

LM2940-N, LM2940C

SNVS769J-MARCH 2000-REVISED DECEMBER 2014

LM2940x 1-A Low Dropout Regulator

1 Features

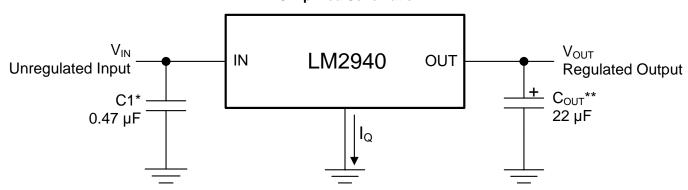
- Input Voltage Range = 6 V to 26 V
- Dropout Voltage Typically 0.5 V at I_{OUT} = 1 A
- · Output Current in Excess of 1 A
- Output Voltage Trimmed Before Assembly
- · Reverse Battery Protection
- Internal Short Circuit Current Limit
- Mirror Image Insertion Protection
- P⁺ Product Enhancement Tested

2 Applications

- · Post Regulator for Switching Supplies
- Logic Power Supplies
- Industrial Instrumentation

3 Description

The LM2940-N and LM2940C positive voltage regulators feature the ability to source 1 A of output current with a dropout voltage of typically 0.5 V and a maximum of 1 V over the entire temperature range. Furthermore, a quiescent current reduction circuit has been included which reduces the ground current when the differential between the input voltage and the output voltage exceeds approximately 3 V. The quiescent current with 1 A of output current and an input-output differential of 5 V is therefore only 30 mA. Higher quiescent currents only exist when the regulator is in the dropout mode ($V_{\text{IN}} - V_{\text{OUT}} \le 3 \text{ V}$).


Designed also for vehicular applications, the LM2940-N and LM2940C and all regulated circuitry are protected from reverse battery installations or 2-battery jumps. During line transients, such as load dump when the input voltage can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both the internal circuits and the load. The LM2940-N and LM2940C cannot be harmed by temporary mirrorimage insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOT-223 (4)	6.50 mm x 3.50 mm
I M2040 N	WSON (8)	4.00 mm x 4.00 mm
LM2940-N	TO-263 (3)	10.18 mm x 8.41 mm
	TO-220 (3)	14.986 mm x 10.16 mm
LM2940C	TO-263 (3)	10.18 mm x 8.41 mm
LIVI2940C	TO-220 (3)	14.986 mm x 10.16 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

^{*}Required if regulator is located far from power supply filter.

^{**}C_{OUT} must be at least 22 µF to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator and the ESR is critical; see curve.

_			•	_	-	-
12	n	Δ	Λt	Co	nto	nte
ıa	v		VI.	CU	1116	111

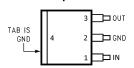
1	Features 1		7.3 Feature Description	13
2	Applications 1		7.4 Device Functional Modes	14
3	Description 1	8	Application and Implementation	15
4	Revision History 2		8.1 Application Information	15
5	Pin Configuration and Functions3		8.2 Typical Application	15
6	Specifications4	9	Power Supply Recommendations	17
Ŭ	6.1 Absolute Maximum Ratings	10	Layout	17
	6.2 ESD Ratings		10.1 Layout Guidelines	17
	6.3 Recommended Operating Conditions 4		10.2 Layout Examples	17
	6.4 Thermal Information		10.3 Heatsinking	18
	6.5 Electrical Characteristics (5 V and 8 V)	11	Device and Documentation Support	20
	6.6 Electrical Characteristics (9 V and 10 V)		11.1 Documentation Support	20
	6.7 Electrical Characteristics (12 V and 15 V)		11.2 Related Links	20
	6.8 Typical Characteristics 8		11.3 Trademarks	<mark>2</mark> 0
7	Detailed Description 13		11.4 Electrostatic Discharge Caution	20
	7.1 Overview		11.5 Glossary	20
	7.2 Functional Block Diagram	12	Mechanical, Packaging, and Orderable Information	20

4 Revision History

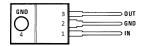
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	nailiges from Revision (April 2013) to Revision 3	гауе
•	Added Pin Configuration and Functions section, ESD Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	1
•	Deleted information re: obsolete CDIP and CLGA package options; Change pin names from Vin, Vout to IN, OUT; delete Heatsinking sections re: packages apart from TO-220	1
•	Changed symbols for Thermal Information	19

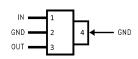
Changes from Revision H (April 2013) to Revision I


Page

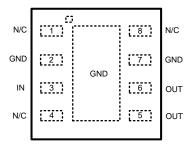
Submit Documentation Feedback



5 Pin Configuration and Functions


DDPAK/TO-263 (KTT) Package 3 Pins Top View

TO-220 (NDE) Package 4 Pins Front View


SOT-223 (DCY) Package 3 Pins Front View

DDPAK/TO-263 (KTT) Package Side View

WSON (NGN) Package 8 Pins Top View

Pin 2 and pin 7 are fused to center DAP Pin 5 and 6 need to be tied together on PCB board

Pin Functions

		PII	N		1/0	DESCRIPTION				
NAME	NDE	KTT	DCY	NGN	1/0	DESCRIPTION				
IN	1	1	1	3	I	Unregulated input voltage.				
GND	2	2	2	2	_	Ground				
OUT	3	3	3	5, 6	0	Regulated output voltage. This pin requires an output capacitor to maintain stability. See <i>Detailed Design Procedure</i> for output capacitor details.				
GND	4	4	4	7	_	Ground				
N/C	_	_	_	1, 4, 8	_	No connection				

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
LM2940-N KTT, N	IDE, DCY ≤ 100 ms		60	V
LM2940C KTT, NI	DE ≤ 1 ms		45	V
Internal power dis	sipation ⁽³⁾		Internally Limited	
Maximum junction	temperature		150	
	TO-220 (NDE), Wave (10 s)		260	
Soldering	DDPAK/TO-263 (KTT) (30 s)		235	°C
temperature (4)	SOT-223 (DCY) (30 s)		260	
	WSON-8 (NGN) (30 s)		235	
Storage temperatu	ure, T _{stg}	-65	150	

- (1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Recommended Operating Conditions are conditions under which the device functions but the specifications might not be ensured. For ensured specifications and test conditions see the Electrical Characteristics (5 V and 8 V).
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
- (3) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J, the junction-to-ambient thermal resistance, R_{θJA}, and the ambient temperature, T_A. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. The value of R _{θJA} (for devices in still air with no heatsink) is 23.3°C/W for the TO-220 package, 40.9°C/W for the DDPAK/TO-263 package, and 59.3°C/W for the SOT-223 package. The effective value of R_{θJA} can be reduced by using a heatsink (see *Heatsinking* for specific information on heatsinking). The value of R_{θJA} for the WSON package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the WSON package, refer to Application Note AN-1187 *Leadless Leadframe Package (LLP)* (SNOA401). It is recommended that 6 vias be placed under the center pad to improve thermal performance.
- (4) Refer to JEDEC J-STD-020C for surface mount device (SMD) package reflow profiles and conditions. Unless otherwise stated, the temperature and time are for Sn-Pb (STD) only.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Input voltage		6	26	V
	LM2940-N NDE, LM2940-N KTT	-40	125	
Temperature	LM2940C NDE, LM2940C KTT	0	125	°C
	LM2940-N DCY	-40	85	
	LM2940-N NGN	-40	125	

Submit Documentation Feedback

6.4 Thermal Information

		LM2940-	N, LM2940C	LM29		
	THERMAL METRIC ⁽¹⁾	TO-220 (NDE)	DDPAK/TO-263 (KTT)	SOT-223 (DCY)	WSON (NGN)	UNIT
		3 PINS	3 PINS	4 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	23.3	40.9	59.3	40.5	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	16.1	43.5	38.9	26.2	
$R_{\theta JB}$	Junction-to-board thermal resistance	4.8	23.5	8.1	17.0	°C/W
ΨЈТ	Junction-to-top characterization parameter	2.7	10.3	1.7	0.2	C/VV
ΨЈВ	Junction-to-board characterization parameter	4.8	22.5	8.0	17.2	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	1.1	0.8	n/a	3.2	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics (5 V and 8 V)

Unless otherwise specified: $V_{IN} = V_{OUT} + 5 \text{ V}$, $I_{OUT} = 1 \text{ A}$ and $C_{OUT} = 22 \mu F$. MIN (minimum) and MAX (maximum) limits apply over the recommended operating temperature range, unless otherwise noted; typical limits apply for $T_A = T_J = 25 ^{\circ} C$.

	TEST CONDITIONS		5 V			8 V			LINUT
PARAMETER	TEST CONDITIONS	S	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Input voltage	5 mA ≤ I _{OUT} ≤ 1 A		6.25		26	9.4		26	
Output valtage	$5 \text{ mA} \le I_{OUT} \le 1A$		4.75	5	5.25	7.6	8	8.4	V
Output voltage	$5 \text{ mA} \le I_{OUT} \le 1A, T_J = 25^{\circ}\text{C}$		4.85	5	5.15	7.76	8	8.24	
Line regulation	$V_{OUT} + 2 V \le V_{IN} \le 26 V$, $I_{OUT} = T_J = 25$ °C	= 5 mA		20	50		20	80	mV
	50 mA ≤ I _{OUT} ≤ 1 A	LM2940-N		35	80		55	130	
Load regulation	50 mA ≤ I _{OUT} ≤ 1 A	LM2940-N		35	50		55	80	mV
	$T_J = 25^{\circ}C$	LM2940C		35	50		55	80	
Output impedance	100 mADC, 20 mArms, $f_{\text{OUT}} =$	120 Hz		35			55		mΩ
	$V_{OUT} + 2 V \le V_{IN} \le 26 V$, $I_{OUT} = 5 \text{ mA}$	LM2940-N		10	20		10	20	
	$V_{OUT} + 2 V \le V_{IN} \le 26 V$,	LM2940-N		10	15		10	15	mA
Quiescent current	$I_{OUT} = 5 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	LM2940C		10	15				
	V _{IN} = V _{OUT} + 5 V, I _{OUT} = 1 A			30	60		30	60	
	V _{IN} = V _{OUT} + 5 V, I _{OUT} = 1 A T _J = 25°C			30	45		30	45	
Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 5 mA			150			240		μVrms
	$f_{\rm OUT}$ = 120 Hz, 1 V _{rms} , I _{OUT} = 100 mA	LM2940-N	54	72		48	66		
Ripple rejection	$f_{\rm OUT}$ = 120 Hz, 1 V _{rms} , I _{OUT} =	LM2940-N	60	72		54	66		dB
	100 mA T _J = 25°C	LM2940C	60	72		54	66		
Long-term stability				20			32		mV/1000 Hr
	I _{OUT} = 1A			0.5	1		0.5	1	V
Dropout voltage	I _{OUT} = 1A, T _J = 25°C			0.5	0.8		0.5	0.8	V
Diopout voitage	I _{OUT} = 100 mA			110	200		110	200	mV
	I _{OUT} = 100 mA, T _J = 25°C			110	150		110	150	

Copyright © 2000–2014, Texas Instruments Incorporated

Submit Documentation Feedback

5

⁽²⁾ Thermal information for the TO-220 package is for a package vertically mounted with a heat sink in the middle of a PCB which is compliant to the JEDEC HIGH-K 2s2p (JESD51-7). The heatsink-to-ambient thermal resistance, R_{OSA}, is 21.7°C/W. See *Heatsinking TO-220 Package Parts* for more information.

Electrical Characteristics (5 V and 8 V) (continued)

Unless otherwise specified: $V_{IN} = V_{OUT} + 5 \text{ V}$, $I_{OUT} = 1 \text{ A}$ and $C_{OUT} = 22 \mu\text{F}$. MIN (minimum) and MAX (maximum) limits apply over the recommended operating temperature range, unless otherwise noted; typical limits apply for $T_A = T_J = 25^{\circ}\text{C}$.

PARAMETER	TEST CONDITION	vie.		5 V			8 V		UNIT	
PARAMETER	TEST CONDITION	NS	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
Short-circuit current	See ⁽¹⁾ , T _J = 25°C		1.6	1.9		1.6	1.9		Α	
Maximum lina	$R_{OUT} = 100\Omega$, $T \le 100 \text{ ms}$	LM2940-N	60	75		60	75			
Maximum line transient	$R_{OUT} = 100\Omega$, T \leq 1 ms $T_J = 25$ °C	LM2940C	45	55		45	555		V	
Poverse polarity	R _{OUT} = 100 Ω	LM2940-N	-15	-30		-15	-30			
Reverse polarity DC input voltage	$R_{OUT} = 100 \Omega$ $T_{J} = 25^{\circ}C$	LM2940C	-15	-30		-15	-30		V	
Reverse polarity	$R_{OUT} = 100 \Omega$, $T \le 100 \text{ ms}$	LM2940-N	-50	-75			-50	-75		
Transient Input Voltage	$R_{OUT} = 100 \Omega, T \le 1 \text{ ms}$	LM2940C	-45	– 55		·			V	

⁽¹⁾ Output current will decrease with increasing temperature but will not drop below 1 A at the maximum specified temperature.

6.6 Electrical Characteristics (9 V and 10 V)

Unless otherwise specified: $V_{IN} = V_{OUT} + 5 \text{ V}$, $I_{OUT} = 1 \text{ A}$ and $C_{OUT} = 22 \mu\text{F}$. MIN (minimum) and MAX (maximum) limits apply over the recommended operating temperature range, unless otherwise noted; typical limits apply for $T_A = T_J = 25^{\circ}\text{C}$.

DADAMETER	TEST CONDITIONS		9 V			10 V			LINUT
PARAMETER			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Input voltage	5 mA ≤ I _{OUT} ≤ 1 A		10.5		26	11.5		26	
Output voltage	5 mA ≤ I _{OUT} ≤ 1A		8.55	9	9.45	9.5	10	10.5	V
Output voltage	$5 \text{ mA} \le I_{OUT} \le 1A, T_J = 25^{\circ}\text{C}$		8.73	9	9.27	9.7	10	10.3	
Line regulation	$V_{OUT} + 2 V \le V_{IN} \le 26 V$, $I_{OUT} = T_J = 25$ °C	= 5 mA		20	90		20	100	mV
	50 mA ≤ I _{OUT} ≤ 1 A	LM2940-N		60	150		65	165	
Load regulation	50 mA ≤ I _{OUT} ≤ 1 A	LM2940-N		60	90		65	100	mV
	T _J = 25°C	LM2940C		60	90				
Output impedance	100 mADC, 20 mArms, f_{OUT} =	: 120 Hz		60			65		$m\Omega$
	$V_{OUT} + 2 \text{ V} \le V_{IN} \le 26 \text{ V},$ $I_{OUT} = 5 \text{ mA}$	LM2940-N		10	20		10	20	
	$V_{OUT} + 2 V \le V_{IN} \le 26 V$,	LM2940-N		10	15			15	mA
Quiescent current	$I_{OUT} = 5 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$	LM2940C		10	15				
	V _{IN} = V _{OUT} + 5 V, I _{OUT} = 1 A			30	60		30	60	Í
	V _{IN} = V _{OUT} + 5 V, I _{OUT} = 1 A T _J = 25°C			30	45		30	45	
Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 5 mA	\		270			300		μVrms
	$f_{\rm OUT}$ = 120 Hz, 1 V _{rms} $I_{\rm OUT}$ = 100 mA	LM2940-N	46	64		45	63		
Ripple rejection	$f_{\rm OUT}$ = 120 Hz, 1 V _{rms}	LM2940-N	52	64		51	63		dB
	$I_{OUT} = 100 \text{ mA}$ $T_J = 25^{\circ}\text{C}$	LM2940C	52	64					
Long-term stability				34			36		mV/1000 Hr
	I _{OUT} = 1A			0.5	1		0.5	1	V
Dropout voltage	I _{OUT} = 1A, T _J = 25°C			0.5	0.8		0.5	0.8	V
Diopout voitage	I _{OUT} = 100 mA			110	200		110	200	mV
	$I_{OUT} = 100 \text{ mA}, T_J = 25^{\circ}\text{C}$			110	150		110	150	

Submit Documentation Feedback

Electrical Characteristics (9 V and 10 V) (continued)

Unless otherwise specified: $V_{IN} = V_{OUT} + 5 \text{ V}$, $I_{OUT} = 1 \text{ A}$ and $C_{OUT} = 22 \mu\text{F}$. MIN (minimum) and MAX (maximum) limits apply over the recommended operating temperature range, unless otherwise noted; typical limits apply for $T_A = T_J = 25^{\circ}\text{C}$.

				9 V		<u> </u>			
PARAMETER	TEST CONDITION	IS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Short-circuit current	See ⁽¹⁾ , T _J = 25°C		1.6	1.9		1.6	1.9		А
Maximum line transient $R_{OUT} = 100\Omega$, $T_{J} = 25^{\circ}C$	$R_{OUT} = 100\Omega$, T ≤ 100 ms	LM2940-N	60	75		60	75		
	$R_{OUT} = 100\Omega$, T ≤ 100 ms $T_{J} = 25$ °C	LM2940C	45	55					V
Doverse polority	R _{OUT} = 100 Ω	LM2940-N	-15	-30		-15	-30		
Reverse polarity DC input voltage	$R_{OUT} = 100 \Omega$ $T_{J} = 25$ °C	LM2940C	–15	-30					V
Reverse polarity		LM2940-N	-50	-75		-50	- 75		
Transient Input Voltage	$R_{OUT} = 100 \Omega$, T $\leq 100 \text{ ms}$	LM2940C	-45	- 55					V

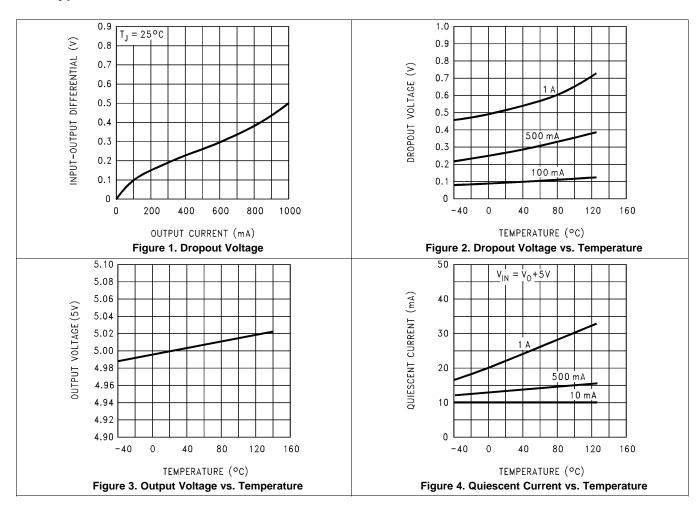
⁽¹⁾ Output current will decrease with increasing temperature but will not drop below 1 A at the maximum specified temperature.

6.7 Electrical Characteristics (12 V and 15 V)

Unless otherwise specified: $V_{IN} = V_{OUT} + 5 \text{ V}$, $I_{OUT} = 1 \text{ A}$ and $C_{OUT} = 22 \mu\text{F}$. MIN (minimum) and MAX (maximum) limits apply over the recommended operating temperature range, unless otherwise noted; typical limits apply for $T_A = T_J = 25^{\circ}\text{C}$.

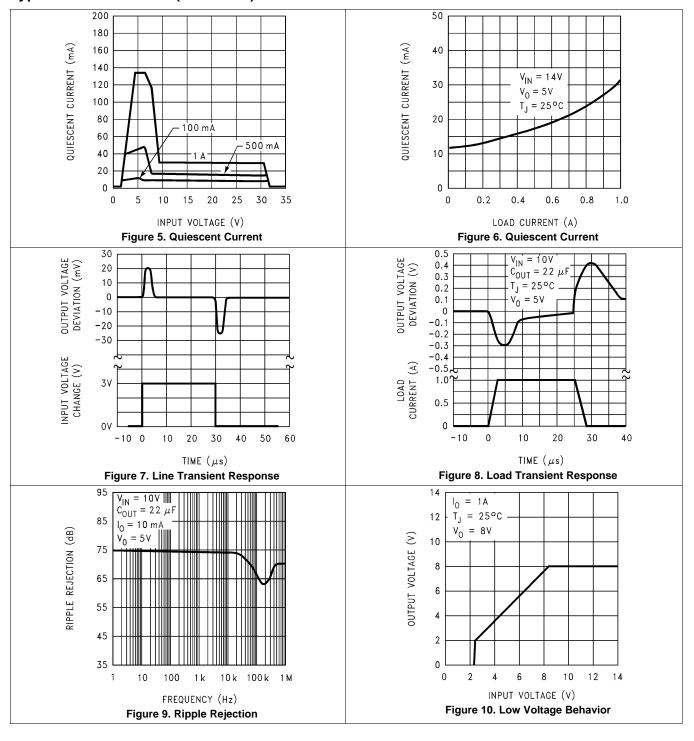
DADAMETED	TEST SOURITION	•		12 V			15 V		
PARAMETER	TEST CONDITIONS	5	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Input voltage	5 mA ≤ I _{OUT} ≤ 1 A		13.6		26	16.75		26	
Output voltage	5 mA ≤ I _{OUT} ≤ 1A		11.40	12	12.6	14.25	15	15.75	V
Output voltage	$5 \text{ mA} \le I_{OUT} \le 1 \text{A}, T_{J} = 25^{\circ}\text{C}$		11.64	12	12.36	14.55	15	15.45	
Line regulation	$V_{OUT} + 2 V \le V_{IN} \le 26 V$, $I_{OUT} = T_J = 25$ °C	= 5 mA		20	120		20	150	mV
	50 mA ≤ I _{OUT} ≤ 1 A	LM2940-N		55	200				
Load regulation	50 mA ≤ I _{OUT} ≤ 1 A	LM2940-N		55	120				mV
	$T_J = 25^{\circ}C$	LM2940C		55	120		70	150	
Output impedance	100 mADC, 20 mArms, $f_{OUT} = 120 \text{ Hz}$			80			100		mΩ
	$V_{OUT} + 2 \text{ V} \le V_{IN} \le 26 \text{ V},$ $I_{OUT} = 5 \text{ mA}$	LM2940-N		10	20				
	$V_{OUT} + 2 V \le V_{IN} \le 26 V$,	LM2940-N		10	15				
Quiescent current	$I_{OUT} = 5 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$	LM2940C		10	15		10	15	mA
	V _{IN} = V _{OUT} + 5 V, I _{OUT} = 1 A		30	60		30	60		
	$V_{IN} = V_{OUT} + 5 \text{ V}, I_{OUT} = 1 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$		30	45		30	45		
Output noise voltage	10 Hz to 100 kHz, I _{OUT} = 5 mA			360			450		μVrms
	$f_{\rm OUT}$ = 120 Hz, 1 V _{rms} , I _{OUT} = 100 mA	LM2940-N	48	66					
Ripple rejection	$f_{\rm OUT}$ = 120 Hz, 1 V _{rms} , I _{OUT} =	LM2940-N	54	66					dB
	100 mA T _J = 25°C	LM2940C	54	66		52	64		
Long-term stability	1] – 23 0			48			60		mV/1000 Hr
	I _{OUT} = 1A		0.5	1		0.5	1	V	
Dropout voltogo	I _{OUT} = 1A, T _J = 25°C		0.5	0.8		0.5	0.8	V	
Dropout voltage	I _{OUT} = 100 mA		110	200		110	200	00 mV	
	I _{OUT} = 100 mA, T _J = 25°C			110	150		110	150	IIIV

UC Mall.co

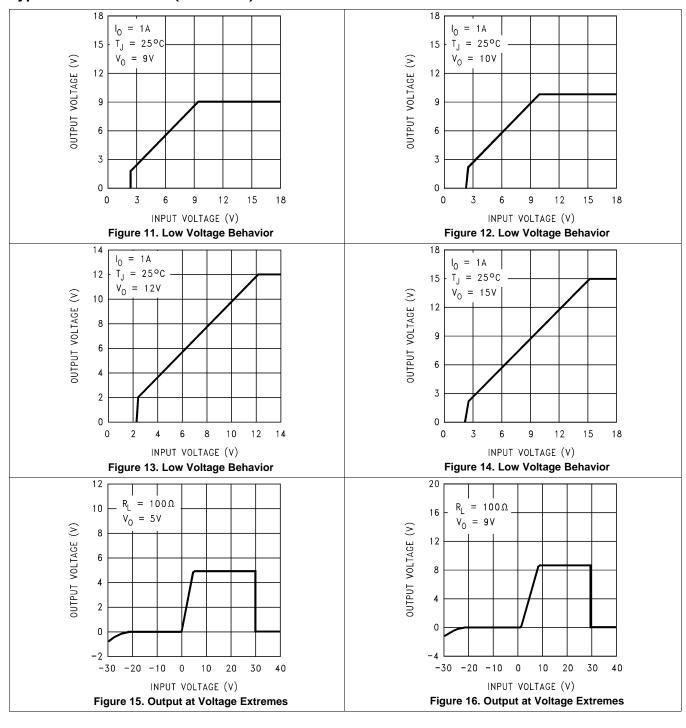

Electrical Characteristics (12 V and 15 V) (continued)

Unless otherwise specified: $V_{IN} = V_{OUT} + 5 \text{ V}$, $I_{OUT} = 1 \text{ A}$ and $C_{OUT} = 22 \mu\text{F}$. MIN (minimum) and MAX (maximum) limits apply over the recommended operating temperature range, unless otherwise noted; typical limits apply for $T_A = T_J = 25^{\circ}\text{C}$.

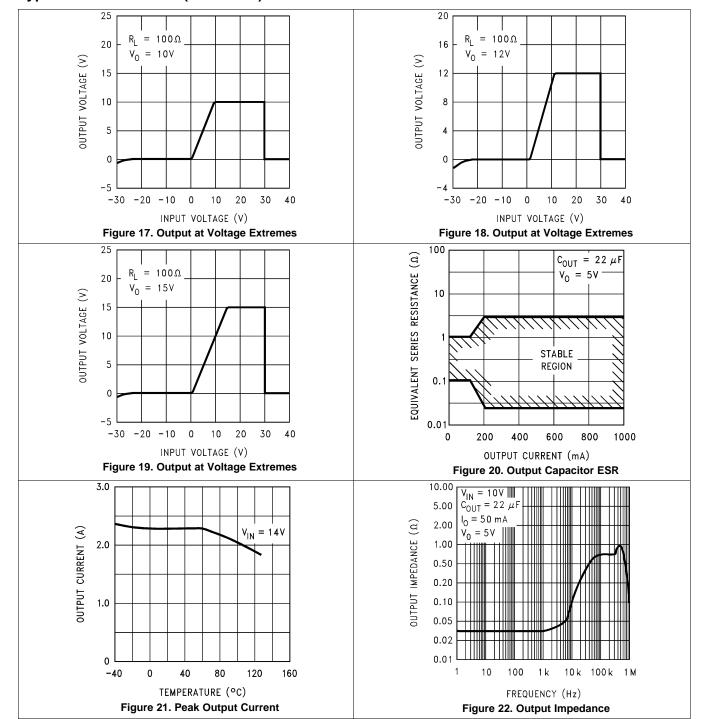
PARAMETER	TEST CONDITION	ue.		12 V			15 V		UNIT
PARAMETER	TEST CONDITION	NS	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Short-circuit current	See ⁽¹⁾ , T _J = 25°C		1.6	1.9		1.6	1.9		Α
Maximum lina	$R_{OUT} = 100\Omega, T \le 100 \text{ ms}$ LM2940-N		60	75					
Maximum line transient	$R_{OUT} = 100\Omega$, T ≤ 100 ms $T_{J} = 25$ °C	LM2940C	45	55		45	55		V
Poverse polarity	$R_{OUT} = 100 \Omega$	LM2940-N	-15	-30					
Reverse polarity DC input voltage	$R_{OUT} = 100 \Omega$ $T_{J} = 25$ °C	LM2940C	-15	-30		-15	-30		V
Reverse polarity	$R_{OUT} = 100 \Omega$, $T \le 100 \text{ ms}$	LM2940-N	-50	-75					
transient input voltage	$R_{OUT} = 100 \Omega, T \le 1 \text{ ms}$	LM2940C	-4 5	– 55		– 45	- 55		V

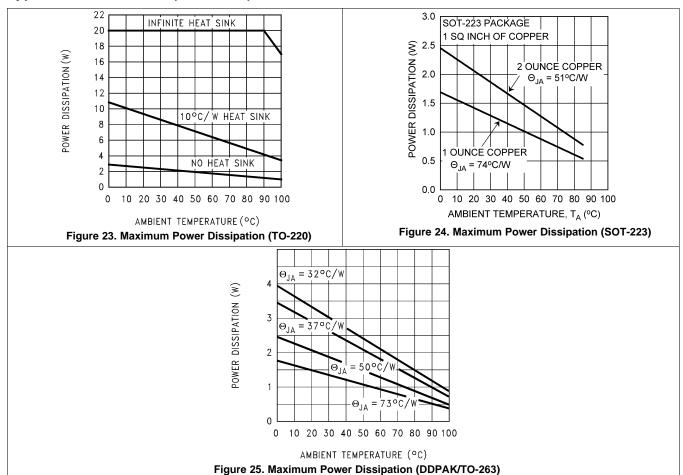

⁽¹⁾ Output current will decrease with increasing temperature but will not drop below 1 A at the maximum specified temperature.

6.8 Typical Characteristics

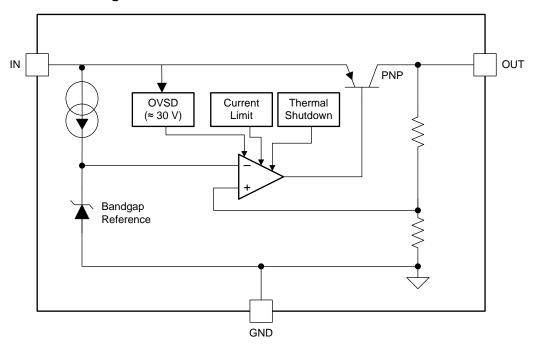


Submit Documentation Feedback




UC Mall.co

UIC Mall.co



7 Detailed Description

7.1 Overview

The LM2940 positive voltage regulator features the ability to source 1 A of output current with a dropout voltage of typically 0.5 V and a maximum of 1 V over the entire temperature range. Furthermore, a quiescent current reduction circuit has been included which reduces the ground current when the differential between the input voltage and the output voltage exceeds approximately 3 V. The quiescent current with 1 A of output current and an input-output differential of 5 V is therefore only 30 mA. Higher quiescent currents only exist when the regulator is in the dropout mode $(V_{IN} - V_{OUT} \le 3 V)$.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Short-Circuit Current Limit

The internal current limit circuit is used to protect the LDO against high-load current faults or shorting events. The LDO is not designed to operate in a steady-state current limit. During a current-limit event, the LDO sources constant current. Therefore, the output voltage falls when load impedance decreases. Note, also, that if a current limit occurs and the resulting output voltage is low, excessive power may be dissipated across the LDO, resulting a thermal shutdown of the output.

7.3.2 Overvoltage Shutdown (OVSD)

Input voltage greater than typically 30 V will cause the LM2940 output to be disabled. When operating with the input voltage greater than the maximum recommended input voltage of 26 V, the device performance is not ensured. Continuous operation with the input voltage greater than the maximum recommended input voltage is discouraged.

7.3.3 Thermal Shutdown (TSD)

The LM2940 contains the thermal shutdown circuitry to turn off the output when excessive heat is dissipated in the LDO. The internal protection circuitry of the LM2940 is designed to protect against thermal overload conditions. The TSD circuitry is not intended to replace proper heat sinking. Continuously running the device into thermal shutdown degrades its reliability as the junction temperature will be exceeding the absolute maximum junction temperature rating.

Copyright © 2000–2014, Texas Instruments Incorporated

Submit Documentation Feedback

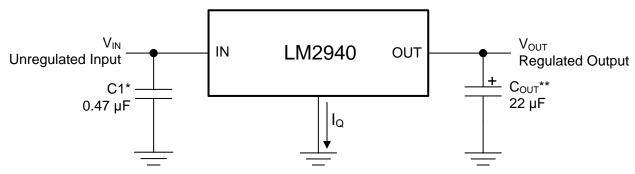
7.4 Device Functional Modes

7.4.1 Operation with Enable Control

The LM2940 design does not include any undervoltage lockout (UVLO), or enable functions. Generally, the output voltage will track the input voltage until the input voltage is greater than V_{OUT} + 1V. When the input voltage is greater than V_{OUT} + 1 V, the LM2940 will be in linear operation, and the output voltage will be regulated. However, the device will be sensitive to any small perturbation of the input voltage. Device dynamic performance is improved when the input voltage is at least 2 V greater than the output voltage.

Submit Documentation Feedback

8 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM2940-N and LM2940C positive voltage regulators feature the ability to source 1 A of output current with a dropout voltage of typically 0.5 V and a maximum of 1 V over the entire temperature range. The output capacitor, C_{OUT} , must have a capacitance value of at least 22 μF with an ESR of at least 100 m Ω , but no more than 1 Ω . The minimum capacitance value and the ESR requirements apply across the entire expected operating ambient temperature range.

8.2 Typical Application

^{*}Required if regulator is located far from power supply filter.

Figure 26. Typical Application

8.2.1 Design Requirements

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	6 V to 26 V
Output voltage range	8 V
Output current range	5 mA to 1 A
Input capacitor value	0.47 μF
Output capacitor value	22 μF minimum
Output capacitor ESR range	100 mΩ to 1 Ω

8.2.2 Detailed Design Procedure

8.2.2.1 External Capacitors

The output capacitor is critical to maintaining regulator stability, and must meet the required conditions for both equivalent series resistance (ESR) and minimum amount of capacitance.

8.2.2.1.1 Minimum Capacitance

The minimum output capacitance required to maintain stability is 22 µF (this value may be increased without limit). Larger values of output capacitance will give improved transient response.

Product Folder Links: LM2940-N LM2940C

Submit Documentation Feedback

^{**}C_{OUT} must be at least 22 µF to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator and the ESR is critical; see curve.

8.2.2.1.2 ESR Limits

The ESR of the output capacitor will cause loop instability if it is too high or too low. The acceptable range of ESR plotted versus load current is shown in the graph below. It is essential that the output capacitor meet these requirements, or oscillations can result.

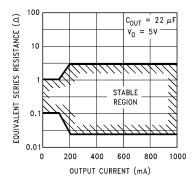
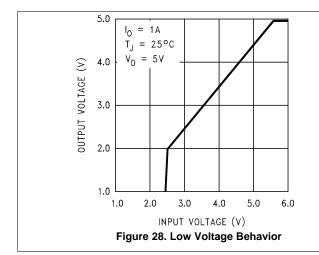
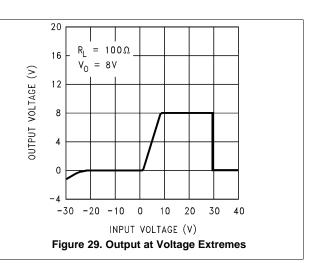


Figure 27. Output Capacitor ESR Limits


It is important to note that for most capacitors, ESR is specified only at room temperature. However, the designer must ensure that the ESR will stay inside the limits shown over the entire operating temperature range for the design.


For aluminum electrolytic capacitors, ESR will increase by about 30X as the temperature is reduced from 25°C to -40°C. This type of capacitor is not well-suited for low temperature operation.

Solid tantalum capacitors have a more stable ESR over temperature, but are more expensive than aluminum electrolytics. A cost-effective approach sometimes used is to parallel an aluminum electrolytic with a solid tantalum, with the total capacitance split about 75/25% with the aluminum being the larger value.

If two capacitors are paralleled, the effective ESR is the parallel of the two individual values. The flatter ESR of the tantalum will keep the effective ESR from rising as quickly at low temperatures.

8.2.3 Application Curves

Submit Documentation Feedback

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between V_{OUT} + 1 V up to a maximum of 26 V. This input supply must be well regulated and free of spurious noise. To ensure that the LM2940 output voltage is well regulated, the input supply should be at least V_{OUT} + 2 V.

10 Layout

10.1 Layout Guidelines

The dynamic performance of the LM2940 is dependent on the layout of the PCB. PCB layout practices that are adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the LM2940. Best performance is achieved by placing C_{IN} and C_{OUT} on the same side of the PCB as the LM2940, and as close as is practical to the package. The ground connections for C_{IN} and C_{OUT} should be back to the LM2940 ground pin using as wide and short of a copper trace as is practical.

10.2 Layout Examples

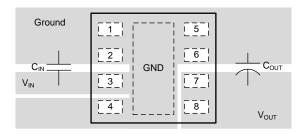


Figure 30. LM2940 WSON Layout

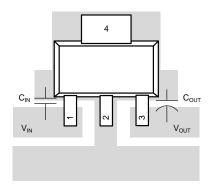


Figure 31. LM2940 SOT-223 Layout

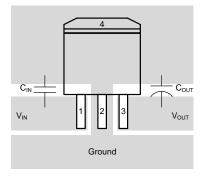
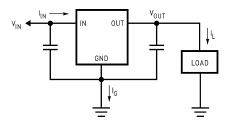


Figure 32. TO-263 Layout

Product Folder Links: LM2940-N LM2940C



10.3 Heatsinking

A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. Under all possible operating conditions, the junction temperature must be within the range specified under *Absolute Maximum Ratings*⁽¹⁾⁽²⁾.

To determine if a heatsink is required, the power dissipated by the regulator, PD, must be calculated.

Figure 33 shows the voltages and currents which are present in the circuit, as well as the formula for calculating the power dissipated in the regulator:

$$\begin{split} I_{IN} &= I_L + I_G \\ P_D &= \left(V_{IN} - V_{OUT} \right) \, I_L + \left(V_{IN} \right) \, I_G \end{split}$$

Figure 33. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, $T_{R(MAX)}$. This is calculated by using the formula:

$$T_{R(MAX)} = T_{J(MAX)} - T_{A(MAX)}$$

where

- T_{J(MAX)} is the maximum allowable junction temperature, which is 125°C for commercial grade parts.
- T_{A(MAX)} is the maximum ambient temperature which will be encountered in the application. (1)

Using the calculated values for $T_{R(MAX)}$ and P_D , the maximum allowable value for the junction-to-ambient thermal resistance, $R_{\theta,JA}$, can now be found:

$$R_{\theta JA} = T_{R(MAX)} / P_{D}$$
 (2)

NOTE

If the maximum allowable value for $R_{\theta JA}$ is found to be $\geq 23.3^{\circ}\text{C/W}$ for the TO-220 package (with a heatsink of 21.7°C/W $R_{\theta SA}), \geq 40.9^{\circ}\text{C/W}$ for the DDPAK/TO-263 package, or $\geq 59.3^{\circ}\text{C/W}$ for the SOT-223 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements.

If the calculated value for R_{BJA} falls below these limits, a heatsink is required.

Submit Documentation Feedback

⁽¹⁾ Absolute Maximum Ratings are limits beyond which damage to the device may occur. Recommended Operating Conditions are conditions under which the device functions but the specifications might not be ensured. For ensured specifications and test conditions see the Electrical Characteristics (5 V and 8 V).

⁽²⁾ If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

Heatsinking (continued)

10.3.1 Heatsinking TO-220 Package Parts

The TO-220 can be attached to a typical heatsink, or secured to a copper plane on a PC board.

If a manufactured heatsink is to be selected, the value of heatsink-to-ambient thermal resistance, $R_{\theta SA}$, must first be calculated:

$$R_{\theta SA} = R_{\theta JA} - R_{\theta CS} - R_{\theta JC}$$

where

- $R_{\theta JC}$ is defined as the thermal resistance from the junction to the surface of the case. A value of 3°C/W can be assumed for $R_{\theta JC}$ for this calculation.
- R_{ecs} is defined as the thermal resistance between the case and the surface of the heatsink. The value of R_{ecs} will vary from about 0.5°C/W to about 2.5°C/W (depending on method of attachment, insulator, etc.). If the exact value is unknown, 2°C/W should be assumed for R_{ecs}.

When a value for $R_{\theta SA}$ is found using Equation 3, a heatsink must be selected that has a value that is less than or equal to this number.

 $R_{\theta SA}$ is specified numerically by the heatsink manufacturer in the catalog, or shown in a curve that plots temperature rise vs power dissipation for the heatsink.

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- Application Note AN-1028 Maximum Power Enhancement Techniques for Power Packages (SNVA036).
- Application Note AN-1187 Leadless Leadframe Package (LLP) (SNOA401).

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM2940-N	Click here	Click here	Click here	Click here	Click here
LM2940C	Click here	Click here	Click here	Click here	Click here

11.3 Trademarks

All trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Documentation Feedback

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins			Lead/Ball Finish	MSL Peak Temp O
	(1)				Qty	(2)	(6)	(3)
LM2940CS-12	NRND	DDPAK/ TO-263	KTT	3	45	TBD	Call TI	Call TI
LM2940CS-12/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CS-15	NRND	DDPAK/ TO-263	KTT	3	45	TBD	Call TI	Call TI
LM2940CS-15/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CS-5.0	NRND	DDPAK/ TO-263	KTT	3	45	TBD	Call TI	Call TI
LM2940CS-5.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CS-9.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CSX-12	NRND	DDPAK/ TO-263	KTT	3	500	TBD	Call TI	Call TI
LM2940CSX-12/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CSX-15	NRND	DDPAK/ TO-263	KTT	3		TBD	Call TI	Call TI
LM2940CSX-15/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CSX-5.0	NRND	DDPAK/ TO-263	KTT	3	500	TBD	Call TI	Call TI
LM2940CSX-5.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CSX-9.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR
LM2940CT-12	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI
LM2940CT-12/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM
LM2940CT-15	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	0
LM2940CT-15/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	
LM2940CT-5.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	
LM2940CT-5.0/LF01	ACTIVE	TO-220	NDG	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940CT-5.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	
LM2940CT-9.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	
LM2940IMP-10	NRND	SOT-223	DCY	4		TBD	Call TI	Call TI	
LM2940IMP-10/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMP-12	NRND	SOT-223	DCY	4	1000	TBD	Call TI	Call TI	
LM2940IMP-12/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMP-15	NRND	SOT-223	DCY	4	1000	TBD	Call TI	Call TI	
LM2940IMP-15/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMP-5.0	NRND	SOT-223	DCY	4	1000	TBD	Call TI	Call TI	
LM2940IMP-5.0/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMP-9.0/NOPB	ACTIVE	SOT-223	DCY	4	1000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMPX-10/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMPX-12/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMPX-5.0/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940IMPX-8.0/NOPB	ACTIVE	SOT-223	DCY	4	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	
LM2940LD-12	NRND	WSON	NGN	8	1000	TBD	Call TI	Call TI	
LM2940LD-12/NOPB	ACTIVE	WSON	NGN	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	0
LM2940LD-5.0	NRND	WSON	NGN	8		TBD	Call TI	Call TI	
LM2940LD-5.0/NOPB	ACTIVE	WSON	NGN	8	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	
LM2940S-10	NRND	DDPAK/ TO-263	KTT	3	45	TBD	Call TI	Call TI	
LM2940S-10/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940S-12	NRND	DDPAK/ TO-263	KTT	3	45	TBD	Call TI	Call TI	
LM2940S-12/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940S-5.0	NRND	DDPAK/ TO-263	KTT	3	45	TBD	Call TI	Call TI	
LM2940S-5.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940S-8.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940S-9.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940SX-10	NRND	DDPAK/ TO-263	KTT	3	500	TBD	Call TI	Call TI	
LM2940SX-10/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940SX-12	NRND	DDPAK/ TO-263	KTT	3	500	TBD	Call TI	Call TI	
LM2940SX-12/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940SX-5.0	NRND	DDPAK/ TO-263	KTT	3	500	TBD	Call TI	Call TI	
LM2940SX-5.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940SX-8.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940SX-9.0/NOPB	ACTIVE	DDPAK/ TO-263	KTT	3	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	
LM2940T-10.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	0
LM2940T-10.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	
LM2940T-12.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	
LM2940T-12.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	
LM2940T-5.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	
LM2940T-5.0/LF08	ACTIVE	TO-220	NEB	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-3-245C-168 HR	
LM2940T-5.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	
LM2940T-8.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	
LM2940T-8.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	
LM2940T-9.0	NRND	TO-220	NDE	3	45	TBD	Call TI	Call TI	
LM2940T-9.0/NOPB	ACTIVE	TO-220	NDE	3	45	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

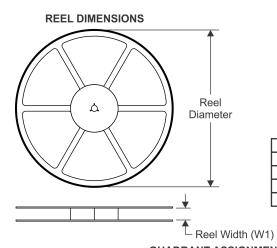
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/pt information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

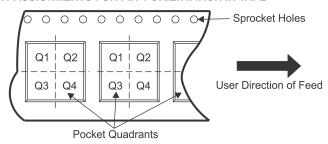
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substalead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in the semble of the

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br in homogeneous material)


- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a lift of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis of TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer of


TAPE AND REEL INFORMATION

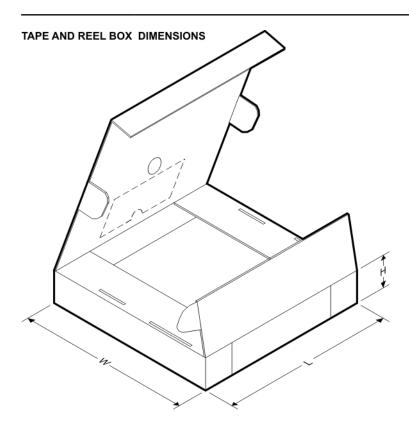
TAPE DIMENSIONS KO P1 BO W Cavity AO

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

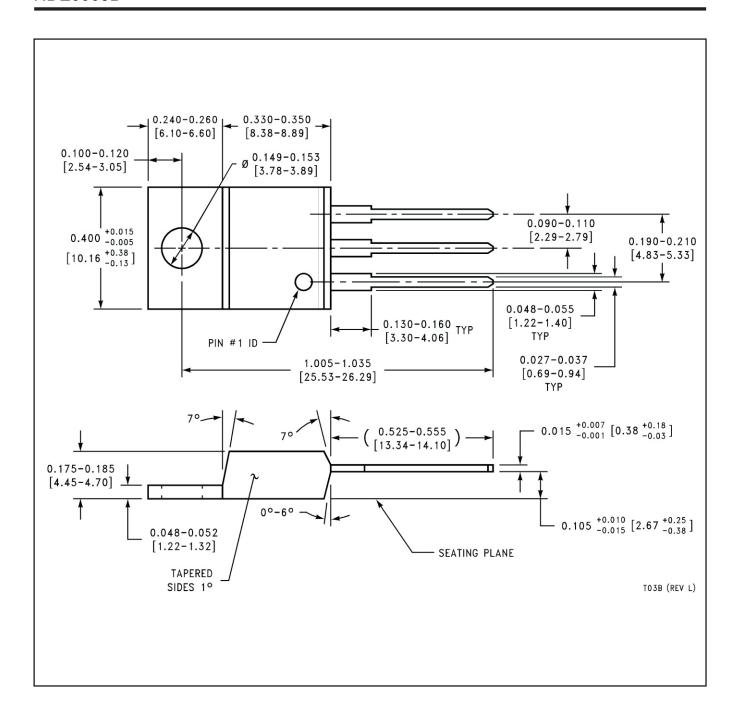
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2940CSX-12	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940CSX-12/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940CSX-15/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940CSX-5.0	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940CSX-5.0/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940CSX-9.0/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940IMP-10/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMP-12	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMP-12/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMP-15	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMP-15/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMP-5.0	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMP-5.0/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMP-9.0/NOPB	SOT-223	DCY	4	1000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3

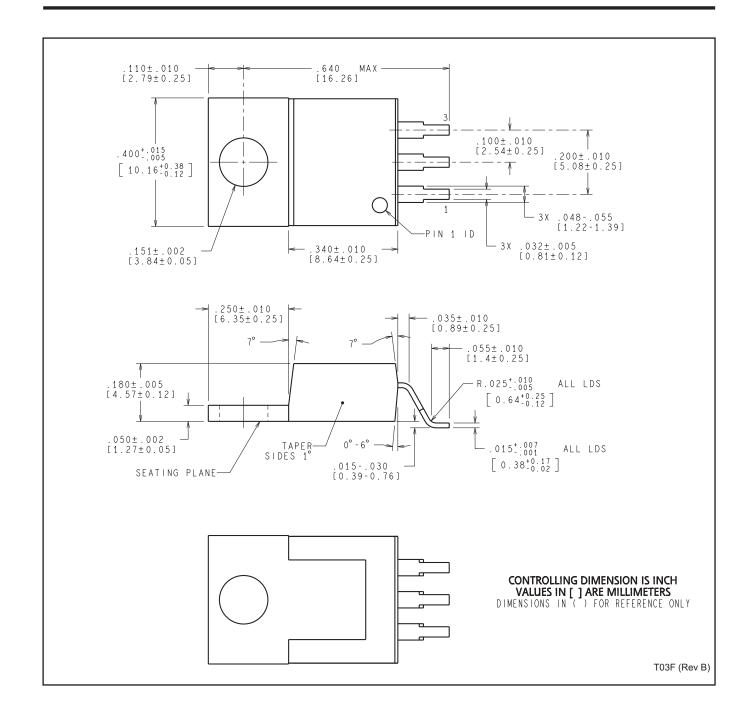


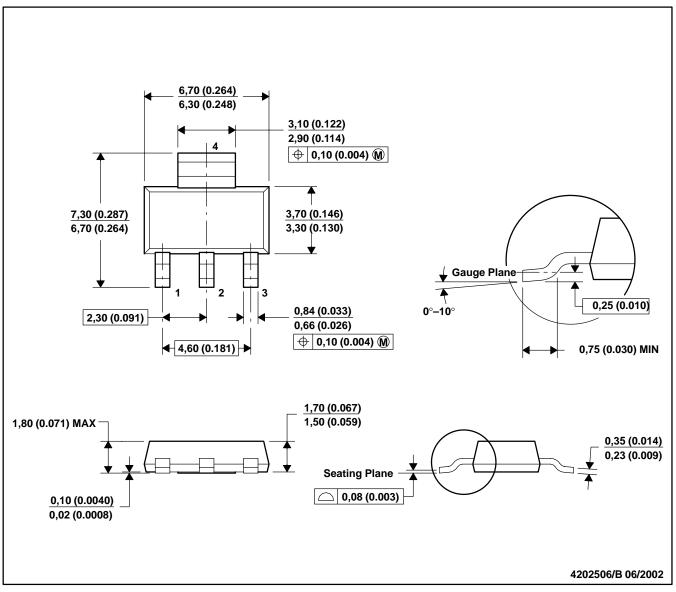
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2940IMPX-10/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMPX-12/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMPX-5.0/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940IMPX-8.0/NOPB	SOT-223	DCY	4	2000	330.0	16.4	7.0	7.5	2.2	12.0	16.0	Q3
LM2940LD-12	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM2940LD-12/NOPB	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM2940LD-5.0/NOPB	WSON	NGN	8	1000	178.0	12.4	4.3	4.3	1.3	8.0	12.0	Q1
LM2940SX-10	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940SX-10/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940SX-12	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940SX-12/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940SX-5.0	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940SX-5.0/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940SX-8.0/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2940SX-9.0/NOPB	DDPAK/ TO-263	KTT	3	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2940CSX-12	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940CSX-12/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940CSX-15/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940CSX-5.0	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940CSX-5.0/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940CSX-9.0/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940IMP-10/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMP-12	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMP-12/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMP-15	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMP-15/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMP-5.0	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMP-5.0/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMP-9.0/NOPB	SOT-223	DCY	4	1000	367.0	367.0	35.0
LM2940IMPX-10/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM2940IMPX-12/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM2940IMPX-5.0/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM2940IMPX-8.0/NOPB	SOT-223	DCY	4	2000	367.0	367.0	35.0
LM2940LD-12	WSON	NGN	8	1000	210.0	185.0	35.0
LM2940LD-12/NOPB	WSON	NGN	8	1000	213.0	191.0	55.0

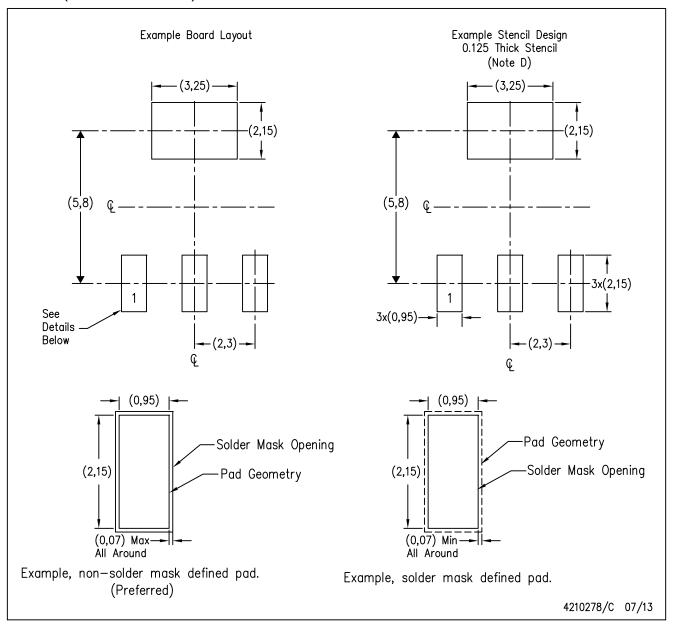
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2940LD-5.0/NOPB	WSON	NGN	8	1000	213.0	191.0	55.0
LM2940SX-10	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940SX-10/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940SX-12	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940SX-12/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940SX-5.0	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940SX-5.0/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940SX-8.0/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0
LM2940SX-9.0/NOPB	DDPAK/TO-263	KTT	3	500	367.0	367.0	45.0





DCY (R-PDSO-G4)

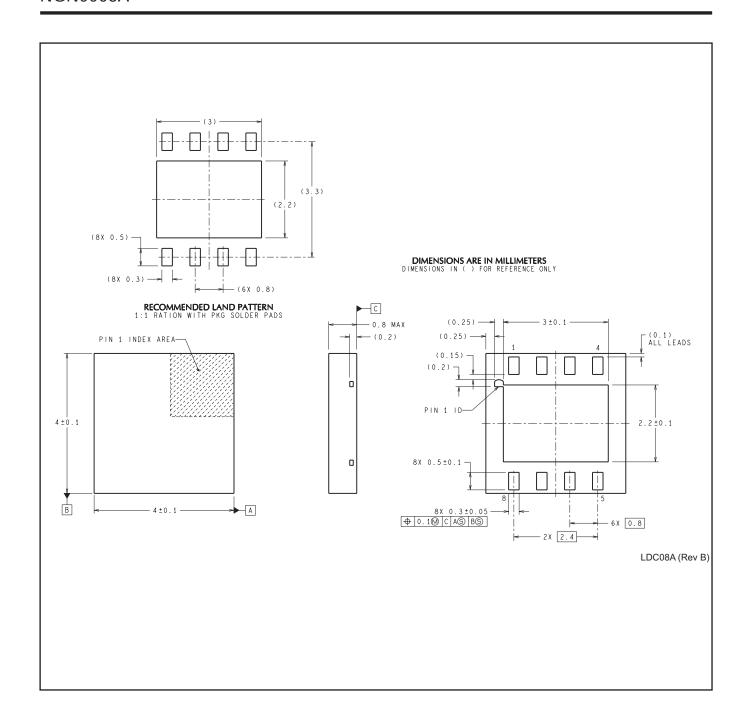
PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters (inches).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC TO-261 Variation AA.

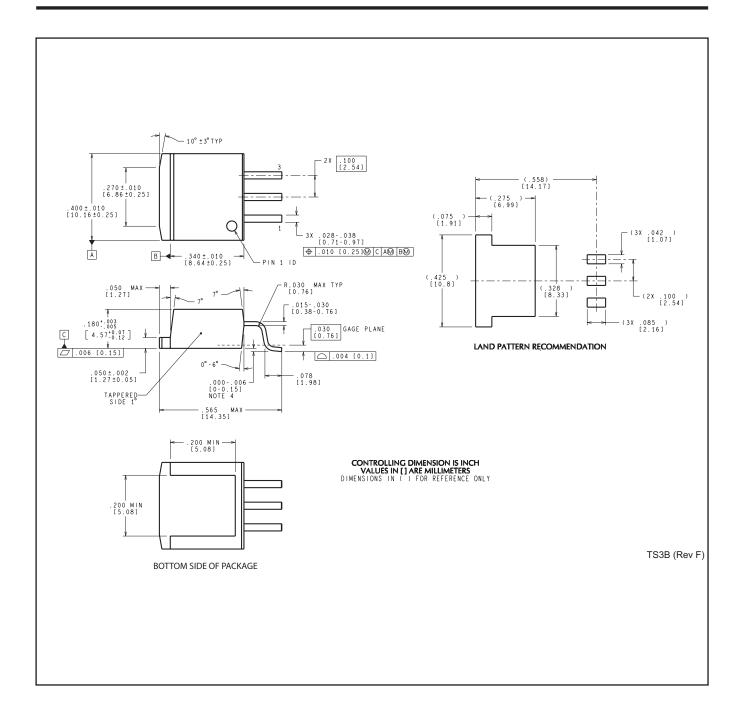
DCY (R-PDSO-G4)

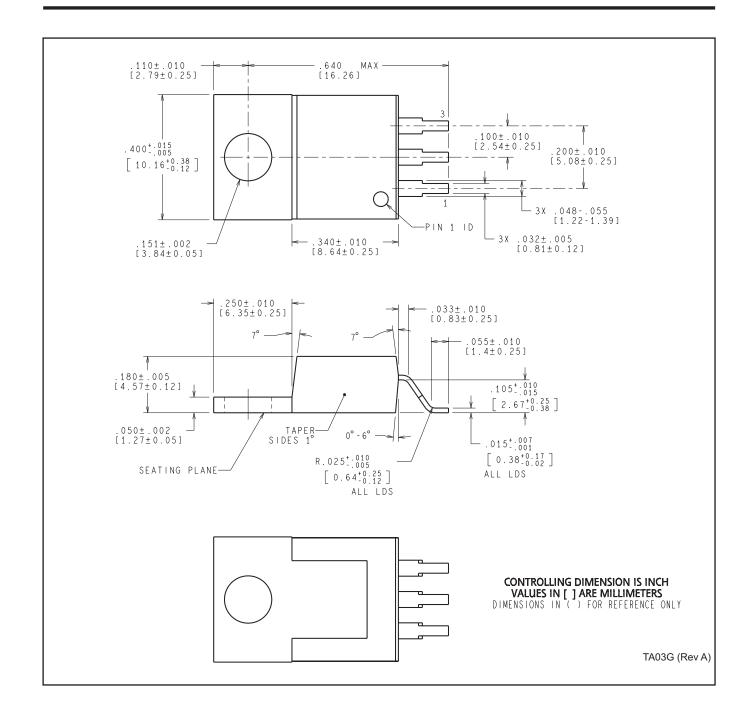
PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil recommendations. Refer to IPC 7525 for stencil design considerations.





IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Medical Interface interface.ti.com www.ti.com/medical

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

www.ti.com/security

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Logic

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>