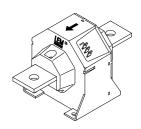


Current Transducer LT 505-T

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



Electrical data Α Primary nominal r.m.s. current 500 I_{PN} 0 .. ± 1200 Primary current, measuring range R_{M} Measuring resistance @ $T_{.} = 70^{\circ}C$ $\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$ 65 with ± 15 V $@ \pm 500 A_{2}$ 60 Ω @ ± 800 A_{max} Ω 0 15 0 12 @ ± 500 A_{max} 0 145 15 140 Ω with ± 24 V @ ± 1200 A_{max} 22 15 18 Ω Secondary nominal r.m.s. current 100 mΑ Conversion ratio 1:5000 Supply voltage (± 5 %) ± 15 .. 24 Current consumption $30 (@ \pm 24 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 6 kV R.m.s. rated voltage 1), safe separation 1750 basic isolation 3500 ٧

Accuracy - Dynamic performance data						
X _G	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity	± 0.6 < 0.1	% %			
I _о	Offset current @ $\mathbf{I}_p = 0$, $\mathbf{T}_A = 25^{\circ}\text{C}$ Thermal drift of \mathbf{I}_O - 10°C + 85°C	Typ = = = = = = = = = = = = = = = = = = =	Max ± 0.4 mA ± 0.5 mA			
t _r di/dt f	Response time ²⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 50 DC 15	μs A/μs 0 kHz			

General data						
T _A	Ambient operating temperature		- 10 + 85	°C		
T _s	Ambient storage temperature		- 25 + 100	°C		
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	65	Ω		
		$T_A = 85^{\circ}C$	69	Ω		
m	Mass		850	g		
	Standards 3)		EN 50178			

$I_{PN} = 500 A$

Features

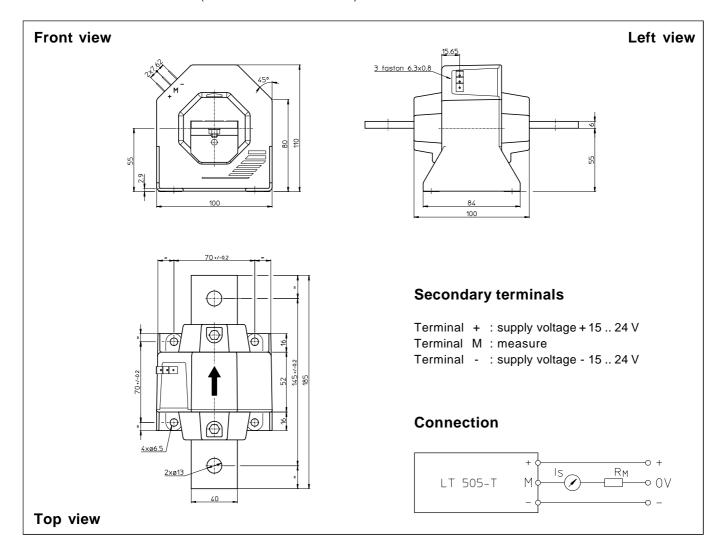
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) With a di/dt of 100 A/µs
- ³⁾ A list of corresponding tests is available

980716/2

Dimensions LT 505-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- ± 0.5 mm
- 4 holes \varnothing 6.5 mm or by the primary bar 2 holes \varnothing 13 mm
- Fastan 62 v 0.0 m
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.