GbE Controller — Inline Functions

Table 7.56. Packet Buffer Allocations to BWGs (with Example)

Line Bandwidth AlloTcgtion to Traffic BWGs
BWG BWG Credit Refill BWG MaxCredit BWG Credit Description
0 = 5[TC] Credit Refil = 3[TC]. MaxCredit ~/+ 2,048KB IPC
1 = 5[TC] Credit Refil = 3[TC]. MaxCredit _/+ 2,048KB SAN
2 = S[TC] Credit Refil = 5[TC]. MaxCredit _/+ 2,048KB LAN
3 = 5[TC] Credit Refil = 3[TC]. MaxCredit ~/+ 2,048KB MGMT.
7

The attributes of the Rx packet arbiter are described in Section 7.7.2.4.2.

7.7.3.2.1

Rx TC Arbitration Configurations

Table 7.57 lists the register fields that control the Rx arbiter.

Table 7.57. Registers Allocation for DCB Rx Arbiters

Attribute Rx Packet Arbiter

PB Control registers RTRPT4C

PB Status registers RTRPT4S

BWG BWG

PB credit refill CRQ

PB MaxCredit MCL

LSP LSP

GSP GSP

PB credits CccC

Configuration parameters for the Rx packet arbiter are defined and listed in Section 7.7.2.4.1.

7.7.3.2.2

Rx TC WSP Arbiter Algorithm

The Rx packet arbiter operates in RR or WSP mode, configured through the RAC bit in the RTRPCS
register. The WSP arbiter operation is described as follows.

346

Top Secret

Inline Functions — Intel® 82599 10 GbE Controller

h 4
| PB =7 |
Decrement Credits P N
If (\T4[PB]LSP) then { N
Decrement T4[PB].Credits v
DecrementT5[BWG].Credits is emp
} descriptors in the ri
Y
A

Replenish all BWG & Traffic Class credits
Saturated to a Max value w/ Recycle to Group

Update BWG Credits to Max

Y All BWG
T5[BWG].Credits :=
PB < 0? Min ((T5[BWG].Credits + T5[BWG].Refill),

T5[BWG].MaxCredit)

Update PB Credits to Max
All PB:
PB-- T4[PB].Credits :=
A Min((T4[PB].Credits + T4[PB].Refill), T4[PB].MaxCredit)

Recycle unused BW & Sync PB's to BWG:

for each BWG:
T5[BWG].Recycle :=T5[BWG].Credits - X(T4[PB].Credits)
if TS[BWG].Recycle > 0 then // Some TC(s) have saturated

> for (PB =7 to 0) & PB € BWG)

TA[PB].LSP?

Y
| BWG = T4[PB].BWG
Tx Packet |<—
Y
T4[TC].GSP?
Y N
T4[PB].Credits > 0?

Rx WSP Arbiter

T4Recycle:= Min(T5[BWG].Recycle,
(T4[PB].MaxCredit -T4[PB].Credits))
T4[PB].Credits += T4Recycle
T5[BWG].Recycle -= T4Recycle
end

Figure 7.35. Rx Packet WSP Arbiter Operation

Top Secret

347

"] ®
I n tel Intel® 82599 10 GbE Controller — Inline Functions

Note: This page Intentionally left blank.

348 Top Secret

Inline Functions — Intel® 82599 10 GbE Controller

7.8

LinkSec

intel)

LinkSec (or MACsec, 802.1AE) is a MAC-level encryption/authentication scheme defined in IEEE
802.1AE that uses symmetric cryptography. The 802.1AE defines AES-GCM 128-bit key as a mandatory
cipher suite that can be processed by the 82599. The LinkSec implementation, enabled as detailed in
Section 4.6.12, supports the following:

= GCM AES 128-bit offload engine in the Tx and Rx data path that support 10 Gb/s wire speed.
= Both host and manageability controller traffic can be processed by the GCM AES engines.

= Support a single, secure Connectivity Association (CA):

— Single Secure Connection (SC) on transmit data path.
— Single SC on receive data path.

— Each SC supports two Security Associations (SAs) for seamless re-keying.

= At any given time, either the manageability controller or the host can act as key agreement entity
(KaY — in 802.1AE spec terminology). For example, control and access the offloading engine (SecY

in 802.1AE specification terminology).

— Arbitration semaphores indicate whether the manageability controller or the host acts as the

Kay.

— Tamper resistance — When the manageability controller acts as KaY it can disable accesses
from the host to SecY’s address space. When the host acts as the KaY no protection is provided.

« Provide statistic counters as listed in the Section 8.3.5.6.

= Support replay protection with replay window equal to zero. Packets that fail replay validation are
posted with a replay error in the Rx descriptor. The packets are posted to the host regardless of

strict versus check mode described later on in this section.

e Receive memory structure:

— New LinkSec offload receive status indication in the receive descriptors. LinkSec offload must
not be used with the legacy receive format but rather use the extended receive descriptor
format.

— LinkSec header/tag can be posted to the KaY for debug.
= Support VLAN header location according to IEEE 802.1AE (first header inner to the LinkSec tag).

= When LinkSec offload is enabled, Ethernet CRC must be enabled as well by setting both TXCRCEN
and RXCRCSTRP bits in the HLREGO register.

7.8.1

Packet Format

LinkSec defines frame encapsulation format as follows.

Table 7.58. Legacy Frame Format
LLC data (may include
MAC DA, SA VLAN (optional) Legacy Type / Len IP/TCP and higher level |CRC
payload)
cC—-— - - — — — — —— - — - User Data — - — - — - — - — -
—_————— e — - — - >
Table 7.59. LinkSec Encapsulation
MAC DA, SA LinkSec header (SecTag) User data (optional encrypted) LinkSec ICV (tag) | CRC ‘

349

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.8.2

LinkSec Header (SecTag) Format

Table 7.60. Sectag Format

LinkSec Ethertype TCI and AN SL PN SCI (optional)

2 bytes

1 byte 1 byte 4 bytes 8 bytes

7.8.2.1 LinkSec Ethertype

The MACsec Ethertype comprises octet 1 and octet 2 of the SecTAG. It is included to allow:

2 oo

Coexistence of MACsec capable systems in the same environment as other systems.
Incremental deployment of MACsec capable systems.
Peer SecY’s to communicate using the same media as other communicating entities.

Concurrent operation of key agreement protocols that are independent of the MACsec protocol
and the current cipher suite.

Operation of other protocols and entities that make use of the service provided by the SecY’s
uncontrolled port to communicate independently of the Key agreement state.

Table 7.61. LinkSec Ethertype

Tag Type Name Value

802.1AE security TAG LinkSec Ethertype 88-E5

7.8.2.2 TCI and AN

Table 7.62. TCI and AN Description

Bit(s) Description

7 Version Number (V). the 82599 supports only version 0. Packets with other version value are discarded by the
82599.

6 End Station (ES). When set, indicates that the sender is an end station. As a result, SCI is redundant and causes the
SC bit to be cleared. Currently, should be always 0Ob.

5 Secure Channel (SC). Equals 1b when the SCI field is active. If the ES bit is set the SC must be cleared. Since only
ES equals zero is supported, the SCI field must be active by setting the LSECTXCTRL.AISCI.

4 Single Copy Broadcast (SCB). Cleared to Ob unless SC supports EPON. Should always be Ob.

3 Encryption (E). Set to 1b when user data is encrypted. (see the note that follows).

> Changed Text (C). Set to 1b if the data portion is modified by the integrity algorithm. For example, if non-default
integrity algorithm is used or if packet is encrypted. (see the note that follows).

1:0 Association Number (AN). 2-bit value defined by control channel to uniquely identify SA (Keys, etc.).

Note: The combination of the E bit equals 1b and the C bit equals Ob is reserved for KaY packets.

350

The LinkSec logic ignores these packets on the receive path and transfers them to KaY as is
(no LinkSec processing and no LinkSec header strip). the 82599’s implementation never
issues a packet in which the E bit is cleared and the C bit is set, although can tolerate such
packets on receive.

Inline Functions — Intel® 82599 10 GbE Controller

7.82.2.1 Short Length

Table 7.63. SL Field Description

Bit(s) Description

7:6 Reserved, set to Ob.

Short Length (SL). Number of octets in the secure data field from the end of SecTag to the beginning of ICV if it is

5:0 less then 48 octets, else SL value is Ob.

7.8.2.2.2 Packet Number (PN)

The LinkSec engine increments it for each packet on the transmit side. The PN is used to generate the
initial value (1V) for the crypto engines. When KayY is establishing a new SA, it should set the initial
value of PN to 1b. See more details on PN exhausting in Section 7.8.5.1.

7.8.2.3 Secure Channel Identifier (SCI)

The SCI is composed of the Ethernet MAC address and port number as listed in the following table. If
the SC bit in TCI is not set, the SCI is not encoded in the SecTag.

Table 7.64. SCI Field Description

Byte O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
Source Ethernet MAC Address Port Number
7.8.2.4 Initial Value (1V) Calculation

The 1V is the initial value used by the Tx and Rx authentication engines. The IV is generated from the
PN and SCI as described in the 802.1AE specification.

7.8.3 LinkSec Management — KaY (Key Agreement Entity)

Kay management is done by the host or the manageability controller. The ownership of LinkSec
management is as follows:

1. Initialization at power up or after wake on LAN.
« In most cases the manageability controller wakes before the host, so:

— If the manageability controller can be a Kay, it establishes an SC (authentication and key
exchange).

— If the manageability controller cannot be a KaY the only way for it to communicate is through a
dedicated Ethernet MAC address or VLAN. This means that the switch must support settings
that enable specific Ethernet MAC Address or VLAN to bypass LinkSec.

e When the host is awake:

— If the manageability controller acted as Kay, the host should authenticate itself and transfer its
ability to authenticate to the manageability controller in order for the manageability controller
to transfer ownership over the LinkSec hardware. At this stage, the system operates in proxy
mode where the host manages the secured channel while the manageability controller
piggybacks on it.

— If the manageability controller wasn't KaY, the host takes ownership over the LinkSec hardware
and establishes an SC (authentication and key exchange). The manageability controller mode
of operation does not change and it continues to communicate through a dedicated Ethernet
MAC address or VLAN.

351

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

2. Host in Sx state — manageability controller active:

— If the manageability controller is not Kay capable, then the SC should be reset by link reset or
by sending a log-off packet (1af) and then the manageability controller can return to VLAN
solution (or remain in such).

— If the manageability controller is KaY capable, the host should notify the manageability
controller that it retires KaY ownership and the manageability controller should retake it.

7.8.4 Receive Flow
The 82599 might concurrently receive packets that contain LinkSec encapsulation as well as packets
that do not include LinkSec encapsulation. This section describes the incoming packet classification.

» Examine the user data for a SecTAG:

— If no SecTag, post the packet with a cleared LinkSec bit in the Packet Type field of the receive
descriptor.

« Validate frames with a SecTAG:
— The MPDU comprises at least 18 octets
— Octets 1 and 2 compose the MACsec Ethertype (88E5)
— The V bit in the TCI is cleared
— If the ES or the SCB bit in the TCI is set, then the SC bit is cleared
— Bits 7 and 8 of octet 4 of the SecTAG are cleared SL <= Ox3F

— If the C and SC bits in the TCI are cleared, the MPDU comprises 24 octets plus the number of
octets indicated by the SL field if that is non-zero and at least 72 octets otherwise

— If the C bit is cleared and the SC bit set, then the MPDU comprises 32 octets plus the number of
octets indicated by the SL field if that is non-zero and at least 80 octets otherwise

— If the C bit is set and the SC bit cleared, then the MPDU comprises 8 octets plus the minimum
length of the ICV as determined by the cipher suite in use at the receiving SecY, plus the
number of octets indicated by the SL field if that is non-zero and at least 48 additional octets
otherwise

— If the C and SC bits are both set, the frame comprises at least 16 octets plus the minimum
length of the ICV as determined by the cipher suite in use at the receiving SecY, plus the
number of octets indicated by the SL field if that is non-zero and at least 48 additional octets
otherwise

- Extract and decode the SecTAG as specified in Section 7.8.2.
- Extract the user data and ICV as specified section Section 7.8.1.
= Assign the frame to an SA:

— If a valid SCI, use it to identify the SC

— Select SA according to AN value

— If no valid SC or no valid SA found, drop the packet

— If SCI is omitted, use default SC

— Select SA according to AN value

— If no valid SC (or more then SC active) or no valid SA found drop packet
- Perform a preliminary replay check against the last validated PN
« Provide the validation function with:

— The SA Key (SAK)

— The SCI for the SC used by the SecY to transmit

352

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

— The PN
— The SecTAG
— The sequence of octets that compose the secure data
— The ICV
= Receive the following parameters from the cipher suite validation operation
— A valid indication, if the integrity check was valid and the user data could be recovered
— The sequence of octets that compose the user data
= Update the replay check

= Issue an indication to the controlled port with the DA, SA, and priority of the frame as received
from the receive de-multiplexer, and the user data provided by the validation operation

Note: All the references to clauses are to the IEEE P802.1AE/D5.1 document from January 19,
2006.

7.8.4.1 Receive Modes

There are four modes of operation defined for LinkSec Rx as defined by the LSECRXCTRL.LSRXEN field:

1. Bypass (LSRXEN = 00b) — in this mode, LinkSec is not offloaded. There is no authentication or
decrypting of the incoming traffic. The LinkSec header and trailer are not removed and these
packets are forwarded to the host or the manageability controller according to the regular L2 MAC
filtering. The packet is considered as untagged (no VLAN filtering). No further offloads are done on
LinkSec packets.

2. Check (LSRXEN = 01b) — in this mode, incoming packets with matching key are decrypted and
authenticated according to the LinkSec tag. In this mode both good and erroneous packets are
forwarded to host (with the relevant error indication). The only cases where packets are dropped
are: erroneous encrypted packets (with the ‘C’ bit in the SecTag header is set) or erroneous packets
with replay error if replay protection is enabled in the LSECRXCTRL registers. The Check mode is
expected to be used mainly for debug purposes. In this mode, it may be useful to set also the “Post
LinkSec header” bit in the LSECRXCTRL register which controls both SecTag and ICV to be posted to
host memory. Note that the header is not removed from KaY packets.

3. Strict (LSRXEN = 10b) — in this mode, incoming packets with matching key are decrypted and
authenticated according to the LinkSec tag. The LinkSec header and trailer might be removed from
these packets and the packets are forwarded to the host only if the decrypting or authentication
was successful. Additional offloads are possible on LinkSec packets. The header is not removed
from KaY packets.

4. Drop (LSRXEN = 11b) — in this mode, LinkSec is not offloaded and LinkSec packets are dropped.
There is no authentication or decrypting of the incoming traffic.

7.8.4.2 Receive SA Exhausting — Re-Keying
The seamless re-keying mechanism is explained in the following example.

KaY establishes SCO SC and sets SAO as the active SA by writing the key in register LinkSec RX Key,
writing the AN in LSECRXSA[O], and setting the SA Valid bit in the same register. This clears the Frame
Received bit. On the first packet that arrived to SAO, the frame received automatically sets the Frame
Received bit. Only at this time the KaY can and should initiate SA1 in the same manner as for SAO.
When a frame of SA1 arrives, SAO retires and can be used for the next SA.

Note: The same mechanism should be used for all RX SCs.

353

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.8.4.3 Receive SA Context and ldentification

Upon arrival of a secured frame the context of the SecTag is verified. This context of the SecTag is
described in Section 7.8.2. In order to process the secured frame it should be associated with one of
the SA keys. The identification is done by comparing the SCI data with LinkSec RX SC registers and the
appropriate SC is selected. To ensure that the SC bit in the TCI of the frame is not set and more than
one SC is valid belongs to the frame considered as erroneous and transferred to error handling if only
one SC is valid, this SC is selected in this case SC. The incoming frame AN field is compared to the AN
field of the Link RX SA register of the selected SC in order to select an SA. The selected SA PN (register
LinkSec RX SA PN) field is compared to the incoming PN which should be equal or greater than the
LinkSec RX SA PN value, otherwise this frame is dropped. On a match, the selected SA key is used for
the secured frame processing.

7.8.4.4 Receive Statistic Counters

A detailed list and description of the LinkSec RX statistics counters can found in Section 8.3.5.6.

7.8.5 Transmit Data Path

The 82599 might concurrently transmit packets that contain LinkSec encapsulation as well as packets
that do not include LinkSec encapsulation. This section describes the transmit packet classification,
transmit descriptors and statistic counters.

Note: Since flow control (PAUSE) packets are part of the MAC service they should not go through
the LinkSec logic.

1. Assign the frame to an SA by adding the AN according to SA select bit in the LSECTXSA register.

2. Assign the next PN variable for that SA to be used as the value of the PN in the SecTAG based on
the value in the appropriate (according to SA) LSECTXPN register.

3. Encode the octets of the SecTAG according to the setting in LSECTXCTRL register.
4. Provide the protection function of the current cipher suite with:
a. The SA Key (SAK).
b. The SCI for the SC used by the SecY to transmit.
c. The PN.
d. The SecTAG.
e. The sequence of octets that compose the user data.
5. Receive the following parameters from the cipher suite protection operation:
a. The sequence of octets that compose the secure data.
b. The ICV.

6. Issue a request to the transmit multiplexer with the destination and source Ethernet MAC
addresses, and priority of the frame as received from the controlled port, and an MPDU comprising
the octets of the SecTAG, secure data, and the ICV concatenated in that order.

7.8.5.1 Transmit SA Exhausting — Re-Keying

the 82599 supports a single SC on the transmit data path with a seamless re-keying mechanism. The
SC might act with one of two optional SAs. The SA is selected statically by the Active SA field in the
LSECTXSA register. Once the KaY entity (could be either software or hardware as defined by the
LinkSec Ownership field in the LSWFW register) changes the setting of the SA Select field in the
LSEXTXSA register the Active SA field is getting the same value on a packet boundary. The next packet
that is processed by the transmit LinkSec engine uses the updated SA.

354

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

The KaY should switch between the two SAs before the PN is exhausted. In order to protect against
such event, hardware generates a LinkSec packet number interrupt to KaY when the PN reaches the
exhaustion threshold as defined in the LSECTXCTRL register. The exhaustion threshold should be set to
a level that enables the KaY to switch between SA’s faster then the PN might be exhausted. If the KaY
is slower than it should be, then the PN might be increment above planned. Hardware guarantees that
the PN never repeats itself, even if the KaY is slow. Once the PN reaches a value of OxFF...FO, hardware
clears the Enable Tx LinkSec field in the LSECTXCTRL register to 00b. Clearing the Enable Tx LinkSec
field, hardware disables LinkSec offload before the PN could wrap around and then might repeat itself.

Note: Potential race conditions are possible as follows. the 82599 might fetch a transmit packet
(indicated as TxPacketN) from the host memory (host or manageability controller packet).
KaY can change the setting of the Tx SA Index. The TxPacketN can use the new TX SA Index
if the TX SA index was updated before the TxPacketN propagated to the transmit LinkSec
engine. This race is not critical since the receiving node should be able to process the
previous SA as well as the new SA in the re-keying transition period.

7.8.5.2 Transmit SA Context

Upon transmission of a secured frame, the SA associated data is inserted into the SecTag field of the
frame. The SecTag data is composed from the LinkSec Tx registers. The SCI value is taken from LinkSec
TX SCI Low and High registers unless instructed to omit SCI. The AN value is taken from the active
LinkSec TX SA and the PN from the appropriate LinkSec TX SA PN.

7.8.5.3 Transmit Statistic Counters

A detailed list and description of the LinkSec TX statistics counters can found in Section 8.2.3.13.

7.8.6 LinkSec and Manageability

See Section 10.4.

7.8.7 Key and Tamper Protection

LinkSec provides the network administrator protection to the network infrastructure from hostile or
unauthorized devices. Since the local host operating system can itself be compromised, hardware
protects vital LinkSec context from software access. There are two levels of protection:

= Disable host read access to the LinkSec Keys (keys are write-only)
= Disable host access to LinkSec logic while the firmware manages the LinkSec SC.

7.8.7.1 Key Protection

The LinkSec keys are protected against read accesses at all times. Both software and firmware are not
able to read back the keys that hardware uses for transmit and receive activity. Instead, hardware
enables the software and firmware reading a signature enabling to verify proper programming of the
device. The signature is a byte XOR operation of the Tx and Rx keys readable in the LSECTXSUM and
LSECRXSUM fields in the LSECCAP register.

355

Intel® 82599 10 GbE Controller — Inline Functions

intel.

7.8.7.2 Tamper Protection

In a scenario where the host failed authentication and as a result cannot act as the Kay, the
manageability controller disables the host access to network and manages the LinkSec channel while
the host operating system is already up and running. In such cases, hardware provides the required
hooks to protect LinkSec connectivity against hostile software. The manageability controller firmware
can disable write accesses generated by the host CPU (on the PCI interface) by setting the Lock LinkSec
Logic (bit 12) bit in the LSWFW register. Setting this bit can generate an interrupt to the host in case it
is enabled by the host in the IMS register.

7.8.8 LinkSec Statistics

7.8.8.1 Rx Statistics

After receiving a packet, one and only one of the statistics in Table 7.65 applies. The precedence order

of the statistics is also defined in Table 7.65.

Table 7.65. Rx Statistics

Register Name 802.1ae Name Priority Notes
LSECRXBAD InPktsBadTag > zﬁceket is dropped in strict mode or in check mode when the C bit is
LSECRXUNSCI InPktsUnknownsSCl 3 ;Jesreod only in check mode. Packet is forwarded to the host if the C bit is
LSECRXNOSCI InPktsNoSCI 3 Eﬁ(;ket is dropped in strict mode or in check mode when the C bit is
Packet is dropped in strict mode or in check mode when the C bit is
LSECRXUNSA InPktsUnusedSA 4 one. Note: This statistic reflects the sum of InPktsUnusedSA for all SAs.
Used only in check mode. Packet is forwarded to the host if the C bit is
LSECRXNUSA InPktsNotUsingSA 4 zero. Note: This statistic reflects the sum of InPktsUnusedSA for all
SAs.
LSECRXLATE InPktsLate 5
n/a InPktsOverrun n/a The 82599 supports wire-speed decryption and thus this statistic is not
needed.
LSECRXNV[SA#] InPktsNotvalid 6 Ez;(;ket is dropped in strict mode or in check mode when the C bit is
LSECRXINV[SA#] InPktslInvalid 6 ;Jesreod only in check mode. Packet is forwarded to the host if the C bit is
LSECRXDELAY InPktsDelayed 7
This statistic is relevant only in bypass mode. In this case, this statistic
GPRC InPktsUnchecked n/a is reflected in the regular GPRC statistic.
LSECRXOK[SA#] INnPktsOK 8

356

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

7.9 Time SYNC (IEEE1588 and 802.1AS)

7.9.1 Overview

Measurement and control applications are increasingly using distributed system technologies such as
network communication, local computing, and distributed objects. Many of these applications are
enhanced by having an accurate system-wide sense of time achieved by having local clocks in each
sensor, actuator, or other system device. Without a standardized protocol for synchronizing these
clocks, it is unlikely that the benefits are realized in the multi-vendor system component market.
Existing protocols for clock synchronization are not optimum for these applications. For example,
Network Time Protocol (NTP) targets large distributed computing systems with Millisecond (ms)
synchronization requirements. The 1588 standard specifically addresses the needs of measurement and
control systems:

* Spatially localized

= Microsecond (us) to sub-us accuracy

= Administration free

* Accessible for both high-end devices and low-cost, low-end devices

Note: The time sync mechanism activation is possible in full-duplex mode only. There are no
limitations on the wire speed although the wire speed might affect the accuracy.

7.9.2 Flow and Hardware/Software Responsibilities

The operation of a Precision Time Protocol (PTP) enabled network is divided into two stages:
initialization and time synchronization.

At the initialization stage, every master-enabled node starts by sending sync packets that include the
clock parameters of its clock. Upon receipt of a sync packet, a node compares the received clock
parameters to its own and if the received parameters are better, then this node moves to a slave state
and stops sending sync packets. While in slave state, the node continuously compares the incoming
packet to its currently chosen master and if the new clock parameters are better, than the master
selection is transferred to this master clock. Eventually the best master clock is chosen. Every node has
a defined time-out interval that if no sync packet was received from its chosen master clock it moves
back to a master state and starts sending sync packets until a new best master clock (PTP) is chosen.

The time synchronization stage is different to master and slave nodes. If a node is in a master state it
should periodically send a sync packet that is time stamped by hardware on the TX path (as close as
possible to the PHY). After the sync packet, a Follow_Up packet is sent that includes the value of the
time stamp kept from the sync packet. In addition, the master should time stamp Delay Req packets
on its Rx path and return to the slave that sent the time stamp value using a Delay_Response packet. A
node in a slave state should time stamp every incoming sync packet and if it came from its selected
master, software uses this value for time offset calculation. In addition, it should periodically send
Delay_Req packets in order to calculate the path delay from its master. Every sent Delay_Req packet
sent by the slave is time stamped and kept. With the value received from the master with
Delay_Response packet, the slave can now calculate the path delay from the master to the slave. The
synchronization protocol flow and the offset calculation are shown in Figure 7.36.

357

®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Master Slave
T0 TO + delta T
T1 v
\Syn Master to Slave
T2 X Transmission delay
\FOMOW\Up(Tl)\>
'T3 v
Slave to Master
T4 De\y,Req/ o
-— X Transmission delay
Up(T3)/
4/Fo\\ow,
——Delay g T1, T2, T3 and T4
—"eSPonse(T4)_,,| are sampled by the HW

Calculated delta T = [(T2-T1)-(T4-T3)]/2 ; assuming symmetric transmission delays

Toffset = - delta T ; offset at the Slave

Figure 7.36. Sync Flow and Offset Calculation

Hardware responsibilities are:
1. ldentify the packets that require time stamping.
2. Time stamp the packets on both Rx and Tx paths.
3. Store the time stamp value for software.

4. Keep the system time in hardware and give a time adjustment service to software.

5. Maintain auxiliary features related to the system time.

Software responsibilities are:

1. Manageability controller protocol execution, which means defining the node state (master or slave)

and selection of the master clock if in slave state.
2. Generate PTP packets, consume PTP packets.

3. Calculate the time offset and adjust the system time using a hardware mechanism for that.

4. Enable configuration and usage of the auxiliary features.

Action Responsibility Node Role

Generate a sync packet with time stamp notification in the descriptor. Software Master
Time stamp the packet and store the value in registers (T1). Hardware Master
Time stamp _incom_ing sync packet, store the value in register and store the sourcelD and Hardware Slave
sequencelD in registers (T2).

Read the time stamp from register put in a Follow_Up packet and send. Software Master
Once received, the Follow_Up store T2 from registers and T1 from Follow_up packet. Software Slave
Generate a Delay_Req packet with time stamp notification in the descriptor. Software Slave
Time stamp the packet and store the value in registers (T3). Hardware Slave

358

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Action Responsibility Node Role
Time stamp incor_’ning Delay_Req packet, store the value in register and store the sourcelD Hardware Master
and sequencelD in registers (T4).
Read the time stamp from register and send back to slave using a Delay_Response packet. Software Master
Once received, the Delay_Response packet calculate offset using T1, T2, T3 and T4 values. Software Slave
7.9.2.1 TimeSync Indications in Rx and Tx Packet Descriptors

Some indications need to be transferred between software and hardware regarding PTP packets. On the
Tx path, software should set the 1588 bit in the Tx packet descriptor (bit 9). On the Rx path, hardware
has two indications to transfer to software, one is to indicate that this packet is a PTP packet (whether
time stamp is taken or not). This is also for other types of PTP packets needed for management of the
protocol and this bit is set only for the L2 type of packets (the PTP packet is identified according to its
Ethertype). PTP packets have the L2Type bit in the packet type field set (bit 9) and the Ethertype
matches the filter number set by software to filter PTP packets. The UDP type of PTP packets don’t need
such indication since the port number (319 for event and 320 all the rest PTP packets) directs the
packets toward the time sync application. The second indication is TS (bit 14) to indicate to software
that time stamp was taken for this packet. Software needs to access the time stamp registers to get the
time stamp values.

7.9.3 Hardware Time Sync Elements

All time sync hardware elements are reset to their initial values (as defined in Section 8.0) upon MAC

reset. The clock driving the time sync elements is the DMA clock which frequency depends on the link
speed. Upon change in link speed some of the time sync parameters should be changed accordingly. For
details please see Table 7.66.

7.9.3.1 System Time Structure and Mode of Operation

The time sync logic contains an up counter to maintain the system time value. This is a 64-bit counter
that is built from the SYSTIML and SYSTIMH registers. When operating as a master, the SYSTIMH and
SYSTIML registers should be set once by software according to the general system. When operating as
a slave, software should update the system time on every sync event as described in Section 7.9.3.3.
Setting the system time is done by a direct write to the SYSTIMH register and a fine tune setting of the
SYSTIML register using the adjustment mechanism described in Section 7.9.3.3.

Read access to the SYSTIMH and SYSTIML registers should execute in the following manner:
1. Software reads register SYSTIML, at this stage hardware should latch the value of SYSTIMH.

2. Software reads register SYSTIMH, the latched (from last read from SYSTIML) value should be
returned by hardware.

Upon an increment event, the system time value should increment its value by the value stored in
TIMINCA.incvalue. An increment event happens every TIMINCA.incperiod cycle if its one then an
increment event should occur on every clock cycle. The incvalue defines the granularity in which the
time is represented by the SYSTMHY/L registers. For example, if the cycle time is 16 ns and the incperiod
is one then and the incvalue is 16 then the time is represented in nanoseconds if the incvalue is 160
then the time is represented in 0.1 ns units and so on. The incperiod helps to avoid inaccuracy in cases
where T value cannot be represented as a simple integer and should be multiplied to get to an integer
representation. The incperiod value should be as small as possible to achieve best accuracy possible.

359

intel.

Intel® 82599 10 GbE Controller — Inline Functions

Table 7.66. Recommended Values for incvalue and incperiod and the outcome SYSTIME

. Recommended | Recommended || SYSTIML /7 SYSTIMH SYSTIML / SYSTIMH
Link Speed Clock Frequency
Incvalue Incperiod Time Units Granularity
16000000 15
10 Gb/s 156.25 MHz (0xF42400) 2 0.8 x 10 12.8 ns
1 Gb/s 15.625 MHz 16000000 2 8 x 10715 128 ns
100 Mb/s 1.5625 MHz 16000000 2 80 x 10715 1.28 us
Note: Best accuracy is achieved at lowest permitted Incperiod equals two and as high as possible

Incvalue.

7.9.3.2 Time Stamping Mechanism

The time stamping logic is located as close as possible to the PHY. Figure 7.37 shows the exact point in
time where the time value is captured by the hardware relative to the packet content. This is to reduce
delay uncertainties originated from implementation differences. While the time stamp is sampled at a
very late phase in the data path, the 82599 does not insert it to the transferred packet. Instead, the
82599 supports the two-step operation as follows for Tx and Rx.

Tx time stamping

The time stamp logic is activated if enabled by the TSYNCTXCTL.EN bit and the time stamp bit in the
packet descriptor is set. In this case, hardware captures the packet's transmission time in the TXSTMPL
and TXSTMPH registers. Software is responsible to read the transmission time and append it in the
Folow_Up packet as shown in Figure 7.36.

Rx time stamping

On the Rx, this logic parses the traversing frame. If it is matching the message type defined in RXMTRL
register, the following packet's parameters are latched: The reception time stamp is stored in the
RXSTMPL and RXSTMPH registers. The SourceuulD and SequencelD are stored in the RXSATRL and
RXSATRH registers. In addition, two status bits are reported in the Rx descriptor: PTP packet indication
(this bit is set only for L2 packets since on the UDP packets the port number direct the packet to the
application) and the TS bit to identify that a time stamp was taken for this packet (stored in the
RXSTMPL and RXSTMPH registers).

Note: The time stamp values are locked in the RXSTMPL and RXSTMPH registers until software
accesses them. As long as software does not read these registers, hardware does not capture
the time stamp of further Rx packets. In order to avoid potential deadlocks, it is
recommended that software read the Rx time stamp registers at some time after sync or
Delay_Req packets are expected. It would overcome erroneous cases on which the hardware
latches a packet reception time while the packet's content was not posed properly to the
software.

Reception consecutive packets that are able to latch its reception time stamp are not
supported by the 82599. The RXSATRL and RXSATRH registers may not contain sufficient
information to identify uniquely a specific client. Therefore, Master software must not initiate
consecutive sync requests before the previous response is received.

360

Inline Functions — Intel® 82599 10 GbE Controller

Message Timestamp
Point

P bl Ethernet First Octet
——————— r%i?et © Start of Frame following ——— P
Delimiter Start of Frame
B e I e I I P D O i
0 0 0 0 0 0 0—0—0—0—0—0—0———-
N N N A N N B

bit time >

Figure 7.37. Time Stamp Point

7.9.3.3 Time Adjustment Mode of Operation

A node in a time sync network can be in one of two states: master or slave. When a time sync entity is
in a master state, it should synchronize other entities to its system clock. In this case, no time
adjustments are needed. When the entity is in slave state, it should adjust its system clock by using the
data arrived with the Follow_Up and Delay_Response packets and to the time stamp values of Sync and
Delay_Req packets. When having all the values software on the slave entity can calculate its offset in
the following manner.

After an offset calculation, the system time register should be updated. This is done by writing the
calculated offset to TIMADJL and TIMADJH registers. The order should be as follows:

1. Write the lower portion of the offset to TIMADJL.

2. Write the high portion of the offset to TIMADJH to the lower 31 bits and the sign to the most
significant bit.

After the write cycle to TIMADJH the value of TIMADJH and TIMADJL should be added to the system
time.

7.9.4 Time Sync Related Auxiliary Elements

The time sync logic implements three types of auxiliary element using the precise system timer and
SDPs. The time sync block implements two of each features while the possible options of connecting
them to SDPs are:

SDP2 Time Stamp O Time Stamp O Target Time 1 Time Stamp O Time Stamp O Time Stamp O
SDP3 Time Stamp 1 Target Time O Target Time O Time Stamp 1 Time Stamp 1 Target Time O
SDP6 CLKO CLKO CLKO Target Time 1 Target Time 1 Target Time 1
SDP7 CLK1 CLK1 CLK1 CLK1 Target Time O CLK1

Selecting the SPD functionality is done by programming the TimeSync Auxiliary control register and the
Extended SDP Control register.

7.9.4.1

Target Time

The target time register is used to get a time triggered event to hardware using an SDP pin. Each target
time register is structured the same as the system time register. If the value of the system time is
equal to the value written to one of the target time registers, a change in level occurs on one the
selected SDP outputs. The accuracy of the comparison is defined by the value of Mask field in the
TSAUXC register. The target time register also can be used for adjustment of the configurable clock out.

361

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Each target time register has an enable bit located in the Auxiliary Control register. After receiving a
target time event, the enable bit is cleared and needs to be set again by software to get another target
time event.

7.9.4.2 Time Stamp Events

After a change in level of an input from one of the SDP pins, a time stamp of the system time is
captured into one of the two auxiliary time stamp registers.

7.9.5 PTP Packet Structure

The time sync implementation supports both the 1588 V1 and V2 PTP frame formats. The V1 structure
can come only as UDP payload over IPv4 while the V2 can come over L2 with its Ethertype or as a UDP
payload over IPv4 or IPv6. The 802.1AS uses only the layer 2 V2 format. Note that PTP frame structure
over UDP is not supported in the 82599 for IP tunneling packets.

Offset in Bytes V1 Fields V2 Fields
Bits 76543210 76543210
0 transportSpecifict messageld
versionPTP
1 Reserved versionPTP
2
versionNetwork messagelLength
3
4 SubdomainNumber
5 Reserved
6
flags
7
8
9
10
11
Subdomain Correction Field
12
13
14
15
16
17
reserved
18
19

362

Inline Functions — Intel® 82599 10 GbE Controller

Offset in Bytes V1 Fields

V2 Fields

Bits 76543210

76543210

20 messageType

21 Source communication technology

22

23

24
Sourceuuid

25

26

27

28

sourceportid
29

Source Port ID

(only part of the field is captured in the RXSATRL and

RXSATRH registers)

30

sequenceld
31

sequenceld

32 control

control

33 reserved

logMessagePeriod

34

falgs
35

n/a

1. Should all be zero.

Note: Only the fields with the bold italic format colored red are of interest to hardware.

Ethernet (L2) ‘ VLAN (Optional)

PTP Ethertype ‘

PTP message

Ethernet (L2) ‘ IP (L3)

UDP ‘

PTP message

When a PTP packet is recognized (by Ethertype or UDP port address) on the Rx side the version should
be checked if it is V1 then the control field at offset 32 should be compared to message field in register
described in Section 8.2.3.26.6, otherwise the byte at offset O should be used for comparison to the

rest of the needed field are at the same location and size for both V1 and V2.

Enumeration Value
PTP_SYNC_MESSAGE 0
PTP_DELAY_REQ_MESSAGE 1
PTP_FOLLOWUP_MESSAGE 2
PTP_DELAY_RESP_MESSAGE 3
PTP_MANAGEMENT_MESSAGE 4
reserved 5-255

Messageld

Message Type

Value (hex)

PTP_SYNC_MESSAGE Event)
PTP_DELAY_REQ_MESSAGE Event 1
PTP_PATH_DELAY_REQ_MESSAGE Event 2

363

] ®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Messageld Message Type Value (hex)
PTP_PATH_DELAY_RESP_MESSAGE Event 3
Unused 4-7
PTP_FOLLOWUP_MESSAGE General 8
PTP_DELAY_RESP_MESSAGE General 9
PTP_PATH_DELAY_FOLLOWUP_MESSAGE General A
PTP_ANNOUNCE_MESSAGE General B
PTP_SIGNALLING_MESSAGE General C
PTP_MANAGEMENT_MESSAGE General D
Unused E-F

If V2 mode is configured in Section 8.2.3.26.15,then time stamp should be taken on
PTP_PATH_DELAY_REQ_MESSAGE and PTP_PATH_DELAY_RESP_MESSAGE for any value in the
message field in the register described at Section 8.2.3.26.6.

364

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.10 Virtualization

7.10.1 Overview

1/0 virtualization is a mechanism that can be used to share 1/0 resources among several consumers.
For example, in a virtual system, multiple operating systems are loaded and each operates as though
the entire system's resources were at its disposal. However, for the limited number of 1/0 devices, this
presents a problem because each operating system might be in a separate memory domain and all the
data movement and device management has to be done by a Virtual Machine Monitor (VMM). VMM
access adds latency and delay to 1/0 accesses and degrades 1/0 performance. Virtualized devices are
designed to reduce the burden of the VMM by making certain functions of an 1/0 device shared among
multiple guest operating systems or a Virtual Machine (VM), thereby allowing each VM direct access to
the 1/0 device.

The 82599 supports two modes of operations of virtualized environments:

1. Direct assignment of part of the port resources to different guest operating systems using the PCI
SIG SR IOV standard. Also known as native mode or pass through mode. This mode is referenced
as 10V mode throughout this section.

2. Central management of the networking resources by an IOVM or by the VMM. Also known as
software switch acceleration mode. This mode is referred to as Next Generation VMDq mode in this
section.

The virtualization offloads capabilities provided by the 82599 apart from the replication of functions
defined in the PCI SIG IOV specification are part of Next Generation VMDq.

A hybrid model, where part of the VMs are assigned a dedicated share of the port and the rest are
serviced by an IOVM is also supported. However, in this case the offloads provided to the software
switch might be more limited. This model can be used when parts of the VMs run operating systems for
which VF drivers are available and thus can benefit from an 10V and others that run older operating
systems for which VF drivers are not available and are serviced by an IOVM. In this case, the IOVM is
assigned one VF and receives all the packets with Ethernet MAC addresses of the VMs behind it.

The following section describes the support the 82599 provides for these modes.

This section assumes a single-root implementation of IOV and no support for multi-root.

7.10.1.1 Direct Assignment Model

The direct assignment support in the 82599 is built according to the following model of the software
environment.

It is assumed that one of the software drivers sharing the port hardware behaves as a master driver
(Physical Function or PF driver). This driver is responsible for the initialization and the handling of the
common resources of the port. All the other drivers (Virtual Function drivers or VF drivers) might read
part of the status of the common parts but cannot change them. The PF driver might run either in the
VMM or in some service operating system. It might be part of an IOVM or part of a dedicated service
operating system.

In addition, part of the non time-critical tasks are also handled by the PF driver. For example, access to
CSR through the 1/0 space or access to the configuration space are available only through the master
interface. Time-critical CSR space like control of the Tx and Rx queue or interrupt handling is replicated
per VF, and directly accessible by the VF driver.

365

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Note: In some systems with a thick hypervisor, the service operating system might be an integral
part of the VMM. For these systems, each reference to the service operating system in the
sections that follow refer to the VMM.

7.10.1.1.1 Rationale

The direct assignment model enables each of the VMs to receive and transmit packets with minimum of
overhead. Non time-critical operations such as initialization and error handling can be done via the PF
driver. In addition, it is important that the VMs can operate independently with minimal disturbance. It
is also preferable that the VM interface to hardware should be as close as possible to the native
interface in non-virtualized systems in order to minimize the software development effort.

The main time critical operations that require direct handling by the VM are:

< Maintenance of the data buffers and descriptor rings in host memory. In order to support this, the
DMA accesses of the queues associated to a VM should be identified as such on the PCle using a
different requester ID.

< Handling of the hardware ring (tail bump and head updates)
e Interrupts handling

The capabilities needed to provide independence between VMs are:

= Per VM reset and enable capabilities
e Tx rate control

« Allocating separate CSR space per VM. This CSR space is organized as close as possible to the
regular CSR space to enable sharing of the base driver code.

Note: The rate control and VF enable capabilities are controlled by the PF.

7.10.1.2 System Overview

The following drawings show the various elements involved in the 1/0 process in a virtualized system.
Figure 7.38 shows the flow in software Next Generation VMDqg mode and Figure 7.39 shows the flow in
10V mode.

366

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

This section assumes that in IOV mode, the driver on the guest operating system is aware that it
operates in a virtual system (para-virtualized) and there is a channel between each of the VM drivers
and the PF driver allowing message passing such as configuration request or interrupt messages. This
channel can use the mailbox system implemented in the 82599 or any other means provided by the

VMM vendor.

g« Data—
acket switc '« Control Guest Guest
IOVM OS 1 OSn
VMM Sw
/énslate HW
A Mem Translated ¢
ccesses Mem Host
(VT-x) Chte Accesses) memory
(VT-x) >
Init + / _| DMA packet
control Buffers
Translated DMA .
IOH (VT-d Physical address
() Accesses (VT-d) yst
‘A A
I0VI 10VI
Physical Physical
Address Address
\ v vy
Shared VM-1 VM-n
part
VMDq queuing
LAN controller

Figure 7.38. System Configuration for Next Generation VMDqg Mode

367

®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Guest Guest
I0VM (~&—Control——| 05 1 oS n
VMM S“N
Host ‘
memory
HW
Translated Translated ¢
Mem CPU Mem | VM n PB [
AC;?FSES Accesses)
(VT-x) A (VT-X) - I0VM PB -
$ - VM 1 PB
Guest 1 y
. Physical
Real time
Control Rea’?ﬂﬂqgss Real time
Init Control Control
IOH (VT-d) Translated DMA
Accesses (VT-d)
Physical addresses
IOVM Guest 1 Guestn
Physical Physical Physical
Address Address Address
A A4
Shared PF VM-1 VM-n

part

VMDq queuing

LAN Controller

Figure 7.39. System Configuration for 10V Mode
7.10.2 PCI-SIG SR-10V Support

7.10.2.1 SR-10V Concepts

SR-10V defines the following entities in relation to 1/0 virtualization:
< Virtual Image (VI): Part of the 1/0 resources are assigned to a A VM.

* 1/0 Virtual Intermediary (I0VI) or 1/0 Virtual Machine (IOVM): A special VM that owns the physical
device and is responsible for the configuration of the physical device.

368

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

= Physical function (PF): A function representing a physical instance — One port for the 82599. The
PF driver is responsible for the configuration and management of the shared resources in the
function.

= Virtual Function (VF): A part of a PF assigned to a VI.
7.10.2.2 Configuration Space Replication

The SR-10V specification defines a reduced configuration space for the virtual functions. Most of the
PCle configuration of the VFs comes from the PF.

This section describes the expected handling of the different parts of the configuration space for virtual
functions. It deals only with the parts relevant to the 82599.

Details of the configuration space for virtual functions can be found in Section 9.5.

7.10.2.2.1 Legacy PCI Configuration Space

The legacy configuration space is allocated to the PF only and emulated for the VFs. A separate set of
BARs and one bus master enable bit is allocated in the SR-10V capability structure in the PF and is used
to define the address space used by the entire set of VFs.

All the legacy error reporting bits are emulated for the VF. See Section 7.10.2.4 for details.

7.10.2.2.2 Memory BARs Assignment

The SR-10V specification defines a fixed stride for all the VF BARs, so that each VF can be allocated part
of the memory BARs at a fixed stride from the a basic set of BARs. In this method, only two decoders
per replicated BAR per PF are required and the BARs reflected to the VF are emulated by the VMM.

The only BARs that are useful for the VFs are BARO and BAR3, so only those are replicated. The
following table lists the existing BARs and the stride used for the VFs:

Table 7.67. BARs in the 82599 (64-bit BARS)

BAR Type Usage Requested Size per VF (=Stride)
0,1 Mem CSR space mz?‘iamduer?ai(lisl.s KB, page size). For page size see Section 9.4.4.8 for
2 n/a Not used n/a
3,4 Mem MSI-X Maximum (16 KB, page size).
5 n/a Not used n/a

BARO of the VFs are a sparse version of the original PF BAR and include only the register relevant to the
VF. For more details see Section 7.10.2.7.

369

] ®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

The following figure shows the different BARs in an I0V-enabled system:

PF configuration space
128K CSR + FLASH
Space
3
2 BARO, BAR 1 32 bytes 1/0O Space
& BAR2
= BAR3 (Null) / MSI-X Space
= BAR4, BAR 5 Max (16K, Page Size)
3
VFO0 — CSR Space
Max (16K, Page Size)
VF1 - CSR Space
. Max (16K, Page Size)
2 VF BARO, BAR1 YEVETERS
8@ - -X Space
% *3 VF BAR2 (Null Max (16K, Page Size)
S 2 VF BAR3, BAR4 VFT_MSIX S VF63 — CSR Space
g° - VIs-A opace Max (16K, Page Size
o) VF BAR5 (Null) Max (16K, Page Size) (16K, Pag)

VF63 — MSI-X Space
Max (16K, Page Size)

Figure 7.40. BARs in an I0V-enabled System

7.10.2.2.3 PCle Capability Structure

The PCle capability structure is shared between the PF and the VFs. The only relevant bits that are
replicated are:

1. Transaction pending
2. Function Level Reset (FLR). See Section 7.10.2.3 for details.

7.10.2.2.4 MSI and MSI-X Capabilities

Both MSI and MSI-X are implemented in the 82599. MSI-X vectors can be assigned per VF. MSI is not
supported for the VFs.

See Section 9.3.8.1 for more details of the MSI-X and PBA tables implementation.

7.10.2.2.5 VPD Capability

VPD is implemented only once and is accessible only from the PF.

7.10.2.2.6 Power Management Capability

The 82599 does not support power management per VF. The power management registers exist for
each VF, but only the DO power state is supported.

370

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

7.10.2.2.7 Serial ID

The same serial ID is reported to all VFs in the 82599.

7.10.2.2.8 Error Reporting Capabilities (Advanced and Legacy)

All the bits in this capability structure are implemented only for the PF. Note that the VMs see an
emulated version of this capability structure. See Section 7.10.2.4 for details.

7.10.2.3 FLR Capability

The FLR bit is required per VF. Setting of this bit resets only a part of the logic dedicated to the specific
VF and does not influence the shared part of the port. This reset should disable the queues, disable
interrupts and the stop receive and transmit process per VF.

Setting the PF FLR bit resets the entire function.

7.10.2.4 Error Reporting

Error reporting includes legacy error reporting and Advanced Error Reporting (AER) or role-based
capability.
The legacy error management includes the following functions:

1. Error capabilities enablement. These are set by the PF for all the VFs. Narrower error reporting for a
given VM can be achieved by filtering of the errors by the VMM. This includes:

a. SERR# Enable

Parity Error Response
Correctable Reporting Enable
Non-Fatal Reporting Enable

2 0 T

Fatal Reporting Enable

UR Reporting Enable

2. Error status in the configuration space. These should be set separately for each VF. This includes:
Master Data Parity Error

Signaled Target Abort

Received Target Abort

Master Abort

SERR# Asserted

Detected Parity Error

Correctable Error Detected

S@ "0 o TP

Non-Fatal Error Detected

Unsupported Request Detected

AER capability includes the following functions:

1. Error capabilities enablement. The Error Mask, and Severity bits are set by the PF for all the VFs.
Narrower error reporting for a given VM can be achieved by filtering of the errors by the VMM.
These includes:

a. Uncorrectable Error Mask Register
b. Uncorrectable Error Severity Register

371

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

c. Correctable Error Mask Register
d. ECRC Generation Enable
e. ECRC Check Enable
2. Non-Function Specific Errors Status in the configuration space.
a. Non-Function Specific Errors are logged in the PF
b. Error logged in one register only
c. VI avoids touching all VFs to clear device level errors
d. The following errors are not function specific
— All Physical Layer errors
— All Link Layer errors
— ECRC Fail
— UR, when caused by no function claiming a TLP
— Receiver Overflow
— Flow Control Protocol Error
— Malformed TLP
— Unexpected Completion
3. Function Specific Errors Status in the configuration space.
a. Allows Per VF error detection and logging
b. Help with fault isolation
c. The following errors are function specific
— Poisoned TLP received
— Completion Timeout
— Completer Abort
— UR, when caused by a function that claims a TLP
— ACS Violation
4. Error logging. Each VF has it’'s own header log.

5. Error messages. In order to ease the detection of the source of the error, the error messages
should be emitted using the requester ID of the VF in which the error occurred.

7.10.2.5 Alternative Routing ID (ARI) and IOV Capability Structures

In order to allow more than eight functions per end point without requesting an internal switch, as
usually needed in virtualization scenarios, the PCI-SIG defines the ARI capability structure. This is a
new capability that enables an interpretation of the Device and Function fields as a single identification
of a function within the bus. In addition, a new structure used to support the 10V capabilities reporting
and control is defined. Both structures are described in sections Section 9.4.3 and Section 9.4.4. Refer
to the following section for details on the Requester ID (RID) allocation to VFs.

7.10.2.6 RID Allocation

RID allocation of the VF is done using the Offset field in the 10V structure. This field should be
replicated per VF and is used to do the enumeration of the VFs.

372

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Each PF includes an offset to the first associated VF. This pointer is a relative offset to the Bus/Device/
Function (BDF) of the first VF. The Offset field is added to PF’s requester ID to determine the requester
ID of the next VF. An additional field in the 10V capability structure describes the distance between two
consecutive VF’s requester IDs.

7.10.2.6.1 BDF Layout

7.10.2.6.1.1 ARI Mode

ARI allows interpretation of the device ID part of the RID as part of the function ID inside a device.
Thus, a single device can span up to 256 functions. In order to ease the decoding, the least significant
bit of the function number points to the physical port number. The Next bits indicate the VF number.
The following table lists the VF RIDs.

The layout of RID’s used by the 82599 is reported to the operating system via the PCle 10V capability
structure. See Section 9.4.4.6.

Table 7.68. RID per VF — ARI Mode

Port VF# B,D,F Binary Notes
0 PF B,0,0 B,00000,000 PF
1 PF B.0,1 B,00000,001 PF
0 0 B,16,0 B,10000,000 2‘:;ef3lt:°isﬁr152ts\f':
1 0 B.16,1 B,10000,001
0 1 B.16,2 B,10000,010
1 1 B,16,3 B,10000,011
0 2 B,16,4 B,10000,100
1 2 B,16,5 B,10000,101
0 63 B,31,6 B,11111,110
1 63 B,31,7 B,11111,111 Last

7.10.2.6.1.2 Non-ARI Mode

When ARI is disabled, non-zero devices in the first bus cannot be used, thus a second bus is needed to
provide enough RIDs. In this mode, the RID layout is as follows:

Table 7.69. RID per VF — Non-ARI Mode

Port VF# B,D,F Binary Notes
0 PF B,0,0 B,00000,000 PF
1 PF B,0,1 B,00000,001 PF
1 0 B+1,16,1 B+1,10000,001
0 1 B+1,16,2 B+1,10000,010
1 1 B+1,16,3 B+1,10000,011
0 2 B+1,16,4 B+1,10000,100
1 2 B+1,16,5 B+1,10000,101

373

"] ®
I n tel Intel® 82599 10 GbE Controller — Inline Functions

Table 7.69. RID per VF — Non-ARI Mode

Port VF# B,D,F Binary Notes
0 63 B+1,31,6 B+1,11111,110
1 63 B+1,31,7 B+1,11111,111 Last
Note: When the device ID of a physical function changes (because of LAN disable or LAN function

select settings), the VF device IDs changes accordingly.

7.10.2.7 Hardware Resources Assignment

The main resources to allocate per VM are queues and interrupts. The assignment is static. If a VM
requires more resources, it might be allocated to more than one VF. In this case, each VF gets a specific
Ethernet MAC address/VLAN tag in order to enable forwarding of incoming traffic. The two VFs are then
teamed in software.

7.10.2.7.1 PF Resources

A possible use of the PF is for a configuration setting without transmit and receive capabilities. In this
case, it is not allocated to any queues but is allocated to one MSI-X vector.

The PF has access to all the resources of all VMs, but it is not expected to make use of resources
allocated to active VFs.

7.10.2.7.2 Assignment of Queues to VF
See Section 7.2.1.2.1 for allocating Tx queues.
See Section 7.1.2.2 for allocating Rx queues.

The following table lists the Tx and Rx queues to VF allocation.

Table 7.70. Queue to VF Allocation

VF Queues in 16 VMs Mode Queues in 32 VMs Mode Queues in 64 VMs Mode
0 0-7 0-3 0-1
8-15 4-7 2-3
15 120-127
124-127

126-127

7.10.2.7.3 Assignment of MSI-X Vector to VF

See Section 7.3.4.3 for allocating MSI-X vectors in IOV mode.

374

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.10.2.8 CSR Organization

CSRs can be divided into three types:

= Global Configuration registers that should be accessible only to the PF. For example, link control and
LED control. These types of registers also include all of the debug features such as the mapping of
the packet buffers and is responsible for most of the CSR area requested by the 82599. This
includes per VF configuration parameters that can be set by the PF without performance impact.

= Per-VF parameters — For example, per VF reset, interrupt enable, etc. Multiple instances of these
parameters are used only in an 10V system and only one instance is needed for non 10V systems.

= Per-queue parameters that should be replicated per queue — For example, head, tail, Rx buffer
size, DCA tag, etc. These parameters are used by both a VF in an 10V system and by the PF in a
non-10V mode.

In order to support 10V without distributing the current drivers operation in legacy mode, the following
method is used:

= The PF instance of BARO continues to contain the legacy and control registers. It is accessible only
to the PF. The BAR enables access to all the resources including the VF queues and other VF
parameters. However, it is expected that the PF driver does not access these queues in IOV mode.

« The VF instances of BARO provide control on the VF specific registers. These BARs have the same
mapping as the original BARO with the following exceptions:

a. Fields related to the shared resources are reserved.

b. The queues assigned to a VF are mapped at the same location as the first same number of
queues of the PF.

= Assuming some backward compatibility is needed for 10V drivers, The PF/VF parameters block
should contain a partial register set as described in Section 8.3.

7.10.2.9 SR 10V Control
In order to control the IOV operation, the physical driver is provided with a set of registers. These
include:

= The mailbox mechanism described in the next section.

= The switch and filtering control registers described in Section 7.10.3.10.

= PFVFLRE register indicating that a VFLR reset occurred in one of the VFs (bitmap).

7.10.2.9.1 VF-to-PF Mailbox

The VF drivers and the PF driver require some means of communication between them. This channel
can be used for the PF driver to send status updates to the VFs (such as link change, memory parity
error, etc.) or for the VF to send requests to the PF (add to VLAN).

Such a channel can be implemented in software, but requires enablement by the VMM vendors. In
order to avoid the need for such an enablement, the 82599 provides such a channel that enables direct
communication between the two drivers.

The channel consists of a mailbox. Each driver can then receive an indication (either poll or interrupt)
when the other side wrote a message.

Assuming a maximum message size of 64 bytes (one cache line), a memory of 64 bytes x 64 VMs =
4 KB. 512 bytes is provided per port. The RAM is organized as follows:

375

intel.

Intel® 82599 10 GbE Controller — Inline Functions

Table 7.71. Mailbox Memory
RAM Address Function PF BAR 0 Mapping! VF BAR 0 Mapping?
0—63 VFO <-> PF 0—63 VFO + MBO
64 — 127 VF1 <-> PF 64 — 127 VF1 + MBO
(4 KB-64) — (4 KB-1) VF63<-> PF (4 KB-64) — (4 KB-1) VF63 + MBO

1. Relative to mailbox offset.
2. MBO = mailbox offset in VF CSR space.

In addition for each VF, the VFMailbox and PFMailbox registers are defined in order to coordinate the
transmission of the messages. These registers contain a semaphore mechanism to enable coordination
of the mailbox usage.

The PF driver can decide which VFs are allowed to interrupt the PF to indicate a mailbox message using
the PFMBIMR mask register.

The following flows describe the usage of the mailbox:

Table 7.72. PF-to-VF Messaging Flow

Step PF Driver Hardware VF #n driver
1 Set PFMailbox[n].PFU
> Set PFU bit if PFMailbox[n].VFU is
cleared

3 Read PFMailbox [n] and check that PFU bit

was set. Otherwise wait and go to step 1.
4 Write message to relevant location in

VMFBMEM.

Set the PFMailbox[n].STS bit and wait for
5 1

ACK*™.
6 Indicate an interrupt to VF #n.
7 Read the message from

VFMBMEM.

8 Set the VFMailbox.ACK bit.
9 Indicate an interrupt to PF.
10 Clear PFMailbox[n].PFU

1. The PF might implement a timeout mechanism to detect non-responsive VFs.

Table 7.73. VF-to-PF Messaging Flow

Step PF Driver Hardware VF #n Driver
1 Set VFMailbox.VFU.
> Set VFU bit if VFMailbox[n].PFU
is cleared.

3 Read VFMailbox [n] and check that VFU bit
was set. Otherwise wait and go to step 1.

4 Write message to relevant location in
VFMBMEM.

5 Set the VFMailbox.REQ bit.

376

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Table 7.73. VF-to-PF Messaging Flow

Step PF Driver Hardware VF #n Driver
6 Indicate an interrupt to PF.
7 Read PFMBICR_to detect which
VF caused the interrupt.
8 Read the adequate message
from VFMBMEM.
9 Set the PFMailbox.ACK bit.
10 Indicate an interrupt to VF #n.
11 Clear VFMailbox.VFU.

The content of the message is hardware independent and is determined by software.

The messages currently assumed by this specification are:

= Registration to VLAN/multicast packet/broadcast packets — A VF can request to be part of a given
VLAN or to get some multicast/broadcast traffic.

= Reception of large packet — Each VF should notify the PF driver what is the largest packet size
allowed in receive.

= Get global statistics — A VF can request information from the PF driver on the global statistics.

= Filter allocation request — A VF can request allocation of a filter for queuing/immediate interrupt
support.

« Global interrupt indication.
« Indication of errors.

7.10.2.10 DMA

7.10.2.10.1 RID

Each VF is allocated a RID. Each DMA request should use the RID of the VM that requested it. See
Section 7.10.2.6 for details.

7.10.2.10.2 Sharing of the DMA Resources

The outstanding requests and completion credits are shared between all the VFs. The tags attached to
read requests are assigned the same way as in a non-virtualized setting, although in VF systems tags
can be re-used for different RIDs. See Section 3.1.3.1.

7.10.2.10.3 DCA

The DCA enable is common to all the devices (all PFs and VFs). Given a DCA enabled device, each VM
might decide for each queue, on which type of traffic (data, headers, Tx descriptors, Rx descriptors) the
DCA should be asserted and what is the CPU ID assigned to this queue.

Note: There are no plans to virtualize DCA in the IOH. Thus, the physical CPU ID should be used in
the programming of the CPUID field.

377

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.10.2.11 Timers and Watchdog

7.10.2.11.1 TCP Timer

The TCP timer is available only to the Physical Function (PF). It might indicate an interrupt to the VFs
via the mailbox mechanism.

7.10.2.11.2 IEEE 1588

IEEE 1588 is a per-link function and thus is controlled by the PF driver. The VMs have access to the real
time clock register.

7.10.2.11.3 Watchdog

The watchdog was originally developed for pass-through NICs where virtualization is not a viable. Thus,
this functionality is used only by the PF.

7.10.2.11.4 Free Running Timer

The free running timer is a PF driver resource the VMs can access. This register is read only to all VFs
and is reset only by the PCI reset.

7.10.2.12 Power Management and Wake Up

Power management is a PF resource and is not supported per VF.

7.10.2.13 Link Control

The link is a shared resource and as such is controllable only by the PF. This includes interface settings,
speed and duplex settings, flow control settings, etc. The flow control packets are sent with the station
Ethernet MAC address stored in the EEPROM. The watermarks of the flow control process and the time-
out value are also controllable by the PF only. In a DCB environment, the parameters of the per TC flow
control are also part of the PF responsibilities.

Linksec is a per-link function and is controlled by the PF driver.

Double VLAN is a network setting and as such should be common to all VFs.

7.10.2.13.1 Special Filtering Options

Pass bad packets is a debug feature. As such, pass bad packets is available only to the PF. Bad packets
are passed according to the same filtering rules of the regular packets.

Note: Pass bad packets might cause guest operating systems to get unexpected packets. As a
result, it should be used only for debug purposes of the entire system.

Receiving long packets is enabled separately per Rx queue in the RXDCTL registers. As this impacts the
flow control thresholds, the PF should be made aware of the decision of all the VMs. Because of this, the
setup of TSO packets is centralized by the PF and each VF might request this setting.

378

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.10.3 Packet Switching

7.10.3.1 Assumptions

The following assumptions are made:

« The required bandwidth for the VM-to-VM loopback traffic is low. That is, the PCle bandwidth is not
congested by the combination of the VM-to-VM and the regular incoming traffic. This case is
handled but not optimized for. Unless specified otherwise, Tx and Rx packets should not be dropped
or lost due to congestion caused by loopback traffic.

« If the buffer allocated for the VM-to-VM loopback traffic is full, it is acceptable to back pressure the
transmit traffic of the same TC. This means that the outgoing traffic might be blocked if the
loopback traffic is congested.

= The decision on local traffic is done only according to the Ethernet DA address and the VLAN tag.
There is no filtering according to other parameters (IP, L4, etc.). The switch has no learning
capabilities. In case of double VLAN mode, the inner VLAN is used for the switching functionality.

= The forwarding decisions are based on the receive filtering programming.
= No packet switching between TCs.

= Coexistence with IPSEC offload: Any loopback VM-to-VM traffic should not use the IPSEC offload
(the IPSEC bit must be cleared in the advanced Tx data descriptor). IPsec processing of Tx packets
destined to a local VM must be handled by software.

= Coexistence with TimeSync: time stamp is not sampled for any VM-to-VM loopback traffic.

= Coexistence with Double VLAN: When double VLAN is enabled by DMATXCTL.GDV and it is expected
to transmit untagged packets by software, transmit-to-receive packet switching should not be
enabled.

7.10.3.2 Pool Selection

Pool selection is described in the following sections. A packet might be forwarded to a single pool or
replicated to multiple pools. Multicast and broadcast packets are cases of replication, as is mirroring.
The following capabilities determine the destination pools of each packet:

= 128 Ethernet MAC address filters (RAH/RAL registers) for both unicast and multicast filtering. These
are shared with L2 filtering. For example, the same Ethernet MAC addresses are used to determine
if a packet is received by the switch and to determine the forwarding destination.

e 64 shared VLAN filters (PFVLVF and PFVLVFB registers) — each VM can be made a member of each
VLAN.

= Hash filtering of unicast and multicast addresses (if the direct filters previously mentioned are not
sufficient)

= Forwarding of broadcast packets to multiple pools
= Forwarding by Ethertype
= Mirroring by pool, VLAN, or link

7.10.3.3 Rx Packets Switching

Rx packet switching is the second of three stages that determine the destination of a received packet.
The three stages are defined in Section 7.1.2.

As far as switching is concerned, it doesn’t matter whether the 82599’s virtual environment operates in
10V mode or in Next Generation VMDq mode.

379

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

When operating in replication mode, broadcast and multicast packets can be forwarded to more than
one pool, and is replicated to more than one Rx queue. Replication is enabled by the Rpl_En bit in the
PFVTCTL register.

7.10.3.3.1 Replication Mode Enabled

When replication mode is enabled, each broadcast/multicast packet can go to more than one pool.
Finding the pool list of any packet is provided in the following steps:

1. Exact unicast or multicast match — If there is a match in one of the exact filters (RAL/RAH), for
unicast or multicast packets, use the MAC Pool Select Array (MPSAR[N]) bits as a candidate for the
pool list.

2. Broadcast — If the packet is a broadcast packet, add pools for which their PFVML2FLT.BAM bit
(Broadcast Accept Mode) is set.

3. Unicast hash — If the packet is a unicast packet, and the prior steps yielded no pools, check it
against the Unicast Hash Table (PFUTA). If there is a match, add pools for which their
PFVML2FLT.ROPE bit (Accept Unicast Hash) is set.

4. Multicast hash — If the packet is a multicast packet and the prior steps yielded no pools, check it
against the Multicast Hash Table (MTA). If there is a match, add pools for which their
PFVML2FLT.ROMPE bit (Receive Multicast Packet Enable) is set.

5. Multicast promiscuous — If the packet is a multicast packet, take the candidate list from prior
steps and add pools for which their PFVML2FLT.MPE bit (Multicast Promiscuous Enable) is set.

6. VLAN groups — This step is relevant only when VLAN filtering is enabled by the VLNCTRL.VFE bit.
Tagged packets: enable only pools in the packet's VLAN group as defined by the VLAN filters —
PFVLVF[n] and their pool list — PFVLVFB[n]. Untagged packets: enable only pools with their
PFVML2FLT.AUPE bit set. If there is no match, the pool list should be empty.

Note: In a VLAN network, untagged packets are not expected. Such packets received by the switch
should be dropped, unless their destination is a virtual port set to receive these packets. The
setting is done through the PFVML2FLT.AUPE bit. It is assumed that VMs for which this bit is
set are members of a default VLAN and thus only MAC queuing is done on these packets.

7. Default pool — If the pool list is empty at this stage and the PFVTCTL.Dis_Def_Pool bit is cleared,
then set the default pool bit in the target pool list (from PFVTCTL.DEF_PL).

8. Ethertype filters — If one of the Ethertype filters (ETQF) is matched by the packet and queuing
action is requested and the Pool Enable bit in the ETQF is set, the pool list is set to the pool pointed
to by the filter.

9. PFVFRE — If any bit in the PFVFRE register is cleared, clear the respective bit in the pool list. The
PFVFRE register blocks reception by a VF while the PF configures its registers.

10. Mirroring — Each of the four mirroring rules adds its destination pool (PFMRCTL.MP) to the pool
list if the following applies:

a. Pool mirroring — PFMRCTL.VPME is set and one of the bits in the pool list matches one of the
bits in the PFMRVM register.

b. VLAN port mirroring — PFMRCTL.VLME is set and the index of the VLAN of the packet in the
PFVLVF table matches one of the bits in the VMVLAN register.

c. Uplink port mirroring — PFMRCTL.UPME is set, the pool list is not empty.

PFVFRE — If any bit in the PFVFRE register is cleared, clear the respective bit in the pool list.
The PFVFRE register blocks reception by a VF while the PF configures its registers. Note that this
stage appears twice in order to handle mirroring cases.

380

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.10.3.3.2 Replication Mode Disabled

When replication mode is disabled, software should take care of multicast and broadcast packets and
check which of the VMs should get them. In this mode, the pool list of any packet always contains one
pool only according to the following steps:

1. Exact unicast or multicast match — If the packet DA matches one of the exact filters (RAL/
RAH), use the MAC Pool Select Array (MPSAR[N]) bits as a candidate for the pool list.

2. Unicast hash — If the packet is a unicast packet, and the prior step yielded no pools, check it
against the Unicast Hash Table (PFUTA). If there is a match, add the pool for which their
PFVML2FLT.ROPE (Accept Unicast Hash) bit is set. Refer to the software limitations described after
step 7.

3. VLAN groups — This step is relevant only when VLAN filtering is enabled by the VLNCTRL.VFE bit.
Tagged packets: enable only pools in the packet’s VLAN group as defined by the VLAN filters —
PFVLVF[n] and their pool list — PFVLVFB[n]. Untagged packets: enable only pools with their
PFVML2FLT.AUPE bit set. If there is no match, the pool list should be empty.

4. Default pool — If the pool list is empty at this stage and the PFVTCTL.Dis_Def_Pool bit is cleared,
then set the default pool bit in the target pool list (from PFVTCTL.DEF_PL).

5. Multicast or broadcast — If the packet is a multicast or broadcast packet and was not forwarded
in step 1 and 2, set the default pool bit in the pool list (from PFVTCTL.DEF_PL).

6. Ethertype filters — If one of the Ethertype filters (ETQF) is matched by the packet and queuing
action is requested and the Pool Enable bit in the ETQF is set, the pool list is set to the pool pointed
by the filter.

7. PFVFRE — If any bit in the PFVFRE register is cleared, clear the respective bit in the pool list. The
PFVFRE register blocks reception by a VF while the PF configures its registers.
The following software limitations apply when replication is disabled:

« Software must not set more than one bit in the bitmaps of the exact filters. Note that multiple bits
can be set in an RAH register as long as it's guaranteed that the packet is sent to only one queue by
other means (such as VLAN).

= Software must not set per-VM promiscuous bits (multicast or broadcast).
= Software must not set the ROPE bit in more than one PFVML2FLT register.
= Software should not activate mirroring.

7.10.3.4 Tx Packets Switching

Tx switching is used only in a virtualized environment to serve VM-to-VM traffic. Packets that are
destined to one or more local VMs are directed back (loopback) to the Rx packet buffers. Enabling Tx
switching is done by setting the PFDTXGSWC.LBE bit. Tx to Rx switching always avoids packet drop as
if flow control is enabled. Therefore, the software must set the FCRTH[n].RTH fields regardless if flow
control is activated on the 82599.

Tx switching rules are very similar to Rx switching in a virtualized environment, with the following
exceptions:
= |If a target pool is not found, the default pool is used only for broadcast and multicast packets.
« A unicast packet that matches an exact filter is not sent to the LAN.
= Broadcast and multicast packets are always sent to the external LAN.

= A packet might not be sent back to the originating pool (even if the destination address is equal to
the source address) unless loopback is enabled for that pool by the PFVMTXSW|[n] register.

381

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

The detailed flow for pool selection as well as the rules that apply to loopback traffic is as follows:

Loopback is disabled when the network link is disconnected. It is expected (but not required) that
system software (including VMs) does not post packets for transmission when the link is
disconnected.

Loopback is disabled when the RXEN (Receive Enable) bit is cleared.
Loopback packets are identified by the LB bit in the receive descriptor.

Loopback

Enabled? Create a Target Pool List

Enabled Pools in
the VFRE register

- No Pools found?

\ 4
Send packet to LAN

Packet is
Unicast?

Figure 7.41. Tx Filtering

7.10.3.4.1 Replication Mode Enabled

When replication mode is enabled, the pool list for any packet is determined according to the following
steps:

1.

2.

382

Exact unicast or multicast match — If there is a match in one of the exact filters (RAL/RAH), for
unicast or multicast packets, take the MPSAR[n] bits as a candidate for the pool list.

Broadcast — If the packet is a broadcast packet, add pools for which their PFVML2FLT.BAM bit
(Broadcast Accept Mode) is set.

. Unicast hash — If the packet is a unicast packet, and the prior steps yielded no pools, check it

against the Unicast Hash Table (PFUTA). If there is a match, add pools for which their
PFVML2FLT.ROPE bit (Accept Unicast Hash) is set.

Multicast hash — If the packet is a multicast packet and the prior steps yielded no pools, check it
against the Multicast Hash Table (MTA). If there is a match, add pools for which their
PFVML2FLT.ROMPE bit (Receive Multicast Packet Enable) is set.

Multicast promiscuous — If the packet is a multicast packet, take the candidate list from prior
steps and add pools for which their PFVML2FLT.MPE bit (Multicast Promiscuous Enable) is set.

. Filter source pool — The pool from which the packet was sent is removed from the pool list unless

the PFVMTXSW.LLE bit is set.

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.

10.

11.

VLAN groups — This step is relevant only when VLAN filtering is enabled by the VLNCTRL.VFE bit.
Tagged packets: enable only pools in the packet’s VLAN group as defined by the VLAN filters —
PFVLVF[n] and their pool list — PFVLVFB[n]. Untagged packets: enable only pools with their
PFVML2FLT.AUPE bit set. If there is no match, the pool list should be empty.

Forwarding to the network — Packets are forwarded to the network in the following cases:
a. All broadcast and multicast packets.
b. Unicast packets that do not match any exact filter.

. PFVFRE — If any bit in the PFVFRE register is cleared, clear the respective bit in the pool list (pre

mirroring step). Refer to the notes after step 11.

Mirroring — Each of the following three mirroring rules adds its destination pool (PFMRCTL.MP) to
the pool list if the following applies:

a. Pool mirroring — PFMRCTL.VPME is set and one of the bits in the pool list matches one of the
bits in the PFMRVM register.

b. VLAN port mirroring — PFMRCTL.VLME is set and the index of the VLAN of the packet in the
PFVLVF table matches one of the bits in the VMVLAN register.

c. Downlink port mirroring — PFMRCTL.DPME is set and the packet is sent to the network.

PFVFRE — If any bit in the PFVFRE register is cleared, clear the respective bit in the pool list (post
mirroring step). Refer to the following notes.

Note: The PFVFRE filtering is applied only after the decision to forward the packet to network and/or

local pool (based on MAC address and VLAN). If a packet that matches an exact MAC address
is set to be forwarded to a local pool, it is not sent to the network regardless of the PFVFRE
setting. Therefore, when a pool is disabled, software should also clear its exact MAC address
filters before clearing the PFVFRE.

7.10.3.4.2 Replication Mode Disabled

When replication mode is disabled, software should take care of multicast and broadcast packets and
check which of the VMs should get them. In this mode the pool list for any packet always contains one
pool only according to the following steps:

1.

Exact unicast or multicast match — If the packet DA matches one of the exact filters (RAL/
RAH), take the MPSAR[nN] bits as a candidate for the pool list.

. Unicast hash — If the packet is a unicast packet, and the prior steps yielded no pools, check it

against the Unicast Hash Table (PFUTA). If there is a match, add the pool for which their
PFVML2FLT.ROPE bit (Accept Unicast Hash) is set. Refer to the software limitations that follow.

VLAN groups — This step is relevant only when VLAN filtering is enabled by the VLNCTRL.VFE bit.
Tagged packets: enable only pools in the packet's VLAN group as defined by the VLAN filters —
PFVLVF[n] and their pool list — PFVLVFB[n]. Untagged packets: enable only pools with their
PFVML2FLT.AUPE bit set. If there is no match, the pool list should be empty.

. Multicast or broadcast — If the packet is a multicast or broadcast packet and was not forwarded

in step 1 and 2, set the default pool bit in the pool list (from PFVTCTL.DEF_PL).

Filter source pool — The pool from which the packet was sent is removed from the pool list unless
the PFVMTXSW.LLE bit is set.

Forwarding to the network — Packets are forwarded to the network in the following cases:
a. All broadcast and multicast packets.

b. Unicast packets that do not match any exact filter.

383

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7. PFVFRE — If any bit in the PFVFRE register is cleared, clear the respective bit in the pool list.

Note: The PFVFRE filtering is applied only after the decision to forward the packet to network and/or
local pool (based on MAC address and VLAN). If a packet that matches an exact MAC address
is set to be forwarded to a local pool, it is not sent to the network regardless of the PFVFRE
setting. Therefore, when a pool is disabled, software should also clear its exact MAC address
filters before clearing the PFVFRE.

The following software limitations apply when replication is disabled:

1. It is software’s responsibility not to set more than one bit in the bitmaps of the exact filters. Note
that multiple bits can be set in an RAH register as long as it is guaranteed that the packet is sent to
only one queue by other means (such as VLAN)

2. Software must not set per-VM promiscuous bits (multicast or broadcast).
3. Software must not set the ROPE bit in more than one PFVML2FLT register.
4. Software should not activate mirroring.

7.10.3.5 Mirroring Support
The 82599 supports four separate mirroring rules, each associated with a destination pool (mirroring
can be done into up to four pools). Each rule is programmed with one of the four mirroring types:

1. Pool mirroring — reflect all the packets received to a pool from the network.

2. Uplink port mirroring — reflect all the traffic received from the network.

3. Downlink port mirroring — reflect all the traffic transmitted to the network.

4. VLAN mirroring — reflect all the traffic received from the network in a set of given VLANs (either

from the network or from local VMs).

Note: Reflecting all the traffic received by any of the pools (either from the network or from local
VMs) is supported by enabling mirroring of all pools.

Note: Mirroring and replication on FCoE traffic is not supported on receive if the ETQF filters define
FCoE packets and on transmit if the packets are indicated as FCoE (by setting the FCoE bit in
the TUCMD field in the Transmit Context Descriptor).

Mirroring modes are controlled by a set of rule control registers:

e PFMRCTL — controls the rules to be applied and the destination port.

e PFMRCTL — controls the VLAN ports as listed in the PFVLVF table taking part in the VLAN mirror
rule.

e PFMRVM — controls the pools taking part in the pool mirror rule.

7.10.3.6 Offloads
The general rule is that offloads are executed as configured for the pool and queue associated with the
receive packet. Some special cases:

« If a packet is directed to a single pool, then offloads are determined by the pool and queue for that
packet.

« If a packet is replicated to more than one pool, then each copy of the packet is offloaded according
to the configuration of its pool and queue.

« If replication is disabled, offloads are determined by the unique destination of the packet.

The following subsections describe exceptions to the previously described special cases.

384

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.10.3.6.1 Local Traffic Offload

The following capabilities are not supported on the loopback path:
= The Ethertype filters do not apply.
« Padding to a legal packet size is not supported.

= The following offload capabilities are only supported if XSUM offload is provided on the Tx path for
the packet: RSS, 5-tuple filters, VLAN strip. The reason is that when XSUM is not offloaded,
software does not provide the necessary offload offsets with the Tx packet.

= Header split/replication is not supported for NFS.
= Receive Side Coalescing (RSC) is not supported.
= FCoE offloads are not supported.

= |PSec offload is not supported.

7.10.3.6.2 Rx Traffic Offload
« Security offloads (LinkSec, IPsec) are managed globally and not per pool.
= CRC offload is a global policy. CRC strip is enabled or disabled for all received packets.

7.10.3.7 Congestion Control

= Tx packets going through the local switch are stored in the Rx packet buffer, similar to packets
received from the network. Tx to Rx switching always avoids packet drop as if flow control is
enabled. Therefore, the software must set the FCRTH[Nn].RTH fields regardless if flow control is
activated on the 82599.

The 82599 guarantees that one TC flow is not affected by congestion in another TC.

Receive and local traffic are provided with the same priority and performance expectations. Packets
from the two sources are merged in the Rx packet buffers, which can in general support both streams
at full bandwidth. Any congestion further in the pipeline (such as lack of PCle bandwidth) evenly affects
Rx and local traffic.

7.10.3.8 Tx Queue Arbitration and Rate Control

In order to guarantee each pool with adequate bandwidth, a per-pool bandwidth control mechanism is
added to the 82599. Each Tx pool gets a percentage of the transmit bandwidth and is guaranteed it can
transmit within its allocation. This arbitration is combined with the TC arbitration. See additional details
on DCB Tx capabilities in Section 7.7.2.2.

7.10.3.9 Security Features

The 82599 allows some security checks on the inbound and outbound traffic of the switch.

7.10.3.9.1 Inbound Security

Each incoming packet (either from the LAN or from a local VM) is filtered according to the VLAN tag so
that packets from one VLAN cannot be received by pools that are not members of that VLAN.

385

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.10.3.9.2 Outbound Security
MAC anti-spoofing

Each pool is associated with one or more Ethernet MAC addresses on the receive path. The association
is determined through the MPSAR registers. The MAC anti-spoofing capability insures that a VM always
uses a source Ethernet MAC address on the transmit path that is part of the set of Ethernet MAC
addresses defined on the Rx path. A packet with a non-matching SA is dropped, preventing spoofing of
the Ethernet MAC address. This feature is enabled in the PFVFSPOOF.MACAS field, and can be enabled
per Tx pool.

Note: Anti-spoofing is not available for VMs that hide behind other VMs whose Ethernet MAC
addresses are not part of the RAH/RAL Ethernet MAC Address registers. In this case, anti-
spoofing should be done by software switching, handling these VMs.

VLAN anti-spoofing

Each pool is associated with one or more VLAN tags on the receive path. The association is determined
through the PFVLVF and PFVLVFB registers. The VLAN anti-spoofing capability insures that a VM always
uses a VLAN tag on the transmit path that is part of the set of VLAN tags defined on the Rx path. A
packet with a non-matching VLAN tag is dropped, preventing spoofing of the VLAN tag. This feature is
enabled in the PFVFSPOOF.VLANAS field, and can be enabled per Tx pool.

Note: If VLAN anti-spoofing is enabled, then MAC anti-spoofing must be enabled as well.

Note: When double VLAN is enabled by DMATXCTL.GDV and it is expected to transmit untagged
packets by software, VLAN anti-spoofing should not be enabled.

VLAN tag validation

In PCI-SIG 10V scenarios the driver might be malicious, and thus may fake a VLAN tag. The 82599
provides the ability to override the VLAN tag inserted by a VM. The possible behaviors are controlled by
the PFVMVIR[N] registers as follows:

= Use descriptor value — to be used in case of a trusted VM that can decide which VLAN to send. This
option should also be used in case one VM is member of multiple VLANSs.

e Always insert default VLAN — this mode should be used for non-trusted or non-VLAN aware VMs. In
this case, any VLAN insertion command from the VM is ignored. If a packet is received with a VLAN,
the packet should be dropped.

< Never insert VLAN — This mode should be used in a non-VLAN network. In this case, any VLAN
insertion command from the VM is ignored. If a packet is received with a VLAN, the packet should
be dropped.

Note: The VLAN insertion settings should be done before any of the queues of the VM are enabled.

Note: When double VLAN is enabled by DMATXCTL.GDV and it is expected to transmit untagged
packets by software, VLAN validation should not be enabled.

7.10.3.10 Switch Control

The PF driver has some control of the switch logic. The following registers are available to the PF for this
purpose:
PFVTCTL: - VT Control register — contains the following fields:

« Replication Enable (Rpl_En) — enables replication of multicast and broadcast packets — both in
incoming and local traffic. If this bit is cleared, Tx multicast and broadcast packets are sent only to
the network and Rx multicast and broadcast packets are sent to the default pool.

386

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

= Default Pool (DEF_PL) — defines the target pool for packets that passed L2 filtering but didn’t pass
any of the pool filters. This field is invalid when the Dis_Def Pool bit is set.

= Disable Default Pool (Dis_Def Pool) — disables acceptance of packets that failed all pool filters.

= PFVFRE — Enables/disables reception of packets from the link to a specific VF. Used during
initialization of the VF. See Section 4.2.2.2 for more details.

= PFDTXGSWC (LBE) — VMDQ loopback enables switching of Tx traffic to the Rx path for VM-to-VM
communication.

e PFVFSPOOF — MAC Anti-spoof Enable (MACAS) — enables filtering of Tx packet for anti-spoof.

« Local Loopback Enable (LLE) — defines whether or not to allow loopback of a packet from a certain
pool into itself.

= Queue Drop Enable (PFQDE) register — A register defining global policy for drop enable
functionality when no descriptors are available. It lets the PF override the per-queue SRRCTL[n]
Drop_En setting. PFQDE should be used in SR-IOV mode as described in Section 4.6.11.3.1.

e PFVML2FLT — Receive Overflow Multicast Packets (ROMPE) — accept multicast hash — Defines
whether or not a pool accepts packets that match the multicast MTA table.

= Receive MAC Filters Overflow (ROPE) — accept unicast hash — Defines whether or not a pool
accepts packets that match the unicast PFUTA table.

= Broadcast Accept (BAM) — Defines whether or not a pool accepts broadcast packets.
« Multicast Promiscuous (MPE) — Defines whether or not a pool accepts all multicast packets.

= Accept Untagged Packets Enable (AUPE) — Defines whether or not a pool accepts untagged VLAN
packets.

e Mirror Control — See Section 7.10.3.5.

= PFVFTE — Enables/disables transmission of packets to the link to a specific VF. Used during
initialization of the VF. See Section 4.2.2.2 for more details.

= PFVLVF/PFVLVFB — VLAN queuing table — A set of 64 VLAN entries with an associated bitmap, one
bit per pool. Bits are set for each pool that participates in this VLAN.

= Unicast Table Array (PFUTA) — a 4 Kb array that covers all combinations of 12 bits from the MAC
destination address. A received unicast packet that misses the MAC filters is compared against the
PFUTA. If the relevant bit in the PFUTA is set, the packet is routed to all pools for which the ROPE bit
is set.

« Multicast Table Array (MTA) — a 4 Kb array that covers all combinations of 12 bits from the MAC
destination address. A received multicast packet that misses the MAC filters is compared against
the MTA. If the relevant bit in the MTA is set, the packet is routed to all pools for which the ROMPE
bit is set.

In addition, the rate-control mechanism is programmed as described in Section 7.7.2.2.

7.10.4 Virtualization of Hardware

This section describes additional features used in both 10V and Next Generation VMDqg modes.

7.10.4.1 Per-pool Statistics

Part of the statistics are by definition shared and cannot be allocated to a specific VM. For example, CRC
error count cannot be allocated to a specific VM, as the destination of such a packet is not known if the
CRC is wrong.

All the non-specific statistics are handled by the PF driver in the same way it is done in non-virtualized
systems. A VM might request a statistic from the PF driver but might not access it directly.

387

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

The conceptual model used to gather statistics in a virtualization context is that each queue pool is
considered as a virtual link and the Ethernet link is considered as the uplink of the switch. Thus, any
packet sent by a pool is counted in the Tx statistics, even if it was forwarded to another pool internally
or was dropped by the MAC for some reason. In the same way, a replicated packet is counted in each of
the pools receiving it.

The following statistics are provided per pool:

Good packet received count
Good packet transmitted count
Good octets received count
Good octets transmitted count
Multicast packets received count

Note: All the per VF statistics are read only and wrap around after reaching their maximum value.

388

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

7.11 Receive Side Coalescing (RSC)

The 82599 can merge multiple received frames from the same TCP/IP connection (referred to as flow in
this section) into a single structure. The 82599 does this by coalescing the incoming frames into a
single or multiple buffers (descriptors) that share a single accumulated header. This feature is called
RSC. Note that the term Large Receive is used to describe a packet construct generated by RSC.

The 82599 digests received packets and categorizes them by their TCP/IP connections (flows). For each
flow, hardware coalesces the packets as shown in Figure 7.42 and Figure 7.43 (the colored parameters
are explained in the RSC context table and receive descriptor sections). The 82599 can handle up to 32
concurrent flows per LAN port at any given time. Each flow handled by RSC offload has an associated
context. The 82599 opens and closes the RSC contexts autonomously with no need for any software
intervention. Software needs only to enable RSC in the selected receive queues.

Figure 7.42 shows a top level flow diagram that is used for RSC functionality. The following sections
provide a detailed explanation of this flow as well as the memory structures and device settings that
support the RSC functionality.

389

®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

First packet in the RSC Last packet in the RSC
Rx Header | Payload-1 |CRC || Header | Payload-2 |CRC| | Header | Payload-3 |CRC || Header | Payload-4 |CRC
Packets
LT
Large Rx

“Packet” | Header | Payload-1 | Payload-2 | Payload-3 | Payload-4

N R I W W

L;r%:a RX‘ Header ‘ Payload-1 l P:%y’oad—Z ‘ Payload-3 l PayHad—4 ‘ .
uriers Large Receive example
while using Advanced
receive descriptors
Large Rx NEXTP NEXTP. EOP (SRRCTL.DESCTYPE = 1)
Descriptors Data Length = Data Length = Dgta Length =
whole buffer size whole buffer size partial buffer size

Figure 7.42. RSC Functionality (No Header Split)

Descriptor Descriptor Ring

Index (SRRCTL.DESCTYPE = 1) HPTR - Data Buffers -
0 Coalesced Header
1
1st Packet Data
2 EOP=0, RSCCNT=3, NEXTP=3
3 EOP=0, RSCCNT=3, NEXTP=5
4 \: Packet2 Data |
DATDESC=5 —» 5 4 EOP=1, RSCCNT=1
6 Packet 3 Data
Descriptor setting if | 7

packet 4 is the last

one in the RSC N [Packet4 Data | |

DATOFF —»

Figure 7.43. RSC Functionality (No Header Split)

Note: Software might abort reception to any queue at any time. For example: VFLR or queue
disable. Following these settings, hardware aborts further DMA(s) and descriptor
completions. Specifically, active RSC(s) in the specific queue(s) are not completed. In such
cases there could be completed packets and RSC(s) hidden from software by prior incomplete
RSC(s).

390

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

New packet

acket
viable for

No _ /” No Coalescing
o Flow

Processing New RSC

Processing active RSC

free RSC
context

viable for
old RSC

A A

Update RSC Close oldest
context and Close Existing _| Create new Large Receive AR or .
packet header | || arge Receive RSC context (RSC context || {Immediate Packet}
Coalesce and is evicted) L (on the relevant ;
» Send packet to [« .receive queue_),/"
DMA Engine I

v

. Close L-arge End
Receive Receive

Figure 7.44. RSC Event Flow

7.11.1 Packet Viability for RSC Functionality

Incoming packets can be good candidates for RSC offload when the following conditions are met. If any
of the these conditions are not met, the received packet is processed in the legacy (non-coalescing)
scheme.

= RSC is not disabled globally by the RFCTL.RSC_DIS bit. Note that in SR-IOV mode the RSC must be
disabled globally by setting the RFCTL.RSC_DIS bit.

= RSC is enabled in the destination receive queue by the RSCCTL.RSCEN. In this case, software must
set the SRRCTL.DESCTYPE field in the relevant queues to advanced descriptor modes.

e The SRRCTL[n].BSIZEHEADER (header buffer size) must be larger than the packet header (even if
header split is not enabled). A minimum size of 128 bytes for the header buffer addresses this
requirement.

e The SRRCTL[Nn].BSIZEPACKET (packet buffer size) must be 2 KB at minimum.

= The received packet has no MAC errors and no TCP/IP checksum errors. MAC errors are: CRC error
or undersize frame received or oversize frame received or error control byte received in mid-packet
or illegal code byte received in mid-packet.

= If the Length field in the IP header does not cover the entire packet (as the case for padding bytes)
then the received packet is not a candidate for RSC.

= If the packet carries LinkSec encapsulation, the LinkSec offload is activated on the packet with no
errors.

= The packet type is TCP/IPv4 (non-SNAP) with optional VLAN header.
« IP header does not carry any option headers.

= NFS packets can be coalesced only if NFS filtering is disabled by setting both RFCTL.NFSW_DIS and
RFCTL.NFSR_DIS bits to 1b. Furthermore, the PSR_typel bit (header split on NFS) must be turned
off in all PSRTYPE[n] registers.

391

intel.

Intel® 82599 10 GbE Controller — Inline Functions

= If NFS coalescing is not required, software should set both RFCTL.NFSW_DIS and RFCTL.NFSR_DIS
bits to Ob.

« The packet does not carry IPsec encapsulation (regardless if IPsec offload is enabled).

< The TCP segment is not fragmented.

= The following TCP flags are inactive: FIN, SYN, RST, PSH, URG, ECE, CWR, NS and the other three
reserved TCP flags (see TCP Flags mapping in Table 7.74).

e The ECT and CE bits in the TOS field in the IP header are not equal to 11b (see the flags in
Table 7.75).

e The packet does not carry any TCP option headers.

= Virtualization rule 1: RSC is not supported for switched packet transmitted from a local VM.

< Virtualization rule 2: When a Rx packet is replicated or mirrored, it might be coalesced only on the
Rx queue that belongs to the source VM.

« Note that there are no limitations on the maximum packet length including jumbo packets.

- If there is already an active RSC for the matched flow, then a few additional conditions should be
met as listed in Section 7.11.4.

The supported packet format is as follows:

Size Packet fields
6 Byte Destination Ethernet MAC address
6 Byte Source Ethernet MAC address
Optional LinkSec header (supported by RSC only if LinkSec offload is enabled and the hardware extracts
[8 / 16 Byte] -
this header)
[4 Byte] Optional VLAN
[4 Byte] Optional 2nd VLAN (double VLAN)
2 Byte Ethernet type field equals 0x0800 (MS byte first on the wire)
20 Byte IPv4 header with no options
20 Byte Basic TCP header (no options — refer to the rows that follow)
Optional TCP time stamp header:
1 Byte Kind 0x08
[10 Byte] 1 Byte Length Ox0A
4 Byte TS value variable
4 Byte TS echo reply variable
[1 Byte] Optional TCF_’ no operation header
1 Byte Kind 0x01
Optional TCP end of option header list
[1 Byte] P P

1Byte Kind 0x00

Variable length

TCP payload (RSC candidate must have payload size greater than zero)

[8 7/ 18 Byte]

Optional LinkSec Integrity Checksum Value — ICV (supported by RSC only if LinkSec offload is enabled
and the hardware extracts this field)

Table 7.74. Packet Format Supported by RSC

11

10

9 8 7 6 5 4 3 2 1 0}

Reserved

NS CWR ECE URG ACK PSH RST SYN FIN

392

Inline Functions — Intel® 82599 10 GbE Controller

Table 7.75. 1P TOS Field — Bit Map

7 6 5 4 3 2 1 [0}

TOS (DS) ECT CE

Table 7.76. TCP Time-Stamp Option Header (RFC 1323)

1 byte: First on the wire 1 byte 4 byte 4 bytes: Last on the wire

Kind = 0x8 Length = 10 TS Value (TSval) TS Echo Reply (TSecr)

7.11.2 Flow ldentification and RSC Context Matching

TCP/IP packet’s flow is identified by its four tuples: Source / Destination IP addresses and Source /
Destination TCP port numbers. These tuples are compared against the Flow Identification fields stored
in the active RSC contexts (listed in Table 7.77). Comparison is done in two phases:

= Hash Compare — Hardware computes a hash value of the four tuples for each flow. The hash value

is stored in the RSC context table. It is used for silicon optimization of the compare logic. The hash

value of the incoming packet is compared against the hash values of all RSC contexts. No match
between the two hash values means that there is no valid context of the same flow.

= Perfect Match — Hardware checks the four tuples of the RSC context that passed the first step with

the received frame.
— A match between the two means that an active RSC context is found.

— Mismatch between the two indicates a hash collision, which causes a completion of the collided

RSC.

= In any case of context mismatch, a new context might be opened as described in Chapter 7.11.3.

= If the packet’s flow matches an active RSC context then the packet might be appended to the
existing RSC as described in Chapter 7.11.4.

Table 7.77. RSC Context

Size Name Description
Flow Identification®
1 bit CVALID Context valid indication. Set to 1b by hardware when a new context is defined. Cleared to zero when
RSC completes.
1 bytes CHASH Context hash value (logic XOR of all bytes of the four tuples).
16 bytes IPDADDR IP destination address (set to zero for inactive context).
16 bytes IPSADDR IP source address (set to zero for inactive context).
1 bit IPATYPE Defines IP version type (set to 1 for IPv4).
2 bytes TCPDPORT TCP destination port.
2 bytes TCPSPORT TCP source port.
37 bytes Total.

RSC Header?

2 bytes RSCIPLEN bytes. Dynamic parameter updated by each received packet.

Total Length field in the IP header defines the size of the IP datagram (IP header and IP payload) in

5 bits IPOFF The word offset of the IP header within the packet that is transferred to the DMA unit.

393

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Table 7.77. RSC Context (Continued)

1 bit RSCTS TCP time stamp header presence indication.

1 bit RSCACK ACK bit in the TCP header is a dynamic parameter taken from the last coalesced packet.
1 bit RSCACKTYPE ACK packet type indication (ACK bit is set while packet does not has TCP payload).

2 bits CE, ECT ECN bits in the IP.TOS header: CE and ECT.

Non-RSCACKTYPE case: Expected sequence number in the TCP header of the next packet.
4 bytes RSCSEQ RSCACKTYPE case: The ACK sequence number in the last good packet.
Dynamic parameter updated by each received packet.

8 bytes Total.

DMA Parameters

Receive queue index. This parameter is set by the first packet in the RSC and expected to be the

7 bits RXQUEUE same for all packets in the RSC.
. Remaining descriptors of this context. The device initialized RSCDESC by the MAXDESC field in the

4 bits RSCDESC ; . h
RSCCTL register of the associated receive queue.

4 bits RSCCNT Count the number of packets that are started in the current descriptor. The counter starts at Ox1 for
each new descriptor. RSCCNT stops incrementing when it reaches OxF.

8 bytes HPTR Header buffer pointer defines the address in host memory of the large receive header (see
Section 7.11.5.3).

2 bytes DATDESC Data descriptor is the active descriptor index. Initialized by the first packet in the RSC to the first

descriptor. It is updated to the active descriptor at a packet DMA completion.

Offset within the data buffer. The data of the first packet in a large receive is the same as the legacy
2 bytes DATOFF (non-coalescing) definition. Following a DMA completion, it points to the beginning of the data
portion of the next packet.

13 bytes Total.

1. These parameters are extracted from the first packet that opens (activate) the context.
2. All parameters are set by the first packet that opens the context while some are dynamic.

7.11.3 Processing New RSC

Defining the RSC context parameters activates a new large receive. If a received packet does not match
any active RSC context, the packet starts (opens) a new one. If there is no free context, the oldest
active large receive is closed and its evicted context is used for the new large receive.

7.11.3.1 RSC Context Setting

The 82599 extracts the flow identification and RSC header parameters from the packet that opens the
context (the first packet in a large receive that activates an RSC context). The context parameters can
be divided into categories: flow identification; RSC header and DMA parameters.

7.11.4 Processing Active RSC
Received packets that belong to an active RSC can be added to the large receive if all the following
conditions are met:

e The L2 header size equals the size of previous packets in the RSC as recorded in the internal IPOFF
parameter in the RSC context table.

= The packet header length as reported in the HDR_LEN field is assumed to be the same as the first
packet in the RSC (not checked by hardware).

e The ACK bit in the TCP header is 1b or equals to the RSCACK bit in the RSC context (an active
RSCACK context and inactive received ACK bit is defined as no match).

394

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

The packet type remains the same as indicated by the RSCACKTYPE bit in the RSC context. Packet
type can be either ACK packet (with no TCP payload) or other.

For non-RSCACKTYPE (packet with TCP payload): The sequence number in the TCP header matches
the expected value in the RSC context (RSCSEQ).

For RSCACKTYPE: The ACK sequence number in the TCP header is greater than the RSCSEQ
number in the RSC context. Note that the 82598 does not coalesce duplicated ACK nor ACK packets
that only updates the TCP window.

ECN handling: The value of the CE and ECT bits in the IP.TOS field remains the same as the RSC
context and different than 11b.

The target receive queue matches the RXQUEUE in the RSC context.

The packet does not include a TCP time stamp header unless it was included on the first packet that
started the large receive (indicated by the RSCTS). Note that if the packet includes other option
headers than time stamp, NOP or End of option header, the packet is not processed by RSC flow at
all.

The packet fits within the RSC buffer(s).

If the received packet does not meet any of the above conditions, the matched active large receive
is closed. Then hardware opens a new large receive by that packet. Note that since the 82599
closes the old large receive it is guaranteed that there is at least one free context.

If the received packet meets all the above conditions, the 82599 appends this packet to the active large
receive and updates the context as follows. The packet is then DMA’ed to the RSC buffers (as described
in Section 7.11.5).

Update the TCP ACK: The RSCACK in the large receive context gets the value of the ACK bit in the
TCP header in the received packet.

Update the expected sequence number for non-RSCACKTYPE: The RSCSEQ in the large receive
context is incremented by the value of the TCP payload size of the received packet.

Update the expected sequence number for RSCACKTYPE: The RSCSEQ in the large receive context
is updated to the value of the ACK sequence number field in the received packet.

Update the total length: The RSCIPLEN in the large receive context is incremented by the value of
the TCP payload size of the received packet. The value of the Total Length field in the IP header in
the received packet gets the updated RSCIPLEN. Note that in RSCACKTYPE packets the received
payload size is zero.

Note that LinkSec encapsulation (if it exists) is stripped first by hardware. In this case, hardware
also strips the Ethernet padding (if it exists).

IP header checksum is modified to reflect the changes in the Total Length field as follows (note that
there is no special process for RSCACKTYPE packets):

1's {(RSCIPLEN — Packet total length) + 1's (Packet IP header checksum)} while...

— Packet total length is the total length value in the received packet.

— Packet IP header checksum stands for the IP header checksum field in the received packet.

— 1’s operation defines a ones complement.

— Plus (+) operation is a cyclic plus while the carry out is fed as a carry in.

TCP header checksum is left as is in the first packet in the RSC and is set to zero on any succeeding
packets.

395

Intel® 82599 10 GbE Controller — Inline Functions

intel.

« Update the DMA parameters.

— The RSCCNT is initialized to Ox1 on each new descriptor. It is then incremented by one on each
packet that starts on the same descriptor as long as it does not exceed a value of OxF. When
the RSCCNT is set to OxF (14 packets) the RSC completes.

— Decrement by one the Remaining Descriptors (RSCDESC) for each new descriptor.
— Update the receive descriptor index (DATDESC) for each new descriptor.

— Update the offset within the data buffer (DATOFF) at the end of the DMA to its valid value for
the next packet.

< All other fields are kept as defined by the first packet in the large receive.

7.11.5 Packet DMA and Descriptor Write Back

The Figure 7.45 shows a top view of the RSC buffers using advanced receive descriptors and header
split descriptors.

Advanced (DESCTYPE =1) Header Split (DESCTYPE = 2 or 5)
HPTR Data Buffers HPTR Header Buffer 1
Coalesced Coalesced
- Header Header
Descriptor 1 |- Descriptor 1 —
Descriptor 2 | 15‘[';10"9‘ Descriptor 2 |— 1st Packet g’
ala
. o Data @
DATDESC DATDESC Packet 2 @
Packet 2 Data (start) =
Data
DATOFF Header Buffer 2
(Empty)

Packet 2 o
Y]
DATOFF Data (end) | |2
w
c
G
N

Figure 7.45. RSC — Header and Data Buffers

7.11.5.1 RSC Descriptor Indication (Write Back)

Following reception of each packet, the 82599 posts the packet data to the data buffers and updates
the coalesced header in its buffer. Any completed descriptor is indicated (write back) by setting the
fields listed in the following table. A descriptor is defined as the last one when an RSC completes.
Section 7.11.5.1 summarizes all the causes for RSC completion. Any other descriptor in the middle of
the RSC is indicated (write back) when the hardware requires the next descriptor so it can report the
NEXTP field explained as follows.

396

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

Fields on the Last Descriptors of Large Receive Fields on All Descriptors Except for the Last One

EOP: End of packet, and all other fields that are reported

together with the EOP, NEXTP: Points to the next descriptor of the same large receive.

DD: indicates that this descriptor is completed by the hardware and can be processed by the software.

RSCCNT: indicates the number of coalesced packets in this descriptor.

7.11.5.2 Received Data DMA

On the first packet of a large receive, the entire packet is posted to its buffers in host memory. On any
other packet, the packet's header and data are posted to host memory as detailed in Section 7.11.5.3
and Section 7.11.5.4.

7.11.5.3 RSC Header

The RSC header is stored at the beginning of the first buffer when using advanced receive descriptors,
or at the header buffer of the first descriptor when using header split descriptors. (It is defined by the
internal HPTR parameter in the RSC context - see Figure 7.45).

The packet’s header is posted to host memory after it is updated by the RSC context as follow:

Packets with payload coalescing (RSCACKTYPE=0) - The TCP sequence number is taken from the
TCP context (it is taken from the first packet). The Total Length field in the IP header is taken from the
RSC context (it represent the length of all coalesced packets). The IP checksum is re-calculated. The
TCP checksum is set to zero.

ACK no payload coalescing (RSCACKTYPE=0) - The received packet header is posted as is to host
memory. Note that if the received packet includes padding bytes, these bytes are discarded.

7.11.5.4 Large Receive Data
The data of a coalesced packet is posted to its buffer by the DMA engine as follows.

Ethernet CRC.
= When RSC is enabled on any queue, the global CRC strip must be set (HLREGO.RXCRCSTRP =1b).

Packet data spans on a single buffer.
= The data of the received packet spans on a single buffer if buffer has the required space.
< The DMA engine posts the packet data to its buffer pointed to by DATDESC descriptor at an offset
indicated by the DATOFF.
Packet data spans on multiple buffers.

= The data of the received packet spans across multiple buffers when it is larger than a single buffer
or larger than the residual size of the current buffer.

= When a new buffer is required (new descriptor) the DMA engine writes back to the completed
descriptor linking it to the new one (Section 7.11.5.1 details the indicated descriptor fields).

= Decrement the RSCDESC parameter by one and update the DATDESC for each new opened
descriptor.

397

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

DMA completion.
« Following DMA completion, set the DATOFF to the byte offset of the next packet.

Not enough descriptors in the receive ring buffer.

< If the SRRCTL[n].Drop_En bit on the relevant queue is set, The large receive completes and the
new packet is discarded.

« Otherwise (the Drop_En bit is cleared), the packet waits inside the internal packet buffer until new
descriptors are added (indicated by the relevant Tail register).

Not enough descriptors due to RSCDESC exhaust.

< If the received packet requires more descriptors than indicated by the internal RSCDESC
parameter, then the 82599 completes the current large receive while the new packet starts a new
large receive.

7.11.6 RSC Completion and Aging

This section summarizes all causes of large receive completion (the first three cases repeat previous
sections).

« A packet of a new flow is received while there are no free RSC contexts. the 82599 completes
(closes) the oldest large receive (opened first). The new packet starts a new large receive using the
evicted context.

e The received packet cannot be added to the active large receive due to one of the following cases
(indicated also in Section 7.11.4). In these cases the existing RSC completes and the received
packet opens a new large receive.

— The sequence number does not meet expected value.

— The receive packet includes a time stamp TCP option header while there was no time stamp TCP
option header in the first packet in the RSC.

— There is not enough space in the RSC buffer(s) for the packet data. Meaning, the received
packet requires a new buffer while the RSC already exhausted all permitted buffers defined by
the RSCCTL[n].MAXDESC.

— The received packet requires a new buffer while its descriptor wraps around the descriptor ring.

< When a packets is received while there are no more descriptors in the receive queue and the
SRRCTL.Drop_En bit is set, the large receive completes and the new packet is discarded.

e EITR expiration while interrupt is enabled — RSC completion is synchronized with interrupt
assertion to the host. It enables software to process the received frames since the last interrupt.
See more details and EITR setting in Section 7.3.2.1.1.

e EITR expiration while interrupt is disabled — The ITR counter continues to count even when its
interrupt is disabled. Every time the timer expires it triggers RSC completion on the associated Rx
queues.

e LLI packet reception — All active RSC’s on the same Rx queue complete and then the interrupt is
asserted. Hardware then triggers RSC completion on all other queues associated with this interrupt.

« Low number of available descriptors — Whenever crossing the number of free Rx descriptors, the
receive descriptor minimum threshold size defined in the SRRCTL[n] registers an LLI event is
generated that affects RSC completion as well.

< Interrupt assertion by setting the EICS register has the same impact on packet reception as
described in Section 7.3.1.2.1.

398

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

= Auto RSC Disable — When the interrupt logic triggers RSC completion it might also auto-disable
further coalescing by clearing the RSCINT.RSCEN bit. Auto RSC disablement is controlled by the
RSCINT.AUTORSC bit. In this mode, hardware also re-enables RSC (by setting the RSCINT.RSCEN
bit back to 1b) when the interrupt is re-enabled by the EIMS (either by software or hardware as
described in Section 7.3.1.3 and Section 7.3.1.5).

Note:

In some cases packets that do not meet coalescing conditions might have active RSC of the
same flow. As an example: received packets with ECE or CWR TCP flags. Such packets bypass
completely the RSC logic (posted as single packets), and do not cause a completion of the
active RSC. The active RSC would eventually be closed by either reception of a legitimate
packet that is processed by the RSC logic but would not have the expected TCP sequence
number. Or, an interrupt event closes all RSC’s in its Rx queue. When software processes the
packets, it gets them in order even though the RSC completes after the previous packet(s)
that bypassed the RSC logic.

Any interrupt closes all RSC’s on the associated receive queues. Therefore, when ITR is not
enabled any receive packet causes an immediate interrupt and receive coalescing should not
be enabled on the associated Rx queues.

399

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.12 IPsec Support

7.12.1 Overview

This section defines the hardware requirements for the IPsec offload ability included in the 82599. IPsec
offload is the ability to handle (in hardware) a certain amount of the total number of IPsec flows, while
the remaining are still handled by the operating system. It is the operating system’s responsibility to
submit to hardware the most loaded flows, in order to take maximum benefits of the IPsec offload in
terms of CPU utilization savings. Establishing IPsec Security Associations between peers is outside the
scope of this document, since it is handled by the operating system. In general, the requirements on
the driver or on the operating system for enabling IPsec offload are not detailed here.

When an IPsec flow is handled in software, since the packet might be encrypted and the integrity check
field already valid, and as IPv4 options might be present in the packet together with IPsec headers, the
82599 processes it like it does for any other unsupported Layer4 protocol, and without performing on it
any layer4 offload.

Refer to section Section 4.6.12 for security offload enablement.
7.12.2 Hardware Features List

7.12.2.1 Main Features
« Offload IPsec for up to 1024 Security Associations (SA) for each of Tx and Rx.
— On-chip storage for both Tx and Rx SA tables
— Tx SA index is conveyed to hardware via Tx context descriptor

— Deterministic Rx SA lookup according to a search key made of SPI, destination IP address, and
IP version type (IPv6 or IPv4)

* IPsec protocols:

— IP Authentication Header (AH) protocol for authentication

— IP Encapsulating Security Payload (ESP) for authentication only

— IP ESP for both authentication and encryption, only if using the same key for both
« Crypto engines:

— For AH or ESP authentication only: AES-128-GMAC (128-bit key)

— For ESP encryption and authentication: AES-128-GCM (128-bit key)
< IPsec encapsulation mode: transport mode, with tunnel mode only in receive

— In Tx, packets are provided by software already encapsulated with a valid IPsec header, and
« for AH with blank ICV inside
- for ESP single send, with a valid ESP trailer and ESP ICV (blank ICV)
- for ESP large send, without ESP trailer and without ESP ICV
— In RX, packets are provided to software encapsulated with their IPsec header and for ESP with
the ESP trailer and ESP ICV,

= where up to 255 bytes of incoming ESP padding is supported, for peers that
prefer hiding the packet length

400

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

IP versions:

— IPv4 packets that do not include any IP option

— IPv6 packets that do not include any extension header (other than AH/ESP extension header)
Rx status reported to software via Rx descriptor:

— Packet type: AH/ESP (in the SECSTAT field)

— IPsec offload done (SA match), in the IPSSA field

One Rx error reported to software via Rx descriptor in the following precedence order: no error,
invalid IPsec protocol, packet length error, authentication failed (SECERR field)

7.12.2.2 Cross Features

When IPSec offload is enabled, Ethernet CRC must be enabled as well by setting both TXCRCEN and
RXCRCSTRP bits in the HLREGO register

Segmentation: full coexistence (TCP/UDP packets only)

— increment IPsec Sequence Number (SN) and Initialization Vector (1V) on each additional
segment

Checksum offload: full coexistence (Tx and Rx)

— IP header checksum

— TCP/UDP checksum

IP fragmentation: no IPsec offload done on IP fragments

RSS: full coexistence, hash on the same fields used without IPsec (either 4-tuples or 2-tuples)
LinkSec offload:

— A device interface is operated in either LinkSec offload or IPsec offload mode, but not both of
them altogether

— If both IPsec and LinkSec encapsulations are required on the same packets, the 82599’s
interface is operated in LinkSec offload mode, while IPsec is performed by the operating system

Virtualization:
— Full coexistence in VMDq mode

— in IOV mode, all IPsec registers are owned by the VMM/PF. For example, IPsec can be used for
VMotion traffic.

— No coexistence with VM-to-VM switch, IPsec packets handled in hardware are not looped back
by the 82599 to another VM. Tx IPsec packets destined to a local VM must be handled in
software and looped back via the software switch. However, an anti-spoofing check is
performed on any IPsec packet.

DCB: full coexistence
— Priority flow control, with special care to respect timing considerations

— Bandwidth allocation scheme enforced on IPsec packets since 802.1p field is always sent in
clear text

— CM-tagging takes place at Layer2 and then does not interfere with IPsec
FCoOE: no interaction as FCoE packets are not IP packets
RSC: no coexistence

Jumbo frames: When the SECTXCTRL.STORE_FORWARD bit is set (as required for IPSec offload),
the maximum supported jumbo packet size is 9.5 KB (9728 bytes). This limitation is valid for all
packets regardless if they are offloaded by hardware or carry IPSec encapsulation altogether.

802.1x: no interaction

401

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

Teaming: no interaction
TimeSync:
— TimeSync IEEE 1588v1 UDP packets must not be encapsulated as IPsec packets
— No interaction with TimeSync 1588v2 Layer2 packets
Layer2 encapsulation modes:
— IPsec offload is not supported for flows with SNAP header
— IPsec offload coexists with double VLAN encapsulations
Tunneled IPsec packets in receive: IPsec offload supported, but no other Layer4 offload performed

NFS and any other Layer5 Rx filter: NFS or Layer5 packets encapsulated over ESP (whether IPsec is
offloaded in hardware or not) and over a Layer4 protocol other than TCP are not parsed, nor
recognized

SCTP Rx offload: partial coexistence with SCTP CRC32 offload for IPSec-AH packets only.

SCTP Tx offload: full coexistence with SCTP CRC32 offload for both IPSec-AH and IPSec-ESP
packets.

Manageability traffic: IPsec offload ability is controlled exclusively by the host, and thus
manageability traffic could use IPsec offload only if it is coordinated/configured with/by the host.
For IPsec flows handled by software:

— If manageability and host entities share some IP address(es), then manageability should
coordinate any use of IPsec protocol with the host. Note it should be true for previous devices
that do not offer IPsec offload.

— If manageability and host entities have totally separate IP addresses, then manageability can
use IPsec protocol (as long as it is handled by the manageability controller software)

Header split:
— Supported for SAs handled in hardware, IP boundary split includes the IPsec header
— For SAs handled in software, no header split done

7.12.3 Software/Hardware Demarcation

The followings items are not supported by hardware but might be supported by operating system/
driver:

402

Multicast SAs
IPsec protocols:
— Both AH and ESP protocols on the same SA or packet
— ESP for encryption only
— ESP for both authentication and encryption using different keys and/or different crypto engines
Crypto engines:
— AES-256, SHA-1, AES-128-CBC, or any other crypto algorithm
Tx IPsec packets encapsulated in tunnel mode
Extended Sequence Number (ESN)
IP versions:
— IPv4 packets that include IP option
— IPv6 packets that include extension headers other than the AH/ESP extension headers
Anti-replay check and discard of incoming replayed packets
Discard of incoming dummy ESP packets (packets with protocol value 59)

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

IPsec packets that are IP fragments

ESP padding content check

IPsec statistics
IPsec for flows with SNAP header

Note: For SCTP and other Layer4 header types, or for tunneled packets, hardware does not care
what is there when doing Rx IPsec processing. Everything after the IP/IPsec headers can be
opaque to hardware (consider as IP payload). IPsec processing can be done on any packet
that has a matching SA and appropriate IP options/extension headers. There is no
expectation that hardware determines what is in the packet beyond the IP/IPsec headers
before decrypting/authenticating the packet. The most important point is that hardware
should not corrupt or drop incoming IPsec packets — in any situation. When hardware
decides and starts performing IPsec offload on a packet, it should pursue the offload until the
packet’'s end — at the price of eventually not doing other Layer3/4 offloads on it. It is always
acceptable for hardware not to start doing the IPsec offload on a matched SA, if it knows it is
an unsupported encapsulation. For example, one of the three cases: IPv4 option, IPv6
extensions, or SNAP.

7.12.4 IPsec Formats Exchanged Between Hardware and Software

This section describes the IPsec packet encapsulation formats used between software and hardware by
an IPsec packet concerned with the offload in either Tx or Rx direction.

In Rx direction, the IPsec packets are delivered by hardware to software encapsulated as they were
received from the line, whether IPsec offload was done or not, and when it was done, whether
authentication/decrypting has succeeded or failed. Refer to the formats described in Section 1.3.

7.12.4.1 Single Send

In Tx direction, single-send IPsec packets are delivered by software to hardware already encapsulated
and formatted with their valid IPsec header and trailer contents, as they should be run over the wire —
except for the ICV field that is filled with zeros, and the ESP payload destined to be encrypted that is
provided in clear text before IPsec encryption.

7.12.4.2 Single Send with TCP/UDP Checksum Offload

For single-send ESP packets with TCP/UDP checksum offload, the checksum computing includes the
TCP/UDP header and payload before hardware encryption occurred and without the ESP trailer and ESP
ICV provided by software. Software provides the length of the ESP trailer plus ESP ICV in a dedicated
field of the Tx context descriptor (IPS_ESP_LEN field) to signal hardware when to stop TCP/UDP
checksum computing.

Software calculates a full checksum for the IP pseudo-header as in the usual case. The protocol value
used in the IP pseudo-header must be the TCP/UDP protocol value and not the AH/ESP protocol value
that appears in the IP header. This full checksum of the pseudo-header is placed in the packet data
buffer at the appropriate offset for the checksum calculation.

403

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

The byte offset from the start of the DMA'ed data to the first byte to be included in the TCP/UDP
checksum (the start of the TCP header) is computed as in the usual case: MACLEN+IPLEN. It assumes
that IPLEN provided by software in the Tx context descriptor is the sum of the IP header length with the
IPsec header length.

Note: For the IPv4 header checksum offload, hardware cannot rely on the IPLEN field provided by
software in the Tx context descriptor, but should rely on the fact that no IPv4 options are
present in the packet. Consequently, for IPsec offload packets, hardware always computes IP
header checksum over a fixed amount of 20 bytes.

7.12.4.3 TSO TCP/UDP

In Tx direction, TSO IPsec packets are delivered by software to the 82599 already encapsulated and
formatted with only their valid IPsec header contents — except for the ICV field included in AH packets
headers that is filled with zeros, and to the ESP payload destined to be encrypted that is provided in
clear text before any encryption. No ESP trailer or ESP ICV are appended to TSO by software. It means
that hardware has to append the ESP trailer and ESP ICV on each segment by itself, and to update IP
total length / IP payload length accordingly.

The next header of the ESP trailer to be appended by hardware is taken from TUCMD.LA4T field of the Tx
context descriptor.

By definition TSO requires on each segment that the IP total length / IP payload length be updated, and
the IP header checksum and TCP/UDP checksum be re-computed. But for the TSO of IPsec packets, the
SN and the 1V fields must be increased by one in hardware on each new segment (after the first one) as
well.

Software calculates a partial checksum for the IP pseudo-header as in the usual case. The protocol
value used in the IP pseudo-header must be the TCP/UDP protocol value and not the AH/ESP protocol
value that appears in the IP header. This partial checksum of the pseudo header is placed in the packet
data buffer at the appropriate offset for the checksum calculation.

The byte offset from the start of the DMA'ed data to the first byte to be included in the TCP checksum
(the start of the TCP/UDP header) is computed as in the usual case: MACLEN+IPLEN. It assumes that
IPLEN provided by software in the Tx context descriptor is the sum of the IP header length with the
IPsec header length.

For TSO ESP packets, the TCP/UDP checksum computing includes the TCP/UDP header and payload
before hardware encryption occurred and without the ESP trailer and ESP ICV appended by hardware.
The 82599 thus stops TCP/UDP checksum computing after the amount of bytes given by LALEN + MSS.
It is assumed that the MSS value placed by software in the Tx context descriptor specifies the
maximum TCP/UDP payload segment sent per frame, not including any IPsec header or trailer — and
not including the TCP/UDP header.

Note: For IPv4 header checksum computing, refer to the note in section Section 7.12.4.2.

404

Inline Functions — Intel® 82599 10 GbE Controller

intel

®

Shaded fields in the tables that follow correspond to fields that need to be updated per each segment.

Table 7.78. 1Pv4 TSO ESP Packet Provided by Software
03 47 8 15 16 19 23 24 31

1 Ver Hlen TOS IP Total Length
2 Identification Flags Fragment Offset
3 TTL Protocol = ESP Header Checksum
4 Source IPv4 Address
5 Destination IPv4 Address
1 Security Parameter Index (SPI)
2 Sequence Number (SN)
3

Initialization Vector (1V)
4
. TCP/UDP Header

TCP/UDP Payload
|
Table 7.79. 1Pv6 TSO ESP Packet Provided by Software
03 47 815 16 23 24 31
1 Ver Priority Flow Label
2 IP Payload Length Next Header = ESP Hop Limit
3
4
Source IPv6 Address

5
6
7
8

Destination IPv6 Address
9

10

405

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Table 7.79. 1Pv6 TSO ESP Packet Provided by Software (Continued)

03 47 8 15 16 23 24 31
1 Security Parameter Index (SPI)
2 Sequence Number (SN)
3
Initialization Vector (1V)
4

TCP/UDP Header

TCP/UDP Payload

7.12.5 TX SA Table

IPsec offload is supported only via advanced transmit descriptors. See Section 7.2.3.2.4 for details.

7.12.5.1 Tx SA Table Structure

The Tx SA table contains additional information required by the AES-128 crypto engine to authenticate
and encrypt data. This information is not run over the wire together with the IPsec packets, but is
exchanged between the IPsec peers’ operating system during the SA establishment process. When the
IKE software does a key computation it computes four extra bytes using a pseudo-random function (it
generates 20 bytes instead of 16 bytes that it needs to use as a key) and the last four bytes are used
as a salt value.

The SA table in Tx is a 1024 x 20-byte table loaded by software. Each line in the table contains the
following fields:

Table 7.80. TX SA Table

AES-128 KEY AES-128 SALT

16 bytes 4 bytes

Refer to Section 7.12.7 for a description of the way these fields are used by the AES-128 crypto engine.

Each time an unrecoverable memory error occurs when accessing the Tx SA tables, an interrupt is
generated and the transmit path is stopped until the host resets the 82599. Packets that have already
started to be transmitted on the wire are sent with a wrong CRC.

Upon reset, the 82599 clears the contents of the Tx SA table. Note that access to Tx SA table is not
guaranteed for 10 ps after the reset command.

406

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.12.5.2 Access to Tx SA Table

7.12.5.2.1 Write Access
1. Software writes the IPSTXKEY 0...3 and/or IPSTXSALT register(s).
2. Software writes the IPSTXIDX register with the SA_IDX field carrying the index of the SA entry to

be written, and with the Write bit set (Read bit cleared).

Hardware issues a Write command into the SA table, copying the IPSTXKEY (16 bytes) and the
IPSTXSALT (4 bytes) registers into the table entry pointed by the SA_IDX field configured in
IPSTXIDX register. It then clears the Write bit in IPSTXIDX register.

Software starts/resumes sending IPsec offload packets with the IPsec SA IDX field in the Tx context
descriptor pointing to valid/invalid SA entries. A valid SA entry contains updated key and salt fields
currently in use by the IPsec peers.

7.12.5.2.2 Read Access

1.

3.

Software writes the IPSTXIDX register with the index of the SA entry to be read, and with the Read
bit set (Write bit cleared).

. Hardware issues a Read command from the SA table, copying into the registers the IPSTXKEY (16

bytes) and the IPSTXSALT (4 bytes) values from the table entry pointed by the SA_IDX field
configured in the IPSTXIDX register. It then clears the Read bit in IPSTXIDX register.

Software reads the IPSTXKEY 0...3 and/or IPSTXSALT register(s).

7.12.6 TX Hardware Flow

7.12.6.1 Single Send without TCP/UDP Checksum Offload

1.

Extract IPsec offload request from the IPSEC bit of the POPTS field in the advanced Tx transmit data
descriptor.

. If IPsec offload is required for the packet (IPSEC bit was set), then extract the SA_IDX, Encryption,

and IPSEC_TYPE fields from the Tx context descriptor associated to that flow.

Fetch the AES-128 KEY and Salt from the Tx SA entry indexed by SA_IDX and according to the
Encryption and IPSEC_TYPE bits to determine which IPsec offload to perform.

For AH, zero the mutable fields.

Compute ICV and encryption data (if required for ESP) over the appropriate fields as specified in
Section 1.3, according to the operating rules described in Section 7.12.7, and making use of the
AES-128 KEY and Salt fields fetched in step 3.

Insert ICV at its appropriate location and replace the plaintext with the ciphertext (if required for
ESP), as specified in Section 1.3.

7.12.6.2 Single Send with TCP/UDP Checksum Offload

1.

Extract the IPsec offload command from the IPSEC bit of the POPTS field in the advanced Tx
transmit data descriptor.

. If IPsec offload is required for the packet (IPSEC bit was set), then extract the SA_IDX, Encryption,

IPSEC_TYPE, and IPS_ESP_LEN fields from the Tx context descriptor associated to that flow.

Fetch the AES-128 KEY and Salt from the Tx SA entry indexed by SA_IDX, and according to the
Encryption and IPSEC_TYPE bits to determine which IPsec offload to perform.

Compute the byte offset from the start of the DMA'ed data to the first byte to be included in the
checksum (the start of the TCP header) as specified in Section 7.12.4.2.

407

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

. Compute TCP/UDP checksum until either the last byte of the DMA data or for ESP packets, up to

IPS_ESP_LEN bytes before it. As in the usual case, implicitly pad out the data by one zeroed byte if
its length is an odd number.

. Sum the full checksum of the IP pseudo header placed by software at its appropriate location with

the TCP/UDP checksum computed in step 5. Overwrite the checksum location with the 1's
complement of the sum.

. For AH, zero the mutable fields.

. Compute ICV and encrypt data (if required for ESP) over the appropriate fields as specified in

Section 1.3, according to the operating rules described in Section 7.12.7, and making use of the
AES-128 KEY and Salt fields fetched in step 3.

. Insert ICV at its appropriate location and replace the plaintext with the ciphertext (if required for

ESP), as specified in Section 1.3.

7.12.6.3 TSO TCP/UDP

1.

2.

10.

11.

12.

13.

14.

15.

16.

408

Extract the IPsec offload command from the IPSEC bit of the POPTS field in the advanced Tx
transmit data descriptor.

If IPsec offload is required for the packet (IPSEC bit was set), then extract the SA_IDX, Encryption,
and IPSEC_TYPE fields from the Tx context descriptor associated to that flow.

. Fetch the AES-128 KEY and Salt from the Tx SA entry indexed by SA_IDX, and according to the

Encryption and IPSEC_TYPE bits to determine which IPsec offload to perform.

. Fetch the packet header from system memory, up to IPLEN+L4LEN bytes from the start of the

DMA'ed data.

. Overwrite the TCP SN with the stored accumulated TCP SN (if it is not the first segment).
. Fetch (next) MSS bytes (or the remaining bytes up to PAYLEN for the last segment) from system

memory and from the segment formed by packet header and data bytes, while storing the
accumulated TCP SN.

. Compute the byte offset from the start of the DMA'ed data to the first byte to be included in the

checksum (the start of the TCP header) as specified in Section 7.12.4.3.

. Compute TCP/UDP checksum until the last byte of the DMA data. As in the usual case, implicitly pad

out the data by one zeroed byte if its length is an odd number.

. For both IPv4 and IPv6, hardware needs to factor in the TCP/UDP length (typically LALEN+MSS) to

the software-supplied pseudo header partial checksum. It then sums to obtain a full checksum of
the IP pseudo header with the TCP/UDP checksum computed in step 7. Overwrite the TCP/UDP
checksum location with the 1's complement of the sum.

Increment by one the AH/ESP SN and 1V fields on every segment (excepted to the first segment),
and store the updated SN and 1V fields with other temporary statuses stored for that TSO (one
TSO set of statuses per Tx queue).

For ESP, append the ESP trailer: 0-3 padding bytes, padding length, and next header = TCP/UDP
protocol value, in a way to get the 4-byte alignment as described in Section 7.12.4.3.

Compute the IP total length / IP payload length and compute IPv4 header checksum as described in
the note of Section 7.12.4.1. Place the results in their appropriate location.

For AH, zero the mutable fields.

Compute ICV and encryption data (if required for ESP) over the appropriate fields as specified in
Section 1.3, according to the operating rules described in Section 7.12.7, and making use of the
AES-128 KEY and Salt field fetched in step 3.

Insert ICV at its appropriate location and replace the plaintext with the ciphertext (if required for
ESP), as specified in Section 1.3.

Go back to step 4 to process the next segment (if necessary).

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.12.7 AES-128 Operation in Tx

The AES-128-GCM crypto engine used for IPsec is the same AES-128-GCM crypto engine used for
LinkSec. It is referred throughout the document as an AES-128 black box, with 4-bit string inputs and
2-bit string outputs, as shown in Figure 7.46. Refer to the GCM specification for the internal details of
the engine. The difference between IPsec and LinkSec, and between the different IPsec modes reside in
the set of inputs presented to the box.

Key — oo
Pipeline engine —» |CV
for AES counter
Nonce — e
Y
Plaintext ,69
AAD ——» T
Finite Field
Multiplier .
H — «— Ciphertext

Figure 7.46. AES-128 Crypto Engine Box
» Key — 128-bits AES-128 KEY field (secret key) stored for that IPsec flow in the Tx SA table:

Key = AES-128 KEY

= Nonce — 96-bits initialization vector used by the AES-128 engine, which is distinct for each
invocation of the encryption operation for a fixed key. It is formed by the AES-128 Salt field stored
for that IPsec flow in the Tx SA table, appended with the Initialization Vector (1V) field included in
the IPsec packet:

Nonce = [AES-128 SALT, IV]

The nonce, also confusingly referred as IV in the GCM specification, is broken into two pieces — a
fixed random part salt and increasing counter part 1V, so the salt value goes with the packet as the
fixed part. The purpose behind using the salt value is to prevent offline dictionary-type attacks in
hashing case, to prevent predictable patterns in the hash.

AAD — Additional Authentication Data input, which is authenticated data that must be left un-
encrypted.

Plaintext — Data to be both authenticated and encrypted.

Ciphertext — Encrypted data, whose length is exactly that of the plaintext.

ICV — 128-bit Integrity Check Value (referred also as authentication tag).

H — is internally derived from the key.

Note: The square brackets in the formulas is used as a notation for concatenated fields.

409

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.12.7.1 AES-128-GCM for ESP — Both Authenticate and Encryption
AAD = [SPI, SN]

Plaintext = [TCP/UDP header, TCP/UDP payload, ESP trailer]

Note: Unlike other IPsec modes, in this mode, the 1V field is used only in the nonce, and it is not
included in either the plaintext or the AAD inputs.

ESP trailer does not include the ICV field. Refer to Section 1.3.2.
7.12.7.2 AES-128-GMAC for ESP — Authenticate Only
AAD = [SPI, SN, IV, TCP/UDP header, TCP/UDP payload, ESP trailer]

Plaintext = [] = empty string, no plaintext input in this mode
Note: ESP trailer does not include the ICV field. Refer to Section 1.3.2.

7.12.7.3 AES-128-GMAC for AH — Authenticate Only

AAD = [IP header, AH header, TCP/UDP header, TCP/UDP payload]

Plaintext = []= empty string, no plaintext input in this mode

Note: Both IP header and AH header contain mutable fields that must be zeroed prior to be entered
into the engine. Refer to Section 1.3.1. Among other fields, the AH header includes SPI, SN,
and 1V fields.

7.12.8 RX Descriptors

IPsec offload is supported only via advanced receive descriptors. See Section 7.1.6 for details.
7.12.9 Rx SA Tables

7.12.9.1 Rx SA Tables Structure

The Rx SA tables contain additional information required by the AES-128 crypto engine to authenticate
and decrypt the data. This information is not run over the wire together with the IPsec packets, but is
exchanged between the IPsec peers’ operating system during the SA establishment process. When the
IKE software does a key computation it computes four extra bytes using a pseudo-random function (it
generates 20 bytes instead of 16 bytes that it needs to use as a key) and the last four bytes are used
as a salt value.

SPI is allocated by the receiving operating system in a unique manner. However, in a virtualized
context, guest operating systems can allocate SPI values that collide with the SPI values allocated by
the VMM/PF. Consequently, the SPI search must be completed by comparing the destination IP address
with the IP addresses of the VMM/PF, which are stored in a separate table. Guest operating systems
could thus use the proposed IPsec offload as long as their SAs are configured via the VMM/PF. It is
assumed that refreshing the SAs would be done once every several minutes, and would thus not
overload the VMM/PF.

410

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

There are three Rx SA tables in the 82599:
« |P address table — 128 entries
= SPI table — 1K entries
= KEY table — 1K entries

They are loaded by software via indirectly addressed CSRs, as described in Section 7.12.9.2.

Table 7.81. IP Address Table

IP Address

16 bytes

Table 7.82. SPI Table

SPI IP Index
(points to IP address table)
4 bytes 1 bytes

Table 7.83. KEY Table

IPsec Mode | AES-128 KEY AES-128 SALT

1 byte 16 bytes 4 bytes

The IPsec Mode field contains the following bits:

e VALID

e IPv6

e PROTO

e DECRYPT
It is assumed that the SPI and IP address tables are implemented internally in CAM cells, while the KEY
table uses RAM cells. When an incoming IPsec packet (which does not includes option in IPv4 or
another extension header in IPv6) is detected, hardware first looks up for the destination IP address to
match one of the IP addresses stored in the IP address table. If there is a match, the index of that IP
Addr. match is used together with the SPI field extracted from the packet for a second lookup into the
SPI table. If there is again a match, then the index of that SPI+IP Index match is used to retrieve the

SA parameters from the KEY table. The packet is finally considered to get an SA match only after
inspecting the corresponding entry in the KEY table, as long as all the following conditions are met:

= Valid bit is set
= |IPv6 bit match with the IP version (IPv6/1Pv4) of the incoming IPsec packet
« Proto bit match with the AH/ESP type of the incoming IPsec packet

Each time an unrecoverable memory ECC error occurs when accessing one of the Rx SA tables, an
interrupt is generated and the receive path is stopped until the host resets the 82599.

Upon reset, the 82599 clears the contents of the Rx KEY table and software is required to invalidate the
entire IP address and SPI CAM tables by clearing their contents. Access to Rx SA tables is not
guaranteed for 10 us after the Reset command.

411

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

7.12.9.2 Access to Rx SA Tables

7.12.9.2.1 Write Access
1. Software writes the IP address table via the IPSRXIPADDR 0...3 registers
2. Software writes the IPSRXIDX register with the following:

a. Table bits combination corresponding to the Rx SA table to be written (such as 01b for IP address
table)

b. TB_IDX field pointing to the index to be written within the table
c. Write bit set (Read bit cleared)

3. Hardware issues a Write command into the Rx SA table pointed by the Table bits combination,
copying the concerned register(s) into the entry pointed by the TB_IDX field configured in the
IPSRXIDX register. It then clears the Write bit in IPSRXIDX register.

4. Software performs steps 1 to 3 twice, first for writing the SPI table via IPSRXSPI, IPSRXIPIDX
registers, and second for writing the KEY table via IPSRXKEY 0...3, IPSRXSALT, and IPSRXMOD
registers.

Each time an entry in the IP address or SPI table is not valid/in-use anymore, software is required to
invalidate its content by clearing it. For the IP table, an entry must be invalidated by software each time
there is no more SPI entry that points to it; while for the SPI table, software must invalidate any entry
as soon as it is not valid/not used anymore.

7.12.9.2.2 Read Access

1. Software writes the IPSRXIDX register with the Table and TB_IDX fields corresponding to the Rx SA
table and entry to be read, and with the Read bit set (Write bit cleared).

2. Hardware issues a Read command from the Rx SA table and entry pointed by Table bits
combination and TB_IDX field, copying each field into its corresponding register. It then clears the
Read bit in IPSRXIDX register.

3. Software reads the corresponding register(s).

Caution: There is an internal limitation in that only one single Rx SA table can be read accessed by
software at a time. Hence, it is recommended that the entire read process, from steps 1 to 3,
be repeated successively for each Rx SA table separately.

7.12.10 RX Hardware Flow without TCP/ZUDP Checksum Offload

1. Detect an IPsec header not encapsulated over a SNAP header is present without any IPv4 option or
other IPv6 extension header encapsulated before it, and determine its type AH/ESP.

2. If such an IPsec header is present (as announced by the IP protocol field for IPv4 or by the next
header for IPv6), then extract the SPI, destination IP address, and IP version (IPv4 or IPv6), and
use these fields for the lookups into the Rx SA tables as described in Section 7.12.9.1. Also report
the IPsec protocol found in the Security bits of the Extended Status field in the advanced Rx
descriptor.

3. If there is a SA match for that packet, fetch the IPsec Rx mode from the SA entry, and according to
the Proto and Decrypt bits determine which IPsec offload to perform. Also, set the IPSSA bit of the
Extended Status field in the advanced Rx descriptor. If there was no SA match, then clear the
IPSSA bit, report no error in Security error bits of the Extended Errors field in the advanced Rx
descriptor, and stop processing the packet for IPsec.

4. If the Proto field recorded in the Rx SA table does not match the IP Protocol field (next header for
IPv6) seen in the packet, then report it via the Security error bits of the Extended Errors field in the
advanced Rx descriptor, and stop processing the packet for IPsec.

5. Fetch the AES-128 KEY and Salt from the matched Rx SA entry.

412

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

6.
7.

For AH, zero the mutable fields.

Make sure the AH/ESP header is not truncated, and for ESP make sure whether or not the packet is
4-bytes aligned. If not, report it via the Security error bits of the Extended Errors field in the
advanced Rx descriptor, but processing of the packet for IPsec might be completed (if it has already
started). A truncated IPsec packet is a valid Ethernet frame (at least 64 bytes) shorter than:

a. ESP — at least 40 bytes following the IP header (16 [ESP header] + 4 [min. padding, pad_len,
NH] + 16 [ICV] + 4 [CRC])

b. AH over IPv4 — at least 40 bytes following the IP header (20 [AH header] + 16 [ICV] + 4 [CRC])
AH over IPv6 — at least 44 bytes following the IP header (20 [AH header] + 4 [ICV padding] +
16 [ICV] + 4 [CRC])

Compute ICV and decrypt data (if required for ESP) over the appropriate fields as specified in
Section 1.3, according to the operating rules described in Section 7.12.12, and making use of the
AES-128 KEY and SALT fields fetched in step 5.

. Compare the computed ICV with the ICV field included in the packet at its appropriate location as

specified in Section 1.3, and report the comparison status match/fail via the Security error bits of
the Extended Errors field in the advanced Rx descriptor.

7.12.11 RX Hardware Flow with TCP/ZUDP Checksum Offload

Perform the RX hardware flow described in Section 7.12.10 and add the following steps:

10.

11.

12.

13.

Start computing the checksum from the TCP/UDP header’s beginning — found according to the Rx
parser logic updated for IPsec formats described in Section 1.3. Do not perform Layer4 offloads if
unsupported IPsec encapsulation is detected. For example, tunneled IPsec, IPv4 options or IPv6
extensions after the IPsec header.

For ESP, stop checksum computing before the beginning of the ESP trailer — found from the end of
packet according to the padding length field content, and to the formats described in Section 1.3.2.
As in the usual case, implicitly pad out the data by one zeroed byte if its length is an odd number.

Store the next header extracted from the AH header/ESP trailer into the Packet Type field of the
advanced Rx descriptor, but use the TCP/UDP protocol value in the IP pseudo header used for the
TCP/UDP checksum. Also compute the TCP/UDP packet length to be inserted in the IP pseudo
header (excluding any IPsec header or trailer).

Compare the computed checksum value with the TCP/UDP checksum included in the packet. Report
the comparison status in the Extended Errors field of the advanced Rx descriptor.

7.12.12 AES-128 Operation in Rx

The AES-128 operation in Rx is similar to the operation in Tx, while for decryption, the encrypted
payload is fed into the plaintext input, and the resulted ciphertext stands for the decrypted payload.
Refer to Section 7.12.7 for the proper inputs to use in every IPsec mode.

413

Intel® 82599 10 GbE Controller — Inline Functions

intel.

7.12.12.1 Handling IPsec Packets in Rx
The following table lists how IPsec packets are handled according to some of their characteristics.

Table 7.84. Summary of IPsec Packets Handling in Rx

IPv4 Option IPsec Layera/3 AH/ESP
1P or IPv6 1P SA Match || Offload in Offload in Header Split Reported
Fragment Extensions Version Hardware Hardware in Rx
or SNAP Desc.
Yes Yes v4 Don’t care No IP checksum only Up to IPsec header Yes
included
Yes Yes v6 Don't care No No Up to IP fragment No
extension included
, Up to IPsec header
Yes No v4 Don’t care No IP checksum only included Yes
No Yes v4 Don’t care No IP checksum only No Yes
Up to first unknown or
No Yes v6 Don’t care No No IPsec extension header, Nol
excluded
No No v4 Yes Yes Yes? Yes® Yes
No No v4 No No IP checksum only No Yes
No No v6 Yes Yes Yes* Yes3 Yes
No No v6 No No No No Yes

Ll

414

Exception to SNAP IPsec packets that are reported as AH/ESP in Rx descriptor.
No Layer4 offload done on packets with IPSec error.
According to definition made in PSRTYPE[n] registers.
No Layer4 offload done on packets with IPSec error.

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

7.13 Fibre Channel over Ethernet (FCoOE)

7.13.1 Introduction

Fibre Channel (FC) is the predominant protocol used in Storage Area Networks (SAN). Fibre Channel
over Ethernet (FCOE) is used to connect an Ethernet storage initiator and legacy FC storage targets.

The FC protocol is based on high reliability of the communication link between the initiator and the
storage target. It assumes an extremely low error rate of 10712 and no packet drop. DCB extends
Ethernet through class-based flow control in such a way that FC-like no-drop is guaranteed as required
by FC. Doing so, FC protocol can be transposed to an Ethernet link by Layer 2 encapsulation that is
defined by the FCoE protocol. Figure 7.47 shows a connection between an FCoE initiator and legacy FC
targets.

Legacy FC Target

é%? o

FCoE Initiator

FCoE gateway

Legacy FC Target

gg FC Ethernet

Figure 7.47. Connecting an FCoE Initiator to FC Targets

Existing FC HBAs used to connect between an FC initiator and FC targets provide full offload of the FC
protocol to the initiator to maximize storage performance. In order to compete with this market, the
82599 offloads the main data path of 1/0 Read and Write commands to the storage target.

7.13.1.1 FC Terminology

Useful background on FC framing and its Ethernet encapsulation can be found in Section 1.5. More
comprehensive material can be found in the FIBRE CHANNEL FRAMING AND SIGNALING-2 (FC-FS-2)
specification. Following are some of the most common terms used extensively in the sections that
describe the FCoE functionality.

FC Exchange - Complete FC read or FC write flow. It starts with a read or write request by the initiator
(the host system) until it receives a completion indication from the target (the remote disk).

FC Sequence - An FC exchange is composed of multiple FC sequences. An FC sequence can be single
or multiple frames that are sent by the initiator or the target. Also, each FC sequence has a unique
sequence ID.

FC Frame - FC frames are the smallest units sent between the initiator and the target. The FC-FS-2
specification defines the maximum frame size as 2112 bytes. Each FC frame includes an FC header and
optional FC payload. It also may include extended headers and FC optional headers. Extended headers
other than Virtual Fabric Tagging (VFT) are not expected in an FCoE network and FC optional headers
are not used in most cases as well.

415

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Data Frame - FC frames that carry read or write data.

FCP_RSP Frame - FC control frames are sent from the target to the initiator, which defines the
completion of an FC read or write exchange.

7.13.2 FCoE Transmit Operation

Transmit FCoE offload is enabled by setting the TUCMD.FCoOE bit in the transmit context descriptor. The
82599 supports the following offload capabilities: FC CRC calculation and insertion, FC padding
insertion and FC segmentation. These capabilities are described in the following sections.

7.13.2.1 FCoE Transmit Cross Functionality

After setting the TUCMD.FCOoE bit, hardware digests the packet’s content before it is sent to the wire. In
this case, software must enable hardware offload for additional tasks as follows:

Cross Function Requirements

Software must enable Ethernet CRC insertion by setting the IFCS bit in the transmit data
Ethernet CRC insertion descriptor. The Ethernet CRC covers the entire packet. Enabling FCoE offloading, hardware
modifies the packet content and must also adjust the Ethernet CRC.

LinkSec encapsulation covers the entire Ethernet packet payload (it includes both FCoE
LinkSec offload content and Ethernet padding). When packets carry LinkSec encapsulation on the wire,
LinkSec offload by hardware should be activated.

It is assumed that any FCoE has a VLAN header. In the case of double VLAN mode, the

VLAN header packet must have the two VLAN headers.

SNAP packet The 82599 does not provide FCoE offload for FCoE frame over SNAP.

Traffic rate control FC traffic relies on a high quality link that guarantees no packet loss. It is expected that any

FC and PEC lost traffic protocols supported by the network are enabled by the 82599 as well.

It is expected that the VMM abstract the FCoE functionality to the VM(s). FCoE setting and

Virtualization FCoE traffic is expected only by the VMM accessing the LAN via the PF.

FCoE traffic is L2 traffic (not over IP). Any setting of TCP/IP and UDP/IP offload capabilities

TCP/IP and UDP/IP offload are not applicable and do not impact FCoE offload functions.

Software must use the advanced transmit descriptor to activate either FC CRC offload or

Transmit descriptors TS0 functionality.

7.13.2.2 FC Padding Insertion

FC frames always consist of a whole number of four bytes. If user data is not composed of a whole
number of four bytes, then the FC frames contain padding bytes with a zero value. The length of the
padding bytes can be any number between zero to three so together with the user data, the length of
the FC frames has a whole number of four bytes. The length of the padding bytes is indicated by
software in the Fill Bytes field in the FC header. This field is used by the receiving end node (target) to
extract these bytes. Hardware does not use this field to identify the required length of the padding
bytes. Instead, it checks the transmit buffer size indicated by the PAYLEN field in the transmit data
descriptor. The length of the padding bytes added by hardware equals:

2’s complement {two LS bits of (PAYLEN minus MACLEN)}. While PAYLEN is defined in the Tx data
descriptor and MACLEN is defined in the Tx context descriptor.

The 82599 auto-pads the frame with the required zero bytes when FCoE offload is enabled
(TUCMD.FCoE bit is set). In TSO, padding bytes are added only on the last frame since the MSS must
be a whole number of four bytes.

416

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ’

7.13.2.3 SOF Placement

During a single send, the SOF field is taken as is from the FCoE header in the data buffer.

7.13.2.4 EOF Insertion

The 82599 automatically inserts the End of Frame field when the TUCMD.FCoE bit in the transmit
context descriptor is set. The EOF codes that are inserted into the transmitted packets are stored in the
TEOFF register. The TEOFF register contains four EOF codes named EOFO...EOF3 that are supported by
the transmit FCoE offload. By default, these values are programmed into the following values: EOFO =
EOFn; EOF1 = EOFt; EOF2 = EOFni; EOF3 = EOFa. The EOF flag in the FCoEF field in the transmit
context descriptor define an index value as listed in the Table 7.85.

Table 7.85. EOF Codes in Single Send

EOF Bits in the Context Descriptor
(ORIE bit in the Context Descriptor must be set to 1b) 00 01 10 11
Inserted EOF Code EOFO (EOFnN) EOF1 (EOFt) EOF2 (EOFnI) EOF3 (EOFa)

7.13.2.5 FC CRC Insertion

FC CRC calculation is one of the most CPU intensive tasks in large transactions. The 82599 offloads the
FC CRC calculation when the FCoE bit is set in the TUCMD field within the transmit context descriptor.
The 82599 calculates and adds the FC CRC before packet transmission but after the required FC
padding bytes are already added.

The CRC polynomial used by the FC protocol is the same one as used in FDDI and Ethernet as shown in
the following equation. While CRC bytes are transmitted in big endian byte ordering (MS byte first on
the wire): X3,+Xog+Xo3+Xoo+X 1 g+X 10+ X1+ X g+ Xg+X7+X5+X4+Xo+X+1.

The size of FCoE payload on which FC CRC is calculated is indicated in the context and data descriptors
as follows. Figure 7.48 specifies the FCoE frame and the relevant parameters to CRC calculation.

4—————— HEADLEN ——————————————»«4— FCPayloadLEN —»

(©]
MAC Z [opt1 FC | o (basic) [opt.] FC Option Headers + € |6 2
Addresses = Extended Header Data & FC Padding o |4 i
> Headers (w| w

-4+—— MACLEN —» -4————— FC CRC Calculation ——————»

Figure 7.48. FCoE Frame and Relevant Transmit Descriptor Parameters

FC CRC Calculation Beginning

FC CRC calculation starts after the FCoE header. It equals to byte offset of MACLEN + 4, while the
MACLEN field in the transmit context descriptor is the byte offset of the last Dword in the FCoE header
that contains the SOF flag.

417

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

FC CRC Calculation End

FC CRC calculation ends at the end of the FC Payload LEN shown in Figure 7.48 (eight bytes before the
Ethernet CRC).

7.13.2.6 Host Data Buffers Content for a Single Packet Send

The Table 7.86 lists the data prepared by software when transmit FCoE offload is enabled (the FCoE bit
in the TUCMD field is set in the transmit context descriptor).

Table 7.86. Transmit FCoE Packet Data Provided by Software (for TUCMD.FCoE = 1)

Ethernet MAC VLAN ECOE FC Frame (provided by software)
Addresses Header Header FC Header FC Option Header(s) ‘ Opt. Data

Listed below are fields in the transmitted FCoE frame that are not included in the data buffers (in host
memory) as shown in Figure 7.86.

VLAN Header — The VLAN header could be part of the data buffer or in the transmit descriptor
depending on VLE bit in the CMD field in the transmit descriptor.

EOF — The EOF is defined by the EOF fields and ORIE bit in the context descriptor (more details in
Section 7.2.3.2.3)

FC-CRC — The 82599 calculates and inserts the FC CRC bytes.
FC-Padding — The 82599 calculates the padding length and inserts these bytes as required (all zeros).
Ethernet CRC — Insertion should be enabled by the IFCS bit in transmit data descriptor.

LinkSec Header and Digest — When the link is secured by LinkSec, then LinkSec offload must be
enabled and the LinkSec encapsulation is added by hardware.

7.13.2.7 FCoE Transmit Segmentation Offload (TSO)

FCoE segmentation enables the FCoE software to initiate a transmission of multiple FCoE packets up to
a complete FC sequence with a single header in host memory (single instruction). It is activated by
using the advanced Tx context descriptor (DTYP equals 0010b) and setting both the TUCMD.FCOE in the
context descriptor and setting the DCMD.TSE bit in the transmit data descriptor. The 82599 splits the
transmitted content to multiple packets as defined by the MSS field in the Tx context descriptor.

TSO Parameters

« The frame header includes the Ethernet MAC addresses, VLAN Tag, FCoE header and the FC header.
The header size is defined in the context descriptor by the HEADLEN and MACLEN as illustrated.

e The SOF and EOF fields are defined by the SOF, ORIS, EOF and ORIE fields in the context descriptor
as described in Section 7.13.2.3 and Section 7.13.2.4.

e MSS — the maximum segment size in the context descriptor that define the FC data (payload) size
on each packet other than the last frame which can be smaller.

418

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.13.2.7.1 Host Data Buffers Content for TSO Offload

The Figure 7.49 shows the data in host memory when FCoE TSO is activated. The TSO header is
repeated on all frames of the TSO. The header includes static and dynamic fields that are modified by
hardware from packet-to-packet. The payload size is reflected in all frames.

MAC Addresses ; VLAN ; FCoE Header ; FC (basic) Header

TSO | FC Option

header| Header(s) FC Payload / Data (including optional padding)

MSS MSS Residual
TSO | FC Option TSO TSO
header| Header(s) FC Data (1) header FC Data (2) header| ' CData ()

Figure 7.49. FCoE TSO Provided by the FCoE Driver
FCoOE Header

The FCoE packet header must not span more than two buffers. For best bus use it is recommended that
the header be located in a single buffer (the first one).

e Ethernet MAC addresses are the source and destination Ethernet MAC addresses
= VLAN tag can be provided by the driver as part of the packet header or as part of the data
descriptor.

= FCoE header (shown in Figure 7.49) includes the FCoE Ethernet type, FCoE Version and SOF flag.
Software should leave the SOF fields as zero while hardware inserts it according to the SOF and
ORIS bits in the Tx context descriptor.

= FC (basic) header as shown in Section 1.5.2.3.

FCoE TSO — Payload
= FC option headers as described in Section 1.5.2.5.
* FC data to be segmented

= The payload may or may not include the optional FC padding bytes. Hardware adds any required
padding bytes not included in the data buffers according to the PAYLEN field in the data descriptor.

Modified fields between consecutive frames within TSO are described in the following sections.

7.13.2.7.2 Dynamic Start of Frame in TSO

During TSO the SOF field in the data buffer is replaced by hardware according to the values of the SOF
and ORIS bits in the transmit context descriptor. In this case the value of the SOF field in the data
buffer is ignored (for future expansion software should set it to zero). The SOF codes that are inserted
to the transmitted packets are stored in the TSOFF register. The TSOFF register contains four SOF codes
named as SOF0...SOF3 that are supported by the transmit FCoE offload. By default these values are
programmed to the following values: SOF0 = SOFi2; SOF1 = SOFi3; SOF2 = SOFn2; SOF3 = SOFn3.
The SOF flag and Orientation Start (ORIS) bit in the FCoEF field in the transmit context descriptor
define an index value. This index is used to extract the SOF code that is inserted to the packet as listed
in the Table 7.87. The ORIS bit defines if the TSO starts an FC sequence or if the first frame on the FC
sequence is already sent.

419

intel.

Table 7.87. S

Intel® 82599 10 GbE Controller — Inline Functions

OF Codes in TSO

SOF Bit in the Context ORIS Bit in the Context | SOF Code in the First | SOF Code in Other SOF Code while TSO
Descriptor Descriptor Frame Frames = Single Frame

1 (Class 3) 1 (sequence start) SOF1 (SOFi3) SOF3 (SOFn3) SOF1 (SOFi3)

1 (Class 3) 0 (not a sequence start) SOF3 (SOFN3) SOF3 (SOFn3) SOF3 (SOFN3)

0 (Class 2) 1 (sequence start) SOFO (SOFi2) SOF2 (SOFn2) SOFO0 (SOFi2)

0 (Class 2) 0 (not a sequence) SOF2 (SOFn2) SOF2 (SOFn2) SOF2 (SOFn2)

7.13.2.7.3 Dynamic FC Header fields in TSO

F _CTL Table 7.88 lists those fields in the F_CTL that are modified between consecutive frames of a
TSO (see Section 1.5.2.3 for a complete description of the F_CTL field). If a TSO is
transmitted by a single packet all F_CTL fields are taken from the data buffer (as if it is the

last

frame in the TSO).

Table 7.88. F_CTL Codes in TSO

F_CTL Bits last frame in TSO when the ORIE bit in the Tx context descriptor is set. Any other frame
. i Taken from the F_CTL(1:0) in the data buffer. It defines the length of the FC
Fill Bytes (1:0) padding required to make the FC data a complete multiply of four bytes. 00b
Continue Sequence Taken from the F_CTL(7:6) in the data buffer. The continue sequence 00b
Condition (7:6) condition is meaningful only if F_CTL(19) is set and F_CTL(16) is cleared.
Sequence Initiative Taken from the F_CTL(16) in the data buffer. The sequence initiative is ob
(16) meaningful only if F_CTL(19) is also set.
Taken from the F_CTL(19) in the data buffer. The end sequence should be set
End Sequence (19) to 1b by software only if the frame is the last one of a sequence. 0Ob

DF_CTL

Table 7.89 lists those fields in the DF_CTL that can be modified between consecutive
frames of a TSO. Note that the ESP Header presence bit is not listed in this table. When
ESP Header is present, software must not use a TSO that spans across multiple
packets. If a TSO is transmitted by a single packet all DF_CTL fields are taken from the
data buffer (as if it is the first frame in the TSO).

Table 7.89. DF_CTL Codes in TSO

1st frame in TSO when ORIS bit in the Tx context

DF_CTL Fields descriptor is set. Any other frame

Device Header Indication (1:0) Taken from the data buffer. 00b

Association Header Indication (4) Taken from the data buffer. Ob

Network Header Indication (5) Taken from the data buffer. Ob

SEQ_CNT SEQ_CNT in the first frame is taken from the SEQ_CNT field in the FC header in the

PARAM

420

data buffers. On any other frame, the value of SEQ_CNT is incremented by one from its
value in the previous frame. The SEQ_CNT wrap-to-zero after reaching a value of
65,535.

The PARAM field in the first frame is taken from the PARAM field in the FC header in the
data buffers. If the FCoEF.PARINC bit is set in the transmit context descriptor, the value
of the PARAM becomes dynamic. In that case, the PARAM is incremented by hardware
by the MSS value on each frame. Software should set the FCoEF.PARINC bit when the
PARAM field indicates the data offset (Relative Offset Present bit in the F_CTL field is
set).

Inline Functions — Intel® 82599 10 GbE Controller

intel

7.13.2.7.4 Dynamic End Of Frame Fields

FC_CRC Calculated and inserted on each frame as described in section Section 7.13.2.5.

FC_Padding Calculated the number of required padding bytes and inserted them on the last frame
as described in section Section 7.13.2.2.

EOF As explained for a single send, the EOF flag is appended to the transmitted packets

while values are taken from the TEOFF register. The FCoOE flag index to the TEOFF
register is defined by the EOF flag and Orientation End (ORIE) bit in the FCoEF field in
the transmit context descriptor as listed in Table 7.90.

Table 7.90. EOF Codes in TSO

EOF Bits in the ORIE Bit in the Context | Last Frame of the | Other Frames of | TSO = Single
Context : ;
: Descriptor TSO the ‘TSO Frame
Descriptor
00 (EOFn) 0 (not a sequence end) EOFO (EOFnN) EOFO (EOFnN) EOFO (EOFnN)
00 (EOFn) 1 (sequence end) EOF1 (EOFt) EOFO (EOFN) EOF1 (EOFt)
01 (EOFt) 1 (sequence end) n/a n/a EOF1 (EOFt)
10 (EOFni) 1 (don’t care) n/a n/a EOF2 (EOFnI)
11 (EOFa) 1 (don’t care) n/a n/a EOF3 (EOFa)
7.13.3 FCoE Receive Operation

the 82599 can offload the following tasks from the CPU while processing FCOE receive traffic: FC CRC
check, receive coalescing and Direct Data placement (DDP). These offload options are described in the
sections that follow.

DDP functionality is not provided for control packets or data packets that do not meet DDP criteria
(described later in the sections that follow). In those cases, hardware posts the packets to the legacy
Rx queues as is (header and trailer are not stripped including SOF, EOF, FC padding and FC CRC bytes).
When DDP functionality is enabled, only the FC payload is posted to the user buffers. If the packet’s
header should be indicated to the legacy Rx queues, all bytes starting at the destination Ethernet MAC
address until the FC header and optionally FC header(s) inclusive are posted to the legacy buffer.

7.13.3.1 FCOE Receive Cross Functionality

FCoE receive offload capabilities coexist with other functions in the 82599 are listed as follows:

Table 7.91. FCoOE Receive Cross Functionality

Cross Function Requirements

There is no enforcement on save bad frames policy. In the case of save bad frames, packets
with bad Ethernet CRC are posted to the legacy receive queue even if DDP is enabled. FC
payload of bad packets are never posted directly to the user buffers.

Ethernet CRC check

There is no enforcement on the Ethernet padding extraction. When DDP is enabled,
hardware posts the FC payload to the user buffers. When DDP is not enabled the entire
packets are posted to the legacy receive queues with or without the Ethernet padding
according to the device setting.

Ethernet padding extraction

LinkSec encapsulation covers the entire Ethernet packet payload. If the traffic includes
LinkSec, hardware must process first the LinkSec encapsulation uncovering the FCoE plain
text to the FCoE offload logic. If the LinkSec processing is not enabled and the packets
include LinkSec encapsulation, then the packets are posted to the matched legacy receive
queue. If the LinkSec processing is enabled but fails for any reason, the packet can still be
posted to the matched legacy queue according to save bad frames policy.

LinkSec offload

421

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

Table 7.91. FCoE Receive Cross Functionality

Cross Function Requirements

It is assumed that any FCoE has a VLAN header. In the case of double VLAN mode, the

VLAN header packet must have the two VLAN headers.

SNAP packet The 82599 does not provide FCoE offload for FCoE frame over SNAP.

FC traffic relies on a high-quality link that guarantees no packet loss. It is expected that any

FC and PFC lost traffic protocols supported by the network is enabled by the 82599 as well.

It is expected that VM(s) generate FC write requests to the VMM. FCoE setting and FCoE

Virtualization traffic is expected only by the VMM accessing the physical function.

FCOE traffic is L2 traffic (not over IP). Any setting of TCP/IP and UDP/IP offload capabilities

TCP/IP and UDP/IP offload are not applicable and do not impact FCoE offload functions.

Maximum expected clear text FC frame size is 2140 bytes (FC header + FC payload + FC
CRC). Adding optional FC crypto, plus FCoE encapsulation, plus optional LinkSec
encapsulation packet might exceed the 2200 bytes. In order to enable FCoE traffic, jumbo
packet reception should be enabled.

Jumbo frames

When FC CRC offload or DDP functionality are enabled, software must use the advanced
Receive descriptors in the legacy Rx | descriptors in the associated legacy Rx queues (SRRCTL.DESCTYPE = 001b). The legacy Rx
queues buffers must be larger than the maximum expected packet size so any Rx packets span on a
single buffer.

7.13.3.2 FC Receive CRC Offload

FC CRC calculation is one of the most CPU intensive tasks in TSO transactions. The 82599 offloads the
receive FC CRC integrity check while trashing the CRC bytes and FC padding bytes.

The 82599 recognizes FCoE frames in the receive data path by their FCoE Ethernet type and the FCoE
version in the FCoE header. The Ethernet type that hardware associates with FCoE is defined in the
ETQF register by setting the FCoE bit with a specific Ethernet type value. The supported FCoE versions
by the Rx offload logic are defined by FCRXCTRL.FCOEVER. FCoE packets that do not match the
previously described Ethernet type and FCoE versions are ignored by the Rx FCoE logic.

The 82599 reconstructs the FC CRC while processing the incoming bytes and compares it against the
received FC CRC. The frame is considered a good FC packet if the previous comparison matches and it
is considered as a bad FC packet otherwise.

The FC CRC integrity check is meaningful only if all the following conditions are met:

= The received frame contains a correct Ethernet CRC

< If the received frame includes LinkSec encapsulation then LinkSec offload must be enabled and
LinkSec integrity is found OK.

The length of the FC padding bytes that hardware trashes are defined in the Fill Bytes field in the FC
frame control (F_CTL). The Fill Bytes field can have any value between zero to three that makes the FC
frame a whole number of Dwords. It is expected that the Fill Bytes field would be zero except for last
data frames within a sequence.

422

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

MAC VLAN FCoE Opt. FC
Addresses Tag Header FC Header(s) FC Data Padding FCCRC
FCoE Ethernet Type PLEN F_CTL.Fill Bytes /

CRC polynomial: Xao + Xog+ Xog + Xoo + Xqg+ Xio+ Xq1+ Xjg+ Xg+ X7+ X+ Xy + Xo+ X +1

Figure 7.50. Relevant FCoE and FC Fields for CRC Receive Offload

7.13.3.3 Large FC Receive

Large FC receive includes two types of offloads. The 82599 can save a data copy by posting the
received FC payload directly to the kernel storage cache or the user application space (in the remainder
of the document there is no difference between the two cases and it is named as user buffers). When
the packet’s payload are posted directly to the user buffers their headers can still be posted to the
legacy receive queues. The 82599 saves CPU cycles by reducing the data copy and also minimize CPU
processing by posting only the packet’s headers that are required for software.

Figure 7.51 shows the mapping of received FCoE frames to the legacy Rx queue and the user buffers.
Figure 7.52 shows a top level overview of the large FC receive flow. The remaining sections detail the
large FC receive functionality as follows:

= Enabling large FC receive — Section 7.13.3.3.1
= FC read exchange flow — Section 7.13.3.3.2
= FC write exchange flow — Section 7.13.3.3.3

= FCoOE receive filtering (Frame types and rules) — Section 7.13.3.3.5, Section 7.13.3.3.10 and
Section 7.13.3.3.12

« User descriptors — Section 7.13.3.3.7

= Header posting to the legacy receive queues and FC exceptions — Section 7.13.3.3.13 and
Section 7.13.3.3.14

= Interrupts — Section 7.13.3.3.15

423

Intel® 82599 10 GbE Controller — Inline Functions

(16) x Legacy Rx Queues

used for FCoE Traffic (512) x FC Contexts

L

Descriptors Data Buffers) i
T (512) x “User Descriptors” Lists

Address and their “User Buffers”

Status Rx Buff: FCoE Frame‘

Header of the first §

Address | 7| fome (optional) FC Dat

Status Buffer ata .

h First Frame | | Example:

Address 0] First FC

Status Address I Read
Address Rx Buffer: FCOE Frame | | v Buffer FCData | ' sequence

Status Header of the last 4| || |Address 1 Frame N

. | FC Data

Address | 7 fragle in the FC [Address | Buffer Erame N+1

Status equence / 2 | Example:
Address) | Proceeding

Status || T | Address EC read
Address */ﬁ Rx Buffer | \ Buffer FC Data | Sequences

Status / N Last Frame

DDP étatus Required headers are posted in the —
indication legacy Rx queue. The OX_ID ‘ bopP »

indicates the associated FC Context

Figure 7.51. Large FC Reception to User Buffers and Legacy Rx Queue

New Frame is received

Indicate the frame to Fail J
Legacy Rx queue

OK

‘ Identify Legacy Rx Queue ‘

Check
Ethernet
CRC

Bad CRC
A

Packet parsing: Identify FCoE
header and FC frame length

Bad CRC

OK

Fetch FC context
according to OX_ID value

Indicate packet to legacy
Rx queues in case of Save
Bad Frame setting

Note (1) LinkSec offload must be
enabled if LinkSec encapsulation
is used and FCoE offload is
active. Proceed if LinkSec
integrity is found OK. Otherwise
handle it according to LinkSec
setting for bad frames.

Note (2) Check Legit frames for
large FCoE receive (FCoE
receive filtering): Allowed SOF
values; The Frame Contains FC
Data; no ESP option header;
Valid Context in the OX_ID entry
in the context table; “Abort
Sequence Condition” is inactive
and in order reception.

Note (3) Examples for required
headers of: Last packet in FC
sequence. First packet in FC
sequence that includes FC option
headers.

Post FC data to user buffer at “user
buffer Offset”. If data exceeds the
buffer limits update the “User
Descriptor PTR” and fetch a new “User
Descriptor”.

Then update the “User Buffer offset”

v

Update SEQ_CNT and SEQ_ID

Post FCoE frame header to legacy Rx
queue with DDP status indication. The
The OX_ID in the frame’s header
points to the “User descriptor list”

Initiate an Rx interrupt according to
FCoE interrupt policy

End Frame processing

Figure 7.52. FCoE Large Receive Flow Diagram

424

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

7.13.3.3.1 Enabling Large FC Receive

Large FC receive offload is enabled per each outstanding read or write exchange by programming the
FCoOE context table with the flow parameters. Setting the FC context for read or write exchange is done
at run time. It is expected that a read context is programmed before the read request is initiated to the
remote target and write context is programmed before the target sends the ready indication to the
initiator. Unless the FC context is invalidated, software must not modify it in the middle of a transaction
(see Section 7.13.3.3.5 for details on context invalidation). For more details on FCoE initialization flow
see Section 4.6.9.

7.13.3.3.2 FC Read Exchange Flow

Figure 7.53 shows an example of an FC (class 3) read request. This flow is detailed in this section.

1. The software checks if the read request can use large FC receive offload depending on FC context
resources and some criteria as listed in Section 7.13.3.3.5. Section 7.13.3.3.12 describes a
proposed software flow to manage the FC contexts.

2. If the previous conditions are not met, software can initiate the FC read request according the flow
described in Figure 7.53 while the received frames are posted to the legacy receive queues.

« If the previous conditions are met, software locks the relevant user buffers (the target buffers for
the FC read request) and program the FC context table. It then initiates the FC read request
according the flow shown in Figure 7.53. The payload of the received frames is posted directly to
the user buffers. Some of the packet’s headers (only the required ones) are posted to the legacy
receive queues. The FC header in the packet’s header contains the OX_ID field. This field indicates
to software its context and its user buffer list. During nominal operation, all packets’ headers except
packets with FC optional headers are trashed by the hardware minimizing software overhead.

3. The target sends the FCP_RSP frame type indicating the completion of the read exchange. As a
response, the hardware invalidates the FC read context (if it was used) and indicates the number of
bytes posted directly to the user buffers in the receive descriptor (see Section 7.13.3.3.13).
Software indicates the read completion to the application.

Initiator FC Seq. x": CMND packet = FC Read Request Target

FC Seq. ‘i": First DATA packet in the sequence

FC Seq. ‘i". DATA packet 2 First FC
Sequence

FC Seq. ‘i": Last DATA packet in the sequence !

FC Seq. ‘m’: First DATA packet in the sequence Last FC
L. Data
FC Seq. ‘m’: Last DATA packet in the sequence Sequence
‘m
FC Seq. ‘n’: RSP packet = Read completion FC Sequence

n

Figure 7.53. Example for FC Class 3 Read Exchange Flow

425

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.13.3.3.3 FC Write Exchange Flow

Figure 7.54 shows an example of an FC (class 3) write request (on which the Seq_CNT starts from zero
on each new sequence). This flow is detailed in the sections that follow.

1. The host (originator) sends an FC write request to the target (responder).

2. Software in the target checks if the write request can use large FC receive offload depending on FC
context resources and some criteria as listed in Section 7.13.3.3.5.

3. If the previous conditions are met, software can use DDP for this FC write exchange.

4. The target software locks the relevant user buffers (the target buffers for the FC write request) and
program the FC context table. It then initiates the FC ready indication to the host.

5. As a response, the host sends the data frames to be written to the target. The frames are received
in the target. If DDP is used, the FC payload is posted directly to the user buffers while “most” (see
additional details below) packet’s headers are trashed minimizing software overhead.

6. The host marks the last data frame it was requested to send by setting the Sequence Initiative bit
in the F_CTL field.

7. The target identifies the last data frame and invalidates the DDP context. As indicated above,
during nominal operation, “most” packet’s headers are trashed. Only headers that have meaningful
content are posted to host memory as: Headers of packets with FC optional headers and the header
of the last packet in a sequence with active sequence initiative bit are posted to the legacy receive
queues. The hardware indicates the number of bytes posted directly to the user buffers in the
receive descriptor (see Section 7.13.3.3.13). Note that the FC header contains the RX_ID field that
can be used by software to identifies its associated DDP context and user buffer list.

8. The target may repeat step 4, which is followed by step 5 until the entire requested data is
transferred.

9. The target sends the FCP_RSP frame indicating to the initiator the completion of the write
exchange.

Initiator CMND packet = FC Write Request: FC Seq. ‘k', Seq_CNT =0 Target

XFER_RDY: FC Seq. X, Seq_CNT =0

Data: FC Seq. ‘i, Seq_CNT =0

. _ 7 First Data
Data: FC Seq. ‘i, Seq_CNT =1 Sequence

s (N data

Data: FC Seq. ‘', Seq_CNT = N-1, Sequence Initiative = 1 packets)

_ XFER_RDY: FC Seq. ‘y’, Seq_CNT =0
Data: FC Seq. |, Seq_CNT =0 Data

S Sequence

Data: FC Seq. ', Seq_CNT = M-1, Sequence Initiative = 1 (M data
packets)

RSP: FC Seq. 'z, Seq_CNT =0

Figure 7.54. Example for FC Class 3 Write Exchange Flow

426

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

7.13.3.3.4 EOF and SOF Flags identification

As part of the DDP functionality, hardware identifies the SOF and EOF flags in the received packets. The
flags identification is based on a setting of the RSOFF and REOFF registers. These registers are identical
to the TSOFF and TEOFF registers and should be programmed by software to the same values.

7.13.3.3.5 FCoE Receive Filtering

Received FCOE frames are associated to one of the legacy receive queues according to the scheme
described in Section 7.1.2. When the legacy receive queue is enabled, large FC receive functionality is
enabled as well if a matched FC receive context is defined. The data is posted to the user buffers that
are pointed to by the FC receive context. Some of the headers of these frames that are required for the
data processing are posted to the legacy receive queue (see Section 7.13.3.3.13).

FCoOE frames that carry FC class 3 or class 2 data can be posted to large receive buffers if they meet the
following conditions:

« If the received packet carries Linksec encapsulation it must be offloaded (and de-capsulated) by
hardware.

= The FC context table contains valid context that matches the exchange ID in the received frame.
Hardware checks the RX_ID for write data packets sent by the initiator. These packets are identified
by the Exchange Context bit in the F_CTL header equals zero (originator of exchange). Hardware
checks the OX_ID for read response data packets sent by the target. These packets are identified
by the Exchange Context bit in the F_CTL header equals one (responder of exchange).

= Frames are identified as FCoE frame type according to the Ethernet type in the FCoE header. The
Ethernet type that hardware associates with FCOE is defined in the ETQF registers by setting the
FCoE bit with a specific Ethernet type value.

= The FC frame carry class 2 or class 3 content as defined by the SOF flag. The SOF in the FCoE
header equals SOFi2 or SOFn2 or SOFi3 or SOFn3.

= The FCoE version in the received frame is equal or lower than FCRXCTRL.FCOEVER.

« The frame contains data content (with data payload) as defined in the Routing Control field (R_CTL)
in the FC header:

— R_CTL.Information (least significant four bits) equals Ox1 (solicited data)
— R_CTL.Routing (most significant four bits) equals Ox0 (device data)

— Frames that do not contain device data are not posted to the user buffers. Still these frames are
compared against the expected SEQ_ID and SEQ_CNT in the FC context and update these
parameters as described in Section 7.13.3.3.5.

= The FC frame does not include ESP header (bit 6 in the DF_CTL field within the FC header is
cleared). Frames that include ESP option headers are posted to the legacy receive queue. For good
use of hardware resources, software should not program the large FC receive context table with
flows that carry an ESP header.

= The FC frame does not include any FC extended headers. For good use of hardware resources,
software should not program the large FC receive context table with flows that carry extended
headers.

« The first packet received to a new context is identified as the first FC frame in the exchange. This
packet is expected to have the SOFi2 or SOFi3 codes. The SEQ_ID on the first packet may have any
value.

= The frame is received in order as defined in Section 7.13.3.3.7 and does not carry any exception
errors as defined in Section 7.13.3.3.14.

« The first frame on each FC sequence is identified by the SOFi2 or SOFi3 codes in the SOF field in the
FCoE header. It is expected that the SEQ_ID is changed for any new sequence.

427

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

« The last frame on each FC sequence is identified by an active End Sequence flag in the F_CTL field
in the FC header. It is expected to receive the EOFt code in the EOF field; however, hardware does
not check this rule.

Other frames (that do not meet the previous conditions) are posted to the legacy receive queues
according to the generic Rx filtering rules.

7.13.3.3.6 DDP Context

Hardware can provide DDP offload for up to 512 concurrent outstanding FC read or write exchanges.
Each exchange has an associated FC context in hardware. Contexts are identified by the exchange ID
(OX_ID for FC read and RX_ID for FC write). The exchange ID is a 16-bit field so that a system could
theoretically generate up to 64 K concurrent outstanding FC read requests and 64 K concurrent
outstanding FC write requests. Hardware contains 512 contexts for the 512 concurrent outstanding
exchanges. Using exchange ID values between 0 to 511, software can benefit from the DDP offload.
Any exchange ID value in the range of O to 511 can be used for either read or write exchange but not
for both.

The FC context is a set of parameters used to identify a frame and its user buffers in host memory. The
context parameters are split into two categories (according to the internal hardware implementation):
DMA context (FCPTRL, FCPTRH, FCBUFF and FCDMARW registers) and filter context (FCFLT, FCPARAM
and FCFLTRW register) as listed in Table 7.92 and shown in Figure 7.55.

Software should program both the DMA context and filter context making the context usable. During
reception, hardware updates some of the parameters if the packet matches all criteria detailed in
Section 7.13.3.3.5. Initialization values and the updated ones are listed in this section.

Table 7.92. Large FC Context Table

Exchange DMA Context Filter Context
ID (FCPTRL, FCPTRH, FCBUFF, FCDMARW) (FCFLT and FCFLTRW)
DMA Flags User Descriptor Filter Flags In Order Reception
0 Valid, First, Count Size, Offset, Pointer Valid, First Seq_ID, Seq_CNT,PARAM
1 Valid, First, Count Size, Offset, Pointer Valid, First Seq_ID, Seq_CNT,PARAM
2 Valid, First, Count Size, Offset, Pointer Valid, First Seq_ID, Seq_CNT,PARAM
511 Valid, First, Count Size, Offset, Pointer Valid, First Seq_ID,Seq_CNT,PARAM
Large FC Receive Context User Descriptor List User Buffers
(Host memory buffer)
Context Valid o User Buffer 0 Address | Buffer0
User Descriptor PTR User Buffer 1 Addr
User Buffer Offsets ser bufte ess | ™ Buffer1
Buffer Size User Buffer 2 Address \
First and Null Flags Buffer 2
Last User Buffer Address + Size }\‘
Buffer N

Figure 7.55. Large FC Receive Context Related to the User Buffers

428

[| ®
Inline Functions — Intel® 82599 10 GbE Controller l n tel ,

DMA Context Valid (1 bit) and Filter Context Valid (1 bit) — These bits indicates the validity of
this context.

Note: During programming time, software should enable first the DMA context. When software
disables a context it should invalidate first the filter context. See more details on context
invalidation in Section 7.13.3.3.10.

Filter First (1 bit) and DMA First (1 bit) — The first received frame that matches an active context
in the filter unit is marked by the filter. This marking is used by the DMA unit as an indication that
reception to this context has been started. The DMA context does not accept packets from the filter unit
unless it received successfully the packet that was marked as the first one (see the section on
exception handling in Section 7.13.3.3.14). The Filter First flag should be cleared by software when
programming the context. Hardware sets this bit when the filter unit recognizes the first packet that
matches a valid context. The DMA First bit should be cleared by software when programming the
context. Hardware sets this bit when the DMA unit received packet that matches a valid context and
marked as first by the filter unit.

Buffer Count (8 bit) — This field defines the number of remaining user buffers in the list. At
programming time, software sets the buffer count to the number of the allocated user buffers. During
reception, hardware decrements the buffer count as each of them completes. The number of active
buffers equals the buffer count value while 0x00 equals 256.

Buffer Size (2 bit) — This field defines the user buffer size used in this context. It can be 4 KB, 8 KB,
16 KB or 64 KB. All buffers except the first one and the last one are full size. The address of all buffers
is aligned to the buffer size in the context. The first buffer may start at a non-zero offset. The size of
the last buffer may be smaller than the buffer size as defined by the last buffer size parameter.

User Buffer Offset (16 bit) — This field defines the byte offset within the current buffer to which the
next packet should be posted. At context programming, the software sets the user buffer offset to the
beginning of the first buffer. During reception, hardware updates this field at the end of each packet
processing for the next received packet.

Last User Buffer Size (16 bit) — This field defines the size of the last user buffer in byte units.

User Descriptor PTR (8 byte) — The user buffers are indicated by a list of pointers named as user
descriptors (see Section 7.13.3.3.9 for a description of the user descriptors). The user descriptor PTR in
the FC context is a pointer to the user descriptor list. At programming time, software sets the user
descriptor PTR to the beginning of the user descriptor list. During reception, hardware increments the
user descriptor PTR by eight (the size of the user descriptor) when it completes a buffer and requires
the next one.

SEQ_ID (8bit) — The sequence ID identifies the sequence number sent by the target. An FC read or
write exchange can be composed of multiple sequences depending on the target implementation. The
SEQ_ID has a different value for each sequence and does not necessarily increment sequentially.
Hardware uses the SEQ_ID for checking in-order reception as described in Section 7.13.3.3.7.
Hardware updates the SEQ_ID in the context table according to the value of the SEQ_ID in the
incoming frame. The initialization value during programming could be of any value. For future
compatibility software should set it to zero.

SEQ_CNT (16 bit) — SEQ_CNT is an index of the expected FC frames within a sequence or within the
entire exchange depending on the target implementation. Hardware uses the SEQ_ID for checking in-
order reception as described in Section 7.13.3.3.7. On read context, software should initialize SEQ_CNT
to zero. On write context, software should initialize SEQ_CNT to SEQ_CNT + 1 of the last packet of the
same exchange received from the initiator. For each in-order reception, hardware sets SEQ_CNT in the
context to the value of the received SEQ_CNT + 1.

429

[®
l n tel > Intel® 82599 10 GbE Controller — Inline Functions

PARAM (32 bit) — The PARAM field in the FC header may indicate the data offset within the FC 10
exchange. It is indicated as an offset by the Relative Offset Present bit in the F_CTL field in the FC
header. In this case, the PARAM field indicates the expected value of the next received packet. At
programming time, software should initialize it to zero. During reception, hardware increments the
PARAM by the size of the FC payload if it is used as an offset. The FC payload size equals the packet size
minus the length of its header and trailer. While the header for this purpose includes all bytes starting
at the Ethernet destination address up to and including the basic FC header, the trailer includes the FC
CRC, FC padding, EOF including the three reserved bytes, and the Ethernet CRC.

7.13.3.3.7 In Order Reception Checking

Hardware checks in-order reception by SEQ_ID, SEQ_CNT and PARAM fields. These parameters should
meet the expected values (as follows) in order to pass in-order reception’s criteria.

PARAM — When the PARAM field is used as an offset (as indicated by the Relative Offset Present bit in
the F_CTL field in the FC header), the PARAM field in the received packet should be the same as the
PARAM field in the FC context. Software should initialize this parameter to the expected received value
(equals to zero in read exchanges).

SEQ_ID, SEQ_CNT — SEQ_ID identifies the FC sequence and SEQ_CNT is the FC frame index within
the entire exchange or within the sequence (according to specific vendor preference). SEQ_CNT in the
received packet could be either the same as the SEQ_CNT in the FC context or it could start from zero
for new SEQ_ID, which is different than the SEQ_ID in the context. Software should initialize SEQ_CNT
to the expected received value (equals zero in read exchanges). SEQ_ID on the first packet is always
assumed to be a new value even if by chance it equals to the initial value in the context.

7.13.3.3.8 Accessing the Large FC Receive Context

The 82599 supports a large number of FC contexts while each context contains about 16 bytes. In
order to save consumed memory space, the FC context is accessed by indirect mapping. This section
describes how the DMA and filter contexts are accessed. The DMA context is consist of the FCPTRL,
FCPTRH and FCBUFF registers while read and write accesses are controlled by the FCDMARW register.
The filter context is consist of the FCFLT register while read and write accesses are controlled by the
FCFLTRW register.

DMA Context Programming — Software should program the FCPTRL, FCPTRH and FCBUFF registers
by the required setting. It then programs the FCDMARW register with the following content:

= FCOESEL should be set by the required context index (OX_ID or RX_ID values)

e The WE bit is set to 1b for write access while the RE bit is set to Ob.

* LASTSIZE should be set to the relevant value for the context
DMA Context Read — Software should program the FCDMARW register as follows and then read the
context on the FCPTRL, FCPTRH, FCBUFF and FCDMARW registers

« Software should initiate two consecutive write cycles to the FCDMARW register with the following
setting: FCOESEL should be set to the required FCoE read index while both WE and RE should be set
to Ob.

e FCOESEL should be set by the required context index (OX_ID or RX_ID values).
 RE bit should be set to 1b for read access while WE, and LASTSIZE fields are set to Ob.

e LASTSIZE should be set to Ob. It is ignored by hardware when the RE bit is set to 1b. When reading
FCDMARW the LASTSIZE field reflects the context content.

430

[®
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Filter Context Programming — Software should program the FCFLT register by the required setting.
It then programs the FCFLTRW register with the following content:

= FCOESEL should be set by the required context index (OX_ID or RX_ID values).

= WE bit is set to 1b for a write access while RE bit is set to Ob.
Filter Context Read — Software should program the FCFLTRW register as follows and then read the
context on the FCFLT register:

= FCOESEL should be set by the required context index (OX_ID or RX_ID values).

« RE bit should be set to 1b for a read access while WE bit is set to Ob.

7.13.3.3.9 User Descriptor Structure and User Descriptor List

The buffers in host memory could be either user application memory or storage cache named as user
buffers. In both cases the buffers must be locked (against software) and converted to physical memory
up front.

The user descriptor list is a contiguous list of pointers to the user buffers. The buffers are aligned to
their size as defined in the FC context. The first buffer can start at a non-zero offset as the software
defines it in the FC context. All other buffers start at a zero offset. The last buffer can be smaller than
the full size as defined in the FC context.

Table 7.93. FC User Descriptor

63 [0}

User buffer address defined in byte units. N LS bits must be set to zero while N equals 12 for a 4 KB buffer size, 13 for 8 KB buffer
size, 14 for 16 KB buffer size and 16 for 64 KB buffer size.

7.13.3.3.10 Invalidating FC Receive Context

During nominal activity, hardware invalidates autonomously the FC contexts. The target indicates a
completion of an FC read by sending the FCP_RSP frame. Hardware identifies the FCP_RSP frame and
invalidates the FC context that matches the OX_ID in the incoming frame. The FCP_RSP frame is posted
to the legacy Rx queues with appropriate status indication. Hardware identifies the FCP_RSP frame by
the following criteria:

« The frame is identified as FCoE frame by its ethernet type
< R_CTL.Information (least significant four bits) equals Ox7 (command status)
e R_CTL.Routing (most significant four bits) equals 0x0 (device data)

Context that is invalidated autonomously by hardware is indicated by setting the FCSTAT field in the
receive descriptor to 10b. When software gets this indication it can unlock the user buffers instantly and
re-use the context for a new FC exchange.

In some erroneous cases software might invalidate a context before a read exchange completes (such
as a time out event). In such cases, software should clear the Filter Context Valid bit and then the DMA
Context Valid bit. Hardware invalidates the context at a packet's boundaries. Therefore, after software
clears the DMA Context Valid bit, software should either poll it until it is granted (cleared) by hardware
or optionally software could wait ~100 us (guaranteed time for any associated DMA cycles to
complete). In addition, software should also ensure that the receive packet buffer does not contain any
residual packets of the same flow. See Section 4.6.7.1 for the required software flow. Only then the
software can unlock the user buffers and re-use the context for a new FC exchange.

431

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.13.3.3.11 Invalidating FC Write Context

During nominal activity, hardware invalidates autonomously the FC contexts. The initiator indicates a
completion of a granted portion of an FC write by sending a data frame with active sequence initiative
flag. After receiving this type of frame, hardware invalidates the matched FC context. The header of
this frame is posted to the legacy Rx queues with appropriate status indication. Hardware identifies this
frame by the following criteria:

« The frame is identified as FCoE frame by its ethernet type

R_CTL -> Information (least significant four bits) equals Ox1 (solicited data)

R_CTL -> Routing (most significant four bits) equals 0x0 (device data)

F_CTL -> Sequence initiative equals 1b indicating transfer initiative to the target

F_CTL -> End sequence” equals 1b indicating last frame in a sequence

Context that is invalidated autonomously by hardware is indicated by setting the FCSTAT field in the
receive descriptor to 10b. When software gets this indication, it can unlock the user buffers instantly
and re-use the context for a new FC exchange. If the FC write is not complete, software can re-use the
same context for the completion of the exchange. It can also define a new user buffer list and indicate
it to hardware by programming the DMA context. It then can enable the filter context by setting the Re-
Validation bit the WE bit and the FCoESEL field in the FCFLTRW register.

Software can also invalidate a context in case of a time out event or other reasons. Software
invalidation flow is described in Section 7.13.3.3.10.

7.13.3.3.12 OX_ID and RX_ID Pool Management

As previously indicated, hardware enables Large FC receive offload for up to 512 concurrent
outstanding read or write requests. In some cases more than 512 concurrent outstanding requests are
generated by the FCoE stack. Therefore, software would need to manage two separate queues for the
requests: one queue for those FC requested supported by the large FC receive offload and another one
for those requests that do not gain the large FC receive offload. Software should claim an entry in the
context table, and its associated OX_ID or RX_ID for the duration of the read or write requests,
respectively. Once a request completes and its context is invalidated, software can re-use its context
entry for a new request.

Table 7.94 defines an example for an OX_ID list that can be used for new FC read requests managed by
software at initialization time and during run time. Similarly, this table could be helpful for write
requests and their RX_ID or shared pool for both read and write requests.

432

Inline Functions — Intel® 82599 10 GbE Controller

Table 7.94. Software OX_ID Table

intel.

Init State of Run-Time Updated State Run-Time Updated State Updated State
the OX_ID Events of the OX_ID Events of the OX_ID Run-Time events of the OX_ID
Table Table Table Table
0 50 50 100
1 51 51 . . 101
Software is using
additional 50 OX_ID
values supported by
large FC receive. 510
Software is The following FC The following FC read 511
using 50 OX_ID read requests are requests are
values — 510 completed (and 510 completed (and 44
supported b released by released by software)
Iarp?e FC Y 511 software) in the 511 in the following order: 21
rec%ive following order: 2 75, 10, 38. 9
’ 44,21,9,0. Ordering between
21 software requests and 0
releases does not
9 matter in this 75
example.
510 (6] 10
511 38
SW Note: Software is aware of which read requests can be offloaded by the large FC receive and

use OX_IDs in the hardware range (O to 511) only for those ones.

7.13.3.3.13 Packets and Headers Indication in the Legacy Receive Queue

The following packets or packets’ headers are posted to the legacy receive queues:

= All FCoE frames that are not offloaded by the DDP logic
« Any packet with exception errors as described in Section 7.13.3.3.14

= Headers of packets posted to the user buffers by the DDP logic that contain meaningful data (as
detailed in Section 7.13.3.3.2 and Section 7.13.3.3.3)

There are a few new fields in the receive descriptor dedicated to FCoOE described in Section 7.1.6.2:

Packet Type — FCoOE packets are identified by their Ethernet type that is programmed in the ETQF

registers.

FCoE_PARAM — Reflects the value of the PARAM field in the DDP context.

FCSTAT — FCoE DDP context indication.

FCERR — FCoE Error indication. DDP offload is provided only when no errors are found.

FCEOFs and FCEOFe — Status indication on the EOF and SOF flags in the Rx packet.

7.13.3.3.14 Exception Handling

Table 7.95 lists the exception errors related to FC receive functionality. Packets with any of the following
exception errors are posted to the legacy receive queues with no DDP unless specified differently. In
these cases, the exception error is indicated in the Extended Error field in the receive descriptor. The
exceptions are listed in priority order in the table with highest priority first. Other then the EOF
exception, any high priority exception hides all other ones with a lower priority.

433

intel.

Table 7.95. Exception Error Table

Intel® 82599 10 GbE Controller — Inline Functions

Event Description

Actions and Indications

Unsupported FCoE version (Rx Version >
FCRXCTRL.FCOEVER)

The packet is identified as an FCoE packet type. DDP context parameters are left
intact. Speculative CRC check is done. The packet is posted to legacy Rx queue
regardless of CRC correctness (independent of FCRXCTRL.SavBad setting). If
the packet matches the FCoE redirection table, the packet is posted to Rx queue
index defined by the FCRETA[O].

RDESC.STATUS.FCSTAT = 00b.

RDESC.ERRORS.FCERR = 100b.

Incorrect FC CRC (see note 1).

Increment bad FC CRC count. FC context parameters are left intact. The packet
can be posted to the legacy receive queues only if the FCRXCTRL.SavBad is set.
If the packet matches the FCoE redirection table, the packet is posted to Rx
queue index defined by the FCRETA[O].

RDESC.STATUS.FCSTAT = 00b.

RDESC.ERRORS.FCERR = 001b.

Rx packet with ESP option header.

If it matches the DDP context then auto invalidate the filter context while
keeping the parameters intact. Note that this exception is not expected since
software should not enable a context to an exchange that uses ESP
encapsulation.

RDESC.STATUS.FCSTAT = 00b / 01b / 10b.

RDESC.ERRORS.FCERR = 000b.

Received EOFa or EOFni or any unrecognized EOF
or SOF flags.

If it matches the DDP context then auto invalidate the filter context while
keeping the parameters intact.

RDESC.STATUS.FCSTAT = 00b / 01b / 10b.
RDESC.ERRORS.FCERR = 010b (even if no DDP match).
RDESC.ERRORS.FCEOFe = 1b.

RDESC.STATUS.FCEOFs = 1b.

Received non-zero abort sequence condition in
FC read exchange.

If it matches the DDP context then auto invalidate the filter context while
keeping the parameters intact.

RDESC.STATUS.FCSTAT = 00b / 01b / 10b.
RDESC.ERRORS.FCERR = 010b (even if no DDP match).

Out of order reception of packet that matches a
DDP context (see note 2).

Auto invalidate the filter context while keeping the parameters intact.
RDESC.STATUS.FCSTAT = 01b.
RDESC.ERRORS.FCERR = 100b.

Received unexpected EOF / SOF:
1) New sequence ID and SOF is not SOFi.

2) Last packet in a sequence and EOF is not
EOFt.

No DDP while filter context is updated (if matched and other parameters are in
order).

RDESC.STATUS.FCSTAT = 00b. / O1b.
RDESC.ERRORS.FCERR = 000b.
RDESC.ERRORS.FCEOFe = 1b.
RDESC.STATUS.FCEOFs = Ob.

The DMA unit gets FCoE packets while it missed
the packet that was marked as first by the filter
unit (see note 3).

Filter context parameters are updated while DMA context parameters are left
intact.

RDESC.STATUS.FCSTAT = 01b / 10b / 11b.
RDESC.ERRORS.FCERR = 011b or 101b.

434

]
Inline Functions — Intel® 82599 10 GbE Controller l n tel

Table 7.95. Exception Error Table (Continued)

Event Description Actions and Indications

The filter context is updated while DMA context is auto invalidated.
RDESC.STATUS.FCSTAT = 01b / 10b / 11b.
RDESC.ERRORS.FCERR = 101b.

Last user buffer is exhausted (not enough space
for the FC payload).

The entire packet is dropped. Auto invalidates the DMA context while the filter
context remains active and continues to be updated regularly. Once legacy
Legacy receive queue is not enabled or no legacy | descriptors become valid again, packets are posted to the legacy queues with
receive descriptor. the following indication.

RDESC.STATUS.FCSTAT = 01b / 10b / 11b.

RDESC.ERRORS.FCERR = 101b.

The entire packet is dropped (by the Rx packet buffer). Auto invalidate the DMA
context while the filter context remains active and continues to be updated
regularly. Once the Rx packet buffer gets free, further Rx packets are posted to
Packet missed (lost) by the Rx packet buffer. the legacy queues with the following indication.

Normally a case when flow control is not enabled | RpESC.STATUS.FCSTAT = 00b / 01b / 10b 7 11b.

or flow control does not work properly. RDESC.ERRORS.FCERR = 110b.

Note that the software might ignore this error when FCSTAT equals 00b.
1

Note (1):Out of order might be one of the following cases. SEQ_CNT does not meet expected value.
The PARAM field in the Rx packet does not match the DDP context. SEQ_ID keeps the same
value as the previous packet in a new sequence identified by the presence of SOFi code in the
SOF field.

Note (2):Lost sync between Filter and DMA contexts could be a result of context invalidation by
software together with misbehaved target that sends packet with no host request.

7.13.3.3.15 FC Exchange Completion Interrupt

One of the performance indicators of an initiator is measured by the number of 1/0 operations per
second it can generate. The number of FC exchanges per second is affected mainly by the CPU
overhead associated with the FC exchange processing and software latencies. The number of
concurrent outstanding FC exchanges supported by large FC receive is limited by hardware resources.
Reducing the latency associated with processing completions increases the number of FC exchanges
per second that the system supports.

The 82599 enables LLI for FCP_RSP frames or last FC data frame in a sequence with active Sequence
Initiative flag. Any such frames can generate an LLI interrupt if the FCOELLI bit in the FCRXCTRL
register is set.

Similarly, reducing the latency associated with processing FC write exchange can increase responder
performance. During an FC write exchange, the originator handles the initiative to the responder after it
sends all the data that the responder is ready to receive. Therefore, the 82599 enables LLI after
receiving the last packet in a sequence with the Sequence Initiative bit set in the F_CTL field. The LLI is
enabled by the same FCOELLI bit in the FCRXCTRL register previously indicated.

435

[®
l n tel Intel® 82599 10 GbE Controller — Inline Functions

7.14 Reliability

7.14.1 Memory Integrity Protection

All the 82599 internal memories are protected against soft errors. Most of them are covered by ECC
that correct single error per memory line and detect double errors per memory line. Few of the smaller
memories are covered by parity protection that detects a single error per memory line.

Single errors in memories with ECC protection are named also as correctable errors. Such errors are
silently corrected. Two errors in memories with ECC protection or single error in memories with parity
protection are also named as un-correctable errors. Un-correctable errors are considered as fatal
errors. If an un-correctable error is detected in Tx packet data, the packet is transmitted with a CRC
error. If un-correctable error is detected in Rx packet data, the packet is reported to the host (or
manageability) with a CRC error. If an un-correctable error is detected anywhere else, the 82599 halts
the traffic and sets the ECC error interrupt. Software is then required to initiate a complete initialization
cycle to resume nominal operation.

7.14.2 PCle Error Handling

For PCle error events and error reporting see Section 3.1.7.

436

Programming Interface — Intel® 82599 10 GbE Controller

8.0 Programming Interface

8.1 Address Regions

The 82599's address space is mapped into four regions with the PCI-Based Address Registers (BARs)
listed in Table 8.1 and explained more in Section 9.3.6.1 and Section 9.3.6.2.

Table 8.1. the 82599 Address Regions

Addressable Content Mapping Style Region Size
Internal registers memories and Flash (memory BAR) Direct memory mapped 128 KB + Flash Size
Flash (optional)1 Direct memory-mapped 64 KB to 8 MB
Expansion ROM (optional)2 Direct memory-mapped 64 KB to 8 MB
Internal registers and memories (optional)2 1/0 window mapped 32 bytes
MSI-X (optional) Direct memory mapped 16 KB

1. The Flash space in the memory CSR and expansion ROM base address map is the same Flash memory. Accessing the memory BAR
at offset 128 KB and expansion ROM at offset Ox0O are mapped to the Flash device at offset 0x0.
2. The internal registers and memories can be accessed though 1/0 space as explained in the sections that follow.

8.1.1 Memory-Mapped Access

8.1.1.1 Memory-Mapped Access to Internal Registers and Memories

The internal registers and memories can be accessed as direct memory-mapped offsets from the
memory CSR BAR. See the following sections for detailed descriptions of the Device registers.

In IOV mode, this area is partially duplicated per Virtual Function (VF). All replications contain only the
subset of the register set that is available for VF programming.

8.1.1.2 Memory-Mapped Accesses to Flash

The external Flash can be accessed using direct memory-mapped offsets from the CSR BAR (BARO in
32-bit addressing or BARO/BAR1 in 64-bit addressing). The Flash is only accessible if enabled through
the EEPROM Initialization Control word. For accesses, the offset from the CSR BAR minus 128 KB
corresponds to the physical address within the external Flash device.

8.1.1.3 Memory-Mapped Access to MSI-X Tables

The MSI-X tables can be accessed as direct memory-mapped offsets from BAR3. The MSIX registers are
described in Section 8.2.3.6.

In IOV mode, this area is duplicated per VF.

437

[®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

8.1.1.4 Memory-Mapped Access to Expansion ROM

The external Flash can also be accessed as a memory-mapped expansion ROM. Accesses to offsets
starting from the expansion ROM base address reference the Flash, provided that access is enabled
through the EEPROM Initialization Control word, and if the expansion ROM base address register
contains a valid (non-zero) base memory address.

8.1.2 1/0-Mapped Access

All internal registers and memories can be accessed using 1/0 operations. 1/0 accesses are supported
only if an 1/0 base address is allocated and mapped (BAR2), the BAR contains a valid (non-zero value),
and 1/0 address decoding is enabled in the PCle configuration.

When an 1/0 BAR is mapped, the 1/0 address range allocated opens a 32-byte window in the system 1/
O address map. Within this window, two 1I/0 addressable registers are implemented: IOADDR and
IODATA. The IOADDR register is used to specify a reference to an internal register or memory, and then
the IODATA register is used to access it at the address specified by IOADDR:

Offset Abbreviation Name RW Size

Internal Register, Internal Memory, or Flash Location Address.
0x0 IOADDR 0x00000-0x1FFFF — Internal registers/memories. RW 4 bytes
0x20000-0x7FFFF — Undefined.

Data field for reads or writes to the internal register, internal memory, or
0x04 IODATA Flash Location as identified by the current value in IOADDR. All 32 bits of | RW 4 bytes
this register are read/write capable.

0x08-0x1F Reserved Reserved o 4 bytes

81.2.1 I0ADDR (170 Offset Ox0; RW)

The IOADDR register must always be written as a Dword access. Writes that are less than 32 bits are
ignored. Reads of any size returns a Dword of data; however, the chipset or CPU might only return a
subset of that Dword.

For software programmers, the IN and OUT instructions must be used to cause 1/0 cycles to be used on
the PCle bus. Because writes must be to a 32-bit quantity, the source register of the OUT instruction
must be EAX (the only 32-bit register supported by the OUT command). For reads, the IN instruction
can have any size target register, but it is recommended that the 32-bit EAX register be used.

Because only a particular range is addressable, the upper bits of this register are hard coded to zero.
Bits 31 through 20 are not write-able and always read back as Ob.

At hardware reset (LAN_PWR_GOOD) or PCI reset, this register value resets to 0x00000000. Once
written, the value is retained until the next write or reset.
8.1.2.2 IODATA (1/0 Offset Ox04; RW)

The IODATA register must always be written as a Dword access when the IOADDR register contains a
value for the internal register and memories (such as 0x00000-0x1FFFC). In this case, writes that are
less than 32 bits are ignored.

Writes and reads to IODATA when the IOADDR register value is in an undefined range (0x20000-
0Ox7FFFC) should not be performed. Results cannot be determined.

438

Programming Interface — Intel® 82599 10 GbE Controller

intel

Note: There are no special software timing requirements on accesses to IOADDR or IODATA. All
accesses are immediate except when data is not readily available or acceptable. In this case,
the 82599 delays the results through normal bus methods (like split transaction or
transaction retry).

Because a register/memory read or write takes two 1/0 cycles to complete, software must
provide a guarantee that the two 1/0 cycles occur as an atomic operation. Otherwise, results

can be non-deterministic from the software viewpoint.

8.1.2.3

Undefined 1/0 Offsets

1/0 offsets 0x08 through Ox1F are considered to be reserved offsets with the 1/0 window. Dword reads
from these addresses return OxXFFFF; writes to these addresses are discarded.

8.1.3 Registers Terminology
Shorthand Description
RW Read/Write. A registt_ar with this attribute can be read and written. If written since reset, the value read
reflects the value written.
RO Read Only. If a register is read only, writes to this register have no effect.
WO Write Only. Reading this register might not return a meaningful value.
RW1C Read/Write Clear. A regis_ter with th_is attribute can be read and written. However, a write of a 1b clears (sets to
0Ob) the corresponding bit and a write of a Ob has no effect.
wic Write to clear register. Writing 1b to this register clears an event possibly reported in another register.
RC Read Clear. A register bit with this attribute is cleared after read. Writes have no effect on the bit value.
RW/RC Read/Write and Read Clear.
RWS Read Write Set: Register that is set to 1b by software by writing a 1b to the register, and cleared to Ob by
hardware.
Reserved Rese_r_/ed fi_eld can return any value on read access and must be set to its initial value on write access unless
specified differently in the field description.
8.2 Device Registers — PF
8.2.1 MSI-X BAR Register Summary PF

See Section 9.3.6.1 for the MSI-X BAR offset in 32-bit and 64-bit BAR options.

Category BAR 3 Offset Alias Offset Abbreviation Name RW
MSI-X 0x0000 — (N-1)*0x10 | N/A MSIXTADD MSIX table entry lower address. | RW
MSI-X 0x0004 — (N-1)*0x10 | N/A MSIXTUADD MSIX table entry upper address. | RW
MSI-X 0x0008 — (N-1)*0x10 | N/A MSIXTMSG MSIX table entry message. RW
MSI-X 0x000C — (N-1)*0x10 | N/A MSIXTVCTRL MSIX table vector control. RW
MSI-X 0x2000 — 0x200C N/A MSIXPBA MSI-X Pending bit array. RO

8.2.2 Registers Summary PF — BAR O

All of the 82599's non-PCle configuration registers are listed in the following table. These registers are
ordered by grouping and are not necessarily listed in the order that they appear in the address space.

439

"] ®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

Note: All registers should be accessed as a 32-bit width on reads with an appropriate software
mask, if needed. A software read/modify/write mechanism should be invoked for partial
writes.

Table 8.2. Register Summary

Offset / Alias Offset Abbreviation Name Block RW Slf)isrite Page
General Control Registers
0x00000 / 0x00004 CTRL Device Control Register Target RW 453
0x00008 STATUS Device Status Register Target RO 454
0x00018 CTRL_EXT Extended Device Control Register | Target RW 454
0x00020 ESDP Extended SDP Control Target RW 455
0x00028 12CCTL 12C Control Target RW PERST 457
0x00200 LEDCTL LED Control Target RW 458
0x00600 CORESPARE Core Spare Bits Target RW 459
0x05078 EXVET Extended VLAN Ether Type Target RW 459
EEPROM/Flash Registers
0x10010 EEC EEPROM/Flash Control Register FLEEP RW 460
0x10014 EERD EEPROM Read Register FLEEP RW 461
0x1001C FLA Flash Access Register FLEEP RW 462
0x10114 EEMNGDATA \'\/('fr‘i'][zgg:g"ty EEPROM Read/ FLEEP RW 463
0x10118 FLMNGCTL '\R":;""Sg:fbi“ty Flash Control FLEEP RW 464
0x1011C FLMNGDATA Manageability Flash Read Data FLEEP RW 464
0x01013C FLOP Flash Opcode Register FLEEP RW 464
0x10200 GRC General Receive Control FLEEP RW 465
Flow Control Registers
0x0431C / 0x03008 PFCTOP Priority Flow Control Type Opcode | MAC RW 465
0x03200+4*n, n=0...3 FCTTVN Fow Control Transmit Timer DBU-RX | RW 465
0x03220+4*n, n=0...7 FCRTL[N] Eg’v‘\’l" Control Receive Threshold | oy | gw 466
0x03260+4*n, n=0...7 FCRTH[N] E'%"r‘: Control Receive Threshold | np\y gy | gw 466
0X032A0 ECRTV i:/leclJl\l/JveCOntrol Refresh Threshold DBU-Rx RW 466
OxOCEOO TFCS Transmit Flow Control Status DBU-Tx RO 467
0x03D00 FCCFG Flow Control Configuration DBU-Rx RW 467
PCle Registers
0x11000 GCR PCle Control Register PCle RW 467
0x11010 GSCL_1 PCle Statistic Control Register #1 | PCle RW 468
0x11014 GSCL_2 ;F;(;Ie Statistic Control Registers PCle RW 468

440

Programming Interface — Intel® 82599 10 GbE Controller

Table 8.2. Register Summary (Continued)
. L Reset
Offset / Alias Offset Abbreviation Name Block RW S Page
ource
0x011030+4*n, n=0...3 GSCL 5.8 i%'e ;ganst.c Control Register PCle RW 469
0x11020+4*n, n=0...3 GSCN_0_3 PCle Statistic Counter Registers PCle RO 470
#0...#3
0x10150 FACTPS Function Active and Power State FLEEP RO 470
to Manageability
0x11040 PCIEPHYADR PCle PHY Address Register PCle RW 471
0x11044 PCIEPHYDAT PCle PHY Data Register PCle RW 471
0x10140 SWSM Software Semaphore Register FLEEP RW 471
0x10148 FWSM Firmware Semaphore Register FLEEP RW 471
0x10160 SW_FW_SYNC Software—Firmware FLEEP RW 473
- = Synchronization
0x11050 GCR_EXT PCle Control Extended Register PCle RW 473
0x11064 MREVID Mirrored Revision ID PCle RO 473
0x110BO PICAUSE PCle Interrupt Cause PCle RO 474
0x110B8 PIENA PCle Interrupts Enable PCle RW 474
Interrupt Registers
0x00800 EICR Extended Interrupt Cause Interrupt | RW1C 474
Register
0x00808 EICS Extended Interrupt Cause Set Interrupt | WO 475
Register
Extended Interrupt Mask Set/
0x00880 EIMS Read Register Interrupt | RWS 475
0x00888 EIMC Extended Interrupt Mask Clear Interrupt | WO 475
Register
0x00810 EIAC Extended Interrupt Auto Clear Interrupt | RW 476
Register
Extended Interrupt Auto Mask
0x00890 EIAM Enable Register Interrupt | RW 476
OX00A90+4*(n-1), n=1...2 EICS[n] Extended Interrupt Cause Set Interrupt | WO 476
Registers
O0X00AAO+4*(n-1), n=1...2 EIMS[n] Extended Interrupt Mask Set/ | | nerrupt | Rws 476
Read Registers
*lre _ Extended Interrupt Mask Clear
0x00ABO+4*(n-1), n=1...2 EIMC[n] Registers Interrupt | WO 476
OX00ADO+4*(n-1), n=1...2 EIAM[N] Extended Interrupt Auto Mask Interrupt | RW 477
Enable registers
0x00894 EITRSEL MSI to EITR Select Interrupt | RW 477
0x00820+4*n, n=0...23 and Extended Interrupt Throttle
0x012300+4*(n-24), n=24...128 | E'TRIN Registers Interrupt | RW ar7
OXOE800+4*n, n=0...127 L34TIMIR[N] L Tuples Immediate Interrupt | pp; gy | Ry 478
OXOEC90 LLITHRESH LLI Size Threshold DBU-Rx RW 478
OXOEC60 / OXOSACO IMIRVP pmmediate Interrupt Rx VLAN DBU-RX | RW 478
riority Register
0x00900+4*n, n=0...63 IVAR[N] Interrupt Vector Allocation Interrupt | RW 479

441

intel.

Intel® 82599 10 GbE Controller — Programming Interface

Table 8.2. Register Summary (Continued)
. - Reset
Offset / Alias Offset Abbreviation Name Block RW S Page
ource

0X00A00 IVAR_MISC Miscellaneous Interrupt Vector Interrupt | RW 479
Allocation

0x00898 GPIE General Purpose Interrupt Enable | Interrupt | RW 480

MSI-X Table Registers

0x110C0+4*n, n=0...7 /

0x11068 [n=0] PBACL[Nn] MSI-X PBA Clear PCle RW 481

Receive Registers

0x05080 FCTRL Filter Control Register Rx-Filter | RW 481

0x05088 VLNCTRL VLAN Control Register Rx-Filter | RW 482

0x05090 MCSTCTRL Multicast Control Register Rx-Filter | RW 482

OXOEA00+4*n, n=0...63 / Packet Split Receive Type

0x05480+4*n, n=0...15 PSRTYPE[N] Register DBU-Rx | RW 483

0x05000 RXCSUM Receive Checksum Control Rx-Filter | RW 483

0x05008 RFCTL Receive Filter Control Register Rx-Filter | RW 484

0x05200+4*n, n=0...127 MTA[N] Multicast Table Array Rx-Filter | RW 485

0x0A200+8*n, n=0...127 RAL[N] Receive Address Low Rx-Filter | RW 485

0x0A204+8*n, n=0...127 RAH[N] Receive Address High Rx-Filter | RW 485

0x0A600+4*n, n=0...255 MPSAR[N] MAC Pool Select Array Rx-Filter | RW 486

0x0A000+4*n, n=0...127 VFTA[N] VLAN Filter Table Array Rx-Filter | RW 486
Multiple Receive Queues

OxOEC80 / 0x05818 MRQC Command Register DBU-Rx RW 487

OXOEC70 RQTC RSS Queues Per Traffic Class DBU-Rx RW 487
Register

OxOEB80+4*n, n=0...9 / .

0x05C80+4*n. n=0...9 RSSRKI[n] RSS Random Key Register DBU-Rx RW 488

OxO0EBOO+4%*n, n=0...31 / : ;

0x05C00+4*n. n=0...31 RETA[N] Redirection Table DBU-Rx RW 488

0xO0E000+4*n, n=0...127 SAQFI[n] Source Address Queue Filter DBU-Rx RW 489

0x0E200+4*n, n=0...127 DAQF[n] Destination Address Queue Filter | DBU-Rx RW 489

OXOE400+4*n, n=0...127 SDPOQF[N] ?i‘l’tfrce Destination Port Queue | ppy gy | Ry 489

OxOE600+4*n, n=0...127 FTQF[Nn] Five Tuple Queue Filter DBU-Rx RW 490

OxOEC30 SYNQF SYN Packet Queue Filter DBU-Rx RW 491

0x05128+4*n, n=0...7 ETQF[n] EType Queue Filter Rx-Filter | RW 491

OXOEC00+4*n, n=0...7 ETQS[n] EType Queue Select DBU-Rx RW 491

Receive DMA Registers

0x01000+0x40*n, n=0...63 and Receive Descriptor Base Address

0x0D000+0x40*(n-64), RDBAL[N] p DMA-RX | RW 493

- Low

n=64...127

0x01004+0x40*n, n=0...63 and Receive Descriptor Base Address

0Xx0D004+0x40*(n-64), RDBAH[N] ; p DMA-RX | RW 493

— High

n=64...127

0x01008+0x40*n, n=0...63 and

0x0D008+0x40*(n-64), RDLEN[N] Receive Descriptor Length DMA-Rx RW 493

n=64...127

442

Programming Interface — Intel® 82599 10 GbE Controller

Table 8.2. Register Summary (Continued)
. L Reset
Offset / Alias Offset Abbreviation Name Block RW S Page
ource
0x01010+0x40*n, n=0...63 and
0x0D010+0x40*(n-64), RDHI[nN] Receive Descriptor Head DMA-Rx RO 493
n=64...127
0x01018+0x40*n, n=0...63 and
0x0D018+0x40*(n-64), RDT[nN] Receive Descriptor Tail DMA-Rx RW 493
n=64...127
0x01028+0x40*n, n=0...63 and
0x0D028+0x40*(n-64), RXDCTL[nN] Receive Descriptor Control DMA-Rx RW 494
n=64...127
0x01014+0x40*n, n=0...63 and
0x0D014+0x40*(n-64),))) :
h=64...127 / 0x02100+4*n, SRRCTL[N] Split Receive Control Registers DMA-Rx RW 494
[n=0...15]
0x02F00 RDRXCTL Receive DMA Control Register DMA-Rx RW 495
OX02F20 RDDCC Rece_lve DMA Descriptor Cache DMA-Rx RW 495
Config
0x03C00+4*n, n=0...7 RXPBSIZE[n] Receive Packet Buffer Size DBU-Rx RW 495
0x03000 RXCTRL Receive Control Register DBU-Rx RW 496
0x03190 RXMEMWRAP Rx Packet Buffer Flush Detect DBU-Rx RO 496
0x03028 RSCDBU RSC Data Buffer Control Register | DBU-Rx RW 497
0x0102C+0x40*n, n=0...63 and
0x0D02C+0x40*(n-64), RSCCTL[n] RSC Control DMA-Rx RW 497
n=64...127
Transmit Registers
DMA Tx TCP Max Allow Size
0x08100 DTXMXSZRQ Requests DMA-TX RW 497
0x04A80 DMATXCTL DMA Tx Control DMA-TX RW 498
0x04A88 DTXTCPFLGL DMA Tx TCP Flags Control Low DMA-Tx RW 498
0x04A8C DTXTCPFLGH DMA Tx TCP Flags Control High DMA-TX RW 498
0Xx06000+0x40*n, N=0...127 TDBAL[N] ngsm't Descriptor Base Address | i . | gy 499
0x06004+0x40*n, n=0...127 TDBAH[N] Lrizr;smlt Descriptor Base Address DMA-Tx RW 499
0x06008+0x40*n, n=0...127 TDLEN[N] Transmit Descriptor Length DMA-Tx RW 499
0x06010+0x40*n, n=0...127 TDH[N] Transmit Descriptor Head DMA-Tx RO 499
0x06018+0x40*n, n=0...127 TDT[n] Transmit Descriptor Tail DMA-Tx RW 500
0x06028+0x40*n, n=0...127 TXDCTL[N] Transmit Descriptor Control DMA-TX RW 500
0X06038+0x40*n, n=0...127 TDWBAL[N] Tx Descriptor Completion Write | pyz 1o | gy 501
Back Address Low
- _ Tx Descriptor Completion Write E
0x0603C+0x40*n, n=0...127 TDWBAH[nN] Back Address High DMA-TX RW 501
0x0CCO00+0x4*n, n=0...7 TXPBSIZE[n] Transmit Packet Buffer Size DBU-Tx RW 501
0x0CD10 MNGTXMAP Manageability Transmit TC DBU-TX | RW 502
Mapping
0x08120 MTQC Multiple Transmit Queues DMA-TX | RW 502
Command Register
0x04950 +0x4*n, n=0...7 TXPBTHRESH Tx Packet Buffer Threshold DMA-Tx RW 503

443

] ®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

Table 8.2. Register Summary (Continued)

Offset / Alias Offset Abbreviation Name Block RW S%isrite Page
DCB Registers
0x02430 RTRPCS DCB Receive Packet plane Control DMA-Rx RW 503
and Status
DCB Transmit Descriptor Plane
0x04900 RTTDCS Control and Status DMA-Tx RW 503
0x0CDO0 RTTPCS DCB Transmit Packet Plane DBU-Tx RW 508
Control and Status
0x03020 RTRUP2TC DCB Receive User Priority to DBU-RX | RW 504
Traffic Class
DCB Transmit User Priority to
0x0C800 RTTUP2TC Traffic Class DBU-Tx RW 506
0x02140+4*n, n=0...7 RTRPTAC[N] ggﬁigece“’e Packet Plane T4 DMA-RX | RW 506
0x082E0+4*n, n=0...3 TXLLQ[nN] Strict Low Latency Tx Queues DMA-Tx RW 507
0x02160+4*n, n=0...7 RTRPT4S[n] gg?uzeceuve Packet plane T4 DMA-RX | RO 507
0x04910+4*n, n=0...7 RTTDT2C[n] ggrl?ﬁ'gansmlt Descriptor plane T2 DMA-Tx RW 507
0x0CD20+4*n, n=0...7 RTTPT2C[N] 2gr'?fi;ra”5m't Packet Plane T2 DBU-Tx | RW 508
0x0CDA40+4*n, n=0...7 RTTPT2S[n] gg?u-gansm't Packet Plane T2 DBU-Tx | RO 508
0x04980 RTTBCNRM DCB Transmit Rate-Scheduler | pyatx | Rw 508
DCB Transmit Descriptor Plane
0x04904 RTTDQSEL Queue Select DMA-Tx RW 508
0x04908 RTTDT1C DCB.Transmlt Descriptor Plane T1 DMA-Tx RW 509
Config
0X0490C RTTDT1S DCB Transmit Descriptor Plane T1 DMA-Tx RO 509
Status
0x04984 RTTBCNRC DCB Transmit Rate-Scheduler DMA-TX | RW 509
Config
0x04988 RTTBCNRS DCB Transmit Rate-Scheduler DMA-Tx RW 510
Status
0x0498C RTTBCNRD D Dansmit Rate Scheduler DMA-TX | RW 510
DCA Registers
0x0100C+0x40*n, n=0...63 and
0Xx0D00C+0x40*(n-64),)
n=64...127 / 0x022004+4*n. DCA_RXCTRL[nN] Rx DCA Control Register DMA-Rx RW 511
[n=0...15]
0x0600C+0x40*n, n=0...127 DCA_TXCTRL[n] Tx DCA Control Register DMA-Tx RW 511
0x11070 DCA_ID gggs':ee:‘“es"er ID Information PCle RO 512
0x11074 DCA_CTRL DCA Control Register PCle RW 511
Security Registers
0x08800 SECTXCTRL Security Tx Control SEC-TX RW 513
0x08804 SECTXSTAT Security Tx Status SEC-Tx RO 514

444

Programming Interface — Intel® 82599 10 GbE Controller

Table 8.2. Register Summary (Continued)
Offset / Alias Offset Abbreviation Name Block RW SRESEt Page
ource

0x08808 SECTXBUFFAF Security Tx Buffer Almost Full SEC-Tx RW 514
0x08810 SECTXMINIFG Security Tx Buffer Minimum IFG SEC-Tx RW 514
0x08D00 SECRXCTRL Security Rx Control SEC-Rx RW 515
0x08D04 SECRXSTAT Security Rx Status SEC-Rx RO 515
LinkSec Registers

0x08A00 LSECTXCAP LinkSec Tx Capabilities Register SEC-Tx RW 515
0x08F00 LSECRXCAP LinkSec Rx Capabilities Register SEC-Rx RW 516
0x08A04 LSECTXCTRL LinkSec Tx Control Register SEC-Tx RW 517
0x08F04 LSECRXCTRL LinkSec Rx Control Register SEC-Rx RW 517
0x08A08 LSECTXSCL LinkSec Tx SCI Low SEC-Tx RW 518
0x08A0C LSECTXSCH LinkSec Tx SCI High SEC-Tx RO 518
0x08A10 LSECTXSA LinkSec Tx SA SEC-TX RW 518
0x08A14 LSECTXPNO LinkSec Tx SA PN O SEC-Tx RW 519
0x08A18 LSECTXPN1 LinkSec Tx SAPN 1 SEC-Tx RW 520
0x08A1C+4*n, n=0...3 LSECTXKEYO[n] LinkSec Tx Key O SEC-Tx WO 520
0x08A2C+4*n, n=0...3 LSECTXKEY1[n] LinkSec Tx Key 1 SEC-Tx 6] 520
0x08F08 LSECRXSCL LinkSec Rx SCI Low SEC-Rx RW 520
0x08FOC LSECRXSCH LinkSec Rx SCI High SEC-Rx RW 521
0x08F10+4*n, n=0...1 LSECRXSA[nN] LinkSec Rx SA SEC-Rx RW 521
0x08F18+4*n, n=0...1 LSECRXPN[nN] LinkSec Rx SA PN SEC-Rx RW 521
2(235230+0x10*n+4*m, n=0...1, || SECRXKEY[n,m] | LinkSec Rx Key SEC-Rx | WO 522
O0x08A3C LSECTXUT Tx Untagged Packet Counter SEC-Tx RO 522
0x08A40 LSECTXPKTE Encrypted Tx Packets SEC-Tx RO 522
0x08A44 LSECTXPKTP Protected Tx Packets SEC-Tx RO 522
0x08A48 LSECTXOCTE Encrypted Tx Octets SEC-Tx RO 523
0x08A4C LSECTXOCTP Protected Tx Octets SEC-Tx RO 523
0x08F40 LSECRXUT LinkSec Untagged Rx Packet SEC-Rx RO 523
0x08F44 LSECRXOCTE LinkSec Rx Octets Decrypted SEC-Rx RO 523
0x08F48 LSECRXOCTP LinkSec Rx Octets Validated SEC-Rx RO 523
0x08F4C LSECRXBAD LinkSec Rx Packet with Bad Tag SEC-Rx RO 524
0x08F50 LSECRXNOSCI LinkSec No SCI SEC-Rx RO 524
0x08F54 LSECRXUNSCI LinkSec Unknown SCI SEC-Rx RO 524
Ox08F58 LSECRXUC LinkSec Rx Unchecked Packets SEC-Rx RO 524
Ox08F5C LSECRXDELAY LinkSec Rx Delayed Packets SEC-Rx RO 524
0x08F60 LSECRXLATE LinkSec Rx Late Packets SEC-Rx RO 524
0x08F64+4*n, n=0...1 LSECRXOK[n] LinkSec Rx Packet OK SEC-RX RO 525
0x08F6C+4*n, n=0...1 LSECRXINV[n] LinkSec Rx Invalid SEC-Rx RO 525
Ox08F74+4*n, n=0...1 LSECRXNV[n] LinkSec Rx Not Valid SEC-Rx RC 525
Ox08F7C LSECRXUNSA LinkSec Rx Unused SA SEC-Rx RC 525

445

intel.

Intel® 82599 10 GbE Controller — Programming Interface

Table 8.2. Register Summary (Continued)
Offset / Alias Offset Abbreviation Name Block RW SReset Page
ource
0x08F80 LSECRXNUSA LinkSec Rx Not Using SA SEC-Rx | RC 525
IPsec Registers
0x08900 IPSTXIDX IPsec Tx Index SEC-Tx RW 526
0x08908+4*n, n=0...3 IPSTXKEY[n] IPsec Tx Key Registers SEC-TX RW 526
0x08904 IPSTXSALT IPsec Tx Salt Register SEC-Tx RW 526
Ox08EO00 IPSRXIDX IPsec Rx Index SEC-Rx RW 526
0x08E04+4*n, n=[0...3] IPSRXIPADDR IPsec Rx IP address Register SEC-Rx RW 527
Ox08E14 IPSRXSPI IPsec Rx SPI Register SEC-Rx RW 527
Ox08E18 IPSRXIPIDX IPsec Rx SPI Register SEC-Rx RW 528
O0x08E1C+4*n, n=0...3 IPSRXKEY[n] IPsec Rx Key Register SEC-Rx RW 528
Ox08E2C IPSRXSALT IPsec Rx Salt Register SEC-Rx RW 528
O0x08E30 IPSRXMOD IPsec Rx Mode Register SEC-Rx RW 528
Timers Registers
0x0004C TCPTIMER TCP Timer Target RW 529
FCOE Registers
0x05100 FCRXCTRL FC Receive Control Rx-Filter | RW 529
OxOEDOO FCRECTL FCoE Redirection Control DBU-Rx RW 530
OxO0ED10+4*n, n=0...7 FCRETA[N] FCoE Redirection Table DBU-Rx RW 530
0x02410 FCPTRL FC User Descriptor PTR Low DMA-Rx RW 530
0x02414 FCPTRH FC User Descriptor PTR High DMA-Rx RW 530
0x02418 FCBUFF FC Buffer Control DMA-Rx RW 530
0x02420 FCDMARW FC Receive DMA RW DMA-Rx | RW 532
0x05108 FCFLT FC FLT Context Rx-Filter | RW 532
0x051D8 FCPARAM FC Offset Parameter Rx-Filter | RW 532
0x05110 FCFLTRW FC Filter RW Control Rx-Filter | WO 532
Flow Director Registers
Global Settings Registers
OXOEEQ0 FDIRCTRL ;';’é"i’sg:e“or Filters Control DBU-Rx | RW 533
OXOEE68 FDIRHKEY Fow 'iig;cmr Filters Lookup Table | pg; gy | Rw 534
OXOEE6C FDIRSKEY Flow DKig)e/Ctor Filters Signature | gy gy | RW 534
OxXOEE3C FDIRDIP4M Flow Director Filters IPv4 Mask DBU-Rx RW 534
OXOEE40 FDIRSIPAM Flov Director Filters Source IPv4 | pgy-rx | RW 534
OxOEE44 FDIRTCPM Flow Director Filters TCP Mask DBU-Rx RW 534
OxOEE48 FDIRUDPM Flow Director Filters UDP Mask DBU-Rx RW 535
OxXOEE74 FDIRIP6M Flow Director Filters IPv6 Mask DBU-Rx RW 535

446

Programming Interface — Intel® 82599 10 GbE Controller

Table 8.2. Register Summary (Continued)
. L Reset
Offset / Alias Offset Abbreviation Name Block RW S Page
ource
OXOEE70 FDIRM Flow Director Filters Other Mask DBU-Rx RW 535
Global Status / Statistics
Registers
OxOEE38 FDIRFREE Flow Director Filters Free DBU-Rx RW 536
OXOEE4C FDIRLEN Flow Director Filters Length DBU-Rx RC 536
OXOEE50 FDIRUSTAT Flow Director Filters Usage DBU-Rx | RW/ 536
Statistics RC
Flow Director Filters Failed Usage RW /
OxXOEE54 FDIRFSTAT Statistics DBU-Rx RC 536
OXOEE58 FDIRMATCH Flow Director Filters Match DBU-Rx | RC 537
Statistics
OXOEE5C EDIRMISS Flow_ D_|rector Filters Miss Match DBU-Rx RC 537
Statistics
Flow Programming Registers
OxOEEOC+4*n, n=0...2 FDIRSIPV6[n] Flow Director Filters Source IPv6 | DBU-Rx RW 537
OxOEE18 FDIRIPSA Flow Director Filters IP SA DBU-Rx RW 537
OxOEE1C FDIRIPDA Flow Director Filters IP DA DBU-Rx RW 537
OXOEE20 FDIRPORT Flow Director Filters Port DBU-Rx RW 537
OXOEE24 EDIRVLAN Flow Director Filters VLAN and DBU-Rx RW 538
FLEX bytes
Flow Director Filters Hash
OxOEE28 FDIRHASH Signature DBU-Rx RW 538
OXOEE2C EDIRCMD Flovx_/ Director Filters Command DBU-Rx RW 538
Register
MAC Registers
0x04200 PCS1GCFIG PCS_1G Global Config Register 1 MAC RW 539
0x04208 PCS1GLCTL PCG_1G link Control Register MAC RW 539
0x0420C PCS1GLSTA PCS_1G Link Status Register MAC RO 540
0x04218 PCS1GANA PCS_1 Gb/s Auto-Negotiation MAC RW 540
Advanced Register
0x0421C PCS1GANLP PCS_1GAN LP Ability Register MAC RO 541
0x04220 PCS1GANNP PCS_1G Auto-Negotiation Next | s RW 542
Page Transmit Register
PCS_1G Auto-Negotiation LP's
0x04224 PCS1GANLPNP Next Page Register MAC RO 542
0x04240 HLREGO MAC Core Control O Register MAC RW 543
0x04244 HLREG1 MAC Core Status 1 Register MAC RO 543
0x04248 PAP Pause and Pace Register MAC RW 544
0x0425C MSCA MDI Single Command and MAC RW 544
Address
0x04260 MSRWD MDI Single Read and Write Data MAC RW 545
0x04268 MAXFRS Max Frame Size MAC RW 545
0x4288 PCSS1 XGXS Status 1 MAC RO 545

447

intel.

Intel® 82599 10 GbE Controller — Programming Interface

Table 8.2. Register Summary (Continued)
. - Reset
Offset / Alias Offset Abbreviation Name Block RW S Page
ource
0x0428C PCSS2 XGXS Status 2 MAC RO 545
0x04290 XPCSS 10GBASE-X PCS Status MAC RO 546
0x04298 SERDESC SerDes Interface Control Register | MAC RW 547
0x0429C MACS FIFO Status/CNTL report Register | MAC RW 548
0x042A0 AUTOC Auto-Negotiation Control Register | MAC RW 549
0x042A4 LINKS Link Status Register MAC RO 550
0x04324 LINKS2 Link Status Register 2 MAC RO 552
0x042A8 AUTOC2 Autc_J-Negotlatlon Control 2 MAC RW 553
Register
Auto-Negotiation Link Partner
0x042B0 ANLP1 Link Control Word 1 Register MAC RO 553
Auto-Negotiation Link Partner
0x042B4 ANLP2 Link Control Word 2 Register MAC RO 553
0x042D0 MMNGC MAC Manageability Control MAC RO 554
Register
0x042D4 ANLPNP1 Auto-Negotiation Link Partner MAC RO 554
Next Page 1 register
Auto-Negotiation Link Partner
0x042D8 ANLPNP2 Next Page 2 register MAC RO 554
0x042E0 KRPCSFC KR PCS and FEC Control Register | MAC RW 555
Ox042E4 KRPCSS KR PCS Status Register MAC RO 555
0x042E8 FECS1 FEC Status 1 Register MAC RC 557
0x042EC FECS2 FEC Status 2 Register MAC RC 557
Core Analog Configuration
0x014F00 CoreCTL Register MAC RW 557
OX014F10 SMADARCTL Core Common Configuration MAC RW 558
Register
0x04294 MFLCN MAC Flow Control Register MAC RW 558
0x04314 SGMIIC SGMII Control Register MAC RW 559
Statistic Registers
0x04000 CRCERRS CRC Error Count STAT RC 560
0x04004 ILLERRC lllegal Byte Error Count STAT RC 560
0x04008 ERRBC Error Byte Count STAT RC 560
0x04034 MLFC MAC Local Fault Count STAT RC 560
0x04038 MRFC MAC Remote Fault Count STAT RC 561
0x04040 RLEC Receive Length Error Count STAT RC 561
0x08780 SSVPC Switch Security Violation Packet DMA-Tx RC 561
Count
0x041A4 LXONRXCNT Link XON Received Count STAT RC 561
0x041A8 LXOFFRXCNT Link XOFF Received Count STAT RC 562
0x04140+4*n, n=0...7 PXONRXCNT[nN] Priority XON Received Count STAT RC 562
0x04160+4*n, n=0...7 PXOFFRXCNT[n] Priority XOFF Received Count STAT RC 562
0x0405C PRC64 E?)Eﬁetts Received [64 Bytes] STAT RW 563

448

Programming Interface — Intel® 82599 10 GbE Controller

Table 8.2. Register Summary (Continued)

Offset / Alias Offset Abbreviation Name Block RW SReSEt Page
ource
0Xx04060 PRC127 Zifﬁts Received [65-127 Bytes] | gppr RW 563
Packets Received [128—255
0Xx04064 PRC255 Bytes] Count STAT RW 563
0x04068 PRC511 Packets Received [256-511 STAT RW 563
Bytes] Count
OX0406C PRC1023 Packets Received [512-1023 STAT RW 563
Bytes] Count
Packets Received [1024 to Max
0Xx04070 PRC1522 Bytes] Count STAT RW 564
0x04078 BPRC Broadcast Packets Received STAT RC 564
Count
0x0407C MPRC Multicast Packets Received Count | STAT RC 564
0x04074 GPRC Good Packets Received Count STAT RC 564
0x04088 GORCL Good Octets Received Count Low | STAT RC 564
0x0408C GORCH Good Octets Received Count High | STAT RC 565
0x041B0 RXNFGPC Good Rx Non-Filtered Packet STAT RC 565
Counter
0x041B4 RXNFGBCL f;’v‘\’ld Rx Non-Filter Byte Counter | gpar RC 565
0x041B8 RXNFGBCH ﬁ%%d Rx Non-Filter Byte Counter | gpp RC 565
0x02F50 RXDGPC DMA Good Rx Packet Counter DMA-RXx RC 565
0x02F54 RXDGBCL DMA Good Rx Byte Counter Low DMA-Rx RC 565
0Xx02F58 RXDGBCH DMA Good Rx Byte Counter High | DMA-Rx | RC 566
OXO2F5C RXDDPC DMA Duplicated Good Rx Packet | o\in b | ge 566
Counter
0X02F60 RXDDBCL DMA Duplicated Good Rx Byte DMA-Rx | RC 566
Counter Low
DMA Duplicated Good Rx Byte
0Xx02F64 RXDDBCH Counter High DMA-Rx | RC 566
0x02F68 RXLPBKPC DMA Good Rx LPBK Packet DMA-Rx | RC 566
Counter
0X02F6C RXLPBKBCL DMA Good Rx LPBK Byte Counter | pyarx | Re 566
OX02F70 RXLPBKBCH a%ﬁ Good Rx LPBK Byte Counter | nyn g | re 567
OX02F74 RXDLPBKPC DMA Duplicated Good Rx LPBK DMA-Rx | RC 567
Packet Counter
OX02F78 RXDLPBKBCL DMA Duplicated Good Rx LPBK | s pye | Re 567
Byte Counter Low
DMA Duplicated Good Rx LPBK
0X02F7C RXDLPBKBCH Byte Counter High DMA-Rx | RC 567
0x04080 GPTC Good Packets Transmitted Count STAT RO 567
0Xx04090 GOTCL Eé)vt\)ld Octets Transmitted Count STAT RC 567
0x04094 GOTCH Good Octets Transmitted Count STAT RC 568

High

449

"] ®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

Table 8.2. Register Summary (Continued)

Offset / Alias Offset Abbreviation Name Block RW SReset Page
ource
0x087A0 TXDGPC DMA Good Tx Packet Counter DMA-Tx RC 568
0x087A4 TXDGBCL DMA Good Tx Byte Counter Low DMA-Tx RC 568
0x087A8 TXDGBCH DMA Good Tx Byte Counter High | DMA-Tx RC 568
0x040A4 RUC Receive Undersize Count STAT RC 569
0x040A8 RFC Receive Fragment Count STAT RC 569
0x040AC ROC Receive Oversize Count STAT RC 569
0x040B0 RJC Receive Jabber Count STAT RC 569
0X040B4 MNGPRC Management Packets Received STAT RO 569
Count
0x040B8 MNGPDC Management Packets Dropped STAT RO 569
Count
0x040C0 TORL Total Octets Received STAT RC 570
0x040C4 TORH Total Octets Received STAT RC 570
0x040D0 TPR Total Packets Received STAT RC 570
0x040D4 TPT Total Packets Transmitted STAT RC 570
0Xx040D8 PTCE4 Packets Transmitted (64 Bytes) STAT RC 570
Count
Packets Transmitted [65—-127
0x040DC PTC127 Bytes] Count STAT RC 571
OX040EO PTC255 Packets Transmitted [128—255 STAT RC 571
Bytes] Count
OXO40E4 PTC511 Packets Transmitted [256-511 STAT RC 571
Bytes] Count
Packets Transmitted [512—1023
0x040ES8 PTC1023 Bytes] Count STAT RC 571
Packets Transmitted [Greater
0x040EC PTC1522 than 1024 Bytes] Count STAT RC 571
OX040F0 MPTC Multicast Packets Transmitted STAT RC 571
Count
OXO40F4 BPTC Broadcast Packets Transmitted STAT RC 572
Count
0x04010 MSPDC MAC short Packet Discard Count STAT RC 572
0x04120 XEC XSUM Error Count STAT RC 572
0x02300+4*n, n=0...31 ROSMR[n] gec‘?"’e Queue Statistic Mapping | pya gy | Rw 572
egisters
0x02F40 RXDSTATCTRL Rx DMA Statistic Counter Control | DMA-TxX RW 573
0x08600+4*n, n=0...31/ Transmit Queue Statistic Mapping ~
0x07300+4*n, n=0...7 TQSM[n] Registers DMA-Tx | RW 573
0x01030+0x40*n, n=0...15 QPRC[n] Queue Packets Received Count DMA-Rx RC 573
0x01430+0x40*n, n=0...15 QPRDC[n] Queue Packets Received Drob | pma-rx | RC 573
0x1034+0x40*n, n=0...15 QBRC_L[n] Queue Bytes Received Count Low | DMA-Rx RC 573
0x1038+0x40*n, n=0...15 QBRC_HI[n] Queue Bytes Received Count High | DMA-Rx RC 573
0x08680+0x4*n, n=0...15 / .
0x06030-+0x40*n, n=0...15 QPTC Queue Packets Transmitted Count | DMA-TX RC 574

450

Programming Interface — Intel® 82599 10 GbE Controller

Table 8.2. Register Summary (Continued)
. L Reset
Offset / Alias Offset Abbreviation Name Block RW S Page
ource
0x08700+0x8*n, n=0...15 QBTC_L[n] S;V(\elue Bytes Transmitted Count DMA-Tx RC 574
0x08704+0x8*n, n=0...15 QBTC_H[N] Si‘g;]“e Bytes Transmitted Count |) . | g 574
0x05118 FCCRC FC CRC Error Count Rx-Filter | RC 575
0x0241C FCOERPDC FCoE Rx Packets Dropped Count DMA-Rx RC 575
0x02424 FCLAST FC Last Error Count DMA-Rx RC 575
0x02428 FCOEPRC FCoE Packets Received Count DMA-Rx RC 575
0x0242C FCOEDWRC FCOE DWord Received Count DMA-Rx RC 576
0x08784 FCOEPTC FCoE Packets Transmitted Count DMA-TX RC 576
0x08788 FCOEDWTC FCoE DWord Transmitted Count DMA-Tx RC 576
Wake-Up Control Registers
0x05800 wucC Wake Up Control Register Rx-Filter | RW 576
0x05808 WUFC Wake Up Filter Control Register Rx-Filter | RW 577
0x5838 IPAV IP Address Valid Rx-Filter | RW 577
0x05840+8*n, n = 0...3 IP4AT[n] IPv4 Address Table Rx-Filter | RW 578
0x05880+4*n, n = 0...3 IP6AT[n] IPv6 Address Table Rx-Filter | RW 578
0x05900 WUPL Wake Up Packet Length Rx-Filter | RO 578
0X05A00+4*n, n=0...31 WUPM[n] \Q;at';es)Up Packet Memory (128 Rx-Filter | RO 578
0x09000 — Ox093FC, 0x09800 — | jep Flexible Host Filter Table registers | Rx-Filter | RW 578
0x099FC
Management Filters Registers
0x5010 +4*n, n=0...7 MAVTV[n] Management VLAN TAG Value Rx-Filter | RW 580
0x5030+4*n, n=0...7 MFUTP[N] Management Flex UDP/TCP Ports | Rx-Filter | RW 580
0x05190+4*n, n=0...3 METF[n] gﬁgfgement Ethernet Type Rx-Filter | RW 581
0x05820 MANC Management Control Register Rx-Filter | RW 581
0x5824 MFVAL Manageability Filters Valid Rx-Filter | RW 581
0x5860 MANC2H Management Control To Host Rx-Filter | RW 582
Register
0x5890+4*n, n=0...7 MDEF[n] Manageability Decision Filters Rx-Filter | RW 582
0x05160+4*n, n=0...7 MDEF_EXT[n] Manageability Decision Filters Rx-Filter | RW 583
Sl > —_—
2’;50833+0X10 m+4*n, m=0...3, | \par Manageability IP Address Filter | Rx-Filter | RW 583
0x5910+8*n, n=0...3 MMAL[n] Manageability Ethernet MAC Rx-Filter | RW 583
Address Low
* _ Manageability Ethernet MAC o
0x5914+8*n, n=0...3 MMAH[n] Address High Rx-Filter | RW 583
0x09400-0x097FC FTFT Flexible TCO Filter Table registers | Rx-Filter | RW 584
0x015F14 LSWFW LinkSec SW/FW Interface MNG RO 585

Time Sync (IEEE 1588)
Registers

451

intel.

Intel® 82599 10 GbE Controller — Programming Interface

Table 8.2. Register Summary (Continued)

Offset / Alias Offset Abbreviation Name Block RW SReset Page
ource
0x05188 TSYNCRXCTL Rx Time Sync Control Register Rx-Filter | RW 586
Ox051E8 RXSTMPL Rx Timestamp Low Rx-Filter | RO 586
0x051A4 RXSTMPH Rx Timestamp High Rx-Filter | RO 587
0x051A0 RXSATRL Rx Timestamp Attributes Low Rx-Filter | RO 587
0x051A8 RXSATRH Rx Timestamp Attributes High Rx-Filter | RO 587
0x05120 RXMTRL Rx Message Type Register Low Rx-Filter | RW 587
0x08C00 TSYNCTXCTL Tx Time Sync Control Register SEC-Tx RW 587
0x08C04 TXSTMPL Tx Timestamp Value Low SEC-Tx RO 588
0x08C08 TXSTMPH Tx Timestamp Value High SEC-Tx RO 588
0x08CO0C SYSTIML System Time Register Low SEC-TX RW 588
0x08C10 SYSTIMH System Time Register High SEC-Tx RW 588
0x08C14 TIMINCA Increment Attributes Register SEC-Tx RW 588
0x08C18 TIMADIL L'V’ce Adjustment Offset Register | gec | gy 588
0x08C1C TIMADJH L'gﬁ Adjustment Offset Register | g | gy 588
0x08C20 TSAUXC TimeSync Auxiliary Control SEC-Tx | RW 589
Register
0x08C24 TRGTTIMLO Target Time Register O Low SEC-Tx RW 589
0x08C28 TRGTTIMHO Target Time Register O High SEC-Tx RW 589
0x08C2C TRGTTIML1 Target Time Register 1 Low SEC-TX RW 589
0x08C30 TRGTTIMH1 Target Time Register 1 High SEC-Tx RW 589
0x08C3C AUXSTMPLO ﬁ)‘\‘l\’l‘"'aw Time Stamp 0O Register | qec gy | Ro 590
0X08C40 AUXSTMPHO ﬁ;gﬂ"afy Time Stamp O Register | gec 1y | RO 590
0x08C44 AUXSTMPL1 ﬁ)‘x‘"'ary Time Stamp 1 Register | gec 1 | Ro 590
0x08C48 AUXSTMPH1 ﬁ%’;}'"aw Time Stamp 1 Register | gec 1 | Ro 590
Virtualization PF Registers
0x051B0 PFVTCTL PF Virtual Control Register Rx-Filter | RW 591
0x04B00+4*n, n=0...63 PFMailbox[n] PF Mailbox Target RW 591
0x00710+4*n, n=0...3 PFMBICR[n] PF Mailbox Interrupt Causes Target | RW1C 591
Register
0x00720+4*n, n=0...1 PFMBIMR[N] PF Mailbox Interrupt Mask Target | RW 592
Register
0x00600, 0x001CO PFVFLRE[N] PF VFLR Events Indication Target RO 592
0x00700+4*n, n=0...1 PFVFLREC[N] PF VFLR Events Clear Target wicC 592
0x051EO0+4*n, n=0...1 PFVFRE[N] PF VF Receive Enable RW 592
0x08110+4*n, n=0...1 PFVFTE[N] PF VF Transmit Enable DMA-Tx RW 592
0x02F04 PFQDE PF Queue Drop Enable Register DMA-Rx RW 592
0x05180+4 *n, n=0...1 PFVMTXSWI[n] PF VM Tx Switch Loopback Enable | Rx-Filter | RW 593

452

Programming Interface — Intel® 82599 10 GbE Controller l n tel

Table 8.2. Register Summary (Continued)
Offset / Alias Offset Abbreviation Name Block RW SReset Page
ource
0x08200+4*n, n=0...7 PFVFSPOOF[N] PF VF Anti Spoof Control DMA-TX RW 593
0x08220 PFDTXGSWC PF DMA Tx General Switch DMA-Tx | RW 593
Control
0x08000+4*n, n=0...63 PFVMVIR[N] PF VM VLAN Insert Register DMA-TX RW 593
0xO0F000+4*n, n=0...63 PFVML2FLT[Nn] PF VM L2 Control Register Rx-Filter | RW 594
Ox0F100+4*n, n=0...63 PFVLVF[n] PF VM VLAN Pool Filter Rx-Filter | RW 594
0x0F200+4*n, n=0...127 PFVLVFB[nN] PF VM VLAN Pool Filter Bitmap Rx-Filter | RW 594
O0x0F400+4*n, n=0...127 PFUTA[N] PF Unicast Table Array Rx-Filter | RW 595
OxO0F600+4*n, n= 0...3 PFMRCTL[n] PF Mirror Rule Control Rx-Filter | RW 595
OxO0F610+4*n, n= 0...7 PFMRVLAN[N] PF Mirror Rule VLAN Rx-Filter | RW 595
OxO0F630+4*n, n=0...7 PFMRVMI[n] PF Mirror Rule Pool Rx-Filter | RW 596

Note:

manageability.

8.2.3

8.2.3.1

(*) The MAC Manageability Control Register is read only to the host and read/write to

Detailed Register Descriptions — PF

General Control Registers

Device Control Register — CTRL (Ox00000 / 0x00004; RW) CTRL is also mapped to address
0x00004 to maintain compatibility with previous devices.

. . Init S
Field Bit(s) val. Description

Reserved

Reserved 1:0 Ob . -
Write as Ob for future compatibility.
When set, the 82599 blocks new master requests, including manageability requests, by

PCle Master Disable 2 Ob using this function. Once no master requests are pending by using this function, the
PCle Master Enable Status bit is cleared.
Link Reset
This bit performs a reset of the MAC, PCS, and auto negotiation functions and the entire

LRST 3 ob Intel® 82599 10 GbE Controller (software reset) resulting in a state nearly
approximating the state following a power-up reset or internal PCle reset, except for the
system PCI configuration. Normally Ob, writing 1b initiates the reset. This bit is self-
clearing. Also referred to as MAC reset.

Reserved 25:4 Ob Reserved
Device Reset
This bit performs a complete reset of the 82599, resulting in a state nearly

RST 26 Ob approximating the state following a power-up reset or internal PCle reset, except for the
system PCI configuration. Normally Ob, writing 1b initiates the reset. This bit is self-
clearing. Also referred to as a software reset or global reset.

Reserved 31:27 0x0 Reserved

453

[®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

LRST and RST can be used to globally reset the entire Intel® 82599 10 GbE Controller. This register is
provided primarily as a last-ditch software mechanism to recover from an indeterminate or suspected
hung hardware state. Most registers (receive, transmit, interrupt, statistics, etc.) and state machines
are set to their power-on reset values, approximating the state following a power-on or PCI reset.
However, PCle Configuration registers are not reset, thereby leaving the 82599 mapped into system
memory space and accessible by a software device driver.

To ensure that a global device reset has fully completed and that the 82599 responds to subsequent
accesses, programmers must wait approximately 1 ms after setting before attempting to check if the
bit has cleared or to access (read or write) any other device register.

8.2.3.1.1 Device Status Register — STATUS (0x00008; RO)

Field Bit(s) \'/gilt_ Description
Reserved 1:0 Ob Reserved
LAN ID 3:2 ob LAN ID. Provides software a mechanism to determine the device LAN identifier for this
MAC. Read as: [0,0] LAN 0, [0,1] LAN 1.
Reserved 6:4 Ob Reserved

Linkup Status Indication. This bit is useful for IOV mode. The PF software driver sets it
LinkUp 7 Ob according to Links register and PHY state. It is reflected in the VFSTATUS register
indicating linkup to the VF drivers.

Reserved 9:8 Ob Reserved

The Num VFs field reflects the value of the Num VFs in the IOV capability structure

Num VFs 17:10 0x0 (note that bit 17 is always 0b).

The 10 Active bit, reflects the value of the VF Enable (VFE) bit in the 10V Control/Status

10V Active 18 Ob register.

This is a status bit of the appropriate CTRL.PCle Master Disable bit.
PCle Master Enable 19 1b 1b = Associated LAN function can issue master requests.

Status Ob = Associated LAN function does not issue any master request and all previously
issued requests are complete.

Reserved

Reserved 31:20 Ob
Reads as Ob.

8.2.3.1.2 Extended Device Control Register — CTRL_EXT (0x00018; RW)

. . Init A
Field Bit(s) val. Description

Reserved 13:0 0x0 Reserved.
PF Reset Done. When set, the RSTI bit in all the VFMailbox registers are cleared and the

PFRSTD (SC) 14 0b RSTD bit in all the VFMailbox regs is set.

Reserved 16:15 00b Reserved
Relaxed Ordering Disable. When set to 1b, the device does not request any relaxed

RO DIS 17 ob ordering transactions. When this bit is cleared and the Enable Relaxed Ordering bit in

- the Device Control register is set, the device requests relaxed ordering transactions per

queues as configured in the DCA_RXCTRL[n] and DCA_TXCTRL[n] registers.

Reserved 25:18 Ob Reserved.

454

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

Field

Bit(s)

Init
Val.

Description

Extended VLAN

26

Ob

Extended VLAN. When set, all incoming Rx packets are expected to have at least one
VLAN with the Ether type as defined in EXVET register. The packets can have an inner-
VLAN that should be used for all filtering purposes. All Tx packets are expected to have
at least one VLAN added to them by the host. In the case of an additional VLAN request
(VLE), the inner-VLAN is added by the hardware after the outer-VLAN is added by the
host. This bit should only be reset by a PCle reset and should only be changed while Tx
and Rx processes are stopped.

The exception to this rule are MAC control packets such as flow control, 802.1x, LACP,
etc. that never carry a VLAN tag of any type.

Reserved

27

Ob

Reserved.

DRV_LOAD

28

Ob

Driver loaded and the corresponding network interface is enabled. This bit should be set
by the software device driver after it was loaded and cleared when it unloads or at PCle
soft reset. The Manageability Controller (MC) loads this bit as an indication that the
driver successfully loaded to it.

Reserved

31:29

Ob

Reserved.

8.2.3.1.3

Extended SDP Control — ESDP (0x00020; RW)

This register is initialized only at LAN Power Good preserving the SDP states across software and PCle
resets. Some specific 1/0 pins are initialized in other resets in native mode as expected for the specific
behavior and described explicitly as follows.

Field

Bit(s)

Init
Val.

Description

SDPO_DATA

ob?!

SDPO Data Value. Used to read (write) a value of the software-controlled 1/0 pin SDPO.
If SDPO is configured as an output (SDPO_IODIR = 1b), this bit controls the value driven
on the pin. If SDPO is configured as an input, all reads return the current value of the
pin.

SDP1_DATA

obt

SDP1 Data Value. Used to read (write) a value of the software-controlled 1/0 pin SDP1.
If SDP1 is configured as an output (SDP1_IODIR = 1b), this bit controls the value driven
on the pin. If SDP1 is configured as an input, all reads return the current value of the
pin.

SDP2_DATA

ob?!

SDP2 Data Value. Used to read (write) a value of software-controlled 1/0 pin SDP2. If
SDP2 is configured as an output (SDP2_IODIR = 1b), this bit controls the value driven
on the pin. If SDP2 is configured as an input, all reads return the current value of the

pin.

SDP3_DATA

ob?!

SDP3 Data Value. Used to read (write) a value of the software-controlled 1/0 pin SDP3.
If SDP3 is configured as an output (SDP3_IODIR = 1b), this bit controls the value driven
on the pin. If SDP3 is configured as an input, all reads return the current value of the
pin.

SDP4_DATA

Ob

SDP4 Data Value. Used to read (write) a value of the software-controlled 1/0 pin SDP4.
If SDP4 is configured as an output (SDP4_IODIR = 1b), this bit controls the value driven
on the pin. If SDP4 is configured as an input, all reads return the current value of the
pin.

SDP5_DATA

Ob

SDP5 Data Value. Used to read (write) a value of the software-controlled 1/0 pin SDP5.
If SDP5 is configured as an output (SDP5_IODIR = 1b), this bit controls the value driven
on the pin. If SDP5 is configured as an input, all reads return the current value of the
pin.

SDP6_DATA

Ob

SDP6 Data Value. Used to read (write) a value of the software-controlled 1/0 pin SDP6.
If SDP6 is configured as an output (SDP6_IODIR = 1b), this bit controls the value driven
on the pin. If SDP6 is configured as an input, all reads return the current value of the
pin.

SDP7_DATA

Ob

SDP7 Data Value. Used to read (write) a value of the software-controlled 1/0 pin SDP7.
If SDP7 is configured as an output (SDP7_IODIR = 1b), this bit controls the value driven
on the pin. If SDP7 is configured as an input, all reads return the current value of the
pin.

SDPO_IODIR

ob?t

SDPO Pin Directionality. Controls whether or not software-controlled pin SDPO is
configured as an input or output (Ob = input, 1b = output).

455

intel.

Intel® 82599 10 GbE Controller — Programming Interface

Field Bit(s) \I/';'It Description
1 SDP1 Pin Directionality. Controls whether or not software-controlled pin SDP1 is
SDP1_IODIR 9 0b configured as an input or output (Ob = input, 1b = output).
SDP2 10DIR 10 ob? SDP2 Pin Directionality. Controls whether or not software-controlled pin SDP2 is
— configured as an input or output (Ob = input, 1b = output).
SDP3 10DIR 11 ob? SDP3 Pin Directionality. Controls whether or not software-controlled pin SDP3 is
— configured as an input or output (Ob = input, 1b = output).
SDP4 Pin Directionality. Controls whether or not software-controlled pin SDP4 is
SDP4_IODIR 12 0b configured as an input or output (Ob = input, 1b = output).
SDP5 10DIR 13 ob SDP5 Pin Directionality. Controls whether or not software-controlled pin SDP5 is
— configured as an input or output (Ob = input, 1b = output).
SDP6 10DIR 14 ob SDP6 Pin Directionality. Controls whether or not software-controlled pin SDP6 is
- configured as an input or output (Ob = input, 1b = output).
SDP7 Pin Directionality. Controls whether or not software-controlled pin SDP7 is
SDP7_IODIR 15 0b configured as an input or output (Ob = input, 1b = output).
SDPO Operating Mode.
SDPO_NATIVE 16 Ob Ob = Generic software controlled 1/0 by SDPO_DATA and SDPO_IODIR.
1b = Reserved.
SDP1 Operating Mode.
SDP1 NATIVE 17 ob? Ob = Generic software controlled 1/0 by SDP1_DATA and SDP1_IODIR.
- 1b = Native mode operation (connected to hardware function). In this mode, the
SDP1_IODIR must be set to 1b.
SDP2 operating mode:
SDP2 NATIVE 18 ob Ob = Generic software controlled 10 by SDP2_DATA and SDP2_IODIR.
- 1b = Native mode operation (Connected to hardware function). In this mode pin
functions as defined by the SDP2_TSync_TT1 bit
SDP3 Operating Mode.
SDP3 NATIVE 19 ob Ob = Generic software controlled 1/0 by SDP3_DATA and SDP3_IODIR.
- 1b = Native mode operation (connected to hardware function). In this mode pin
functions as defined by the SDP3_TSync_TTO bit.
SDP4 Operating Mode.
SDP4 NATIVE 20 ob Ob = Generic software controlled 1/0 by SDP4_DATA and SDP4_IODIR.
- 1b = Native mode operation (connected to hardware function). Drives optical module
reset according to functionality defined by the SDP4_Function bit.
SDP5 Operating Mode.
SDP5 NATIVE 21 ob Ob = Generic software controlled 1/0 by SDP5_DATA and SDP5_IODIR.
- 1b = Native mode operation (connected to hardware function). Drives optical module
transmit disable according to functionality defined by the SDP5_Function bit.
SDP6 Operating Mode.
SDP6 NATIVE 22 ob Ob = Generic software controlled 1/0 by SDP6_DATA and SDP6_IODIR.
- 1b = Native mode operation (connected to hardware function). In this mode, pin
functions as defined by the SDP6_TSync_TT1 bit.
SDP7 Operating Mode.
SDP7 NATIVE 23 ob Ob = Generic software controlled 1/0 by SDP7_DATA and SDP7_IODIR.
- 1b = Native mode operation (connected to hardware function). In this mode, pin
functions as defined by the SDP7_TSync_TTO bit.
Reserved 25:24 (0] Reserved
SDP2 Native Mode Functionality (SDP2_NATIVE = 1).
Ob = TSO functionality. Samples IEEE 1588 time stamp into Auxiliary Time Stamp O
SDP2_TSync_TT1 26 ob register on level change of SDP2 signal (For TSO functionality, SDP2_IODIR should be

configured as input).

1b = TT1 functionality. Asserts SDP2 to 1 when IEEE 1588 time stamp equals Target
Time register 1 (For TT1 functionality, SDP2_IODIR should be configured as output).

456

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

Init

Field Bit(s) | y/a

Description

SDP3 Native Mode Functionality (SDP3_NATIVE = 1).

Ob = TS1 functionality. Samples IEEE 1588 time stamp into Auxiliary Time Stamp 1
register on level change of SDP3 signal (For TS1 functionality, SDP3_IODIR should be
configured as input).

1b = TTO functionality. Asserts SDP3 to 1b when IEEE 1588 time stamp equals Target
Time register O (For TTO functionality, SDP3_IODIR should be configured as output).

SDP3_TSync_TTO 27 Ob

SDP4 Native Mode Functionality (SDP4_NATIVE = 1).

0Ob = Pin functionality is driven by software (SDP4_data bit) except when the MAC is
reset or when entering D3 power state when management functionality is disabled. In
the previous case SDP4 pin moves to tri-state (by resetting SDP4_IODIR bit) and
optical module is reset by placing an appropriate external pull-up or pull-down resistor
on the SDP4 pin.

1b = SDP4 pin is driven high when the MAC is reset or powered down (D3 state).

SDP4_10DIR should be configured as output for this functionality.

SDP4_Function 28 Ob

SDP5 Native Mode Functionality (SDP5_NATIVE = 1).

Ob = Pin functionality is driven by software (SDP5_data bit) except when the MAC is
reset or when entering D3 power state when management functionality is disabled. In
the previous case, SDP5 pin moves to tri-state (by resetting SDP5_IODIR bit) and
optical module transmission is disabled by placing an appropriate external pull-up or
pull-down resistor on the SDP5 pin.

1b = SDPS5 pin is driven high when the MAC is reset or powered down (D3 state).

SDP5_IODIR should be configured as output for this functionality.

SDP5_Function 29 Ob

SDP6 Native Mode Functionality (SDP6_NATIVE = 1).

Ob = CLKO functionality. Drives a reference clock with the frequency defined in the
Frequency Out O Control register (For CLKO functionality, SDP6_I1ODIR should be
configured as output).

1b = TT1 functionality. Asserts SDP6 to 1b when IEEE 1588 time stamp equals Target
Time register 1 (For TT1 functionality, SDP6_IODIR should be configured as output).

SDP6_TSync_TT1 30 Ob

SDP7 Native Mode Functionality (SDP7_NATIVE = 1).

0Ob = CLK1 functionality. Drives a reference clock with the frequency defined in the
Frequency Out 1 Control register (for CLK1 functionality, SDP7_IODIR should be
configured as output).

1b = TTO functionality. Asserts SDP7 to 1b when IEEE 1588 time stamp equals Target
Time register 1 (For TTO functionality, SDP7_IODIR should be configured as output).

SDP7_TSync_TTO 31 0b

1. Initial value can be configured using the EEPROM.

8.2.3.1.4 12C Control — 12CCTL (0x00028; RW)
. . Init L
Field Bit(s) val. Description
12C_CLK In Value
12C_CLK_IN 0 Ob - . s
- - Provides the value of 12C_CLK (input from external PAD). This bit is RO.
12C_CLK Out Value
12C_CLK_OUT 1 1b -
- - Used to drive the value of 12C_CLK (output to PAD).
12C_DATA In Val
12C_DATA_IN 2 Ob C_. n value . s
- - Provides the value of 12C_DATA (input from external PAD). This bit is RO.
12C_DATA Out Value
12C_DATA_OUT 3 1b -
- - Used to drive the value of 12C_DATA (output to PAD).
Reserved 31:4 0x0 Reserved

457

intel.

8.2.3.1.5

Intel® 82599 10 GbE Controller — Programming Interface

LED Control — LEDCTL (0x00200; RW)

Field

Bit(s)

Init
Val.

Description

LEDO_MODE

3:0

oxo?t

LEDO Mode. This field specifies the control source for the LEDO output. An initial value of
0000b selects the LINK_UP indication.

Reserved

obt

Reserved

GLOBAL_BLINK_
MODE

ob?t

GLOBAL Blink Mode. This field specifies the blink mode of all LEDs.
Ob = Blink at 200 ms on and 200 ms off.
1b = Blink at 83 ms on and 83 ms off.

LEDO_IVRT

obt

LEDO Invert. This field specifies the polarity/inversion of the LED source prior to output
or blink control. By default the output drives the cathode of the LED so when the LED
output is Ob the LED is on.

Ob = LED output is active low.
1b = LED output is active high.

LEDO_BLINK

obt

LEDO Blink. This field specifies whether or not to apply blink logic to the (inverted) LED
control source prior to the LED output.

Ob = Do not blink LED output.
1b = Blink LED output.

LED1_MODE

11:8

ox1t

LED1 Mode. This field specifies the control source for the LED1 output. An initial value of
0001b selects the 10 Gb/s link indication.

Reserved

13:12

obt

Reserved

LED1_IVRT

14

obt

LED1 Invert. This field specifies the polarity/inversion of the LED source prior to output
or blink control. By default the output drives the cathode of the LED so when the LED
output is Ob the LED is on.

Ob = LED output is active low.
1b = LED output is active high.

LED1_BLINK

15

1b?

LED1 Blink. This field specifies whether or not to apply blink logic to the (inverted) LED
control source prior to the LED output.

Ob = Do not blink LED output.
1b = Blink LED output.

LED2_MODE

19:16

ox4t

LED2 Mode. This field specifies the control source for the LEDO output. An initial value of
0100 selects LINK/ACTIVITY indication.

Reserved

21:20

ot

Reserved

LED2_IVRT

22

ol

LED2 Invert. This field specifies the polarity/inversion of the LED source prior to output
or blink control. By default the output drives the cathode of the LED so when the LED
output is Ob the LED is on.

Ob = LED output is active low.
1b = LED output is active high.

LED2_BLINK

23

ol

LED2 Blink. This field specifies whether or not to apply blink logic to the (inverted) LED
control source prior to the LED output.

Ob = Do not blink LED output.
1b = Blink LED output.

LED3_MODE

27:24

ox5t

LED3 Mode. This field specifies the control source for the LEDO output. An initial value of
0101b selects the 1 Gb/s link indication.

Reserved

29:28

ob?

Reserved

LED3_IVRT

30

obt

LED3 Invert. This field specifies the polarity/inversion of the LED source prior to output
or blink control. By default the output drives the cathode of the LED so when the LED
output is Ob the LED is on.

Ob = LED output is active low.
1b = LED output is active high.

458

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

. . Init L
Field Bit(s) Val. Description
LEDS3 Blink. This field specifies whether or not to apply blink logic to the (inverted) LED
1 control source prior to the LED output.
LED3_BLINK 31 Ob

Ob = Do not blink LED output.
1b = Blink LED output.

1. These bits are read from the EEPROM.

The following mapping is used to specify the LED control source (MODE) for each LED output:

MODE Selected Mode Source Indication
Asserted or blinking according to the LEDx_BLINK setting when any speed link is
0000b LINK_UP established and maintained.
0001b LINK 10G Assert_ed or blinking_ act;ording to the LEDx_BLINK setting when a 10 Gb/s link is
= established and maintained.
Active when link is established and packets are being transmitted or received. In this
0010b MAC_ACTIVITY mode, the LEDx_BLINK must be set.
Active when link is established and packets are being transmitted or received that
0011b FILTER_ACTIVITY passed MAC filtering. In this mode, the LEDx_BLINK must be set.
Asserted steady when link is established and there is no transmit or receive activity.
0100b LINK/ACTIVITY Blinking when there is link and receive or Transmit activity. In this mode LEDx_BLINK
must be cleared at Ob.
0101b LINK 1G Assert_ed or blinking_ acc;ording to the LEDx_BLINK setting when a 1 Gb/s link is
— established and maintained.
Asserted or blinking according to the LEDx_BLINK setting when a 100 Mb/s link is
0110 LINK_100 established and maintained.
0111b:1101b Reserved Reserved
1110b LED_ON Always asserted or blinking according to the LEDx_BLINK setting.
1111b LED_OFF Always de-asserted.
8.2.3.1.6 Extended VLAN Ether Type — EXVET (0Ox05078; RW)
. . Init L
Field Bit(s) val. Description
Reserved 15:0 0x0 Reserved
Outer-VLAN Ether Type (VLAN Tag Protocol Identifier - TPID).
VET EXT 31:16 0x8100
Note: This field appears in little endian (MS byte first on the wire).

459

intel.

Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.2 EEPROM/Flash Registers
8.2.3.2.1 EEPROM/Flash Control Register — EEC (0x10010; RW)
Field Bit(s) Init Description
Val. P
Clock input to the EEPROM. When EE_GNT is set to 1b, the EE_SK output signal is
EE_SK 0 Ob mapped to this bit and provides the serial clock input to the EEPROM. Software clocks
the EEPROM via toggling this bit with successive writes.
Chip select input to the EEPROM. When EE_GNT is set to 1b, the EE_CS output signal is
EE_CS 1 Ob mapped to the chip select of the EEPROM device. Software enables the EEPROM by
writing a Ob to this bit.
Data input to the EEPROM. When EE_GNT is set to 1b, the EE_DI output signal is
EE_DI 2 Ob mapped directly to this bit. Software provides data input to the EEPROM via writes to
this bit.
Data output bit from the EEPROM. The EE_DO input signal is mapped directly to this bit
EE_DO (RO field) 3 X in the register and contains the EEPROM data output. This bit is read-only from a
software perspective; writes to this bit have no effect.
Flash Write Enable Control. These two bits control whether or not writes to the Flash are
allowed.
. 00b = Flash erase (along with bit 31 in the FLA register).
FWE 5:4 01b 01b = Flash writes disabled.
10b = Flash writes enabled.
11b = Not allowed.
Request EEPROM Access. Software must write a 1b to this bit to get direct EEPROM
EE_REQ 6 Ob access. It has access when EE_GNT is set to 1b. When software completes the access, it
must then write a Ob.
] Grant EEPROM Access. When this bit is set to 1b, software can access the EEPROM
EE_GNT (RO field) |7 0b using the EE_SK, EE_CS, EE_DI, and EE_DO bits.
EE_PRES (RO field) 8 (see EEPROM _Present. Settmg t.hISAbl.t to 1b indicates that an EEPROM is present and has the
desc.) correct signature field. This bit is read-only.
EEPROM Auto-Read Done. When set to 1b, this bit indicates that the auto-read by
Auto_RD (RO field) 9 Ob hardware from the EEPROM is done. This bit is also set when the EEPROM is not present
or when its signature field is not valid.
Reserved 10 1b Reserved.
EE_Size (RO field) 14:11 0010bl | EEPROM Size. This field defines the size of the EEPROM (see Table 8.3).
PCI_ANA_done (RO PCle Analog Done. When set to 1b, indicates that the PCle analog section read from
fieldj - 15 Ob EEPROM is done. This bit is cleared when auto-read starts. This bit is also set when the
EEPROM is not present or when its signature field is not valid.
PCle Core Done. When set to 1b, indicates that the Core analog section read from
EEPROM is done. This bit is cleared when auto-read starts. This bit is also set when the
Eglldeore_done (RO 16 Ob EEPROM is not present or when its signature field is not valid.
Note: This bit returns the relevant done indication for the function that reads the
register.
PCl genarl done PCle General Done. When set to 1b, indicates that the PCle general section read from
(RO?i%Id) - 17 Ob the EEPROM is done. This bit is cleared when auto-read starts. This bit is also set when
the EEPROM is not present or when its signature field is not valid.
PCle Function Done. When set to 1b, indicates that the PCle function section read from
EEPROM is done. This bit is cleared when auto-read starts. This bit is also set when the
Eglld—)FUNC—DONE (RO 18 Ob EEPROM is not present or when its signature field is not valid.
Note: This bit returns the relevant done indication for the function that reads the
register.
Core Done. When set to 1b, indicates that the Core analog section read from the
EEPROM is done. This bit is cleared when auto-read starts. This bit is also set when the
CORE_DONE (RO 19 0ob EEPROM is not present or when its signature field is not valid.

field)

Note: This bit returns the relevant done indication for the function that reads the
register.

460

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

. . Init A
Field Bit(s) val. Description

Core CSR Done. When set to 1b, indicates that the Core CSR section read from the
EEPROM is done. This bit is cleared when auto-read starts. This bit is also set when the

((:SOREE%?R_DONE 20 0Ob EEPROM is not present or when its signature field is not valid.
Note: This bit returns the relevant done indication for the function that reads the
register.
MAC Done. When set to 1b, indicates that the MAC section read from the EEPROM is
done. This bit is cleared when auto-read starts. This bit is also set when the EEPROM is

MAC_DONE (RO field) | 21 Ob not present or when its signature field is not valid.
Note: This bit returns the relevant done indication for the function that reads the
register.

Reserved 31:22 0x0 Reserved. Reads as Ob.

1. These bits are read from the EEPROM.

Table 8.3. EEPROM Sizes (Bits 14:11)

Field Value EEPROM Size EEPROM Address Size
0100b 16 Kb 2 bytes
0101b 32 Kb 2 bytes
0110b 64 Kb 2 bytes
0111b 128 Kb 2 bytes
1000b 256 Kb 2 bytes
1001b:1111b Reserved Reserved

This register provides software-direct access to the EEPROM. Software can control the EEPROM by
successive writes to this register. Data and address information is clocked into the EEPROM by software
toggling the EESK bit (2) of this register. Data output from the EEPROM is latched into bit 3 of this
register via the internal 62.5 MHz clock and can be accessed by software via reads of this register.

Note: Attempts to write to the Flash device when writes are disabled (FWE = 01b) should not be
attempted. Behavior after such an operation is undefined, and might result in component
and/or system hangs.

8.2.3.2.2 EEPROM Read Register — EERD (0x10014; RW)

. . Init L
Field Bit(s) val. Description

Start Read

START o Ob Writing a 1b to this bit causes the EEPROM to read a 16-bit word at the address stored
in the EE_ADDR field and then stores the result in the EE_DATA field. This bit is self-
clearing.
Read Done

his bi 1 h he EEPROM | .
DONE 1 ob Set this bit to 1b when the OM read completes

Set this bit to Ob when the EEPROM read is in progress.
Note that writes by software are ignored.

Read Address

ADDR 15:2 0x0 This field is written by software along with Start Read to indicate that the address of the
word to read.

Read Data

DATA 31:16 0x0
X Data returned from the EEPROM read.

461

[®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

This register is used by software to cause the 82599 to read individual words in the EEPROM. To read a
word, software writes the address to the Read Address field and simultaneously writes a 1b to the Start
Read field. The 82599 reads the word from the EEPROM and places it in the Read Data field, setting the
Read Done field to 1b. Software can poll this register, looking for a 1b in the Read Done field and then
using the value in the Read Data field.

When this register is used to read a word from the EEPROM, that word is not written to any of the
82599's internal registers even if it is normally a hardware-accessed word.

8.2.3.2.3 Flash Access Register — FLA (0x1001C; RW)

Init

Field Bit(s) | o

Description

Clock input to the Flash. When FL_GNT is set to 1b, the FL_SCK output signal is mapped
FL_SCK (o] Ob to this bit and provides the serial clock input to the Flash. Software clocks the Flash via
toggling this bit with successive writes.

Chip select input to the Flash. When FL_GNT is set to 1b, the FL_CE output signal is
FL_CE 1 Ob mapped to the chip select of the Flash device. Software enables the Flash by writing a
Ob to this bit.

Data input to the Flash. When FL_GNT is set to 1b, the FL_SI output signal is mapped

FL_SI 2 0b directly to this bit. Software provides data input to the Flash via writes to this bit.

Data output bit from the Flash. The FL_SO input signal is mapped directly to this bit in
FL_SO 3 X the register and contains the Flash serial data output. This bit is read-only from a
software perspective. Note that writes to this bit have no effect.

Request Flash Access. Software must write a 1b to this bit to get direct Flash access. It
FL_REQ 4 Ob has access when FL_GNT is set to 1b. When software completes the access, it must
then write a Ob.

Grant Flash Access. When this bit is set to 1b, software can access the Flash using the

FL_GNT 5 Ob FL_SCK, FL_CE, FL_SI, and FL_SO bits.
Reserved 29:6 Ob Reserved. Reads as Ob.
FIash Bu_sy. This bit is set to 1b while a write or an erase to the F_Iash is in progress,
FL_BUSY 30 ob \éY:sl,lr? this bit is cleared (reads as Ob), software can access to write a new byte to the
Note: This bit is read-only from a software perspective.
FL_ER 31 ob Flash Erase Command. This command is sent to the Flash only if bits 5:4 of register EEC

are also set to 00b. This bit is auto-cleared and reads as Ob.

This register provides software direct access to the Flash. Software can control the Flash by successive
writes to this register. Data and address information is clocked into the EEPROM by software toggling
FL_SCK in this register. Data output from the Flash is latched into bit 3 of this register via the internal
125 MHz clock and can be accessed by software via reads of this register.

Note: In the 82599, the FLA register is only reset at LAN_PWR_GOOD as opposed to legacy devices
at software reset.

8.2.3.2.4 Manageability EEPROM Control Register — EEMNGCTL (0x10110; RW)

Note: This register can be read/write by manageability firmware and is read-only to host software.
Field Bit(s) | JInit Description
Val. p
ADDR 14:0 0x0 Address. This field is written by manageability along with Start bit and the Write bit to
) indicate which EEPROM address to read or write.
START 15 ob Start. Writing a 1b to this bit causes the EEPROM to start the read or write operation
according to the write bit. This bit is self cleared by hardware.

462

Programming Interface — Intel® 82599 10 GbE Controller l n tel

. . Init Lo
Field Bit(s) Val. Description

Write. This bit signals the EEPROM if the current operation is read or write.
WRITE 16 Ob Ob = Read.

1b = Write.

EPROM Busy. This bit indicates that the EEPROM is busy processing an EEPROM
EEBUSY 17 Ob :

transaction and should not be accessed.
Reserved 30:18 0x0 Reserved.

Transaction Done. This bit is cleared after the Start bit and Write bit are set by
DONE 31 1b manageability and is set back again when the EEPROM write or read transaction

completes.
8.2.3.2.5 Manageability EEPROM Read/Write Data — EEMNGDATA (0x10114; RW)
Note: This register can be read/write by manageability firmware and is read-only to host software.

Field Bit(sy | Init Description
Val. P

WRDATA 15:0 0x0 Write Data. Data to be written to the EEPROM.

Read Data. Data returned from the EEPROM read.
RDDATA 31:16 X e .

Note: This field is read only.

463

intel.

Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.2.6 Manageability Flash Control Register — FLMNGCTL (0x10118; RW)
Note: This register can be read/write by manageability firmware and is read-only to host software.
. . Init S
Field Bit(s) val. Description
ADDR 23:0 0x0 Adc_iress. This field is written by mgnageability along with CMD and CMDV to indicate
which Flash address to read or write.
Command. Indicates which command should be executed. Valid only when the CMDV
bit is set.
. 00b = Read command.
CMD 25:24 00b 01lb = Write command (single byte).
10b = Sector erase. Note: Sector erase is applicable only for Atmel Flashes.
11b = Erase.
CMDV 26 ob Command Valid. When set, indicates that the manageability firmware issues a new
command and is cleared by hardware at the end of the command.
FLBUSY 27 Ob Flash Busy. This bit indicates that the Flash is busy processing a Flash transaction and
should not be accessed.
Reserved 29:28 00b Reserved.
Read Done. This bit is cleared by firmware when it sets the CMDV bit. It is set by
DONE 30 1b hardware for each Dword read that completes. This bit is read/clear by hardware
enabling the multiple Dword read flow.
Global Done. This bit clears after the CMDV bit is set by manageability and is set back
WRDONE 31 1b again after all Flash transactions complete. For example, the Flash device finished
reading all the requested read or other accesses (write and erase).
8.2.3.2.7 Manageability Flash Read Data — FLMNGDATA (0x1011C; RW)
Note: This register can be read/write by manageability firmware and is read-only to host software.
. . Init A
Field Bit(s) val. Description
Read/Write Data
DATA 31:0 0x0 On a read transaction, this register contains the data returned from the Flash read.
On write transactions, bits 7:0 are written to the Flash.
8.2.3.2.8 Flash Opcode Register — FLOP (0x01013C; RW)

This register enables the host or firmware to define the op-code used in order to erase a sector of the
Flash or erase the entire Flash. This register is reset only at power on or during LAN_PWR_GOOD

assertion.
. . Init A
Field Bit(s) val. Description

Flash Block Erase Instruction

SERASE 7:0 0x52 The op-code for the Flash block erase instruction and is relevant only to Flash access by
manageability.

DERASE 15:8 Ox62 Flash Device Erase Instruction . .
The op-code for the Flash erase instruction.

Reserved 31:16 0x0 Reserved

Note: The default values are applicable to Atmel* Serial Flash Memory devices.

464

Programming Interface — Intel® 82599 10 GbE Controller

8.2.3.2.9 General Receive Control — GRC (0x10200; RW)

. . Init B
Field Bit(s) val. Description
MNG_EN 0 1t Manageability Enable

This read-only bit indicates whether or not manageability functionality is enabled.

Advance Power Management Enable

If set to 1b, APM wake up is enabled. When APM wake up is enabled and The 82599
APME 1 obl receives a matching magic packet, it sets the PME_Status bit in the Power Management
Control/Status register (PMCSR) and asserts the PE_WAKE_N pin. It is a single read/
write bit in a single register, but has two values depending on the function that accesses
the register.

Reserved 31:2 0x0 Reserved

1. Loaded from the EEPROM.

8.2.3.3 Flow Control Registers

8.2.3.3.1 Priority Flow Control Type Opcode — PFCTOP (0x0431C / 0x03008; RW)

This register is also mapped to address 0x0431C to maintain compatibility with the 82598.

. . Init .
Field Bit(s) val. Description
FCT 15:0 OxB808 Priority F|-0W. Control Ethe.rTy.pe. . - 4
Note: This field appears in little endian (MS byte first on the wire).
FCOP 31:16 0x0101 Priority F|-0W4 Control Opcc.Jde.A . . .
Note: This field appears in big endian (LS byte first on the wire).

This register contains the Type and Opcode fields that are matched against a recognized priority flow
control packet.

8.2.3.3.2 Flow Control Transmit Timer Value n — FCTTVn (0x03200 + 4*n, n=0...3; RW)

Each 32-bit register (n=0... 3) refers to two timer values (register O refers to timer 0 and 1, register 1
refers to timer 2 and 3, etc.).

Init

Field BIt(s) | o

Description

Transmit Timer Value 2n

TTV(2n) 15:0 0x0 Timer value included in XOFF frames as Timer (2n). The same value shall be set to User
. Priorities attached to the same TC, as defined in RTTUP2TC register. For legacy 802.3X

flow control packets, TTVO is the only timer that is used.

Transmit Timer Value 2n+1

TTV(2n+1) 31:16 | 0xO Timer value included in XOFF frames as Timer 2n+1. The same value shall be set to
User Priorities attached to the same TC, as defined in RTTUP2TC register.

The 16-bit value in the TTV field is inserted into a transmitted frame (either XOFF frames or any pause
frame value in any software transmitted packets). It counts in units of slot time (usually 64 bytes).

Note: The 82599 uses a fixed slot time value of 64 byte times.

465

[®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.3.3 Flow Control Receive Threshold Low — FCRTL[Nn] (0x03220 + 4*n, n=0...7; RW)

Each 32-bit register (n=0... 7) refers to a different receive packet buffer.

. . Init .
Field Bit(s) val. Description
Reserved 4:0 0x0 Reserved.
) Receive Threshold Low n. Receive packet buffer n FIFO low water mark for flow control
RTL 18:5 0x0 o !
transmission (32 bytes granularity).
Reserved 30:19 0x0 Reserved.
XON Enable n. Per the receive packet buffer XON enable.
XONE 31 Ob Ob = Disabled.
1b = Enabled.

This register contains the receive threshold used to determine when to send an XON packet and counts
in units of bytes. The lower four bits must be programmed to 0x0 (16-byte granularity). Software must
set XONE to enable the transmission of XON frames. Each time incoming packets cross the receive high
threshold (become more full), and then crosses the receive low threshold, with XONE enabled (1b),
hardware transmits an XON frame.

8.2.3.3.4 Flow Control Receive Threshold High — FCRTH[Nn] (0x03260 + 4*n, n=0...7;
RW)

Each 32-bit register (n=0...7) refers to a different receive packet buffer.

Field Bit(s) \'/r;il'f Description
Reserved 4:0 0x0 Reserved.
RTH 18:5 0x0 Receive? Threshold High n. Recei_/e packet buffer n FIFO high water mark for flow control
transmission (32 bytes granularity).
Reserved 30:19 0x0 Reserved.
FCEN 31 Ob Transmit flow control enable for packet buffer n.

This register contains the receive threshold used to determine when to send an XOFF packet and counts
in units of bytes. This value must be at least eight bytes less than the maximum number of bytes
allocated to the receive packet buffer and the lower four bits must be programmed to 0x0 (16-byte
granularity). Each time the receive FIFO reaches the fullness indicated by RTH, hardware transmits a
pause frame if the transmission of flow control frames is enabled.

8.2.3.3.5 Flow Control Refresh Threshold Value — FCRTV (0x032A0; RW)

Init

Field Bit(s) | o

Description

Flow Control Refresh Threshold. This value is used to calculate the actual refresh period
for sending the next pause frame if conditions for a pause state are still valid (buffer
fullness above low threshold value). The formula for the refresh period for priority group
FC_refresh_th 15:0 0x0 N is — FCTTV[N/2].TTV[Nmod2] — FCRTV.FC_refresh_th

Note: The FC_refresh_th must be smaller than TTV of the TC and larger than the max
packet size in the TC + FC packet size + link latency and Tx latency and Rx latency in 64
byte units.

Reserved 31:16 0x0 Reserved

466

Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.3.6 Transmit Flow Control Status — TFCS (OxXOCEOO; RO)
Field Bit(sy | Init Description
Val. p
: Set if flow control is in XON state. If in link flow control mode, only bit O should be used.
TC_XON 7:0 OxFF In case of priority flow control mode, each bit represents a TC.
Reserved 31:9 0x0 Reserved.
8.2.3.3.7 Flow Control Configuration — FCCFG (0x03DO00; RW)
. . Init Lo
Field Bit(s) val. Description
Reserved 2:0 0x0 Reserved.
Transmit Flow Control Enable. These bits Indicate that the 82599 transmits flow control
packets (XON/XOFF frames) based on receive fullness. If auto-negotiation is enabled,
then this bit should be set by software to the negotiated flow control value.
00b = Transmit flow control disabled.
TFCE 4:3 0x0 01b = Link flow control enabled.
10b =— Priority flow control enabled.
11b =— Reserved.
Note: Priority flow control should be enabled in DCB mode only.
Reserved 31:5 0x0 Reserved.
8.2.3.4 PCle Registers
8.2.3.4.1 PCle Control Register — GCR (0x11000; RW)
Note: This register is shared for both LAN ports.
. . Init L
Field Bit (s) val. Description
Reserved 2:0 100b Reserved
Reserved 8:3 X Reserved
. . When set, enables a resend request after the completion timeout expires. This field is
Completion Timeout 9 1b loaded from the Completion Timeout Resend bit in the EEPROM (PCle General Config
resend enable)
word 5 bit 15).
Reserved 10 Ob Reserved
Number of resends 12:11 11b The number of resends in case of timeout or poisoned.
Reserved 17:13 0x0 Reserved
o Read only field reporting supported PCle capability version.
PCle Capability 1 _ o P
. 18 1b Ob = Capability version: Ox1.
Version
1b = Capability version: 0x2.
Reserved 20:19 Ob Reserved
. . If set, the header log in error reporting is written as 31:0 to logl, 63:32 in log2, etc. If
hdr_log inversion 21 Ob not, the header is written as 127:96 in logl, 95:64 in log 2, etc.
Reserved 31:22 o] Reserved

467

"] ®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.4.2 PCle Statistic Control Register #1 — GSCL_1 (0x11010; RW)

Note: This register is shared for both LAN ports.

Field Bit(s) \'/’;il'f Description
GIO_COUNT_EN_O 0 Ob Enables PCle statistic counter number 0.
GIO_COUNT_EN_1 1 Ob Enables PCle statistic counter number 1.
GIO_COUNT_EN_2 2 Ob Enables PCle statistic counter number 2.
GIO_COUNT_EN_3 3 Ob Enables PCle statistic counter number 3.

When set, statistics counter O operates in leaky bucket mode. In this mode there is an
internal counter that is incremented by one for each event and is decremented by one
each time the LBC timer n (n=0) expires. When the internal counter reaches the value
LBC Enable O 4 ob of LBC threshold n (n=0) the internal counter is cleared and the visible associated
statistic counter GSCN_0_3[0] is incremented by one.

When cleared, Leaky Bucket mode is disabled and the counter is incremented by one
for each event.

When set, statistics counter 1 operates in leaky bucket mode. See detailed description

LBC Enable 1 5 0Ob for LBC Enable 0.
LBC Enable 2 6 ob When set, statistics counter 2 operates in leaky bucket mode. See detailed description
for LBC Enable 0.
When set, statistics counter 3 operates in leaky bucket mode. See detailed description
LBC Enable 3 7 0Ob for LBC Enable 0.
Reserved 26:8 0x0 Reserved
GIO_COUNT_TEST 27 Ob Test Bit .
Forward counters for testability.
GIO_64 _BIT_EN 28 Ob Enables two 64-bit counters instead of four 32-bit counters.
GIO_COUNT_RESET 29 Ob Reset indication of PCle statistic counters.
GIO_COUNT_STOP 30 Ob Stop indication of PCle statistic counters.
GIO_COUNT_START 31 Ob Start indication of PCle statistic counters.

8.2.3.4.3 PCle Statistic Control Registers #2- GSCL_2 (0x11014; RW)

Note: This register is shared for both LAN ports.

Field Bit(s) \I/r;ilt- Description
GIO_EVENT_NUM_O 7:0 0x0 Event number that counter O counts (GSCN_0).
GIO_EVENT_NUM_1 15:8 0x0 Event number that counter 1 counts (GSCN_1).
GIO_EVENT_NUM_2 23:16 0x0 Event number that counter 2 counts (GSCN_2).
GIO_EVENT_NUM_3 31:24 0x0 Event number that counter 3 counts (GSCN_3).

468

Programming Interface — Intel® 82599 10 GbE Controller

Table 8.4.

PCle Statistic Events Encoding

Transaction layer Events

Event
Mapping
(Hex)

Description

For each cycle, the counter increases by one, if a bad TLP is received (bad

Bad TLP from LL 00 CRC, error reported by AL, misplaced special character, reset in thl of
received tip).
Requests that reached timeout 10 Number of requests that reached time out.
NACK DLLP received 20 For eacvh cycle, the counter increases by one, if a message was
transmitted.
. Occurs when a replay happened due to timeout (not asserted when replay
Replay happened in retry buffer 21 initiated due to NACK.
Set when one of the following occurs:
1. Decoder error occurred during training in the PHY. It is reported only
Receive error 22 when training ends. _ _ _
2. Decoder error occurred during link-up or until the end of the current
packet (in case the link failed). This error is masked when entering/exiting
Electrical Idle (El).
Replay roll over 23 Occurs when replay was initiated for more than three times (threshold is
play configurable by the PHY CSRs).
Re-sending packets 24 Occurs when TLP is resent in case of completion timeout.
Surprise link down 25 Occurs when link is unpredictably down (not because of reset or DFT).
LTSSM in LOs in both Rx and Tx 30 Occurs when LTSSM enters LOs state in both Tx & Rx.
LTSSM in LOs in Rx 31 Occurs when LTSSM enters LOs state in Rx.
LTSSM in LOs in Tx 32 Occurs when LTSSM enters LOs state in Tx.
LTSSM in L1 active 33 Occurs when LTSSM enters L1-active state (requested from host side).
LTSSM in L1 software 34 Occurs when LTSSM enters L1-switch (requested from switch side).
LTSSM in recovery 35 Occurs when LTSSM enters recovery state.

8.2.3.4.4 PCle Statistic Control Register #5...#8 — GSCL_5_8 (0x011030 + 4*n, n=0...3;
RW)
Note: These registers are shared for both LAN ports.

These registers control the operation of the leaky bucket counter n. While it is GSCL_5 for n=0. GSCL_6
for n=1, GSCL_7 for n=2 and GSCL_8 for n=3. Note that there are no GSCL_3 and GSCL_4 registers.

. . Init Lo
Field Bit(s) val. Description
LBC threshold n 15:0 0x0 Threshold for the leaky bucket counter n.
. 5 Time period between decrementing the value in leaky bucket Counter n. The time
LBC timer n 31:16 0x0 period is defined in US units.

469

intel.

8.2.3.4.5

Note:

Intel® 82599 10 GbE Controller — Programming Interface

PCle Statistic Counter Registers #0...#3 — GSCN_0_3 (0x11020 + 4*n, n=0...3;
RO)

This register is shared for both LAN ports.

While it is GSCN_0 for n=0. GSCN_1 for n=1, GSCN_2 for n=2 and GSCN_3 for n=3.

. . Init L
Field Bit(s) val. Description
Event Counter 31:0 0x0 Event counter as defined in GSCL_2.GIO_EVENT_NUM fields. These registers are stuck

at their maximum value of OxFF...F and cleared on read.

8.2.3.4.6

Function Active and Power State to Manageability — FACTPS (0x10150; RO)

Register for use by the device firmware for configuration.

. . Init A
Field Bit(s) val. Description
Power state indication of function 0.
00b = DR.
FuncO Power State 1:0 00b 01b = DOu.
10b = DOa.
11b = D3.
LAN O Enable. When this bit is set to Ob, it indicates that the LAN O function is disabled.
LANO Valid 2 Ob When the function is enabled, the bit is set to 1b.
This bit is reflected if the function is disabled through the external pad.
FuncO Aux_En 3 Ob Function O Auxiliary (AUX) Power PM Enable bit shadow from the configuration space.
Reserved 5:4 00b Reserved
Power state indication of function 1.
00b = DR.
Funcl Power State 7:6 00b 01b = DOu.
10b = DOa.
11b = D3.
LAN 1 Enable. When this bit is set to Ob, it indicates that the LAN 1 function is disabled.
LAN1 Valid 8 Ob When the function is enabled, the bit is set to 1b.
This bit is reflected if the function is disabled through the external pad.
Funcl Aux_En 9 Ob Function 1 Auxiliary (AUX) Power PM Enable bit shadow from the configuration space.
Reserved 28:10 0x0 Reserved
Manageability Clock Gated.
MNGCG 29 Ob 9 . y. - .
When set, indicates that the manageability clock is gated.
When both LAN ports are enabled and LAN Function Sel equals Ob, LAN O is routed to
. 1 PCI function 0 and LAN 1 is routed to PCI function 1. If LAN Function Sel equals 1b, LAN
LAN Function Sel 30 0b 0 is routed to PCI function 1 and LAN 1 is routed to PCI function 0. This bit is loaded
from the LAN Function Select bit in the PCle Control 2 EEPROM word at offset 0x05.
Indication that one or more of the functions power states had changed. This bit is also
PM State changed 31 Ob a signal to the manageability unit to create an interrupt.

This bit is cleared on read, and is not set for at least eight cycles after it was cleared.

1. Loaded from the EEPROM.

470

Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.4.7 PCle Analog Configuration Register — PCIEPHYADR (0x11040; RW)

Note: This register is shared for both LAN ports.

Field Bit(s) \'/’;ilt_ Description
Address 11:0 0x0 The indirect access' address.
Reserved 24:12 0x0 Reserved
Byte Enable 28:25 0x0 The indirect access' byte enable (4-bit).
Read enable 29 Ob The indirect access is read transaction.
Write enable 30 Ob The indirect access is write transaction.
Done indication 31 Ob Acknowledge for the indirect access to the CSR.

8.2.3.4.8 PCle PHY Data Register — PCIEPHYDAT (0x11044; RW)

Note: This register is shared for both LAN ports.

. . Init I
Field Bit(s) val. Description
Data 31:0 0x0 The data to write in the indirect access or the returned data of the indirect read.

8.2.3.4.9 Software Semaphore Register — SWSM (0x10140; RW)

Note: This register is shared for both LAN ports.

Init

Field Bit(s) | o

Description

Semaphore Bit. This bit is set by hardware, when this register is read by the device
driver (one of two PCI functions) and cleared when the host driver writes Ob to it.

The first time this register is read, the value is Ob. In the next read the value is 1b
SMBI 0 Ob (hardware mechanism). The value remains 1b until the device driver clears it.

This bit can be used as a semaphore between the two device’s drivers.
This bit is cleared on PCle reset.

Software Semaphore bit. This bit is set by the device driver (read only to the firmware)
before accessing the SW_FW_SYNC register. This bit can be read as 1b only if the
SWESMBI 1 Ob FWSM.FWSMBI bit is cleared.

The device driver should clear this bit after accessing the SW_FW_SYNC register as
described in Section 10.5.4. Hardware clears this bit on PCle reset.

RSV 31:2 0x0 Reserved.

8.2.3.4.10 Firmware Semaphore Register — FWSM (0x10148; RW)

Note: This register is shared for both LAN ports.

. . Init A
Field Bit(s) val. Description
Firmware Semaphore. Firmware should set this bit to 1b before accessing the
FWSMBI 0 ob SW_FW_SYNC register. This bit can be read as 1b only if the SWSM.SMBI is cleared.
Firmware should set it back to Ob after modifying the SW_FW_SYNC register as
described in Section 10.5.4.

471

®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

Init

Field Bit(s) | y/a

Description

Firmware Mode. Indicates the firmware mode as follows:
0x0 = None (manageability off).

Ox1 = Reserved.

FW_mode 3:1 000b 0x2 = PT mode.

0x3 = Reserved.

0x4 = Host interface enable only.

Else = Reserved.

Reserved 5:4 00b Reserved
. EEPROM Reloaded Indication. Set to 1b after firmware re-loads the EEPROM.
EEP_reload_ ind 6 Ob X . . .
Cleared by firmware once the Clear Bit host command is received from host software.
Reserved 14:7 0x0 Reserved

Firmware Valid Bit. Hardware clears this bit in reset de-assertion so software can know
FW_Val_bit 15 Ob firmware mode (bits 1-5) is invalid. firmware should set this bit to 1b when it is ready
(end of boot sequence).

Reset_cnt 18:16 000b Reset Counter. Firmware increments this counter after every reset.

External Error Indication.Firmware uses this register to store the reason that the
firmware has reset / clock gated (such as EEPROM, Flash, patch corruption, etc.).

Possible values:

0x00 = No error.

0x01 = Invalid EEPROM checksum.

0x02 = Unlocked secured EEPROM.

0x03 = Clock off host command.

0x04 = Invalid Flash checksum.

0x05 = CO checksum failed.

0x06 = C1 checksum failed.

0x07 = C2 checksum failed.

0x08 = C3 checksum failed.

0x09 = TLB table exceeded.

OXxOA = DMA load failed.

0x0B = Bad hardware version in patch load.
0x0C = Flash device not supported in the 82599.
Ox0D = Unspecified error.

Ox3F =Reserved (maximum error value).

Ext_err_ind 24:19 0x0

PCle Configuration Error Indication. Set to 1b by firmware when it fails to configure
PCle_config_ err_ind |25 Ob PCle interface.
Cleared by firmware upon successful configuration of PCle interface.

PHY/SERDESO Configuration Error Indication. Set to 1b by firmware when it fails to
26 Ob configure PHY/SERDES of LANO.

Cleared by firmware upon successful configuration of PHY/SERDES of LANO.

PHY_SERDESO_ config
_err_ind

PHY/SERDES1 Configuration Error Indication. Set to 1b by firmware when it fails to
27 Ob configure PHY/SERDES of LAN1.

Cleared by firmware upon successful configuration of PHY/SERDES of LAN1.

PHY_SERDES1_config
_err_ind

Reserved 31:28 0000b Reserved

Notes: This register should be written only by the manageability firmware. The device driver should
only read this register.

The firmware ignores the EEPROM semaphore in operating system hung states.
Bits 15:0 are cleared on firmware reset.

472

Programming Interface — Intel® 82599 10 GbE Controller

intel.

8.2.3.4.11 Software—Firmware Synchronization — SW_FW_SYNC (0x10160; RW)
Note: This register is shared for both LAN ports.
. . Init L
Field Bit(s) val. Description
Semaphore Bits. Each bit represents a different software semaphore agreed between
software and firmware as listed. Bits 4:0 are owned by software while bits 9:5 are
owned by firmware. Note that hardware does not lock access to these bits.
Bit 0 = SW_EEP_SM - at 1b, EEPROM access is owned by software.
Bit 1 = SW_PHY_SMO - at 1b, PHY 0O access is owned by software.
Bit 2 = SW_PHY_SM1 - at 1b, PHY 1 access is owned by software.
. Bit 3 = SW_MAC_CSR_SM - at 1b, Software owns access to shared CSRs.

SMBITS 9:0 0x0 Bit 4 = SW_FLASH_SM - Software Flash semaphore.
Bit 5 = FW_EEP_SM - at 1b, EEPROM access is owned by firmware.
Bit 6 = FW_PHY_SMO - at 1b, PHY O access is owned by firmware.
Bit 7 = FW_PHY_SM1 - at 1b, PHY 1 access is owned by firmware.
Bit 8 = FW_MAC_CSR_SM - at 1b, firmware owns access to shared CSRs.
Bit 9 = FW_FLASH_SM - at 1b, firmware owns access to the Flash. Note that currently
the FW does not access the FLASH.

Reserved 30:10 0x0 Reserved for future use.

Reserved 31 Ob Reserved.

See Section 10.5.4 for more details on software and firmware synchronization.

8.2.3.4.12 PCle Control Extended Register — GCR_EXT (0x11050; RW)
Field Bit(sy | Init Description
Val. P
VT mode of operation defines the allocation of physical registers to the VFs. Software
must set this field the same as GPIE.VT_Mode.
. 00b = No VT - Reserved for the case that STSTUS.IOV Ena is not set.
VT_Mode 1:0 00b 0lb = VT16 - Resources are allocated to 16 VFs.
10b = VT32 - Resources are allocated to 32 VFs.
11b = VT64 - Resources are allocated to 64 VFs.
Reserved 3:2 00b Reserved
Auto PBA Clear Disable. When set to 1b, Software can clear the PBA only by direct write
to clear access to the PBA bit. When set to Ob, any active PBA entry is cleared on the
APBACD 4 Ob falling edge of the appropriate interrupt request to the PCle block. The appropriate
interrupt request is cleared when software sets the associated interrupt mask bit in the
EIMS (re-enabling the interrupt) or by direct write to clear to the PBA.
Reserved 31:5 0x0 Reserved
8.2.3.4.13 Mirrored Revision ID- MREVID (0x11064; RO)
Note: This register is shared for both LAN ports.
. . Init .
Field Bit(s) val. Description
EEPROM_RevID 7:0 0x0 Mirroring of rev ID loaded from EEPROM.
DEFAULT_RevID 15:8 0x0 Mirroring of default rev ID, before EEPROM load (0x0 for the 82599 A0).
Reserved 31:16 0x0 Reserved

473

intel.

Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.4.14 PCle Interrupt Cause — PICAUSE (0x110BO; RW1/C)
. . Init A
Field Bit(s) val. Description
CA [¢] Ob PCI completion abort exception.
UA 1 Ob Unsupported 1/0 address exception.
BE 2 Ob Wrong byte-enable exception in the FUNC unit.
TO 3 Ob PCI timeout exception in the FUNC unit.
BMEF 4 Ob Asserted when bus master enable of the PF or one of the VFs is de-asserted.
Reserved 31:5 0x0 Reserved
8.2.3.4.15 PCle Interrupt Enable — PIENA (0x110B8; RW)
. . Init L
Field Bit(s) val. Description
CA 0 Ob When set to 1b, the PCI completion abort interrupt is enabled.
UA 1 Ob When set to 1b, the unsupported 1/0 address interrupt is enabled.
BE 2 Ob When set to 1b, the wrong byte-enable interrupt is enabled.
TO 3 Ob When set to 1b, the PCI timeout interrupt is enabled.
BMEF 4 Ob When set to 1b, the bus master enable interrupt is enabled.
Reserved 31:5 0x0 Reserved
8.2.3.5 Interrupt Registers
8.2.3.5.1 Extended Interrupt Cause Register- EICR (0x00800; RW1C)

The EICR register is RW1C and can be optionally cleared on a read depending on the ODC flag setting in
the GPIE register.

Field

Bit(s)

Init
Val.

Description

RTXQ

15:0

0x0

Receive/Transmit Queue Interrupts. One bit per queue or a bundle of queues, activated
on receive/transmit events.

The mapping of the queue to the RTxQ bits is done by the IVAR registers.

Flow Director

16

Ob

Flow director exception is activated by one of the following events:

1. Filter Removal failed (no matched filter to be removed).

2. The number of remaining free filters in the flexible filter table exceeds (goes
below) the FDIRCTRL.Full-Thresh.

3. Filter Programming failed due to no space in the Flow Director table (note that this
case should not happen if the driver handles the FDIRCTRL.Full-Thresh event)

Rx Miss

17

Ob

Missed packet interrupt is activated for each received packet that overflows the Rx
packet buffer (overrun). Note that the packet is dropped and also increments the
associated RXMPC[n] counter.

PCI Exception

18

Ob

The PCI timeout exception is activated by one of the following events while the specific
PCI event is reported in the INTRPT_CSR register:

1. 1/0 completion abort (write to Flash when Flash is write-disabled).
2. Unsupported 1I/0 request (wrong address).

3. Byte-Enable Error. Access to a client that does not support partial byte-enable
access (all but Flash, MSI-X and PCle target).

4. Timeout occurred in the FUNC block.

MailBox

19

Ob

VF to PF MailBox Interrupt. Cause by a VF write access to the PF mailbox.

474

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

- . Init B
Field Bit(s) val. Description
LSC 20 Ob Link Status Change. This bit is set each time the link status changes (either from up to
down, or from down to up).
LinkSec 21 Ob Indicates that the Tx LinkSec packet counter reached the threshold requiring key

exchange.

Manageability Event Detected. Indicates that a manageability event happened. When
MNG 22 Ob the device is at power down mode, the MC might generate a PME for the same events
that would cause an interrupt when the device is at the DO state.

Reserved 23 Ob Reserved

General Purpose Interrupt on SDPO. If GPI interrupt detection is enabled on this pin

GPI_SDPO 24 0b (via GPIE), this interrupt cause is set when the SDPO is sampled high.

GPI SDP1 o5 Ob General Purpose Interrupt on SDP1. If GPI interrupt detection is enabled on this pin
= (via GPIE), this interrupt cause is set when the SDP1 is sampled high.

GPI SDP2 26 Ob General Purpose Interrupt on SDP2. If GPI interrupt detection is enabled on this pin
= (via GPIE), this interrupt cause is set when the SDP2 is sampled high.

GPI SDP3 27 Ob General Purpose Interrupt on SDP3. If GPI interrupt detection is enabled on this pin
- (via GPIE), this interrupt cause is set when the SDP3 is sampled high.

ECC 28 Ob Unrecoverable ECC Error. This bit is set when an unrecoverable error is detected in one

of the device memories. Software should issue a software reset following this error.

Reserved 29 Ob Reserved.

TCP Timer 30 Ob TCP Timer Expired. This bit is set when the timer expires.

Reserved 31 Ob Reserved

8.2.3.5.2 Extended Interrupt Cause Set Register- EICS (0x00808; WO)

Init

Field Bit(s) | o

Description

Setting any bit in this field, sets its corresponding bit in the EICR register and generates

Interrupt Cause Set 30:0 0x0 an interrupt if enabled by the EIMS register.

Reserved 31 Ob Reserved

8.2.3.5.3 Extended Interrupt Mask Set/Read Register- EIMS (0x00880; RWS)

Init

Field BIt(s) | o

Description

Each bit set to 1b enables its corresponding interrupt in the EICR. Writing 1b to any bit
Interrupt Enable 30:0 0x0 sets it. Writing Ob has no impact. Reading this register provides a map of those
interrupts that are enabled.

Reserved 31 Ob Reserved

8.2.3.5.4 Extended Interrupt Mask Clear Register- EIMC (0x00888; WO)

Init

Field Bit(s) | y/m|

Description

Writing a 1b to any bit clears its corresponding bit in the EIMS register disabling the
Interrupt Mask 30:0 0x0 corresponding interrupt in the EICR register. Writing Ob has no impact. Reading this
register provides no meaningful data.

Reserved 31 Ob Reserved

475

intel.

Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.5.5 Extended Interrupt Auto Clear Register — EIAC (Ox00810; RW)
. . Init L
Field Bit(s) val. Description
At 1b, each bit enables auto clear of the corresponding RTxQ bits in the EICR register
RTxQ Auto Clear 15:0 0x0 following interrupt assertion. At Ob, the corresponding bits in the EICR register are not
auto cleared.
Reserved 29:16 0x0 Reserved
TCP Timer Auto Clear | 30 ob At 1b,. this_: bit enables au_to clear of the TCP tir_ner interrupt cause in the EICR register
following interrupt assertion. At Ob auto clear is not enabled.
Reserved 31 Ob Reserved
Note: Bits 29:20 should never set auto clear since they share the same MSI-X vector.
8.2.3.5.6 Extended Interrupt Auto Mask Enable Register — EIAM (0x00890; RW)
. . Init A
Field Bit(s) val. Description
At 1b, each bit enables auto set and clear of its corresponding bits in the EIMS register.
Auto Mask 30:0 0x0 Note that if any of the Auto Mask enable bits is set, the GPIE.EIAME bit must be set as
well.
Reserved 31 Ob Reserved
8.2.3.5.7 Extended Interrupt Cause Set Registers — EICS[n] (Ox0O0A90 + 4*(n-1),
n=1...2; WO)
. . Init S
Field Bit(s) val. Description
Setting any bit in these registers sets its corresponding bit in the EICR[n] register and
Interrupt Cause Set 31:0 0x0 generates an interrupt if enabled by EIMS[n] register.
Reading this register provides no meaningful data.

8.2.3.5.8 Extended Interrupt Mask Set/Read Registers — EIMS[n] (OXO0OAAO + 4*(n-1),
n=1...2; RWS)
. . Init .

Field Bit(s) val. Description

Each bit set at 1b enables its corresponding interrupt in the EICR[n] register. Writing 1b
i to any bit sets it. Writing Ob has no impact. Reading this register provides a map of
Interrupt Enable 31:0 0 those interrupts that are enabled.

Bits 15:0 of EIMS1 are mirrored in EIMS bits 15:0.

8.2.3.5.9 Extended Interrupt Mask Clear Registers — EIMC[n] (OxXO0ABO + 4*(n-1),
n=1...2; WO)
Field Bit(s) \I/r;lt Description
Writing a 1b to any bit clears its corresponding bit in the EIMS[n] register disabling the
Interrupt Mask 31:0 0x0 corresponding interrupt in the EICR[n] register. Writing Ob has no impact. Reading this
register provides no meaningful data.

476

Programming Interface — Intel® 82599 10 GbE Controller

intel

8.2.3.5.10 Extended Interrupt Auto Mask Enable registers — EIAM[n] (OxXOOADO + 4*(n-
1), n=1...2; RW)
. . Init A
Field Bit(s) val. Description
At 1b, each bit enables auto set and clear of its corresponding bits in the EIMS[n]
Auto Mask 31:0 0x0 register. Bits 15:0 of EIAM1 are mirrored in EIAM bits 15:0.
. Note that if any of the Auto Mask enable bits is set, the GPIE.EIAME bit must be set as
well.
8.2.3.5.11 MSIX to EITR Select — EITRSEL (0x00894; RW)
. . Init -
Field Bit(s) val. Description
Each bit ‘n’ in this register selects the VF index (32+'n") or PF interrupt source for the
VFSelect 31:0 0x0 EITR registers (VF 0-31 are not multiplexed as described in Section 7.3.4.3.3). At Ob, it
selects the PF and at 1b it selects the VF.
8.2.3.5.12 Extended Interrupt Throttle Registers — EITR[n] (0x00820 + 4*n, n=0...23 and

0x012300 + 4*(n-24), n=24...128; RW)

Mapping of the EITR registers to the MSI-X vectors is described in Section 7.3.4.3.3.

. . Init —
Field Bit(s) val. Description

Reserved 2:0 000b Reserved
Minimum inter-interrupt interval specified in 2 ps units at 1 Gb/2 and 10 Gb/s link. At

ITR Interval 11:3 0x0 100 Mb/s link, the interval is specified in 20 us units.

At OxO0 interrupt throttling is disabled while any “event” causes an immediate interrupt.

Reserved 14:12 000b Reserved
When set, LLI moderation is enabled. Otherwise, any LLI packet generates an
immediate interrupt.

LLI Moderation 15 Ob LLI moderation might be set only if interrupt throttling is enabled by the ITR Interval
field in this register and LLI moderation is enabled by the LL Interval field in the GPIE
register.

LLI Credit 20:16 0x0 Re_flects the cqrre_nt credits for associated interrupt. When CNT_WDIS is not set on a
write cycle, this field must be set to 0xO.

This field represents the seven MS bits (out of nine bits) of the ITR counter. It is a down
counter that is loaded with an ITR interval value each time the associated interrupt is

ITR Counter 27:21 0x0 ;’;:]stier:’tued. When the ITR counter reaches zero it stops counting and triggers an

pt.
On a write cycle, software must set this field to O if CNT_WDIS in this register is cleared
(write enable to the ITR counter).

Reserved 30:28 000b Reserved
Write disable to the LLI credit and ITR counter. When set, the LLI credit and ITR counter
are not overwritten by the write access. When cleared, software must set the LLI credit

CNT_WDIS 31 Ob .] : ; .
and ITR counter to zero, which enables an immediate interrupt on packet reception.
This bit is write only. Always read as Ob.

477

] ®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.5.13 L3 L4 Tuples Immediate Interrupt Rx — L34TIMIR[Nn] (OXOE800 + 4*n,
n=0...127; RW)

This register must be initialized by software.

. . Init L
Field Bit(s) val. Description

Reserved 11:0 X Reserved

. Size Bypass. When 1b, the size check is bypassed.
Size_BP 12 X) ;

- WhenOb, the size check is performed.
Reserved 19:13 X Reserved. Must be set to 1000000b on any programmed filter.
Enables issuing a LLI when the following conditions are met:
Low Latency Interrupt | 20 X = The 5-tuple filter as_somated_ with this register m::_\tches. _
= If enabled by the Size_BP bit, the packet length is smaller than the length defined
by LLITHRESH.SizeThresh.

Rx Queue 27:21 X Identifies the Rx queue associated with this 5-tuple filter.
Reserved 31:28 X Reserved

8.2.3.5.14 LLI Size Threshold — LLITHRESH (OxXOEC90; RW)

Field Bit(s) Init Val. Description

Size Threshold. A packet with length below this threshold that matches one of the 5-
SizeThresh 11:0 0x000 tuple filters with an active Low Latency Interrupt flag in the L34TIMIR[n] registers might
trigger an LLI.

Reserved 25:12 0x0 Reserved

Reserved 31:26 000101b | Reserved

8.2.3.5.15 Immediate Interrupt Rx VLAN Priority Register- IMIRVP (OXOEC60 / OxO5ACO;
RW)

IMIRVP is also mapped to address OxO5ACO to maintain compatibility with the 82598.

Field Bit(s) \'/';'It Description

VLAN Priority. This field includes the VLAN priority threshold. When Vlan_pri_en is set to
Vlan_Pri 2:0 000b 1b, then an incoming packet with VLAN tag with a priority equal or higher to VlanPri
must trigger a LLI, regardless of the ITR moderation.

VLAN Priority Enable. When 1b, an incoming packet with VLAN tag with a priority equal
Vlan_pri_en 3 0 or higher to Vlan_Pri must trigger a LLI, regardless of the ITR moderation.

When 0b, the interrupt is moderated by ITR.

Reserved 31:4 Reserved

478

Programming Interface — Intel® 82599 10 GbE Controller

8.2.3.5.16

Interrupt Vector Allocation Registers — IVAR[N] (0x00900 + 4*n, n=0...63;

RW)

intel.

These registers map interrupt causes into EICR entries (legacy/MSI modes) or into MSI-X vectors (MSI-
X modes). See Section 7.3.4 for mapping and use of these registers.

Transmit and receive queues mapping to IVAR registers is shown in Figure 8.1:

Figure 8.1.

IVAR O IVAR 1 IVAR 2 IVAR 62 IVAR 63
Rx 0 Rx 2 Rx 4 Rx 124 Rx 126
Tx 0 Tx 2 Tx 4 Tx 124 Tx 126
Rx 1 Rx 3 Rx 5 P Rx 125 Rx 127
Tx 1 Tx 3 Tx5 Tx 125 Tx 127

Transmit and Receive Queues Mapping to IVAR Registers

Fields of the IVAR registers are described in Table 8.5.

Table 8.5. Fields of IVAR Register
Field Bit(s) \'/’:It' Description

INT_Alloc[0] 5:0 X The interrupt allocation for Rx queue (‘2xN’ for IVAR register ‘N’).
Reserved 6 Ob Reserved

INT_Alloc_val[0] 7 Ob Interrupt allocation valid indication for INT_Alloc[O].

INT_Alloc[1] 13:8 X The interrupt allocation for Tx queue (‘2xN’ for IVAR register ‘N’).
Reserved 14 Ob Reserved

INT_Alloc_val[1] 15 Ob Interrupt allocation valid indication for INT_Alloc[1].

INT_Alloc[2] 21:16 X The interrupt allocation for Rx queue (‘2xN’+1 for IVAR register ‘N’).
Reserved 22 Ob Reserved

INT_Alloc_val[2] 23 Ob Interrupt allocation valid indication for INT_Alloc[2].

INT_Alloc[3] 29:24 X The interrupt allocation for Tx queue (‘2xN’+1 for IVAR register ‘N’).
Reserved 30 Ob Reserved

INT_Alloc_val[3] 31 Ob Interrupt allocation valid indication for INT_Alloc[3].

8.2.3.5.17

Miscellaneous Interrupt Vector Allocation — IVAR_MISC (0OxXO0AO0Q; RW)

These register maps interrupt causes into MSI-X vectors (MSI-X modes). See Section 7.3.4 for mapping

and use of these registers.

Field Bit(s) \I/r;ilt. Description
INT_Alloc[0] 6:0 X Defines the MSI-X vector assigned to the TCP timer interrupt cause.
INT_Alloc_val[0] 7 Ob Valid bit for INT_Alloc[0].
INT_Alloc[1] 14:8 X Defines the MSI-X vector assigned to the other interrupt cause.
INT_Alloc_val[1] 15 1b Valid bit for INT_Alloc[1].
Reserved 31:16 Ob Reserved
Note: The INT_ALLOC_VAL[1] bit default value is one — to enable legacy driver functionality.

479

intel.

Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.5.18 General Purpose Interrupt Enable — GPIE (0x00898; RW)

. . Init L
Field Bit(s) val. Description
General Purpose Interrupt Detection Enable for SDPO. If software-controllable 1/0 pin
SDPO_GPIEN (o] Ob SDPO is configured as an input, this bit (when 1b) enables use for GPI interrupt
detection.
General Purpose Interrupt Detection Enable for SDP1. If software-controllable 1/0 pin
SDP1_GPIEN 1 Ob SDP1 is configured as an input, this bit (when 1b) enables use for GPI interrupt
detection.
General Purpose Interrupt Detection Enable for SDP2. If software-controllable 1/0 pin
SDP2_GPIEN 2 Ob SDP2 is configured as an input, this bit (when 1b) enables use for GPI interrupt
detection.
General Purpose Interrupt Detection Enable for SDP3. If software-controllable 1/0 pin
SDP3_GPIEN 3 Ob SDP3 is configured as an input, this bit (when 1b) enables use for GPI interrupt
detection.
MSI-X Mode. Selects between MSI-X interrupts and other interrupt modes.
Multiple_MSIX 4 Ob Ob = Legacy and MSI mode (non-MSI-X mode).
1b = MSI-X mode.
ocb 5 ob Other Clear Disable. When set, indicates that only bits 29:16 of the EICR register are
cleared on read. When cleared, the entire EICR is cleared on read.
EIMEN 6 Ob EICS Immediate Interrupt Enable. When set, setting this bit in the EICS register causes
a LLI. If not set, the EICS interrupt waits for EITR expiration.
Low latency Credits Increment Rate. The interval is specified in 4 us increments at
LL Interval 10:7 0x0 1 Gb/s and 10 Gb/s link. It is defined as 40 us at 100 Mb/s link. A value of 0x0 disables
) moderation of LLI for all interrupt vectors. When LLI is disabled by the LL Interval bit,
the LLI Moderation bit in all EITR registers must not be set.
. Delay from RSC completion triggered by ITR and interrupt assertion. The delay = (RSC
RSC Delay 13:11 1000b | pejay + 1) x 4 us = 4, 8, 12... 32 ps.
Specify the number of active VFs. Software must set this field the same as
GCR_Ext.VT_Mode.
. 00b = Non-10V mode.
VT_Mode 15:14 00b 10b = 32 VF mode.
O0lb = 16 VF mode.
11b = 64 VF mode.
Reserved 29:16 0x0 Reserved
Extended Interrupt Auto Mask Enable. When set, the EIMS register can be auto-cleared
(depending on EIAM setting) upon interrupt assertion. In any case, the EIMS register
EIAME 30 Ob can be auto-cleared (depending on EIAM setting) following a write-to-clear (or read) to
the EICR register.
Software may set the EIAME only in MSI-X mode.
PBA Support. When set, setting one of the extended interrupts masks via EIMS causes
PBA_ the PBA bit of the associated MSI-X vector to be cleared. Otherwise, the 82599 behaves
support 31 Ob in a way supporting legacy INT-x interrupts.
Note: Should be cleared when working in INT-x or MSI mode and set in MSI-X mode.

The 82599 allows for up to four externally controlled interrupts. The lower four software-definable pins,
SDP[3:0], can be mapped for use as GPI interrupt bits. These mappings are enabled by the
SDPx_GPIEN bits only when these signals are also configured as inputs via SDPx_IODIR. When
configured to function as external interrupt pins, a GPI interrupt is generated when the corresponding
pin is sampled in an active-high state.

The bit mappings are listed in Table 8.6 for clarity.

480

[] ®
Programming Interface — Intel® 82599 10 GbE Controller l n tel

Table 8.6. GPI-to-SDP Bit Mappings
SDP (pin to be used as GPI) ESDP Field Settings Resulting EICR Bit (GPI)
Directionality Enable as GPI interrupt
3 SDP3_IODIR SDP3_GPIEN 27
2 SDP2_IODIR SDP2_GPIEN 26
1 SDP1_IODIR SDP1_GPIEN 25
0 SDPO_IODIR SDPO_GPIEN 24

8.2.3.6

MSI-X Table Registers

MSI-X capability is described in section Section 9.3.8. The MSI-X table is described in Section 9.3.8.2
and the Pending Bit Array (PBA) is described in Section 9.3.8.3. These registers are located in the MSI-

X BAR.

8.2.3.6.1

MSI-X PBA Clear — PBACL[Nn] (Ox110CO + 4*n, n=0...7 / 0x11068 [n=0]; RW)

PBACL[O] is also mapped to address 0x11068 to maintain compatibility with the 82598.

. . Init S
Field Bit(s) val. Description

MSI-X Pending Bits Clear. Writing 1b to any bit clears it’s content; writing Ob has no

PENBITCLR 31:0 0x0 effect.
Reading this register returns the MSIPBA.PENBIT value.

8.2.3.7 Receive Registers

8.2.3.7.1 Filter Control Register — FCTRL (0x05080; RW)

. . Init L
Field Bit(s) val. Description

Reserved (6] Ob Reserved
Store Bad Packets.
Ob = Do not store.
1b = Store.
Note that CRC errors before the SFD are ignored. Any packet must have a valid SFD
(RX_DV with no RX_ER in the XGMII/GMII i/f) in order to be recognized by the device
(even bad packets).

SBP 1 Ob Note: Packets with errors are not routed to manageability even if this bit is set.
Note: Erroneous packets can be routed to the default queue rather than the originally
intended queue.
Note: In packets shorter than 64 bytes, the checksum errors can be hidden while MAC
errors are reported.
Note: A packet with a valid error (caused by byte error or illegal error) might have data
contamination in the last eight bytes when stored in the host memory if the Store Bad
Packet bit is set.

Reserved 7:2 0x0 Reserved
Multicast Promiscuous Enable.

MPE 8 Ob Ob = Disabled. _ _ _ _

1b = Enabled. When set, all received multicast and broadcast packets pass L2 filtering
and can be directed to manageability or the host by a one of the decision filters.

481

Intel® 82599 10 GbE Controller — Programming Interface

. . Init .
Field Bit(s) val. Description

Unicast Promiscuous Enable.

UPE 9 Ob Ob = Disabled.
1b = Enabled.
Broadcast Accept Mode.

BAM 10 Ob Ob = Ignore broadcast packets to host.
1b = Accept broadcast packets to host.

Reserved 31:11 0x0 Reserved

Note: Before receive filters are updated/modified the RXCTRL.RXEN bit should be set to Ob. After
the proper filters have been set the RXCTRL.RXEN bit can be set to 1b to re-enable the

receiver.
8.2.3.7.2 VLAN Control Register — VLNCTRL (0x05088; RW)
Field Bit(s) Init Description
Val. P

VLAN Ether Type (the VLAN Tag Protocol Identifier — TPID). This register contains the
type field hardware matches against to recognize an 802.1Q (VLAN) Ethernet packet.
For proper operation, software must not change the default setting of this field

VET 15:0 0x8100 | (802.3ac standard defines it as 0x8100).
This field must be set to the same value as the VT field in the DMATXCTL register.
Note: This field appears in little endian order (the upper byte is first on the wire
(VLNCTRL.VET[15:8]).

Reserved 27:16 Reserved
Canonical Form Indicator Bit Value.

CFI1 28 Ob If CFIEN is set to 1b, then 802.1q packets with CFI equal to this field are accepted;
otherwise, the 802.1q packet is discarded.
Canonical Form Indicator Enable.

CFIEN 29 Ob Ob = Disabled (CFI bit not compared to decide packet acceptance).
1b = Enabled (CFI from packet must match next CFl field to accept 802.1q packet).
VLAN Filter Enable.

VFE 30 Ob Ob = Disabled (filter table does not decide packet acceptance).
1b = Enabled (filter table decides packet acceptance for 802.1q packets).

Reserved 31 Ob Reserved

8.2.3.7.3 Multicast Control Register — MCSTCTRL (0x05090; RW)

. . Init L
Field Bit(s) val. Description
Multicast Offset. This determines which bits of the incoming multicast address are used
in looking up the bit vector.
. 00b = [47:36].

MO 1:0 00b 01b = [46:35].
10b = [45:34].
11b = [43:32].
Multicast Filter Enable.

MFE 2 Ob Ob = The multicast table array filter (MTA[n]) is disabled.
1b = The multicast table array (MTA[n]) is enabled.

Reserved 31:3 0x0 Reserved

482

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.7.4

Packet Split Receive Type Register — PSRTYPE[n] (OXOEAQOO + 4*n, n=0...63 /
0x05480 + 4*n, n=0...15; RW)

Registers 0...15 are also mapped to 0x05480 to maintain compatibility with the 82598.

Notes:

= This register must be initialized by software.

« Packets are split according to the lowest-indexed entry that applies to the packet and that is
enabled. For example, if bits 4 and 8 are set, then an IPv4 packet that is not TCP is split after the
IPv4 header.

= This bit mask table enables or disables each type of header to be split. A value of 1b enables an

entry.

= In virtualization mode, a separate PSRTYPE register is provided per pool up to the number of pools
enabled. In non-virtualization mode, only PSRTYPE[O] is used.

Field Bit(s) \I/r;ilt- Description
PSR_typeO (6] X Reserved
PSR_typel 1 X Split received NFS packets after NFS header.
PSR_type2 2 X Reserved
PSR_type3 3 X Reserved
PSR_type4 4 X Split received TCP packets after TCP header.
PSR_type5 5 X Split received UDP packets after UDP header.
PSR_type6 6 X Reserved
PSR_type7 7 X Reserved
PSR_type8 8 X Split received IPv4 packets after IPv4 header.
PSR_type9 9 X Split received IPv6 packets after IPv6 header.
PSR_typelO 10 X Reserved
PSR_typell 11 X Reserved
PSR_typel2 12 X Split received L2 packets after L2 header.
PSR_typel3 13 X Reserved
PSR_typel4d 14 X Reserved
PSR_typel5 15 X Reserved
PSR_typel6 16 X Reserved
PSR_typel7 17 X Reserved
PSR_typel8 18 X Reserved
Reserved 28:19 X Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to this pool.
Valid values are zero, 0001b and 0010b. The default value should be 0010b, meaning
RQPL 31:29 X that up to 4 queues can be erjabled for this pool. A value of 0001b means that up to 2
queues can be enabled for this pool.
A value of zero means that all the traffic of the pool is sent to queue O of the pool. This
field is used only if MRQC.MRQE equals 1010b or 1011b.
8.2.3.7.5 Receive Checksum Control — RXCSUM (0x05000; RW)

483

[®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

Field Bit(s) \I/r;ilt_ Description
Reserved 11:0 0x0 Reserved
IPPCSE 12 Ob IP Payload Checksum Enable.
PCSD 13 ob RS_S/Fragment Checksum Status Selection. Wr_len set to 1b, the extended descriptor
write back has the RSS field. When set to Ob, it contains the fragment checksum.
Reserved 31:14 0x0 Reserved

The Receive Checksum Control register controls the receive checksum offloading features of the 82599.
The 82599 supports the offloading of three receive checksum calculations: the fragment checksum, the
IP header checksum, and the TCP/UDP checksum.

PCSD: The Fragment Checksum and IP Identification fields are mutually exclusive with the RSS hash.

Only one of the two options is reported in the Rx descriptor. The RXCSUM.PCSD affect is shown in
Table 8.7.

Table 8.7. Checksum Enable/Disable

RXCSUM.PCSD Ob (Checksum Enable) 1b (Checksum Disable)

Fragment checksum and IP identification are

reported in the Rx descriptor. RSS hash value is reported in the Rx descriptor.

IPPCSE: IPPCSE controls the fragment checksum calculation. As previously noted, the fragment
checksum shares the same location as the RSS field. The fragment checksum is reported in the receive
descriptor when the RXCSUM.PCSD bit is cleared.

If RXCSUM.IPPCSE is cleared (the default value), the checksum calculation is not done and the value
that is reported in the Rx fragment checksum field is Ob.

If RXCSUM.IPPCSE is set, the fragment checksum is aimed to accelerate checksum calculation of
fragmented UDP packets. See Section 7.1.13 for a detailed explanation.

This register should only be initialized (written) when the receiver is not enabled (for example, only
write this register when RXCTRL.RXEN = Ob).

8.2.3.7.6 Receive Filter Control Register — RFCTL (0x05008; RW)

Field Bit(s) \I/';ilt_ Description
Reserved 5:0 0x0 Reserved
RSC DIS 5 0 _RSC Disable. When.set, disable RSC for the port by the Rx filter unit. The default value
— is Ob (RSC feature is enabled).
NFSW_DIS 6 Ob NFS Write disable. Disable filtering of NFS write request headers.
NFSR_DIS 7 Ob NFS Read disable. Disable filtering of NFS read reply headers.

NFS version recognized by the hardware.
00b = NFS version 2

NFS_VER 9:8 00b 01b = NFS version 3

10b = NFS version 4

11b = Reserved for future use

IPv6 Disable.
IPv6_dis 10 Ob Disable IPv6 packet filtering
Internal use only — should not be set to 1b.

484

Programming Interface — Intel® 82599 10 GbE Controller

Field Bit(s) \I/r;ilt- Description

Reserved 11 Ob Reserved, always set to Ob.

Reserved 13:12 00b Reserved.
IP Fragment Split Disable

IPFRSP_DIS 14 Ob When this bit is set the header of IP fragmented packets are not set.
Internal use only. Should not be set to 1b.

Reserved 15 Ob Reserved.

Reserved 17:16 00b Reserved

Reserved 31:18 0x0 Reserved. Should be written with Ox0 to ensure future compatibility.

8.2.3.7.7 Multicast Table Array — MTA[n] (0x05200 + 4*n, n=0...127; RW)

This table should be initialized by software before transmit and receive are enabled.

Field

Bit(s)

Init
Val.

Description

Bit Vector

31:0

Word wide bit vector specifying 32 bits in the multicast address filter table. The 82599
provides multicast filtering for 4096 multicast addresses by providing single-bit entry
per multicast address. Those 4096 address locations are organized in the Multicast
Table Array (MTA); 128 registers of 32 bits for each one. Only 12 bits out of the 48-bit
destination address are considered as a multicast address. Those 12 bits can be
selected by the MO field of MCSTCTRL register. The 7 MS bits of the Ethernet MAC
address (out of the 12 bits) selects the register index while the 5 LS bits (out of the 12
bits) selects the bit within a register.

8.2.3.7.8

Receive Address Low — RAL[Nn] (Ox0A200 + 8*n, n=0...127; RW)

While "n" is the exact unicast/multicast address entry and it is equals to 0,1,...127.

Field

Bit(s)

Init
Val.

Description

RAL

31:0

Receive Address Low. The lower 32 bits of the 48-bit Ethernet MAC address.
Note: Field is defined in big endian (LS byte of RAL is first on the wire).

These registers contain the lower bits of the 48-bit Ethernet MAC address. All 32 bits are valid.

If the EEPROM is present, the first register (RALO) is loaded from the EEPROM.

8.2.3.7.9

Receive Address High — RAH[Nn] (Ox0A204 + 8*n, n=0...127; RW)

While "n" is the exact unicast/multicast address entry and it is equals to 0,1,...127.

. . Init L
Field Bit(s) val. Description
RAH 15:0 M Receive Address High. The upper 16 bits of the 48 bit Ethernet MAC Address.
. Note: Field is defined in Big Endian (MS byte of RAH is Last on the wire).

Reserved 21:16 0x0 Reserved

Reserved 30:22 0x0 Reserved. Reads as 0. Ignored on write.
X Address Valid. All receive addresses are not initialized by hardware and software should

AV 31 initialize them before receive is enabled. If the EEPROM is present, Receive Address[0]
see is loaded from the EEPROM and its Address Valid field is set to 1b after a software, PCI
desc. reset or EEPROM read.

485

[®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

These registers contain the upper bits of the 48-bit Ethernet MAC address. The complete address is
{RAH, RAL}. AV determines whether this address is compared against the incoming packet. AV is
cleared by a master reset.

Note: The first Receive Address register (RAROQ) is also used for exact match pause frame checking
(DA matches the first register). RARO should always be used to store the individual Ethernet
MAC address of the adapter.

After reset, if the EEPROM is present, the first register (Receive Address Register 0) is loaded from the
IA field in the EEPROM, its Address Select field is 00b, and its Address Valid field is 1b. If no EEPROM is
present, the Address Valid field is Ob. The Address Valid field for all of the other registers are Ob.

8.2.3.7.10 MAC Pool Select Array — MPSAR[Nn] (OXOA600 + 4*n, n=0...255; RW)

Software should initialize these registers before transmit and receive are enabled.

Init

Field Bit(s) | o

Description

Pool Enable Bit Array. Each couple of registers ‘2*n’ and ‘2*n+1’ are associated with
Ethernet MAC address filter ‘n’ as defined by RAL[n] and RAH[n]. Each bit when set,
POOL_ENA 31:0 X enables packet reception with the associated pools as follows:

Bit ‘i’ in register ‘2*n’ is associated with POOL ‘i’
Bit ‘i’ in register ‘2*n+1’ is associated with POOL ‘32+i".

8.2.3.7.11 VLAN Filter Table Array — VFTA[n] (OXOAOO0O + 4*n, n=0...127; RW)

This table should be initialized by software before transmit and receive are enabled.

. . Init Lo
Field Bit(s) val. Description
VLAN Filter. Each bit ‘i’ in register ‘n’ affects packets with VLAN tags equal to 32*n++i.
VLAN FLT 31:0 M 128 VLAN Filter registers compose a table of 4096 bits that cover all possible VLAN tags.
- : Each bit when set, enables packets with the associated VLAN tags to pass. Each bit
when cleared, blocks packets with this VLAN tag.

486

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.7.12

Multiple Receive Queues Command Register- MRQC (OxXOEC80 / 0x05818; RW)

MRQC is also mapped to address 0x05818 to maintain compatibility with the 82598.

Field Bit(s) \I/';'It_ Description

Multiple Receive Queues Enable. Defines the allocation of the Rx queues per RSS,
virtualization and DCB.
0000b = RSS disabled.
0001b = RSS only — Single set of RSS 16 queues.
0010b = DCB enabled and RSS disabled — 8 TCs, each allocated 1 queue.
0011b = DCB enabled and RSS disabled — 4 TCs, each allocated 1 queue.
0100b = DCB and RSS — 8 TCs, each allocated 16 RSS queues.
0101b = DCB and RSS — 4 TCs, each allocated 16 RSS queues.
0110b = Reserved

MRQE 3:0 0x0 0111b = Reserved
1000b = Virtualization only — 64 pools, no RSS, each pool allocated 2 queues.
1001b = Reserved
1010b = Virtualization and RSS — 32 pools, each allocated 4 RSS queues.
1011b = Virtualization and RSS — 64 pools, each allocated 2 RSS queues.
1100b = Virtualization and DCB — 16 pools, each allocated 8 TCs.
1101b = Virtualization and DCB — 32 pools, each allocated 4 TCs.
1110b = Reserved
1111b = Reserved

Reserved 14:4 0x0 Reserved

Reserved 15 0x0 Reserved
Each bit, when set, enables a specific field selection to be used by the hash function.
Several bits can be set at the same time.
Bit[16] — Enable TcplPv4 hash function.
Bit[17] — Enable IPv4 hash function.
Bit[19:18] — Reserved

. Bit[20] — Enable IPv6 hash function.

RSS Field Enable 31:16 0ox0 . .
Bit[21] — Enable TcplPv6 hash function.
Bit[22] — Enable UdpIPV4.
Bit[23] — Enable UdpIPV6.
Bits[31:24] — Reserved
Note: On Tunnel packets IPv4-1Pv6 only the IPv4 header can be used for the RSS
filtering.

8.2.3.7.13 RSS Queues Per Traffic Class Register — RQTC (OxXOEC70; RW)
. . Init S
Field Bit(s) val. Description
Defines the number of bits to use for RSS redirection of packets dedicated to Traffic
. Class (TC) O.
RQTCO 2:0 ox4 A value of zero means that all the traffic of TCO is sent to queue O of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.
Reserved 3 Ob Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to TC 1.
RQTC1 6:4 0Ox4 A value of zero means that all the traffic of TC1 is sent to queue O of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.
Reserved 7 Ob Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to TC 2.
RQTC2 10:8 0x4 A value of zero means that all the traffic of TC2 is sent to queue O of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.

487

intel.

Intel® 82599 10 GbE Controller — Programming Interface

. . Init Lo
Field Bit(s) val. Description
Reserved 11 Ob Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to TC 3.
RQTC3 14:12 ox4 A value of zero means that all the traffic of TC3 is sent to queue 0 of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.
Reserved 15 Ob Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to TC 4.
RQTC4 18:16 ox4 A value of zero means that all the traffic of TC4 is sent to queue 0O of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.
Reserved 19 Ob Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to TC 5.
RQTC5 22:20 ox4 A value of zero means that all the traffic of TC5 is sent to queue 0O of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.
Reserved 23 Ob Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to TC 6.
RQTC6 26:24 ox4 A value of zero means that all the traffic of TC6 is sent to queue 0O of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.
Reserved 27 Ob Reserved
Defines the number of bits to use for RSS redirection of packets dedicated to TC 7.
RQTC7 30:28 ox4 A value of zero means that all the traffic of TC7 is sent to queue 0O of the TC.
This field is used only if MRQC.MRQE equals 0100b or 0101b.
Reserved 31 Ob Reserved
8.2.3.7.14 RSS Random Key Register — RSSRK (OxXOEB80 + 4*n, n=0...9 / 0x05C80 + 4*n,

n=0...9; RW)

RSSRK is also mapped to addresses 0x05C80-0x05CA4 to maintain compatibility with the 82598. The
RSS Random Key is 40 bytes wide (see RSS hash in Section 7.1.2.8.1).

Field Bit(s) I\/nailtliJaeI Description
KO 7:0 0x0 RSS Key Byte ‘4*n+0’ of the RSS random key, for each register ‘n’.
K1 15:8 0x0 RSS Key Byte ‘4*n+1’ of the RSS random key, for each register ‘n’
K2 23:16 0x0 RSS Key Byte ‘4*n+2’ of the RSS random key, for each register ‘n’.
K3 31:24 0x0 RSS Key Byte ‘4*n+3’ of the RSS random key, for each register ‘n’.
8.2.3.7.15 Redirection Table — RETA[Nn] (OXOEBOO + 4*n, n=0...31 / Ox0O5C00 + 4*n,

n=0...31; RW)

RETA is also mapped to addresses 0x05C00-0x05C7C to maintain compatibility with the 82598. The
redirection table has 128-entries in 32 registers.

. . Init S
Field Bit(s) val. Description
. EntryO defines the RSS output index for hash value ‘4*n+0’. While ‘n’ is the register
Entry0 3:0 X index, equals to 0...31.
Reserved 7:4 0x0 Reserved
Entry1 11:8 X Entryl defines the RSS output index for hash value ‘4*n+1’. While ‘n’ is the register
index, equals to 0...31.

488

]
Programming Interface — Intel® 82599 10 GbE Controller l n tel

. . Init .
Field Bit(s) Val. Description

Reserved 15:12 0x0 Reserved

Entry2 19:16 X !Entry2 defines the RSS output index for hash value ‘4*n+2’. While ‘n’ is the register
index, equals to 0...31.

Reserved 23:20 0x0 Reserved

Entry3 27:24 X !Entry3 defines the RSS output index for hash value ‘4*n+3’. While ‘n’ is the register
index, equals to 0...31.

Reserved 31:28 0x0 Reserved

The contents of the redirection table are not defined following reset of the Memory Configuration
registers. System software must initialize the table prior to enabling multiple receive queues. It can
also update the redirection table during run time. Such updates of the table are not synchronized with
the arrival time of received packets. Therefore, it is not guaranteed that a table update takes effect on
a specific packet boundary.

8.2.3.7.16 Source Address Queue Filter — SAQF[n] (OXOEOQO + 4*n, n=0...127; RW)

This register must be initialized by software

. . Init Lo
Field Bit(s) val. Description
IP Source Address. Part of the 5-tuple queue filters.
Source Address 31:0 X L .
Note: Field is defined in big endian (LS byte is first on the wire).

8.2.3.7.17 Destination Address Queue Filter — DAQF[n] (OXOE200 + 4*n, n=0...127; RW)

This register must be initialized by software.

Field Bit(s) \I/';'It Description
Destination Address 31:0 X IP Destination Address. Part of the 5-tuple queue filters.
. Note: Field is defined in big endian (LS byte is first on the wire).

8.2.3.7.18 Source Destination Port Queue Filter — SDPQF[n] (OxXOE400 + 4*n, n=0...127;
RW)

This register must be initialized by software.

. . Init R
Field Bit(s) val. Description
Source Port 15:0 M TCP/UDI.D Soyrce P.ort. !Dart. of the. 5-tuple queye filters. .
Note: Field is defined in Big Endian (LS byte is first on the wire).
Destination Port 31:16 X TCP/UDP Destination Port. Part of the 5-tuple queue filters.

489

intel.

8.2.3.7.19

Intel® 82599 10 GbE Controller — Programming Interface

Five tuple Queue Filter — FTQF[n] (OXOE600 + 4*n, n=0...127; RW)

Field

Bit(s)

Init
Val.

Description

Protocol

1:0

IP L4 protocol, part of the 5-tuple queue filters.
00b = TCP.

01b = UDP.

10b = SCTP.

11b = Other.

Note: Encoding of the protocol type for the 128 x 5-tuple filters is defined differently
than the LATYPE encoding for the flow director filters.

Priority

4:2

Priority value in case more than one 5-tuple filter matches.
000b = Reserved
001b = Lowest priority.

111b = Highest priority.

Reserved

7:5

Reserved

Pool

13:8

The pool Index of the pool associated with this filter.

Reserved

24:14

Reserved for extension of the Pool field.

Mask

29:25

Mask bits for the 5-tuple fields (1b = don’t compare). The corresponding field
participates in the match if the following bit is cleared:

Bit 25 = Mask source address comparison.

Bit 26 = Mask destination address comparison.
Bit 27 = Mask source port comparison.

Bit 28 = Mask destination port comparison.

Bit 29 = Mask protocol comparison.

Pool Mask

30

Mask bit for the Pool field. When set to 1b, the Pool field is not compared as part of the
5-tuple filter. Software can clear (activate) the Pool Mask bit only when operating in 10V
mode.

Queue Enable

31

When set, enables filtering of Rx packets by the 5-tuple defined in this filter to the
queue indicated in register L34TIMIR.

Note: There are 128 different 5-tuple filter configuration registers sets, with indexes [0]
to [127]. The mapping to a specific Rx queue is done by the Rx Queue field in the
L34TIMIR register, and not by the index of the register set.

490

Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.7.20 SYN Packet Queue Filter — SYNQF (OxXOEC30; RW)
Field Bit(s) \I/r;'lt Description
Queue Enable (6] Ob When set, enables routing of Rx packets to the queue indicated in this register.
Rx Queue 7:1 0x0 Identifies an Rx queue associated with SYN packets.
Reserved 9:8 00b Reserved for extension of the Rx Queue field.
Reserved 30:10 0x0 Reserved
Defines the priority between SYNQF and 5-tuples filter.
SYNQFP 31 Ob Ob = 5-tuple filter priority
1b = SYN filter priority.
8.2.3.7.21 EType Queue Filter — ETQF[Nn] (0x05128 + 4*n, n=0...7; RW)

See Section 7.1.2.3 for more details on the use of this register.

. . Init S
Field Bit(s) val. Description

Identifies the protocol running on top of IEEE 802. Used to route Rx packets containing

EType 15:0 0ox0 this EtherType to a specific Rx queue.
Note: Field is defined in little endian (MS byte is first on the wire).

up 18:16 0x0 User Priority. A 802.1Q UP value to be compared against the User Priority field in the Rx

) packet. Enabled by the UP Enable bit.

UP Enable 19 ob User Priority Enable. Enables comparison of the User Priority field in the received
packet.

Pool 25:20 0x0 In virtualization modes, determines the target pool for the packet.

Pool Enable 26 Ob In virtualization modes, enables the Pool field.

FCoE 27 Ob When set, packets that match this filter are identified as FCoE packets.

Reserved 28 Ob Reserved

Reserved 29 Ob Reserved

1588 time stamp 30 Ob When_set_, packets with this EType are time stamped according to the IEEE 1588
specification.

. Ob = The filter is disabled for any functionality.

Filter Enable 31 Ob
1b = The filter is enabled. Exact actions are determined by separate bits.

8.2.3.7.22 EType Queue Select — ETQS[Nn] (OXOECOO + 4*n, n=0...7; RW)

See Section 7.1.2.3 for more details on the use of this register.

Field Bit(s) \I/r;ilt' Description
Reserved 15:0 0x0 Reserved
Rx Queue 22:16 0x0 Identifies the Rx queue associated with this EType.
Reserved 24:23 0x0 Reserved for future extension of the Rx Queue field.
Reserved 28:25 0x0 Reserved
Low Latency Interrupt | 29 Ob When set, packets that match this filter generate a LLI.
Reserved 30 0x0 Reserved
Queue Enable 31 ob When set, enables filtering of Rx packets by the EType defined in this register to the

queue indicated in this register.

491

intel.

Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.7.23 Rx Filter ECC Err Insertion O — RXFECCERRO (Ox051B8; RW)
Field Bit(s) | JInit Description
Val. p

Reserved 8:0 Ox1FF Reserved.
Filter ECC Error indication Enablement. When set to 1b, enables the ECC-INT + the RXF-
blocking during ECC-ERR in one of the Rx filter memories. At Ob, the ECC logic can still

ECCFLT_EN 9 Ob . h

- function overcoming only single errors while dual or multiple errors can be ignored

silently.

Reserved 31:10 0x0 Reserved

492

[] ®
Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.8 Receive DMA Registers

8.2.3.8.1 Receive Descriptor Base Address Low — RDBAL[Nn] (0x01000 + 0x40%*n,
n=0...63 and 0xODO0OO + 0x40*(n-64), n=64...127; RW)

. . Init L
Field Bit(s) val. Description
o] 6:0 0x0 Ignored on writes. Returns 0x0 on reads.
RDBAL 31:7 X Receive Descriptor Base Address Low.

This register contains the lower bits of the 64-bit descriptor base address. The lower 7 bits are always
ignored. The receive descriptor base address must point to a 128 byte-aligned block of data.

8.2.3.8.2 Receive Descriptor Base Address High — RDBAH[Nn] (0x01004 + 0x40*n,
n=0...63 and 0x0D004 + 0x40*(n-64), n=64...127; RW)

Init

Field Bit(s) | y/m

Description

RDBAH 31:0 X Receive Descriptor Base Address [63:32].

This register contains the upper 32 bits of the 64-bit descriptor base address.

8.2.3.8.3 Receive Descriptor Length — RDLEN[Nn] (0x01008 + 0x40*n, n=0...63 and
0x0D008 + 0x40*(n-64), n=64...127; RW)

. . Init L
Field Bit(s) val. Description
Descriptor Ring Length. This register sets the number of bytes allocated for descriptors
LEN 19:0 0x0 izrz;g)e circular descriptor buffer. It must be 128-byte aligned (7 LS bit must be set to
Note: Validated lengths up to 128 K (8 K descriptors).
Reserved 31:20 0x0 Reads as 0x0. Should be written to Ox0 for future compatibility.

8.2.3.8.4 Receive Descriptor Head — RDH[n] (0x01010 + 0x40*n, n=0...63 and 0x0ODO010
+ 0x40*(n-64), n=64...127; RO)

. . Init I
Field Bit(s) val. Description
RDH 15:0 0x0 Receive Descriptor Head. This register holds the head pointer for the receive descriptor
. buffer in descriptor units (16-byte datum). The RDH is controlled by hardware.
Reserved 31:16 0x0 Reserved. Should be written with 0xO.

8.2.3.8.5 Receive Descriptor Tail — RDT[n] (0x01018 + 0x40*n, n=0...63 and Ox0OD018 +
0x40*(Nn-64), Nn=64...127; RW)

. . Init L
Field Bit(s) val. Description
RDT 15:0 0x0 Receive Descriptor Tail.
Reserved 31:16 0x0 Reads as 0x0. Should be written to 0x0 for future compatibility.

493

] ®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

This register contains the tail pointer for the receive descriptor buffer. The register points to a 16-byte
datum. Software writes the tail register to add receive descriptors to the hardware free list for the ring.

Note:

The tail pointer should be set to one descriptor beyond the last empty descriptor in host
descriptor ring.

8.2.3.8.6 Receive Descriptor Control — RXDCTL[n] (0x01028 + 0x40*n, n=0...63 and
0x0D028 + 0x40*(Nn-64), Nn=64...127; RW)

Field Bit(s) \I/r;ilt. Description
Reserved 21:0 0x0 Reserved
Reserved 22 0x0 Reserved (software can read and write in order to maintain backward compatibility.)
Reserved 24:23 00b Reserved

Receive Queue Enable. When set, the ENABLE bit enables the operation of the specific
ENABLE 25 Ob receive queue. Upon read it gets the actual status of the queue (internal indication that
the queue is actually enabled/disabled).

Reserved 26 Ob Reserved (software can read and write in order to maintain backward compatibility.)

Reserved 29:27 0x0 Reserved

VLAN Mode Enable.
VME 30 Ob 1b = Strip VLAN tag from received 802.1Q packets destined to this queue.
Ob = Do not strip VLAN tag.

Reserved 31 Ob Reserved

8.2.3.8.7 Split Receive Control Registers — SRRCTL[n] (0x01014 + 0x40*n, n=0...63 and
0x0D014 + 0x40*(n-64), n=64...127 / 0x02100 + 4*n, [n=0...15]; RW)

SRRCTL[O...15] are also mapped to address 0x02100... to maintain compatibility with the 82598.

Init

Field Bit(s) | o

Description

Receive Buffer Size for Packet Buffer. The value is in 1 KB resolution. Value can be from
BSIZEPACKET 4:0 0x2 1 KB to 16 KB. Default buffer size is 2 KB. This field should not be set to 0x0. This field
should be greater or equal to 0x2 in queues where RSC is enabled.

Reserved.

R 7:
v s 000b Should be written with 000b to ensure future compatibility.

Receive Buffer Size for Header Buffer. The value is in 64 bytes resolution. Value can be
from 64 bytes to 1024 bytes. Note that the maximum supported header size is limited
BSIZEHEADER 13:8 ox4 to 1023. Default buffer size is 256 bytes. This field must be greater than zero if the
value of DESCTYPE is greater or equal to two.

Values above 1024 bytes are reserved for internal use only.

Reserved 21:14 0x0 Reserved

Receive Descriptor Minimum Threshold Size. A LLI associated with this queue is
RDMTS 24:22 000b asserted each time the number of free descriptors is decreased to RDMTS * 64 (this
event is considered as Rx ring buffer almost empty).

494

Programming Interface — Intel® 82599 10 GbE Controller

Field

Bit(s)

Init
Val.

Description

DESCTYPE

27:25

000b

Define the descriptor type in Rx:

000b = Legacy.

001b = Advanced descriptor one buffer.

010b = Advanced descriptor header splitting.

011b = Reserved.

100b = Reserved.

101b = Advanced descriptor header splitting always use header buffer.
110b and 111b = Reserved.

Drop_En

28

Ob

Drop Enabled. If set to 1b, packets received to the queue when no descriptors are
available to store them are dropped.

Rsv

31:29

000b

Reserved.
Should be written with 000b to ensure future compatibility.

Note:

8.2.3.8.8

BSIZEHEADER must be bigger than zero if DESCTYPE is equal to 010b, 011b, 100b or 101b.

Receive DMA Control Register — RDRXCTL (Ox02F00; RW)

Field

Bit(s)

Init
Val.

Description

CRCStrip

Rx CRC Strip indication to the Rx DMA unit. This bit must be set the same as
HLREGO.RXCRCSTRP.
1 - Strip CRC by HW. 0 - No CRC Strip by HW (Default).

Reserved

Reserved

DMAIDONE

Ob

DMA Init Done. When read as 1b, indicates that the DMA initialization cycle is done
(RO).

Reserved

16:4

0x0880

Reserved

RSCFRSTSIZE

21:17

0x8

Defines a minimum packet size (after VLAN stripping, if applicable) for a packet with a
payload that can open a new RSC (in units of 16 byte.). See RSCDBU.RSCACKDIS for
packets without payload.

Note: RSCFRSTSIZE is reserved for internal use. Software should set this field to 0xO0.

Reserved

24:22

000b

Reserved

RSCACKC

25

Ob

RSC Coalescing on ACK Change. When set, an active RSC completes when the ACK bit
in the Rx packet is different than the ACK bit in the RSC context. When cleared, an
active RSC completes only when the ACK bit in the Rx packet is cleared while the ACK
bit in the RSC context is set.

Note: RSCACKC is reserved for internal use. Software should set this bit to 1b.

FCOE_WRFIX

26

Ob

FCoE Write Exchange Fix. When set, DDP context of FC write exchange is closed
following a reception of a last packet in a sequence with an active Sequence Initiative
bit in the F_CTL field. When cleared, the DDP context is not closed.

Note: FCOE_WRFIX is reserved for internal use. Software should set this bit to 1b.

Reserved

31:27

Reserved

8.2.3.8.9

Receive Packet Buffer Size — RXPBSIZE[n] (Ox03COO + 4*n, n=0...7; RW)

Field

Bit(s)

Init
Val.

Description

Reserved

9:0

0x0

Reserved

495

®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

Init

Field Bit(s) | y/m

Description

Receive Packet Buffer Size for traffic class ‘n’ while ‘n’ is the register index. The size is
defined in KB units and the default size of PB[0] is 512 KB. The default size of PB[1-7]
is also 512 KB but it is meaningless in non-DCB mode. When DCB mode is enabled the
size of PB[1-7] must be set to meaningful values. The total meaningful allocated PB
SIZE 19:10 0x200 sizes plus the size allocated to the flow director filters should be less or equal to 512
KB. Possible PB allocation in DCB mode for 8 x TCs is 0x40 (64 KB) for all PBs. Other
possible setting of 4 x TCs is 0x80 (128 KB) for all PB[0-3] and O0x0 for PB[4-7]. See
section 3.7.7.3.5 for other optional settings with/without the flow director filters

Note: In any setting the RXPBSIZE[O] must always be enabled (greater than zero).

Reserved 31:20 0x0 Reserved

8.2.3.8.10 Receive Control Register — RXCTRL (0x03000; RW)

. . Init Lo
Field Bit(s) val. Description
RXEN 0 Ob Receive Enable. When set to Ob, filter inputs to the packet buffer are ignored.
Reserved 31:1 0x0 Reserved

8.2.3.8.11 Rx Packet Buffer Flush Detect — RXMEMWRAP (0x03190; RO)

This register is used by software as part of a queue disable procedure (described in Section 4.6.7.1)

Field Bit(s) \I/réllllt Description
Packet Buffer 0 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TCOWrap 2:0 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next

count.

Packet Buffer 0 Empty
TCOEmpty 3 1b Ob = Packet buffer is not empty.
1b = Packet buffer is empty.

Packet Buffer 1 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TC1Wrap 6:4 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next
count.

Packet Buffer 1 Empty
TC1Empty 7 1b Ob = Packet buffer is not empty.
1b = Packet buffer is empty.

Packet Buffer 2 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TC2Wrap 10:8 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next
count.

Packet Buffer 2 Empty
TC2Empty 11 1b Ob = Packet buffer is not empty.
1b = Packet buffer is empty.

Packet Buffer 3 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TC3Wrap 14:12 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next
count.

Packet Buffer 3 Empty
TC3Empty 15 1b Ob = Packet buffer is not empty.
1b = Packet buffer is empty.

Packet Buffer 4 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TC4Wrap 18:16 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next
count.

496

Programming Interface — Intel® 82599 10 GbE Controller

. . Init Lo
Field Bit(s) val. Description
Packet Buffer 4 Empty
TC4Empty 19 1b Ob = Packet buffer is not empty.
1b = Packet buffer is empty.
Packet Buffer 5 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TC5Wrap 22:20 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next
count.
Packet Buffer 5 Empty
TC5Empty 23 1b 0Ob = Packet buffer is not empty.
1b = Packet buffer is empty.
Packet Buffer 6 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TC6Wrap 26:24 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next
count.
Packet Buffer 6 Empty
TC6Empty 27 1b Ob = Packet buffer is not empty.
1b = Packet buffer is empty.
Packet Buffer 7 Wrap Around Counter. A 3-bit counter that increments on each full cycle
TC7Wrap 30:28 000b through the buffer. Once reaching 111b, the counter warps around to 000b on the next
count.
Packet Buffer 7 Empty
TC7Empty 31 1b Ob = Packet buffer is not empty.
1b = Packet buffer is empty.
8.2.3.8.12 RSC Data Buffer Control Register — RSCDBU (0x03028; RW)
8.2.3.8.13 RSC Control — RSCCTL[n] (Ox0102C + 0x40%*n, n=0...63 and O0xOD0O2C +
0x40*(n-64), Nn=64...127; RW)
. . Init Lo
Field Bit(s) val. Description
RSCEN 0 Ob RSC Enable. When the RSCEN bit is set, RSC is enabled on this queue.
Reserved 1 Ob Reserved
Maximum descriptors per Large receive as follow:
00b = Maximum of 1 descriptor per large receive.
01b = Maximum of 4 descriptors per large receive.
MAXDESC 3:2 00b 10b = Maximum of 8 descriptors per large receive.
11b = Maximum of 16 descriptors per large receive.
Note: MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one, which is the
maximum total length in the IP header and must be larger than the expected received
MSS.
Reserved 31:4 0x0 Reserved
8.2.3.9 Transmit Registers
8.2.3.9.1 DMA Tx TCP Max Allow Size Requests — DTXMXSZRQ (0x08100; RW)

This register limits the total number of data bytes that may be in outstanding PCle requests from the
host memory. This allows requests to send low latency packets to be serviced in a timely manner, as
this request will be serviced right after the current outstanding requests are completed.

497

intel.

Intel® 82599 10 GbE Controller — Programming Interface

. . Init s
Field Bit(s) val. Description
Max allowed number of bytes requests. The maximum allowed amount of 256 bytes
Max_bytes_num_req |11:0 0x10 outstanding requests. If the total size request is higher than the amount in the field no
arbitration is done and no new packet is requested.
Reserved 31:12 0x0 Reserved
8.2.3.9.2 DMA Tx Control — DMATXCTL (0x04A80; RW)
Field Bit(s) | JInit Description
Val. P
TE 0 ob Transmit Enable.
When set, this bit enables the transmit operation of the DMA-TX.
Reserved 1 Ob Reserved
Reserved 2 1b Reserved
Global Double VLAN Mode.
Gov 3 ob When set, this bit enables the Double VLAN mode.
Reserved 15:4 0x0 Reserved
VLAN Ether-Type (the VLAN Tag Protocol Identifier — TPID). For proper operation,
VT 31:16 OX8100 software must not change the default setting of this field (802.3ac standard defines it
as 0x8100).
This field must be set to the same value as the VET field in the VLNCTRL register.
8.2.3.9.3 DMA Tx TCP Flags Control Low — DTXTCPFLGL (0x04A88; RW)

This register holds the mask bits for the TCP flags in Tx segmentation (described in Section 7.2.4.7.1
and Section 7.2.4.7.2).

. . Init L
Field Bit(s) val. Description
TCP_fig_first_seg 11:0 OXEF6 TCP Fla_gs First Segment. Bits that make AND operation with the TCP flags at TCP header
in the first segment.
Reserved 15:12 0x0 Reserved
TCP_Flg_mid_seg 27:16 OXEF6 TCP Flags Ml_ddle Segments. The low bits that make AND operation with the TCP flags at
TCP header in the middle segments.
Reserved 31:28 0x0 Reserved
8.2.3.94 DMA Tx TCP Flags Control High- DTXTCPFLGH (Ox04A8C; RW)

This register holds the mask bits for the TCP flags in Tx segmentation (described in Section 7.2.4.7.3).

. . Init I
Field Bit(s) val. Description
TCP_Flg_Ist_seg 11:0 OXE7F TCP Flags Last Segment. Bits that make AND operation with the TCP flags at TCP
header in the last segment.
Reserved 31:12 0x0 Reserved.

498

[®
Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.9.5 Transmit Descriptor Base Address Low — TDBAL[N] (Ox06000+0x40*n,
n=0...127; RW)

. . Init -
Field Bit(s) val. Description
0 6:0 Ob Ignored on writes. Returns Ob on reads.
TDBAL 31:7 X Transmit Descriptor Base Address Low.

This register contains the lower bits of the 64-bit descriptor base address. The lower seven bits are
ignored. The Transmit Descriptor Base Address must point to a 128 byte-aligned block of data.

8.2.3.9.6 Transmit Descriptor Base Address High — TDBAH[N] (0x06004+0x40%*n,
n=0...127; RW)

Init

Field Bit(s) | o

Description

TDBAH 31:0 X Transmit Descriptor Base Address [63:32].

This register contains the upper 32 bits of the 64 bit Descriptor base address.

8.2.3.9.7 Transmit Descriptor Length — TDLEN[Nn] (0x06008+0x40*n, n=0...127; RW)

. . Init I
Field Bit(s) val. Description
Descriptor Ring Length. This register sets the number of bytes allocated for descriptors
LEN 19:0 0x0 izrz;g\)e circular descriptor buffer. It must be 128byte-aligned (7 LS bit must be set to
Note: Validated Lengths up to 128K (8K descriptors).
Reserved 31:20 0x0 Reads as 0x0. Should be written to 0xO.

8.2.3.9.8 Transmit Descriptor Head — TDH[Nn] (0x06010+0x40*n, n=0...127; RO)

. . Init L
Field Bit(s) val. Description
TDH 15:0 0x0 Transmit Descriptor Head.
Reserved 31:16 0x0 Reserved. Should be written with 0xO.

This register contains the head pointer for the transmit descriptor ring. It points to a 16-byte datum.
Hardware controls this pointer.

The values in these registers might point to descriptors that are still not in the host memory. As a
result, the host cannot rely on these values in order to determine which descriptor to release.

The only time that software should write to this register is after a reset (hardware reset or CTRL.RST)
and before enabling the transmit function (TXDCTL.ENABLE). If software were to write to this register
while the transmit function was enabled, the on-chip descriptor buffers might be invalidated and the
hardware could become confused.

499

intel.

Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.9.9 Transmit Descriptor Tail — TDT[n] (0x06018+0x40*n, n=0...127; RW)
. . Init L
Field Bit(s) val. Description
TDT 15:0 0x0 Transmit Descriptor Tail.
Reserved 31:16 0x0 Reads as 0x0. Should be written to 0xOfor future compatibility.

This register contains the tail pointer for the transmit descriptor ring. It points to a 16-byte datum.
Software writes the tail pointer to add more descriptors to the transmit ready queue. Hardware
attempts to transmit all packets referenced by descriptors between head and tail.

8.2.3.9.10 Transmit Descriptor Control — TXDCTL[n] (0x06028+0x40*n, n=0...127; RW)

Field

Bit(s)

Init
Val.

Description

PTHRESH

6:0

0x0

Pre-Fetch Threshold

Controls when a prefetch of descriptors is considered. This threshold refers to the
number of valid, unprocessed transmit descriptors the 82599 has in its on-chip buffer. If
this number drops below PTHRESH, the algorithm considers pre-fetching descriptors
from host memory. However, this fetch does not happen unless there are at least
HTHRESH valid descriptors in host memory to fetch.

Note: HTHRESH should be given a non-zero value each time PTHRESH is used.

Rsv

ox0

Reserved

HTHRESH

14:8

0x0

Host Threshold.

Rsv

15

0x0

Reserved

WTHRESH

22:16

0x0

Write-Back Threshold.

Controls the write-back of processed transmit descriptors. This threshold refers to the
number of transmit descriptors in the on-chip buffer that are ready to be written back to
host memory. In the absence of external events (explicit flushes), the write-back occurs
only after at least WTHRESH descriptors are available for write-back.

Note: Since the default value for write-back threshold is Ob, descriptors are normally
written back as soon as they are processed. WTHRESH must be written to a non-zero
value to take advantage of the write-back bursting capabilities of the 82599.

Note: When WTHRESH is set to a non-zero value, the software driver should not set the
RS bit in the Tx descriptors. When WTHRESH is set to zero the software driver should
set the RS bit in the last Tx descriptors of every packet (in the case of TSO it is the last
descriptor of the entire large send).

Note: When Head write-back is enabled (TDWBAL[n].Head_WB_En = 1b), the
WTHRESH must be set to zero.

Reserved

24:23

0x0

Reserved

ENABLE

25

Ob

Transmit Queue Enable.
When set, this bit enables the operation of a specific transmit queue:
Default value for all queues is Ob.

Setting this bit initializes all the internal registers of a specific queue. Until then, the
state of the queue is kept and can be used for debug purposes.

When disabling a queue, this bit is cleared only after all activity at the queue stopped.
Note: This bit is valid only if the queue is actually enabled.

Upon read — get the actual status of the queue (internal indication that the queue is
actually enabled/disabled)

Note: When setting the global Tx enable DMATXCTL.TE the ENABLE bit of Tx queue zero
is enabled as well.

SWFLSH

26

Ob

Transmit Software Flush. This bit enables software to trigger descriptor write-back
flushing, independently of other conditions.

This bit is self cleared by hardware.

Reserved

27

Ob

Reserved

Reserved

28

Ob

Reserved

500

Programming Interface — Intel® 82599 10 GbE Controller

. . Init R
Field Bit(s) val. Description
Reserved 29 Ob Reserved
Reserved 31:30 0x0 Reserved

This register controls the fetching and write-back of transmit descriptors. The three threshold values
are used to determine when descriptors is read from and written to host memory.

Note: When WTHRESH = 0Ob only descriptors with the RS bit set are written back.
For PTHRESH and HTHRESH recommended setting please refer to Section 7.2.3.4.

8.2.3.9.11 Tx Descriptor Completion Write Back Address Low — TDWBAL[nN]
(0x06038+0x40*n, Nn=0...127; RW)
Field Bit(s) Init Description
Val. P
Head Write-Back Enable.
At 1b, Head write-back is enabled.
Head_WB_E 0 Ob ’
cad_We_En At Ob, Head write-back is disabled.
When head_WB_en is set, the 82599 does not write-back Tx descriptors.
Reserved 1 0 Reserved.
Lowest 32 bits of the head write-back memory location (Dword aligned). Last 2 bits of
HeadWB_Low 31:2 0x0 this field are ignored and are always read as 0.0, meaning that the actual address is
Qword aligned.
8.2.3.9.12 Tx Descriptor Completion Write Back Address High — TDWBAH[n]
(Ox0603C+0x40*n, Nn=0...127; RW)
Field Bit(sy | Init Description
Val. P
HeadWB_High 31:0 0x0 Highest 32 bits of head write-back memory location (for 64-bit addressing).
8.2.3.9.13 Transmit Packet Buffer Size — TXPBSIZE[n] (OxOCCOO + Ox4*n, n=0...7; RW)
Field Bit(sy | Init Description
Val. p
Reserved 9:0 0x0 Reserved
Transmit packet buffer size of TCn. At default setting (no DCB) only packet buffer O is
enabled and TXPBSIZE values for TC 1-7 are meaningless.
Other than the default configuration the 82599 supports partitioned configurations when
DCB is enabled.
Symmetrical 8 TCs partitioning: 0x14 (20KB) for TXPBSIZE[O...7].
OxAO Symmetrical 4 TCs partitioning: 0x28 (40KB) for TXPBSIZE[O...3] and 0x0 (OKB) for
SIZE 19:10 | (160 TXPBSIZE[4...7].
KB) Non-symmetrical partitioning are supported as well. In order to enable wire speed
transmission it is recommended to set the transmit packet buffers to: (1) At least 2
times MSS plus PCle latency (approximate 1 KB) when IPSec AH is not enabled (security
block is not enabled or operates in path through mode). (2) At least 3 times MSS plus
PCle latency when IPSec AH is enabled (security block operates in store and forward
mode)
Reserved 31:20 0x0 Reserved

501

"] ®
l n tel Intel® 82599 10 GbE Controller — Programming Interface

8.2.3.9.14 Manageability Transmit TC Mapping — MNGTXMAP (0x0CD10; RW)

. . Init Lo
Field Bit(s) val. Description
MAP 2:0 0x0 Map value indicates the TC that the transmit manageability traffic is routed to.
Reserved 31:3 0x0 Reserved

8.2.3.9.15 Multiple Transmit Queues Command Register — MTQC (0x08120; RW)

This register can be modified only as part of the init phase.

Init

Field Bit(s) | o

Description

RT_Ena 0 Ob DCB Enabled Mode. See functionality in the following table.

Virtualization Enabled Mode. When set, the 82599 supports either 16, 32, or 64 pools.
VT_Ena 1 Ob See functionality in the following table.

This bit should be set the same as PFVTCTL.VT_Ena.

Number of TCs or Number of Tx Queues per Pools. See functionality in the following

NUM_TC_OR_Q 3:2 00b table.

Reserved 31:4 0x0 Reserved

Permitted value and functionality of: RT_Ena; VT_Ena; NUM_TC_OR_Q. For Tx queue assignment in
DCB and VT modes refer to Table 7.25 in Section 7.2.1.2.1.

Device Setting Device Functionality

RT_Ena VT_Ena NUM_TC_OR_Q Tx Queues TC & VT
Ob Ob 00b 0—63 -
<> 0b <> 0b 00b Reserved
Ob Ob <> 00 Reserved
1b Ob Olb Reserved
1b Ob 10b 0—127 TCO — TC3
1b Ob 11b 0 — 127 TCO — TC7
Ob 1b Olb 0— 127 64 VMs
Ob 1b 10b 0— 127 32 VMs
Ob 1b 11b Reserved
1b 1b Olb Reserved
1b 1b 10b 0— 127 TCO — TC3 & 32 VMs
1b 1b 11b 0 — 127 TCO — TC7 & 16 VMs

502

[] ®
Programming Interface — Intel® 82599 10 GbE Controller l n tel

8.2.3.9.16 Tx Packet Buffer Threshold — TXPBTHRESH (0x04950 +0x4*n, n=0...7; RW)
. . Init S
Field Bit(s) val. Description
Threshold used for checking room place in Tx packet buffer of TCn.
Threshold in KB units, when the packet buffer is filled up with payload over that
threshold, no more data read request is sent.
Default values:
. 0x96/
THRESH 9:0 0x0 0x96 (150 KB) for TXPBSIZEO.
0x0 (0 KB) for TXPBSIZE1-7.
It should be set to: (packet buffer size) — MSS.
For instance, if packet buffer size is set to 20 KB in corresponding TXPBSIZE.SIZE, if
MSS of 9.5 KB (9728-byte) jumbo frames is supported for TCn, it is set to: OxA (10 KB).
Reserved 31:10 0x0 Reserved
8.2.3.10 DCB Registers

DCB registers are owned by the PF in an 10V mode.

8.2.3.10.1

DCB Receive Packet Plane Control and Status — RTRPCS (0x02430; RW)

RTRPCS is equivalent to the 82598’s RMCS.

. . Init S
Field Bit(s) val. Description

Reserved 0 Ob Reserved
Receive Recycle Mode defines the recycle mode within a BWG.

RRM 1 Ob Ob= No recycle.
1b = Recycle within the BWG. It is the only supported mode when DCB is enabled.
Receive Arbitration Control.

RAC 2 Ob Ob= Round Robin (RR).
1b = Weighted Strict Priority (WSP).

Reserved 5:3 0x0 Reserved

Reserved 15:6 0x0 Reserved

LRPB 18:16 0x0 Last R_eceived Facket Buffer Status Indication. Indicates the last packet buffer that was
used in Rx arbiter.

Reserved 26:19 0x0 Reserved

Reserved 27 Ob Reserved

Reserved 31:28 0x6 Reserved

8.2.3.10.2 DCB Transmit Descriptor Plane Control and Status — RTTDCS (0x04900; RW)

DMA-Tx

RTTDCS was DPMCS mapped to 0x07F40 in the 82598.

. . Init L
Field Bit(s) val. Description
TC Transmit Descriptor Plane Arbitration Control.
TDPAC 0 Ob Ob = RR.
1b = WSP.
VM Transmit Descriptor Plane Arbitration Control.
VMPAC 1 Ob Ob = RR.
1b = Weighted Round Robin (WRR).

503

intel.

Intel® 82599 10 GbE Controller — Programming Interface

. . Init L
Field Bit(s) val. Description
Reserved 3:2 00b Reserved
TC Transmit descriptor plane recycle mode defines the recycle mode within a BWG.
TDRM 4 Ob Ob = No recycle.
1b = Recycle within the BWG. It is the only supported mode.
Reserved 5 Ob Reserved
DCB Arbiters Disable
ARBDIS 6 (0] When set to 1 this bit pauses the Tx Descriptor plane arbitration state-machine.
Therefore, during nominal operation this bit should be set to 0.
Reserved 16:7 (0} Reserved
Last Transmitted TC (RO)
LTTDE R 19:17
SC (RO) ° 0x0 This field indicates the last transmitted TC in XMIT descriptor arbiter DMA.
Reserved 21:20 00b Reserved
BDPM 22 1b Bypass Data_Plpg Mf)nltor. In order to enable bypassing the above limit.
In DCB mode, this bit must be cleared.
Bypass Packet Buffer Free Space Monitor.In order to enable bypassing the packet buffer
free space monitor (not checking if there is enough free space in the packet buffer
BPBFSM 23 1b before requesting the data).
This bit must be cleared in DCB mode or SR-1I0OV mode.
Reserved 30:24 0x0 Reserved
Link speed has changed. Read and clear flag.
SPEED_CHG 31 ob Set by hardware to indicate that the |Il’?k speed has changed.
Cleared by software at the end of the link speed change procedure. Refer to
Section 4.6.11.2.
8.2.3.10.3 DCB Transmit Packet Plane Control and Status- RTTPCS (OxOCDOO; RW)

RTTPCS is mapped to 0XOCDOO for compatibility with the 82598’s PDPMCS.

. . Init A
Field Bit(s) val. Description

Reserved 4:0 0x0 Reserved
Transmit Packet Plane Arbitration Control

TPPAC 5 Ob Ob = RR (with respect to stop markers).
1b = Strict Priority (SP), with respect to stop markers)

Reserved 7:6 00b Reserved
Transmit packet plane recycle mode defines the recycle mode within a BWG.

TPRM 8 Ob Ob = No recycle.
1b = Recycle within the BWG.

Reserved 21:9 0x0 Reserved
ARB_delay. Minimum cycles delay between a packet’s arbitration. When RTTPCS.TPPAC

ARBD 31:22 o0x224 is set to 1b the arbitration delay is according to ARBD, otherwise the arbitration delay is

) 0x0. Should be kept at default in non-DCB mode. In DCB mode, should be set to

0x004.

8.2.3.10.4 DCB Receive User Priority to Traffic Class — RTRUP2TC (0x03020; RW)

504

Programming Interface — Intel® 82599 10 GbE Controller

Field Bit(s) \I/r;lt. Description
Receive UP 0 to TC Mapping.
When set to n, UP O is bound to TC n.
Used for two purposes:
UPOMAP 2:0 0x0 - Define into which Rx packet buffer incoming traffic carrying 802.1p field set to O is
routed.
= Define according to the filling status of which Rx packet puffer a Priority Flow
Control (PFC) frame with the Timer O field and Class Enable Vector bit O set is sent.
Receive UP 1 to TC Mapping.
When set to n, UP 1 is bound to TC n.
Used for two purposes:
UP1MAP 5:3 0x0 = Define into which Rx packet buffer incoming traffic carrying 802.1p field set to 1 is
routed.
= Define according to the filling status of which Rx Packet Buffer a P FC frame with the
Timer 1 field and Class Enable Vector bit 1 set is sent.
Receive UP 2 to TC Mapping.
When set to n, UP 2 is bound to TC n.
Used for two purposes:
UP2MAP 8:6 0x0 = Define into which Rx packet buffer incoming traffic carrying 802.1p field set to 2 is
routed.
= Define according to the filling status of which Rx Packet Buffer a PFC frame with the
Timer 2 field and Class Enable Vector bit 2 set is sent.
Receive UP 3 to TC Mapping.
When set to n, UP 3 is bound to TC n.
Used for two purposes:
UP3MAP 11:9 0x0 - Define into which Rx packet buffer incoming traffic carrying 802.1p field set to 3 is
routed.
= Define according to the filling status of which Rx packet buffer a PFC frame with the
Timer 3 field and Class Enable Vector bit 3 set is sent.
Receive UP 4 to TC Mapping.
When set to n, UP 4 is bound to TC n.
Used for two purposes:
UP4MAP 14:12 0x0 = Define into which Rx packet buffer incoming traffic carrying 802.1p field set to 4 is
routed.
= Define according to the filling status of which Rx packet buffer a PFC frame with the
Timer 4 field and Class Enable Vector bit 4 set is sent.
Receive UP 5 to TC Mapping.
When set to n, UP 5 is bound to TC n.
Used for two purposes:
UPSMAP 17:15 0x0 = Define into which Rx packet buffer incoming traffic carrying 802.1p field set to 5 is
routed.
= Define according to the filling status of which Rx packet buffer a PFC frame with the
Timer 5 field and Class Enable Vector bit 5 set is sent.
Receive UP 6 to TC Mapping.
When set to n, UP 6 is bound to TC n.
Used for two purposes:
UP6MAP 20:18 | 0x0 - Define into which Rx packet buffer incoming traffic carrying 802.1p field set to 6 is
routed.
= Define according to the filling status of which Rx packet buffer a PFC frame with the
Timer 6 field and Class Enable Vector bit 6 set is sent.
Receive UP 7 to TC Mapping.
When set to n, UP 7 is bound to TC n.
Used for two purposes:
UP7MAP 23:21 0x0

= Define into which Rx packet buffer incoming traffic carrying 802.1p field set to 7 is
routed.

= Define according to the filling status of which Rx packet buffer a PFC frame with the
Timer 7 field and Class Enable Vector bit 7 set is sent.

505

intel.

Intel® 82599 10 GbE Controller — Programming Interface

Field

Bit(s)

Init
Val.

Description

Reserved

31:24

0x0

Reserved

8.2.3.10.5

DCB Transmit User Priority to Traffic Class — RTTUP2TC (0Ox0C800; RW)

Field

Bit(s)

Init
Val.

Description

UPOMAP

2:0

0x0

Transmit UP O to TC Mapping.
When set to n, UP O is bound to TC n.

Used when receiving a PFC frame with the Timer O field and Class Enable Vector bit O
set, to determine which TC must be paused.

UP1MAP

5:3

0x0

Transmit UP 1 to TC Mapping.
When set to n, UP 1 is bound to TC n.

Used when receiving a PFC frame with the Timer 1 field and Class Enable Vector bit 1
set, to determine which TC must be paused.

UP2MAP

8:6

0x0

Transmit UP 2 to TC Mapping.
When set to n, UP 2 is bound to TC n.

Used when receiving a PFC frame with the Timer 2 field and Class Enable Vector bit 2
set, to determine which TC must be paused.

UP3MAP

11:9

0x0

Transmit UP 3 to TC Mapping.
When set to n, UP 3 is bound to TC n.

Used when receiving a PFC frame with the Timer 3 field and Class Enable Vector bit 3
set, to determine which TC must be paused.

UP4AMAP

14:12

0x0

Transmit UP 4 to TC Mapping.
When set to n, UP 4 is bound to TC n.

Used when receiving a PFC frame with the Timer 4 field and Class Enable Vector bit 4
set, to determine which traffic class must be paused.

UPSMAP

17:15

0x0

Transmit UP 5 to TC Mapping.
When set to n, UP 5 is bound to TC n.

Used when receiving a PFC frame with the Timer 5 field and Class Enable Vector bit 5
set, to determine which traffic class must be paused.

UPGMAP

20:18

0x0

Transmit UP 6 to TC Mapping.
When set to n, UP 6 is bound to V n.

Used when receiving a PFC frame with the Timer 6 field and Class Enable Vector bit 6
set, to determine which traffic class must be paused.

UP7MAP

23:21

0x0

Transmit UP 7 to TC Mapping.
When set to n, UP 7 is bound to TC n.

Used when receiving a PFC frame with the Timer 7 field and Class Enable Vector bit 7
set, to determine which TC must be paused.

Reserved

31:24

0x0

Reserved

8.2.3.10.6

DCB Receive Packet Plane T4 Config — RTRPT4C[n] (0x02140 + 4*n, n=0...7;

RW)

RTRPTA4C is equivalent to the 82598’s RT2CR.

. . Init .
Field Bit(s) val. Description
CRQ 8:0 0x0 Credit Refill Quantum.Amount of credits to refill in 64-byte granularity.
’ Possible values 0x000:0x1FF (O to 32,704 bytes).
BWG 11:9 0x0 Bandwidth Group Index.Bandwidth Group (BWG).

506

[] ®
Programming Interface — Intel® 82599 10 GbE Controller l n tel

. . Init L
Field Bit(s) Val. Description
Max Credit Limit.Maximum amount of credits for a configured packet buffer in 64-byte
MCL 23:12 ox0 granularity.
Possible values 0x000:0xFFF (Oto 262,080bytes).
Reserved 29:24 0x0 Reserved
Gsp 30 Ob Group Strict Priority.When set to 1b enables strict priority to the appropriate packet
buffer over any traffic of other packet buffers within the group.
Link Strict Priority.If set to 1b enables strict priority to the appropriate packet buffer
LSP 31 Ob -
over any traffic of other packet buffers.

8.2.3.10.7 Strict Low Latency Tx Queues — TXLLQ[Nn] (Ox082EO + 4*n, n=0...3; RW)

. . Init L
Field Bit(s) val. Description
Strict Low Latency Enable. When set, defines the relevant Tx queue as strict low
Strict Low latency 31:0 0ox0 latency. All queues belong to a LSP TC must be set as strict low latency queues.

Bit ‘m" in register 'n' correspond to Tx queue 32 x 'n* + 'm".

8.2.3.10.8 DCB Receive Packet Plane T4 Status — RTRPT4S[n] (0Ox02160 + 4*n, n=0...7;

RO)

RTRPTA4S is equivalent to the 82598’s RT2SR.

. . Init L
Field Bit(s) val. Description
Reserved 31:0 0x0 Reserved

8.2.3.10.9 DCB Transmit Descriptor Plane T2 Config - RTTDT2C[n] (0x04910 + 4*n,
n=0...7; RW) DMA-TX

RTTDT2C was TDTQ2TCCR in the 82598 at 0x0602C + 0x40*n, n=0...7.

. . Init I
Field Bit(s) val. Description

Credit Refill Quantum.

CRQ 8:0 0x0 Amount of credits to refill the TC in 64-byte granularity
Possible values 0x000 — Ox1FF (0 — 32,704 bytes)
Bandwidth Group Index.

BWG 11:9 0x0 . . .
Assignment of this TC to a bandwidth group.
Max Credit Limit.

MCL 23:12 | 0x0 Max amount of credits for a configured TC in 64-byte granularity
Possible values 0x000 — OxFFF (0 — 262,080 bytes)

Reserved 29:24 0x0 Reserved
Group Strict Priority.

GsP 30 Ob Wh