

Features

- * Designed for ease in circuit board assembly.
- * Black case enhance contrast ratio.
- * Solid state light source.
- * Reliable and rugged.

Package Dimensions

Lamp Part No.	Lens	Source Color
LTL-4232N	Green Transparent	Green

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.25\text{mm} (.010")$ unless otherwise noted.
3. The holder color is black.
4. The LED lamp is LTL-4232N.

Absolute Maximum Ratings at TA=25

Parameter	Maximum Rating	Unit
Power Dissipation	100	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	120	mA
DC Forward Current	30	mA
Derating Linear From 50	0.4	mA/
Reverse Voltage	5	V
Operating Temperature Range	-55 to + 100	
Storage Temperature Range	-55 to + 100	
Lead Soldering Temperature [1.6mm(.063") From Body]	260 for 5 Seconds	

Electrical / Optical Characteristics at TA=25

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	I _V	12.6	40	100	mcd	I _F = 10mA Note 1,4
Viewing Angle	2 _{1/2}	-	45	-	deg	Note 2 (Fig.6)
Peak Emission Wavelength	λ	560	565	572	nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λ	564	569	575	nm	Note 3
Spectral Line Half-Width		-	30	-	nm	
Forward Voltage	V _F	-	2.1	2.6	V	I _F = 20mA
Reverse Current	I _R	-	-	100	μA	V _R = 5V
Capacitance	C	-	35	-	pF	V _F = 0, f = 1MHz

Note: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commission International De L'Eclairage) eye-response curve.

2. 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

3. The dominant wavelength, λ is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

4. The I_V guarantee should be added ±15% .

Typical Electrical / Optical Characteristics Curves

(25 °C Ambient Temperature Unless Otherwise Noted)

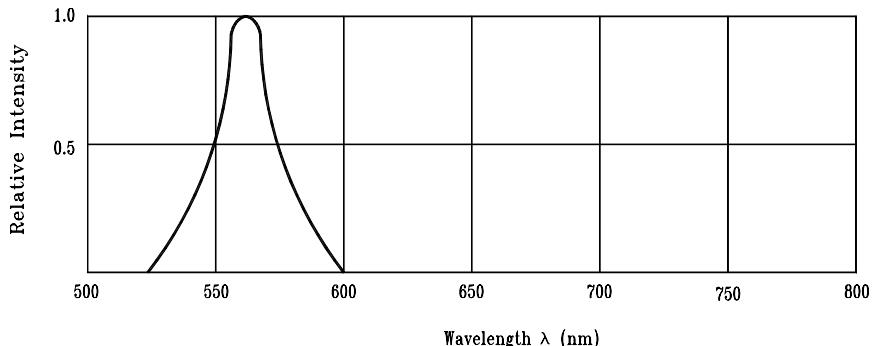


Fig.1 Relative Intensity vs. Wavelength

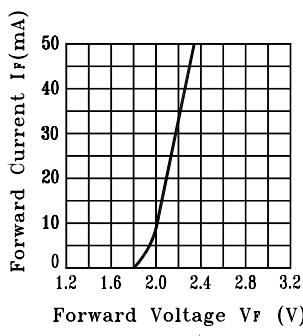


Fig.2 Forward Current vs. Forward Voltage

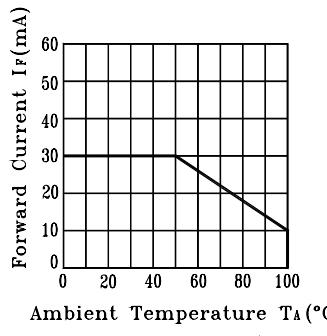


Fig.3 Forward Current Derating Curve

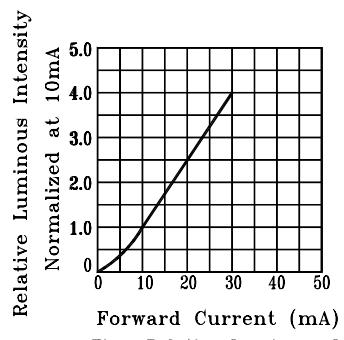


Fig.4 Relative Luminous Intensity vs. Forward Current

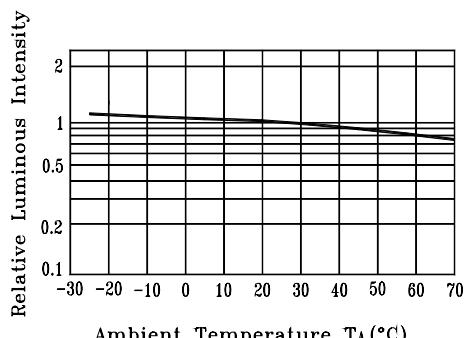


Fig.5 Luminous Intensity vs. Ambient Temperature

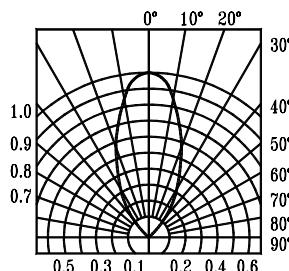


Fig.6 Spatial Distribution

Bin Code List For Reference

Luminous Intensity		Unit : mcd @10mA
Bin Code	Min.	Max.
O1	60	100
O2	40	60
O3	29	40
O4	21	29
O5	12.6	21

Note: Tolerance of each bin limit is $\pm 15\%$

Dominant Wavelength		Unit : nm @10mA
Bin Code	Min.	Max.
YG	571	573
PG	570	571
GG	569	570
GG1	567	569
GG2	565	567
-	564	575

Note: Tolerance of each bin limit is $\pm 1\text{nm}$

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications). Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

2. Storage

The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are used within three months.

For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant or in a dessicator with nitrogen ambient.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LEDs if necessary.

4. Lead Forming & Assembly

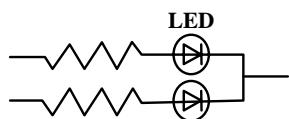
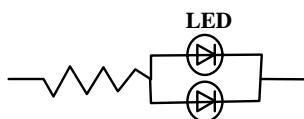
During lead forming, the leads should be bent at a point at least 3mm from the base of LED lens. Do not use the base of the leadframe as a fulcrum during forming. Lead forming must be done before soldering at normal temperature. During assembly on PCB, use minimum clinch force possible to avoid excessive mechanical stress

5. Soldering

When soldering, leave a minimum of 2mm clearance from the base of the lens to the soldering point.

Dipping the lens into the solder must be avoided.

Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.



Recommended soldering condition (for Lamp):

Soldering iron		Wave soldering	
Temperature Soldering time	300°C Max. 3 sec. Max. (one time only)	Pre-heat Pre-heat time Solder wave Soldering time	100°C Max. 60 sec. Max. 260°C Max. 10 sec. Max.

Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or catastrophic failure of the LED. IR re-flow is not suitable process for through hole type LED lamp production.

6. Drive Method

An LED is a current operated device, In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application; it is recommended that a current limiting resistor be incorporated in the drive circuit. In series with each LED as shown in Circuit A below.

Circuit model A**Circuit model B**

(A) Recommended circuit.

(B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs

LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

7.Others

The appearance and specifications of the product may be modified for improvement, without prior notice