Design Verification Conference and Exhibition

The TLM-2.0 Standard

DOULOS

John Aynsley, Doulos

The TLM-2.0 Standard

CONTENTS

® Review of SystemC and TLM
®* Review of TLM-2.0

® Frequently Asked Questions

DOULOS

{;}\ What is SystemC?

DOULOS

® System-level modeling language \
® Network of communicating processes (c.f. HDL)
® Modeling hardware and software together /

® New: SystemC-AMS (mixed signal)
® C++ class library Communicating
processes
® Industry standard IEEE 1666 ™
® Owned and driven by OSCI (Open SystemC Initiative)
® Open source implementation

® Mature, robust, easy-to-integrate and “free”

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 3

P Transaction Level Modeling

DOULOS

Behavioral
Model

(Pin Accurate > (Function Call >

write (address, data)

Behavioral

Model

Simulate every event! 100-10,000 X faster simulation!
<019

|

y ‘q?;\‘f.{%hw

\ ()l
N . W 4
W O’ B §

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved.

A Reasons for using TLM

DOULOS

Accelerates product release schedule

- Software deycloRuaN
software

Fast

) Architecturz xplQulisgll

Ready before RTL

RTL

Hardware verificati

TLM = golden model

F L0

] Y ::-‘g w
S €) IH |
) WA W B |

Design Verification Conferénce and Exhibition Copyright © 2010 by Doulos. All rights reserved. 5

IQB LM is Communication-Oriented

DOULOS

Concurrent simulation environment

Communication Communication
Wrapper Wrapper

Transaction
+ timing
—_— —_—

Behavioral Behavioral

Model Model

Simple functional models, e.g. C programs

Could be synthesized by an ESL synthesis tool ?

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 6

/;\ | TLM and Synthesis

DOULOS

S S

C/C++ § C/C++ §
Algorithm = Algorithm =
= -

Pin-level

Compare Compare

SystemC Wrapper !

A

RTL

Design Verification Conferernce andrExhibition Copyright © 2010 by Doulos. All rights reserved. 7

The TLM-2.0 Standard

CONTENTS

®* Review of SystemC and TLM
®* Review of TLM-2.0

® Frequently Asked Questions

DOULOS

A OSCI TLM Timeline

DOULOS

[Apr2005] — lJun2008] — IJu|y2009]

hd TLM-1 O N TLM_20

* fr:tﬁsge;r?nd « Pass-by-reference * TLM-2.0.1
P * Unified interfaces * LRM

* Request-response

model » Generic payload

® TLM-2.0 focusses on memory-mapped bus modeling

Speed! Interoperability!

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 9

/;\ Typical Use Case: Virtual Platform

DOULOS

(Multiple software stacks)

Software Software

(Multlple buses and bndges)
~{(TLM-2.0)

Mernory Custom
interface peripheral

E D|g|tal and analog hardware IP bIocks)

Design Verification Conference and Exhibitio Copyright © 2010 by Doulos. All rights reserved. 10

1;) " Virtual Platform Characteristics

DOULOS

‘IIIIIIIIIIIIII..

) 2
Instruction Set Transaction-Level Model ! RTL
Simulator or software
stubs
Available early \/E Available early v EMuch later X
Fast enough to run - Fast enough to run = Too slow to run
applications applications \/ - applications %
Little or no hardware Register-accurate 5 Reglster-accurate and

detail

v .pm -accurate v

Some timing information \/, ; Cycle-accurate timing v

L 4 0
2070 SaeeEsEEEEEEEEEER"®
DICO

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 11

No timing information

36 = = SR - =

1;}\ . Coding Styles and Mechanisms

DOULOS

Use cases
Software Software Architectural Hardware
development performance analysis verification

TLM-2 Coding styles (just guidelines)

Loosely-timed

Approximately-timed

Mechanisms (definitive API for TLM-2.0 enabling interoperability)

Blocking Generic Non-blocking
transport payload transport

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 1 2

/A
DOULOS

Interoperability Layer

1. Core interfaces and
sockets

The first function call

2. Generic payload 3. Base protocol
Command . E
BEGIN_RE) .
Address | PR Emmerwrtebytes
Data
Byte enables END_REQ
Streaming BEGIN_RESP
Response status
=
Extensions END RESP

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 1 3

A

DOULOS

Interoperability

layer
>
Coding Style \
Loosely- or Approximately-timed
Core interfaces Utilities
Sockets Convenience sockets
Generic payload Quantum keeper (LT)
Base protocol Payload event queues (AT)

\Instance-specific extensions (GP) /

® Productivity
® Shortened learning curve
® Consistent coding style

-/

Design Verification Conferernce and Exhibition Copyright © 2010 by Doulos. All rights reserved.

14

The TLM-2.0 Standard

CONTENTS

®* Review of SystemC and TLM
®* Review of TLM-2.0

® Frequently Asked Questions

DOULOS

A

DOULOS

"Do | want LT or AT or CA?"

-/

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 1 6

fa\ Loosely-Timed

DOULOS

Executing software

.
The End!

Resources:

Bus

Memory

Peripherals

Goal: execute software at full speed of host processor
Target models do not consume any time, initiators run ahead
Need the initiators to take turns

Either have explicit synchronization points (can be untimed)
or initiators must use a time quantum

DvCor

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 17

A\ Loosely-Timed

DOULOS
Executing software
I
Sync Resources:
Bus
|

Memory

Peripherals

Goal: execute software at full speed of host processor
Target models do not consume any time, initiators run ahead
Need the initiators to take turns

Either have explicit synchronization points (can be untimed)
or initiators must use a time quantum

DvCor

Design Verification Conference and Exhibition Copynght © 2010 by Doulos. All nghts reserved. 1 8

A\ Loosely-Timed

DOULOS
Executing software

I D

Resources:
Bus

I D Memory
Peripherals

I D

Quantum

Goal: execute software at full speed of host processor
Target models do not consume any time, initiators run ahead
Need the initiators to take turns

Either have explicit synchronization points (can be untimed)
or initiators must use a time quantum

DvCor

Design Verification Conference and Exhibition Copynght © 2010 by Doulos. All nghts reserved. 1 9

A AT and CA

DOULOS

® No running ahead of simulation time; everything stays in sync

AT CA
> >
BEGIN_REQ
< <
END_REQ
< <
BEGIN_RESP
P
END_RESP o
Wake up at significant Wake up every cycle
timing points

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 20

/A

DOULOS

"How do | model such-and-such a feature using TLM-2?"
"What does it take to make a model TLM-2-compliant?"
"How much of this 194-page LRM do | really need to understand?"

"How can TLM-2 make models of different protocols interoperable?"

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 21

VP First Kind of Interoperability

DOULOS

® Use the full interoperability layer
® Use the generic payload + ignorable extensions

® Obey all the rules of the base protocol. The LRM is your rule book

tim_initiator_socket<32, tim_base protocol types> my_socket;

| |

® Functional incompatibilities are still possible (e.g. writing to a ROM)

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 22

V" Second Kind of Interoperability

DOULOS

® Create a new protocol traits class
® Create user-defined generic payload extensions and phases as needed

¢ Make your own rules!

tim_initiator_socket<32, my_protocol> my_socket;

|

Adapter

® One rule enforced: cannot bind sockets of differing protocol types
® Recommendation: keep close to the base protocol. The LRM is your guidebook

° The cIever stuff in TLM-2.0 makes the adapter fast

Design Venﬁcatlon Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 23

/A

DOULOS

Q. "How do | model such-and-such a feature using TLM-2?"

A. Either make do with the generic payload, or create extensions

Q. "What does it take to make a model TLM-2-compliant?"

A. Either obey the base protocol or make your own rules

Q. "How much of this 194-page LRM do | really need to understand?"
A. For the base protocol, everything except Utilities and TLM-1

Q. "How can TLM-2 make models of different protocols interoperable?"

A. Either map onto the base protocol, or write adapters

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 24

A

DOULOS

Q. "How do | model my algorithm using TLM-2.0"

A1. Not applicable. TLM is communication-centric
A2. Use the LT/AT coding styles as guidelines

A3. Use the utilities at least as examples

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 25

A

DOULOS

Q. "How do | use extensions? It's not really explained anywhere."

__2070

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 26

{;}\ Create an Extension Class

DOULOS

struct my_extension: tlm::tim_extension<my_extension>

{

my_extension() { m_attribute1 = ...; }

virtual tim_extension_base* clone() const
{
my_extension* ext = new my_extension;
ext->m_attribute1 = this->m_attribute1;
ext->m_attribute2 = this->m_attribute2;
return ext;

}

(Standard code to clone/copy)

virtual void copy_from(tim_extension_base const& ext)

{

m_attribute1 = static_cast<my_extension const &>(ext).m_attribute1;
m_attribute2 = static_cast<my_extension const &>(ext).m_attribute2;

}

int m_attribute1; .

S Al (Any number of attributes >
I3

Dv ot

Design Verification Conference and Exhibition Copynght © 2010 by Doulos. All nghts reserved. 27

1;}\ setting and Getting Extensions

DOULOS

Initiator

tim_generic_payload*® trans;

my_extension® ext = new my_extension;
ext->m_attribute1 = 1;
ext->m_ attribute2 = "foo";

trans->set_auto_extension(ext);

socket->b_transport(*trans, delay);

Target

virtual void b_transport(...)
{
my_extension* ext;
trans.get_extension(ext);
if (ext) {
... = ext->m_attribute1;

... = ext->m_attribute2;

C Have the initiator add the extension) C Target can test for an extension >

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 28

A

DOULOS

Q. "Okay, but you've not shown me how to create ignorable extensions.

How do | do that?"

A. Being ignorable is not an explicit property of an extension,

but about how you use it

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 29

1;}\ Ignorable Extensions

DOULOS

An ignorable extension is able to be ignored

® Timestamp when the transaction was created

® An initiator ID or transaction ID

Extensions that might not be ignorable

® An extended address (initiator might rely on extended address space)
® Apriority (initiator might rely on high priority transaction executing first)

® Aflag to lock the interconnect (initiator might rely on have exclusive access)

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 30

A

DOULOS

Q. "How do | dispose of the extension object? Can | re-use it?"

A. Use a memory manager

__2070

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 31

/A
DOULOS

Using a Memory Manager

N
», Interconnect [P

\/

refs
Allocate transaction object || 3
acquire()
Call nb_transport_fw
g
acquire() nb_transport_fw
P
< acquire()
<
nb_transport_fw Return nb_transport_fw Return
nb_transport_bw Call|_ nb_transport_bw cay
< — _
release()
g
Return hb_transport_bw release()
>
2070 Return nb_transport_bw release()
_On free()

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 32

1;}\ emory Management Methods

DOULOS

class tim_generic_payload {
public:

tim_generic_payload () ;
tim_generic_payload(tlm_mm_interface* mm) ;
virtual ~tlm_generic_payload ();

void set_mm(tim_mm_interface®* mm);
bool has_mm();

void acquire();

void release();

int get_ref_count();

void deep_copy_from(const tim_generic_payload&) ;
void update_original_from(const tim_generic_payload&);
void free_all_extensions();

void reset();

'\C Frees all auto-extensions >
%

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 33

/A

DOULOS

A User-Defined Memory Manager

#include "tim.h"
class gp_mm: public tim::tim_mm_interface
{

typedef tlm::tim_generic_payload gp t;
public:

gp_mm();

virtual ~gp_mm();

gp_t* allocate() {

ptr = new gp_t(this); (Pass mm as constructor arg)

}
void free(gp_t* trans) { (Called when ref count == 0 >

trans->reset(); (Free auto-extensions >

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 34

/A | Typical Coding Idiom

DOULOS

my_module(sc_module_name _n, gp_mm* mm)

: m_mm(mm) {...} (Pass mm as constructor arg)

tim_generic_payload* trans;
trans = m_mm.allocate(); (Get transaction object from mm)

trans->acquire();

(Increment reference count >

my_extension* ext = new my_extension; (Allocate extension on heap)

ext->m_attribute1 = 1;

ext->m_attribute2 = "foo";

trans->set_auto_extension(ext); (Set for auto-deletion)

socket->b_transport(*trans, delay); (Not just for nb_transport >

W trans->release(); (Decrement reference count)

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 35

/A

DOULOS

Q. "How do | connect multiple components together?"
Q. "How do | model a bus with multiple masters/slaves?"
Q. "How many sockets do | need for two-way communication?"

Q. "How many transactions do | use?"

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 36

A Example Topology

_Control
s — D Target
P
PE Target
ckets)

PE Target

PE Target

>
—>E Controller

e Initiator >

-

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 37

1;3 ' Bridges

DOULOS

tim_* socket< 32, protocol_A > tim_* socket< 32, protocol B >

! ! ! !

N
e

ato Bridge

deep_copy_from()

—
update_original_from()
4_
Generic Generic Generic Generic
Payload Payload Payload Payload
Extension Extension Extension Extension
Extension Extension Extension Extension
Extension Extension
Extension Extension

<D71p

(Could pass the same transaction if their lifetimes aIIow)

Design Verification Conference and Exhibition COPYNgIT© ZUTU Dy DOUTOS. Al TIgITS TESSTVeT. 38

1;}\ . Copying the Data Array

DOULOS

® Deep-copy the data array in the bridge

new_trans->set _data_ptr(&data_buffer);
new_trans->deep_copy_ from (original_trans);
new_trans->b_transport(...);

original_trans->update_original_from(new_trans); Copies back data array on read

¢ Shallow-copy the data array in the bridge

new_trans->set_data_ptr(0);

new_trans->deep_copy_from (original_trans);

new_trans->set_data_ptr(original_trans->get data_ptr());

new_trans->b_transport(...);

original_trans->update_original_from(new_trans); Does not touch data array

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 39

/A

DOULOS

Q.
A.

FAQ #7

"How do | connect multiple components together?"

By having one or more components act as a hub

"How do | model a bus with multiple masters/slaves?"

The "hub" can do arbitration and routing. Use multi-sockets for convenience

"How many sockets do | need for two-way communication?"

Each initiator needs an initiator socket, each target a target socket

"How many transactions do | use?"

As few as possible

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 40

A FAQ #8

DOULOS

Q. "How do | model something like a SPI port?"

A. If you can abstract the functionality, use the base protocol

Q. "How do | model something like a SPI port with accurate timing?"

A. You can model precise timing with the AT coding style, but why not use RTL?

Q. "How do | model something like AMBA, PCI, or USB?"

A. Buy a model (or get one through a university/research program)

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 41

1;}\ For More FREE Information

DOULOS

* |EEE 1666

standards.ieee.org/getieee/1666/index.html

®* OSCI SystemC 2.2 and TLM-2.0

www.systemc.org

® Tutorial introduction to TLM-2.0 and Free TLM-2.0 Protocol Checker

www.doulos.com/knowhow/systemc/tim2

Design Verification Conference and Exhibition Copyright © 2010 by Doulos. All rights reserved. 42

System Design

SystemC
ARM . C++

Verification Methodology

€ - PSL - SCV
SystemVerilog

Hardware Design

VHDL - Verilog
Altera Xilinx
Perl « Tcl/Tk

H m
DOULOS

