

LMS202E

LMS202E 15KV ESD Rated, 5V Single Supply TIA/EIA-232 Dual Transceivers

Literature Number: SNLS160C

LMS202E

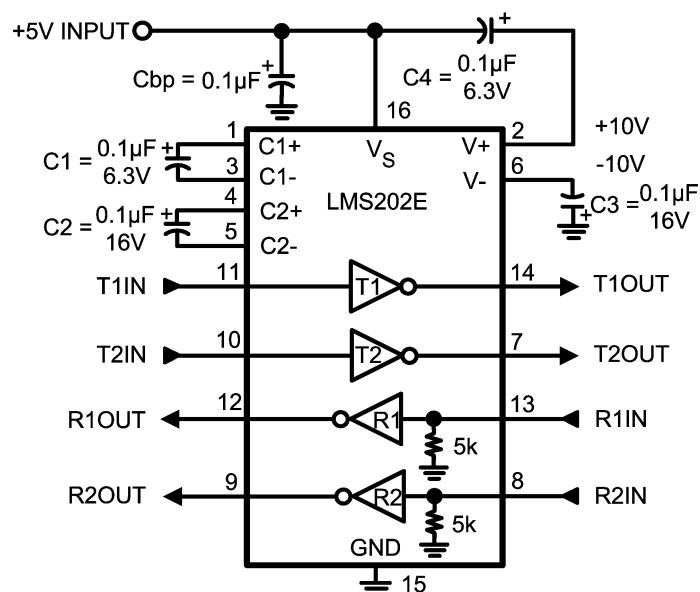
15KV ESD Rated, 5V Single Supply TIA/EIA-232 Dual Transceivers

General Description

The LMS202E features two transmitters and two receivers for RS-232 communication. It has a DC-to-DC converter that permits the device to operate with only a single +5V power supply. The on-chip DC-to-DC converter which utilizes four external 0.1 μ F capacitors to generate dual internal power supplies for RS-232 compatible output levels.

The device meet EIA/TIA-232E and CCITT V.28 specifications up to 230kbits/sec. The LMS202E is available in a 16 pin narrow and wide SOIC package.

The transmitter outputs and receiver inputs have ± 15 kV electrostatic discharge (ESD) protection. The LMS202E survives a ± 15 kV ESD event to the RS-232 input and output pins when subjected according to Human Body Model or IEC 1000-4-2 (EN61000-4-2),air-gap specification. It survives a ± 8 kV discharge when subjected to IEC 1000-4-2 (EN61000-4-2), contact specification. This device is designed for use in harsh environments where ESD is a concern.


Features

- ESD protection for RS-232 I/O pins
 - ± 15 kV-IEC1000 4-2 (EN61000-4-2) Contact Discharge
 - ± 8 kV-IEC1000 4-2 (EN61000-4-2) Air-Gap Discharge
 - ± 15 kV Human Body Model
- Single +5V power supply
- 230 kbps data rate
- On-board DC-to-DC converter
- 0.1 μ F charge pump capacitors
- Drop-in replacement to Maxim's MAX202E

Applications

- POS equipment (Bar code reader)
- Hand-held equipment
- General purpose RS-232 communication

Connection Diagram and Typical Circuit

20048001

Pin Descriptions

Pin Number	Pin Name	Pin Function
1, 3	C1+, C1-	External capacitor connection pins. Recommended external capacitor C1 = 0.1µF (6.3V)
2	V+	Positive supply for TIA/EIA-232E drivers. Recommended external capacitor C4 = 0.1µF (6.3V)
4, 5	C2+, C2-	External capacitor connection pins. Recommended external capacitor C2 = 0.1µF (16V)
6	V-	Negative supply for TIA/EIA-232E drivers. Recommended external capacitor C3 = 0.1µF (16V)
7, 14	T1out, T2out	Transmitter output pins conform to TIA/EIA-232E levels. The typical transmitter output swing is ±8V when loaded 3kΩ load to ground. The open-circuit output voltage swings from (V+ – 0.6V) to V-
8,13	R1in, R2in	Receiver inputs accept TIA/EIA-232
9, 12	R1out and R2out	Receiver output pins are TTL/CMOS compatible
10, 11	Tin1, Tin2	Transmitter input pins are TTL/CMOS compatible. Inputs of transmitter do not have pull-up resistors. Connect all unused transmitter inputs to ground
15	GND	Ground pin
16	V _S	Power supply pin for the device, +5V (±10%)

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
16-Pin SOIC	LMS202ECM	LMS202ECM	48 Units/Rail	M16A
	LMS202ECMX		2.5k Units Tape and Reel	
	LMS202EIM	LMS202EIM	48 Units/Rail	
	LMS202EIMX		2.5k Units Tape and Reel	
16-Pin Wide SOIC	LMS202ECMW	LMS202ECMW	45 Units/Rail	M16B
	LMS202ECMWX		1.0k Units Tape and Reel	
	LMS202EIMW	LMS202EIMW	45 Units/Rail	
	LMS202EIMWX		1.0k Units Tape and Reel	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V_S	-0.3V to 6V
V_+	($V_S - 0.3V$) to + 14V
V_-	+0.3V to -14V
Driver Input Voltage, T_{IN}	-0.3V to ($V_+ + 0.3V$)
Receiver Input Voltage, R_{IN}	$\pm 30V$
Driver Output Voltage T_O	($V_- - 0.3V$) to ($V_+ + 0.3V$)
Receiver Output Voltage R_O	-0.3 to ($V_S + 0.3V$)
Short Circuit Duration, T_O	Continuous
ESD Rating	
IEC 1000-4-2) (Note 7)	
(Note 8)	
Air-Gap Discharge	15kV
Contact Discharge	8kV
Human Body Model (Note 2)	
(Note 8)	15kV

(Note 9)	2kV
ESD Rating (MM)	200V (Note 6) (Note 9)
Soldering Information	
Infrared or Convection (20sec.)	235°C
Junction Temperature	150°C
Storage Temperature Range	-65°C to +150°C

Operating Ratings

Supply Voltage V_S	4.5V to 5.5V
Ambient Temperature Range, T_A	
Commercial (C)	0°C to +70°C
Industrial (I)	-40°C to +85°C
Package Thermal Resistance (Note 3)	
SO	71°C/W
WSO	55°C/W

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified $C_1 = C_2 = C_3 = C_4 = C_{bp} = 0.1\mu F$

Symbol	Parameter	Conditions	Min (Note 5)	Typ	Max (Note 5)	Units
DC Characteristics						
I_S	Supply Current	No Load, $T_A = 25^\circ C$		1	7	mA
Logic						
I_{INPUT}	Input Leakage Current	$T_{IN} = 0V$ to V_S			± 10	μA
V_{THL}	Input Logic Threshold Low	T_{IN}			0.8	V
V_{THH}	Input Logic Threshold High	T_{IN}	2.0			V
V_{OL}	TTL/CMOS Output Voltage Low	$R_{OUT}, I_{OUT} = 3.2mA$			0.4	V
V_{OH}	TTL/CMOS Output Voltage High	$R_{OUT}, I_{OUT} = -1.0mA$	3.5	$V_S - 0.1$		V
RS-232 Receiver Inputs						
V_{RI}	Receiver Input Voltage Range		-30		+30	V
V_{RTHL}	Receiver Input Threshold Low	$V_S = 5V, T_A = 25^\circ C$	0.8	1.4		V
V_{RTHH}	Receiver Input Threshold High	$V_S = 5V, T_A = 25^\circ C$		2	2.4	V
V_{HYST}	Receiver Input Hysteresis	$V_S = 5V$	0.2	0.6	1.0	V
R_I	Receiver Input Resistance	$V_S = 5V, T_A = 25^\circ C$	3	5	7	$k\Omega$
RS-232 Transmitter Outputs						
V_O	Transmitter Output Voltage Swing	All transmitters loaded with $3k\Omega$ to GND	± 5	± 8		V
R_O	Output Resistance	$V_S = V_+ = V_- = 0V, V_O = \pm 2V$	300			Ω
I_{OS}	Output Short Circuit Current			± 11	± 60	mA
Timing Characteristics						
DR	Maximum Data Rate	$C_L = 50pF$ to $1000pF$, $R_L = 3k\Omega$ to $7k\Omega$	230			kbps

Electrical Characteristics (Continued)

Over recommended operating supply and temperature ranges unless otherwise specified C1 = C2 = C3 = C4 = C_{bp} = 0.1 μ F

Symbol	Parameter	Conditions	Min (Note 5)	Typ	Max (Note 5)	Units
T_{RPLH} T_{RPHL}	Receiver Propagation Delay	$C_L = 150\text{pF}$		0.08	1	μs
T_{DPLH} T_{DPHL}	Transmitter Propagation Delay	$R_L = 3\text{k}\Omega$, $C_L = 2500\text{pF}$ All transmitters loaded		2.4		μs
V_{SLEW}	Transition Region Slew Rate	$T_A = 25^\circ\text{C}$, $V_S = 5\text{V}$ $C_L = 50\text{pF}$ to 1000pF , $R_L = 3\text{k}\Omega$ to $7\text{k}\Omega$ Measured from $+3\text{V}$ to -3V or vice versa	3	6	30	$\text{V}/\mu\text{s}$

ESD Performance: Transmitter Outputs and Receiver Inputs

ESD Rating		Human Body Model		± 15		kV
		IEC 1000-4-2, Contact		± 8		
		IEC 1000-4-2, Air-gap		± 15		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

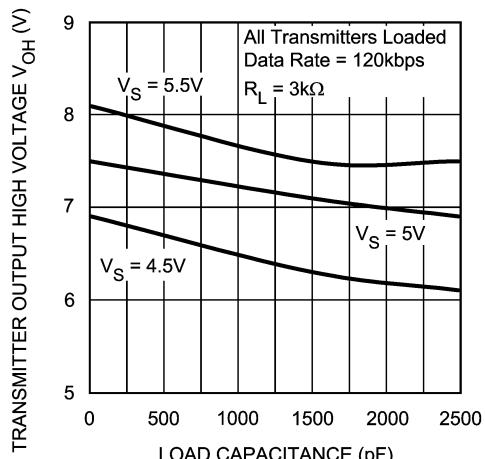
Note 2: Human Body Model, $1.5\text{k}\Omega$ in series with 100pF

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 4: Typical Values represent the most likely parametric norm.

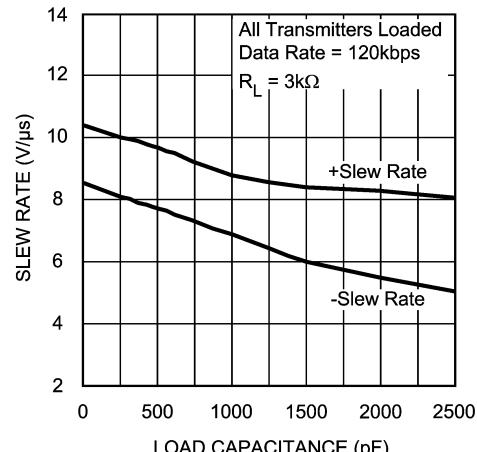
Note 5: All limits are guaranteed by testing or statistical analysis

Note 6: Machine model, 0Ω in series with 200pF


Note 7: IEC 1000-4-2, 330Ω in series with 150pF

Note 8: ESD rating applies to pins 7, 8, 13 and 14

Note 9: ESD rating applies to pins 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15 and 16


Typical Characteristics

Transmitter Output High Voltage vs. Load Capacitance

20048002

Transmitter Slew Rate vs. Load Capacitance

20048003

Application Information

CAPACITOR SELECTION

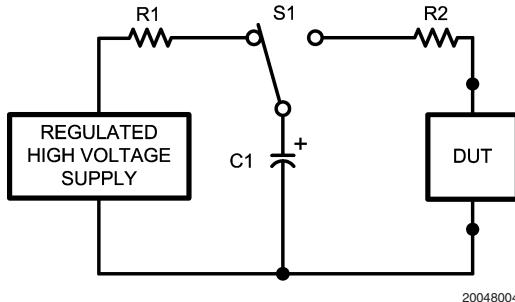
The recommended capacitors are $0.1\mu F$. However, larger capacitors for the charge pump may be used to minimize ripples on V_+ and V_- pins.

POWER SUPPLY DECOUPLING

In some applications that are sensitive to power supply noise from the charge pump, place a decoupling capacitor, C_{bp} , from V_S to GND. Use at least a $0.1\mu F$ capacitor or the same size as the charge pump capacitors (C1 – C4).

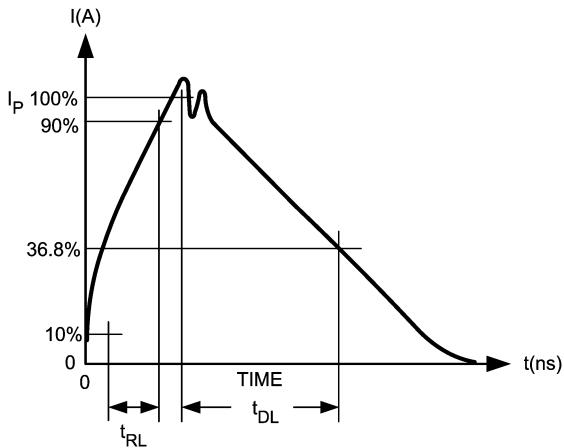
CHARGED PUMP

The dual internal charged-pump provides the $\pm 10V$ to the transmitters. Using capacitor C1, the charge pump converts $+5V$ to $+10V$ then stores the $+10V$ in capacitor C3. The charge pump uses capacitor C2 to invert the $+10V$ to $-10V$. The $-10V$ is then stored in capacitor C4.


ELECTROSTATIC DISCHARGE PROTECTION

ESD protection has been placed at all pins to protect the device from ESD. All pins except for the transmitter output pins (pins 7 and 14) and receiver input pins (pins 8 and 13) have a ESD rating of 2kV Human Body Model (HBM) and 200V Machine Model (MM). The RS-232 bus pins (pins 7, 8, 13 and 14) have a more robust ESD protection. The RS-232 bus pins have a ESD rating of 15kV HBM and IEC 1000-4-2, air-gap. In addition the bus pins meet an ESD rating of 8kV with IEC 1000-4-2, contact. The ESD structures can withstand a high ESD event under the following conditions: powered-on, powered-off, and Input connected to high and low with outputs unloaded.

HUMAN BODY MODEL


The Human Body Model is an ESD testing standard, defined in Mil-STD-883C method 3015.7. It simulates a human discharging an ESD charge to the IC device. The rise time is approximately 10 ns and decay time is approximately 150 ns. The waveform is obtained by discharging 2kV volts ca-

pacitor through a resistor, $R_2 = 1.5 k\Omega$. The peak current is approximately 1.33A.

20048004

FIGURE 1. HBM ESD Test Model

20048005

FIGURE 2. HBM Waveform

Application Information (Continued)

MACHINE MODEL

The Machine Model is the standard ESD test method in Japan and the automotive industry. It simulates a charge on large object discharging through the IC device. This takes place in automated test and handling systems. The equipment can accumulate static charge due to improper grounding, which is transmitted through the IC when it is picked and placed.

The waveform is obtained by discharging 400V volts capacitor to the device. Resistor, $R_2 = 0\Omega$.

The parasitic inductance, L , from the PCB affects the peak current and period of the waveform. For $L = 0.5\mu\text{H}$, the peak current is approximately 7A with a period of 60 ns. For $L = 2.5\mu\text{H}$, the peak current is reduced to 4A with a period of 140 ns.

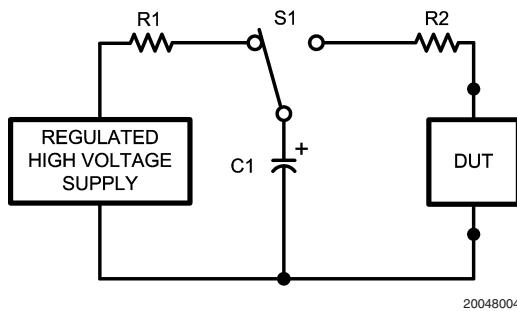


FIGURE 3. MM ESD Model

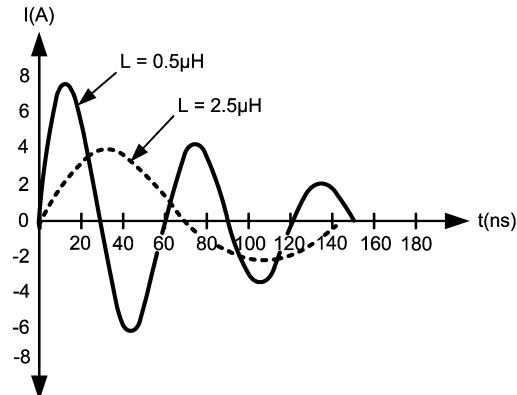


FIGURE 4. MM Waveform

IEC 1000-4-2 (EN61000-4-2)

The European Union requires ESD immunity testing for all electronic products as a condition for EMC Mark before shipping to any member countries. This is not a IC requirement but an overall system requirement. IEC 1000-4-2 specifies ESD testing both by contact and air-gap discharge. ESD testing by contact are generally more repeatable than air-gap but is less realistic to actual ESD event. However, air-gap discharge is more realistic but ESD results may vary widely dependent on environmental conditions (temperature, humidity,...). The waveform is obtained by discharging 150pF capacitor through a resistor, $R_2 = 330\Omega$. A typical peak current may be high as 37A with 10kV.

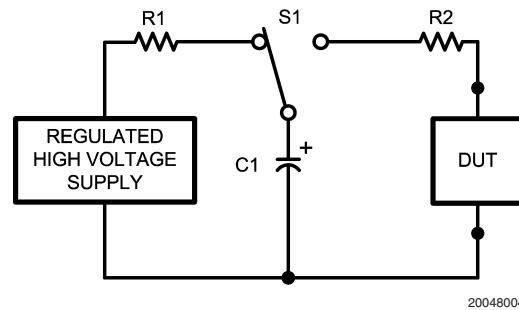
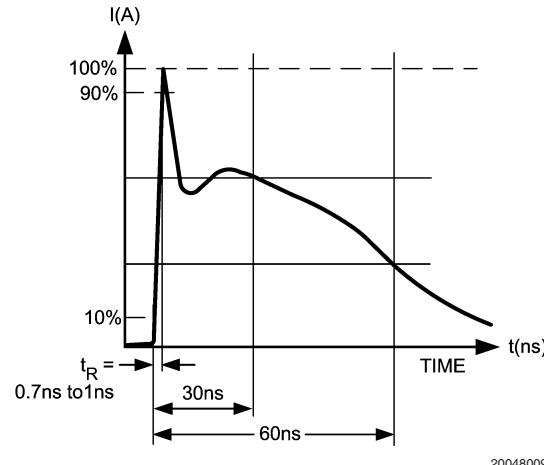
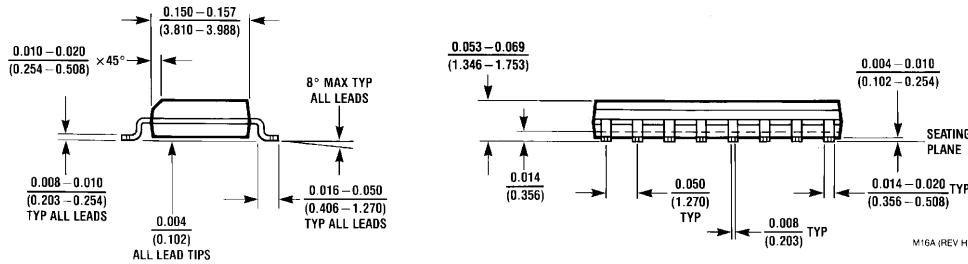
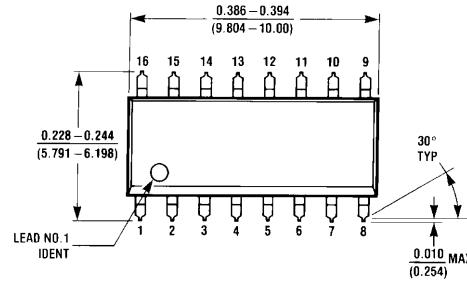
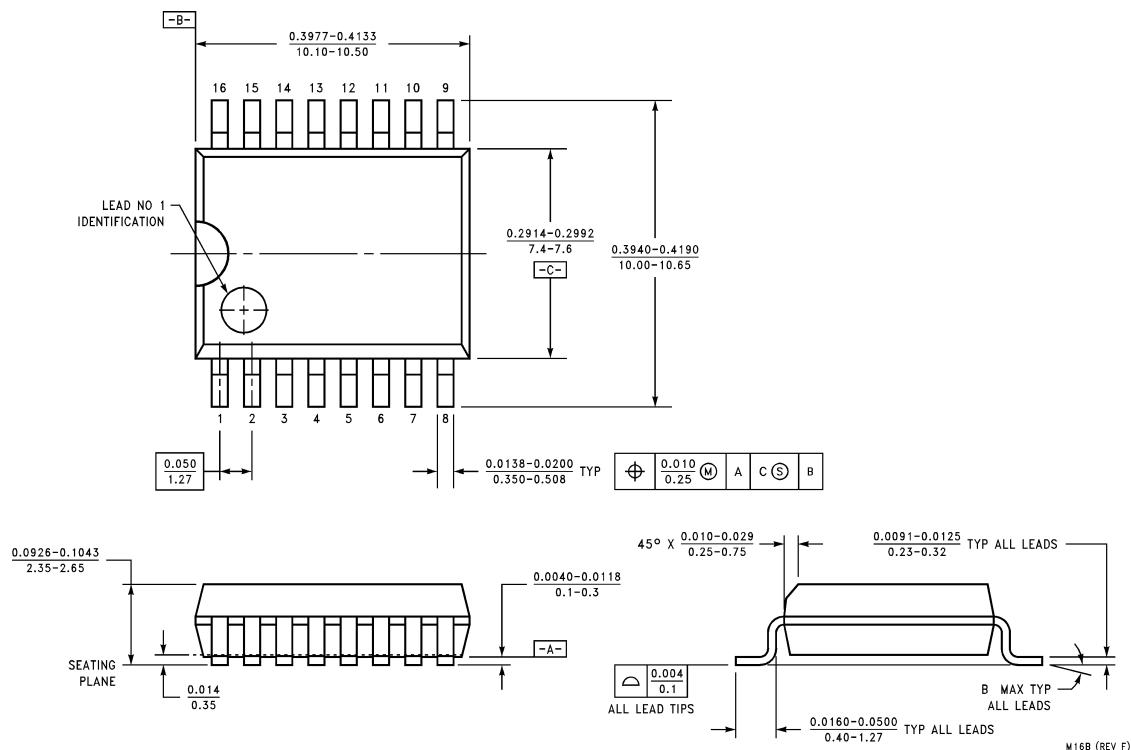


FIGURE 5. IEC ESD Model


FIGURE 6. IEC Waveform

Physical Dimensions

inches (millimeters) unless otherwise noted

16-Pin SOIC
NS Package Number M16A

16-Pin Wide SOIC
NS Package Number M16B

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor
Americas Customer
Support Center
Email: new.feedback@nsc.com
Tel: 1-800-272-9959
www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor
Asia Pacific Customer
Support Center
Fax: +65-6250 4466
Email: ap.support@nsc.com
Tel: +65-6254 4466

National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: jpn.feedback@nsc.com
Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Mobile Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Transportation and Automotive	www.ti.com/automotive
Video and Imaging	www.ti.com/video

[TI E2E Community Home Page](#)

[e2e.ti.com](#)

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated