Features

Low-Jitter Clock Generator with Nine LVDS/LVPECL Outputs

General Description

The MAX3612 is a high-performance, precision phaselocked loop (PLL) clock generator optimized for nextgeneration high-speed Ethernet applications that demand low-jitter clock generation and distribution for robust high-speed data transmission. The device features subpicosecond jitter generation, excellent powersupply noise rejection, and pin-programmable LVDS/ LVPECL output interfaces. The MAX3612 provides nine differential outputs divided into three banks. The frequency and output interface of each output bank can be individually programmed, making this device an ideal replacement for multiple crystal oscillators and clock distribution ICs on a system board, saving cost and space. This 3.3V IC is available in a 7mm x 7mm, 48-pin TQFN package and operates from -40°C to +85°C.

Applications

Ethernet Switch/Router

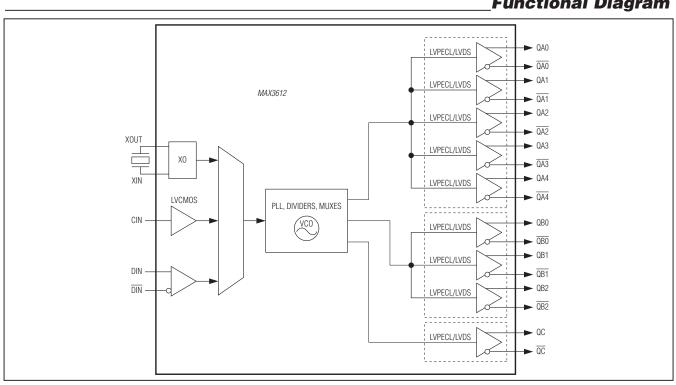
Typical Application Circuits and Pin Configuration appear at end of data sheet.

♦ Inputs

Crystal Interface: 25MHz. 31.25MHz LVCMOS Input: 25MHz, 31.25MHz, 125MHz, 156.25MHz Differential Input: 25MHz, 31.25MHz, 125MHz, 156.25MHz

LVDS/LVPECL Outputs: 125MHz, 156.25MHz, 312.5MHz

- ◆ Three Individual Output Banks **Pin-Programmable Dividers Pin-Programmable Output Interface**
- **♦ Low Phase Jitter** 0.34psRMS (12kHz to 20MHz) 0.14psrms (1.875MHz to 20MHz)
- **♦ Excellent Power-Supply Noise Rejection**
- ◆ Operating Temperature Range: -40°C to +85°C
- ♦ +3.3V Supply


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3612ETM+	-40°C to +85°C	48 TQFN-EP*

+Denotes a lead(Pb)-free/RoHS-compliant package.

*EP = Exposed pad.

Functional Diagram

N	ABSOLUTE MAXIMUM RATINGS
1	Supply Voltage Range (VCC, VCCA, VCCQA,
9	VCCQB, VCCQC)0.3V to +4.0V
3	Voltage Range at CIN, IN_SEL, DM, DF, PLL_BP,
EX	DA, DB, DC, QA_CTRL1, QA_CTRL2,
٦	Voltage Range at DIN, DIN (VCC - 2.35V) to (VCC - 0.35V)
	Voltage Range at QA[4:0], QA[4:0], QB[2:0],
	QB[2:0], QC, QC when LVDS Output0.3V to (VCC + 0.3V)
	Current into QA[4:0], QA[4:0], QB[2:0], QB[2:0],
	QC, QC when LVPECL Output56mA

Voltage Range at XIN	0.3\	/ to +1.2V
Voltage Range at XOUT	0.3V to (Vo	cc - 0.6V)
Continuous Power Dissipation ($T_A = +70^{\circ}$	C)	
48-Pin TQFN (derate 40mW/°C above +	70°C)	.3200mW
Operating Junction Temperature Range	55°C t	o +150°C
Storage Temperature Range	65°C t	o +160°C
Lead Temperature (soldering, 10s)		+300°C
Soldering Temperature (reflow)		+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(VCC = +3.0V to +3.6V, TA = -40°C to +85°C. Typical values are at VCC = +3.3V, TA = +25°C, unless otherwise noted. Signal applied to CIN or DIN/DIN only when selected as the reference clock.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current with PLL	laa	Configured with LVPECL outputs		150	200	то Л
Enabled (Note 2)	Icc	Configured with LVDS outputs		270	360	mA mA
Supply Current with PLL		Configured with LVPECL outputs		100		mA
Bypassed (Note 2)		Configured with LVDS outputs		220		IIIA
LVCMOS/LVTTL CONTROL INP QC_CTRL)	UTS (IN_SEI	_, DM, DF, DA, DB, DC, PLL_BP, QA_CTRL	.1, QA_CT	RL2, QB	_CTRL,	
Input High Voltage	VIH		2.0			V
Input Low Voltage	VIL			-	0.8	V
Input High Current	lін	V _{IN} = V _{CC}			80	μΑ
Input Low Current	IIL	V _{IN} = 0V	-80			μΑ
LVCMOS/LVTTL CLOCK INPUT	(CIN)					
Reference Clock Input Frequency	fREF		15		160	MHz
Input Amplitude Range		Internally AC-coupled (Note 3)	1.2		3.6	V _{P-P}
Input High Current	ІІН	VIN = VCC			80	μΑ
Input Low Current	IIL	$V_{IN} = 0V$	-80			μA
Reference Clock Input Duty- Cycle Distortion			40		60	%
Input Capacitance				1.5		рF
DIFFERENTIAL CLOCK INPUT	(DIN, DIN) (N	ote 4)				
Differential Input Frequency	fREF		15		350	MHz
Input Bias Voltage	Vсмі		VCC -	V _C C -		V
Input Differential Voltage Swing			150		1800	mV _{P-P}
Single-Ended Voltage Range			VCC - 2.0		VCC - 0.7	V
Input Differential Impedance			80	100	120	Ω
Differential Input Capacitance				1.5		рF

ELECTRICAL CHARACTERISTICS (continued)

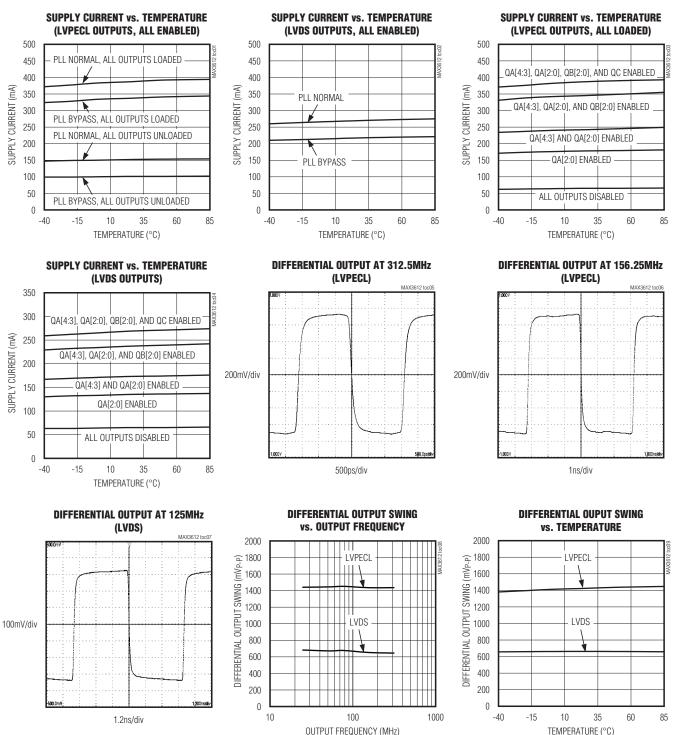
 $(VCC = +3.0V \text{ to } +3.6V, TA = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}. \text{ Typical values are at } VCC = +3.3V, TA = +25^{\circ}\text{C}, \text{ unless otherwise noted. Signal applied to CIN or DIN/\overline{DIN} only when selected as the reference clock.) (Note 1)$

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS
LVDS OUTPUTS (QA[4:0], QA[4	:0], QB[2:0],	$\overline{QB[2:0]},QC,\overline{QC})$	(Note 5)				
Output High Voltage	VoH					1.475	V
Output Low Voltage	VoL			0.925			V
Differential Output Voltage	IV _{OD} I			250		400	mV
Change in Magnitude of Differential Output for Complementary States	ΔIV _{OD} I					25	mV
Output Offset Voltage	Vos			1.125		1.3	V
Change in Magnitude of Output Offset Voltage for Complementary States	ΔIVOSI					25	mV
Differential Output Impedance				80	100	140	Ω
Output Current		Short together			3		mA
Output Current		Short to ground			6		IIIA
Output Current When Disabled		$VQ_{-} = V\overline{Q_{-}} = 0V$	to Vcc		10		μA
Output Rise/Fall Time		20% to 80%			160	240	ps
Output Duty Cycle Distortion		PLL enabled		48	50	52	%
Output Duty-Cycle Distortion		PLL bypassed (N	Note 6)		50		70
LVPECL OUTPUTS (QA[4:0], Q	A[4:0], QB[2:	0], QB[2:0], QC, G	(Note 7)				
Output High Voltage	Vон			V _{CC} - 1.13	V _C C - 0.98	V _{CC} - 0.83	V
Output Low Voltage	VoL			VCC - 1.85	Vcc - 1.70	VCC - 1.55	V
Output-Voltage Swing (Single-Ended)				0.5	0.7	0.9	V _{P-P}
Output Current When Disabled		Vo = 0V to Vcc			10		μΑ
Output Rise/Fall Time		20% to 80%, diffe	erential load = 100Ω		140	240	ps
0 + + 10 + 0 + 10 + 11		PLL enabled		48	50	52	0/
Output Duty-Cycle Distortion		PLL bypassed (N	Note 6)		50		%
PLL SPECIFICATIONS	•			,			
VCO Frequency Range	fvco				625		MHz
PLL Jitter Transfer Bandwidth					130		kHz
		25MHz crystal	12kHz to 20MHz		0.34	1.0	
Integrated Phase Jitter at	D.1	input	1.875MHz to 20MHz		0.14		
156.25MHz Output	RJRMS	25MHz LVCMOS (Note 8)	or differential input		0.34		psRMS
Supply-Noise Induced Phase Spur		(Note 9)			-56		dBc
Determinisitic Jitter Induced by Power-Supply Noise		(Note 9)			6		psp-p

♥ ELECTRICAL CHARACTERISTICS (continued)

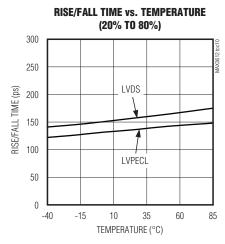
 $(VCC = +3.0V \text{ to } +3.6V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $VCC = +3.3V, T_A = +25^{\circ}\text{C}$, unless otherwise noted. Signal applied to CIN or DIN/\overline{DIN} only when selected as the reference clock.) (Note 1)

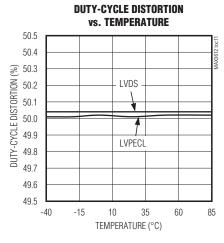
PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Nonharmonic and Subharmonic Spurs		(Note 10)	-70	dBc
		foffset = 1kHz	-115	
		foffset = 10kHz	-116	dDa/
SSB Phase Noise at 312.5MHz		foffset = 100kHz	-122	dBc/ Hz
		foffset = 1MHz	-139	7 112
		foffset ≥ 10MHz	-149	
		fOFFSET = 1kHz	-122	
		foffset = 10kHz	-123	ID.
SSB Phase Noise at 156.25MHz		foffset = 100kHz	-129	dBc/ Hz
		foffset = 1MHz	-145	7 112
		fOFFSET ≥ 10MHz	-152	
		fOFFSET = 1kHz	-123	
		fOFFSET = 10kHz	-124] ,,
SSB Phase Noise at 125MHz		foffset = 100kHz	-130	dBc/ Hz
		foffset = 1MHz	-147]
		fOFFSET ≥ 10MHz	-153	

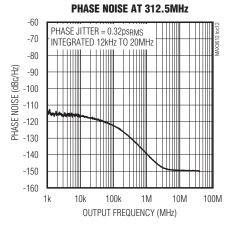

- **Note 1:** A series resistor of up to 10.5Ω is allowed between VCC and VCCA for filtering supply noise when system power-supply tolerance is VCC = $3.3V \pm 5\%$. See Figure 2.
- Note 2: Measured with all outputs enabled and unloaded.
- Note 3: CIN can be AC- or DC-coupled. See Figure 7. Input high voltage must be ≤ V_{CC} to +0.3V.
- Note 4: DIN can be AC- or DC-coupled. See Figure 9.
- **Note 5:** Measured with 100Ω differential load.
- Note 6: Measured with crystal input, or with 50% duty cycle LVCMOS, or differential input.
- **Note 7:** Measured with output termination of 50Ω to V_{CC} 2V or Thevenin equivalent.
- **Note 8:** Measured using LVCMOS/LVTTL input with slew rate ≥ 1.0 V/ns, or differential input with slew rate ≥ 0.5 V/ns.
- **Note 9:** Measured at 156.25MHz output with 200kHz, 50mVp-p sinusoidal signal on the supply using the crystal input and the power-supply filter shown in Figure 2. See the *Typical Operating Characteristics* for other supply noise frequencies. Deterministic jitter is calculated from the measured power-supply-induced spurs. For more information, refer to Application Note 4461: *HFAN-04.5.5*: *Characterizing Power-Supply Noise Rejection in PLL Clock Synthesizers*.
- Note 10: Measured with all outputs enabled and all three banks at different frequencies.

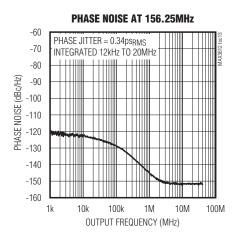
MAX3612

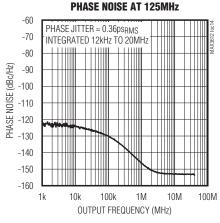
Low-Jitter Clock Generator with Nine LVDS/LVPECL Outputs

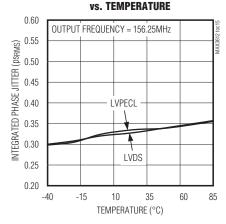

Typical Operating Characteristics

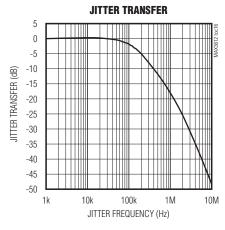

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

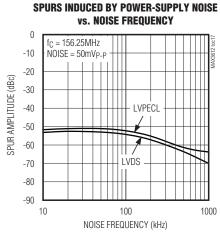


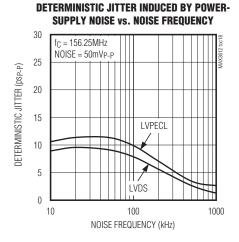

Typical Operating Characteristics (continued)


(VCC = 3.3V, TA = +25°C, unless otherwise noted.)









INTEGRATED PHASE JITTER (12kHz TO 20MHz)

Pin Description

PIN	NAME	FUNCTION
1	DM	LVCMOS/LVTTL Input. Control for input divider M. See Table 3.
2	XIN	Crystal Oscillator Input
3	XOUT	Crystal Oscillator Output
4, 20	Vcc	Positive Power Supply. Connect to +3.3V.
5	IN_SEL	LVCMOS/LVTTL Input. Three-level control for input mux. See Table 1.
6	PLL_BP	LVCMOS/LVTTL Input. Three-level control for PLL bypass mode. See Table 2.
7	RES0	Reserved. Connect to GND for normal operation.
8	DF	LVCMOS/LVTTL Input. Control for feedback divider F. See Table 4.
9	QC_CTRL	LVCMOS/LVTTL Input. Three-level control input for C-bank output interface. See Table 8.
10	VCCA	Power Supply for Internal Voltage-Controlled Oscillators (VCOs). See Figure 3.
11	RES1	Reserved. Connect to GND for normal operation.
12	RES2	Reserved. Connect to V _{CC} for normal operation.
13	RES3	Reserved. Connect to GND for normal operation.
14	DB	LVCMOS/LVTTL Input. Three-level controls for output divider B. See Table 5.
15	RES4	Reserved. Connect to GND for normal operation.
16	DA	LVCMOS/LVTTL Input. Three-level controls for output divider A. See Table 5.
17	RES5	Reserved. Connect to GND for normal operation.
18	DC	LVCMOS/LVTTL Input. Three-level controls for output divider C. See Table 5.
19	QA_CTRL2	LVCMOS/LVTTL Input. Three-level control for QA[4:3] output interface. See Table 6.
21	RES6	Reserved. Connect to GND for normal operation.
22, 23	QC, QC	C-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QC_CTRL pin.
24	Vccqc	Power Supply for C-Bank Differential Output. Connect to +3.3V.
25, 36	VCCQA	Power Supply for A-Bank Differential Outputs. Connect to +3.3V.
26, 27	QA4, QA4	A-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QA_CTRL2 pin.
28, 29	QA3, QA3	A-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QA_CTRL2 pin.
30, 31	QA2, QA2	A-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QA_CTRL1 pin.
32, 33	QA1, QA1	A-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QA_CTRL1 pin.
34, 35	QAO, QAO	A-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QA_CTRL1 pin.
37	VCCQB	Power Supply for B-Bank Differential Outputs. Connect to +3.3V.
38, 39	QB0, QB0	B-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QB_CTRL pin.
40, 41	QB1, QB1	B-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QB_CTRL pin.
42, 43	QB2, QB2	B-Bank Differential Output. Configured as LVPECL, LVDS, or high-Z with the QB_CTRL pin.
44	QA_CTRL1	LVCMOS/LVTTL Input. Three-level control for QA[2:0] output interface. See Table 6.
45	QB_CTRL	LVCMOS/LVTTL Input. Three-level control for B-bank output interface. See Table 7.
46, 47	DIN, DIN	Differential Clock Input. Operates up to 350MHz. This input can accept DC-coupled LVPECL signals, and is internally biased to accept AC-coupled LVDS, CML, and LVPECL signals.
48	CIN	LVCMOS Clock Input. Operates up to 160MHz.
_	EP	Exposed Pad. Connect to supply ground for proper electrical and thermal performance.

Detailed Description

The MAX3612 is a low-jitter clock generator optimized for Ethernet applications. It consists of a selectable reference clock (on-chip crystal oscillator, LVCMOS input, or differential input), PLL with on-chip VCO, pin-programmable dividers and muxes, and three banks of clock outputs. See Figure 1. The output banks include nine pin-programmable LVDS/LVPECL output buffers.

The frequency and output interface of each output bank can be individually programmed. A PLL bypass mode is also available for system testing or clock distribution.

Crystal Oscillator

The on-chip crystal oscillator provides the low-frequency reference clock for the PLL. This oscillator requires an external crystal connected between XIN and XOUT. See the *Crystal Selection and Layout* section for more

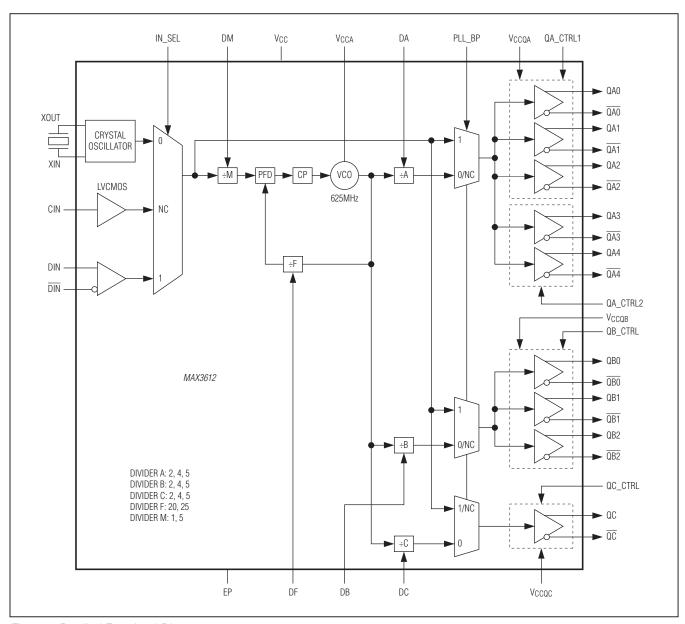


Figure 1. Detailed Functional Diagram

information. The XIN and XOUT pins can be left open if not used.

LVCMOS Clock Input

An LVCMOS-compatible clock source can be connected to CIN to serve as the PLL reference clock. The input is internally biased to allow AC- or DC-coupling (see the *Applications Information* section). It is designed to operate from 15MHz to 160MHz. No signal should be applied to CIN if not used.

Differential Clock Input

A differential clock source can be connected to DIN to serve as the PLL reference clock. This input operates from 15MHz to 350MHz and contains an internal 100Ω differential termination. This input can accept DC-coupled LVPECL signals, and is internally biased to accept AC-coupled LVDS, CML, and LVPECL signals (see the *Applications Information* section). No signal should be applied to DIN if not used.

Phase-Locked Loop (PLL)

The PLL takes the signal from the crystal oscillator, LVCMOS clock input, or differential clock input and synthesizes a low-jitter, high-frequency clock. The PLL contains a phase-frequency detector (PFD), a charge pump (CP), and a low-phase noise VCO. The VCO output is connected to the PFD input through a feedback divider. The PFD compares the reference frequency to the divided-down VCO output and generates a control signal that keeps the VCO locked to the reference clock. The high-frequency VCO output clock is sent to the output dividers. To minimize noise-induced jitter, the VCO supply (VCCA) is isolated from the core logic and output buffer supplies.

Dividers and Muxes

The dividers and muxes are set with three-level control inputs. Divider settings and routing information are given in Tables 1 to 9.

Table 1. PLL Input

IN_SEL	INPUT
0	Crystal Input. XO circuit is disabled when not selected.
1	Differential Input. No signal should be applied to DIN if not selected.
NC	LVCMOS Input. No signal should be applied to CIN if not selected.

Table 2. PLL Bypass

PLL_BP	PLL OPERATION
0	PLL Enabled for Normal Operation. All outputs from the A-, B-, and C-banks are derived from the VCO.
1	PLL Bypassed. Selected input passes directly to the outputs. The VCO is disabled to minimize power consumption and intermodulation spurs. Used for system testing or clock distribution.
NC	The outputs from A-bank and B-bank are derived from the VCO, but the C-bank output is directly driven from the input signal for purposes of daisy chaining.

Table 3. Input Divider M

DM	M DIVIDER RATIO
0	÷1
1	÷5
NC	Not allowed

Note: When the on-chip XO is selected (IN_SEL = 0), the setting DM = 0 is required.

Table 4. PLL Feedback Divider F

DF	F DIVIDER RATIO
0	÷25
1	÷20
NC	Not allowed

DA/DB/DC	A, B, C DIVIDER RATIO
0	÷4
1	÷5
NC	÷2

Table 6. A-Bank Output Interface

QA_CTRL1	QA[2:0] OUTPUT
0	QA[2:0] = LVDS
1	QA[2:0] = LVPECL
NC	QA[2:0] disabled to high impedance
QA_CTRL2	QA[4:3] OUTPUT
0	QA[4:3] = LVDS
1	QA[4:3] = LVPECL
NC	QA[4:3] disabled to high impedance

Table 7. B-Bank Output Interface

QB_CTRL	QB[2:0] OUTPUT
0	QB[2:0] = LVDS
1	QB[2:0] = LVPECL
NC	QB[2:0] disabled to high impedance

Table 8. C-Bank Output Interface

QC_CTRL	QC OUTPUT
0	QC = LVDS
1	QC = LVPECL
NC	QC disabled to high impedance

LVDS/LVPECL Clock Outputs

The differential clock outputs (QA[4:0], QB[2:0], QC) operate up to 350MHz and have a pin-programmable LVDS/LVPECL output interface. See Tables 6 to 8. When configured as LVDS, the buffers are designed to drive transmission lines with a 100Ω differential termination. When configured as LVPECL, the buffers are designed to drive transmission lines terminated with 50Ω to VCC - 2V. Unused output banks can be disabled to high impedance and unused outputs can be left open.

Internal Reset

During power-on, a power-on reset (POR) signal is generated to synchronize all dividers. A reset signal is also generated if any control pin is changed. Outputs within a bank are phase aligned, but outputs bank-to-bank may not be phase aligned.

Applications Information

Output Frequency Configuration

Table 9 provides the divider ratios for typical configurations.

Power-Supply Filtering

The MAX3612 is a mixed analog/digital IC. The PLL contains analog circuitry susceptible to random noise. To take full advantage of on-board filtering and noise attenuation, in addition to excellent on-chip power-supply rejection, this part provides a separate power-supply pin, VCCA, for the VCO circuitry. Figure 2 illustrates the recommended power-supply filter network for VCCA. The purpose of this design technique is to ensure clean input power supply to the VCO circuitry and to improve

Table 9. Divider Configurations

INPUT FREQUENCY (MHz)	INPUT DIVIDER M	FEEDBACK DIVIDER F	VCO FREQUENCY (MHz)	OUTPUT DIVIDERS A, B, C	OUTPUT FREQUENCY (MHz)
25	. 4	÷25		. 0	312.5
31.25	÷1	÷20	625	÷2	312.5
125	÷5	÷25	025	÷4	156.25
156.25	-5	÷20		÷5	125

the overall immunity to power-supply noise. This network requires that the power supply is +3.3V ±5%. Decoupling capacitors should be used on all other supply pins for best performance. All supply connections should be driven from the same source.

Ground Connection

The 48-pin TQFN package features an exposed pad (EP), which provides a low resistance thermal path for heat removal from the IC and also the electrical ground. For proper operation, the EP must be connected to the circuit board ground plane with multiple vias.

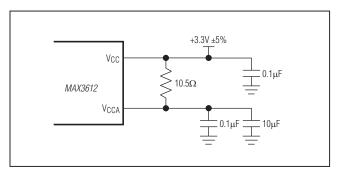


Figure 2. Power-Supply Filter

Crystal Selection and Layout

The MAX3612 features an integrated on-chip crystal oscillator to minimize system implementation cost.

The crystal oscillator is designed to drive a fundamental mode, AT-cut crystal resonator. See Table 10 for recommended crystal specifications. See Figure 3 for the crystal equivalent circuit and Figure 4 for the recommended external capacitor connections. The crystal, trace, and two external capacitors should be placed on the board as close as possible to the XIN and XOUT pins to reduce crosstalk of active signals into the oscillator.

The total load capacitance for the crystal is a combination of external and on-chip capacitance. The layout shown in Figure 5 gives approximately 1.7pF of trace plus footprint capacitance per side of the crystal. Note the ground plane is removed under the crystal to minimize capacitance. There is approximately 2.5pF of on-chip capacitance between XIN and XOUT. With an external 27pF capacitor connected to XIN and a 33pF external capacitor connected to XOUT, the total load capacitance for the crystal is approximately 18pF. The XIN and XOUT pins can be left open if not used.

Table 10. Crystal Selection Parameters

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Crystal Oscillation Frequency	fosc		25		MHz
Shunt Capacitance	C ₀		2.0	7.0	рF
Load Capacitance	CL		18		рF
Equivalent Series Resistance (ESR)	Rs		10	50	Ω
Maximum Crystal Drive Level				200	μW

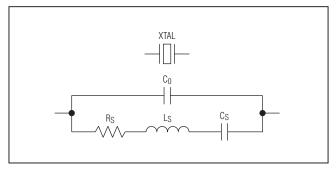


Figure 3. Crystal Equivalent Circuit

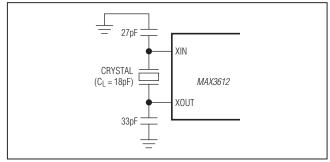


Figure 4. Crystal, Capacitor Connections

MAX3612

Low-Jitter Clock Generator with Nine LVDS/LVPECL Outputs

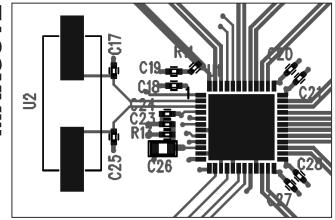


Figure 5. Crystal Layout

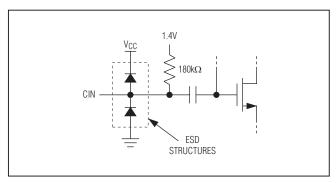


Figure 6. Equivalent CIN Circuit

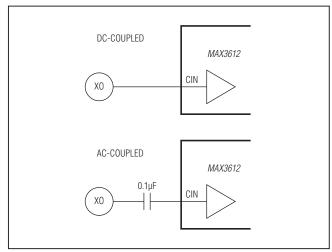


Figure 7. Interface to CIN

Interfacing with LVCMOS Input

The equivalent LVCMOS input circuit for CIN is given in Figure 6. This input is internally biased to allow AC- or DC-coupling, and has $180 k\Omega$ input impedance. See Figure 7 for the interface circuit. No signal should be applied to CIN if not used.

Interfacing with Differential Input

The equivalent input circuit for DIN is given in Figure 8. This input operates up to 350MHz and contains an internal 100 Ω differential termination as well as a 35Ω common-mode termination. The common-mode termination ensures good signal integrity when connected to a source with large common-mode signals. The input can accept DC-coupled LVPECL signals, and is internally biased to accept AC-coupled LVDS, CML, and LVPECL signals (Figure 9). No signal should be applied to DIN if not used.

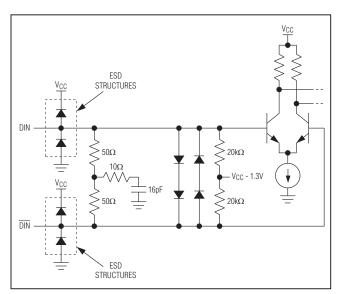


Figure 8. Equivalent DIN Circuit

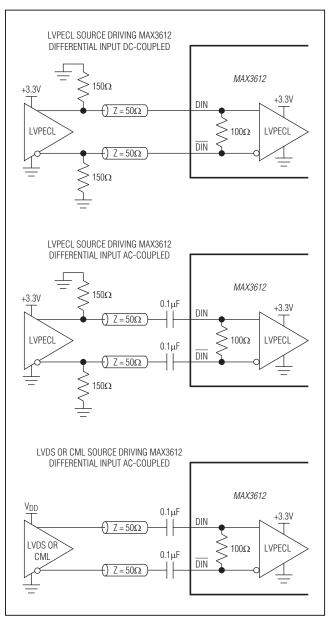


Figure 9. Interfacing to DIN

Interfacing with LVPECL Outputs

The equivalent LVPECL output circuit is given in Figure 10. These outputs are designed to drive a pair of 50Ω transmission lines terminated with 50Ω to $V_{TT} = V_{CC}$ - 2V. If a separate termination voltage (V_{TT}) is not available, other terminations methods can be used such as those shown in Figure 11. For more information on LVPECL terminations and how to interface with other logic families, refer to Application Note 291: *HFAN-01.0: Introduction to LVDS, PECL, and CML*.

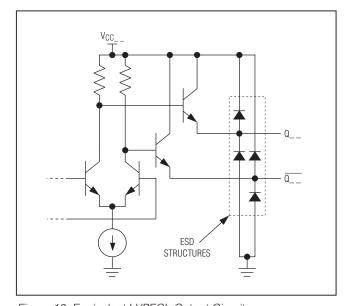


Figure 10. Equivalent LVPECL Output Circuit

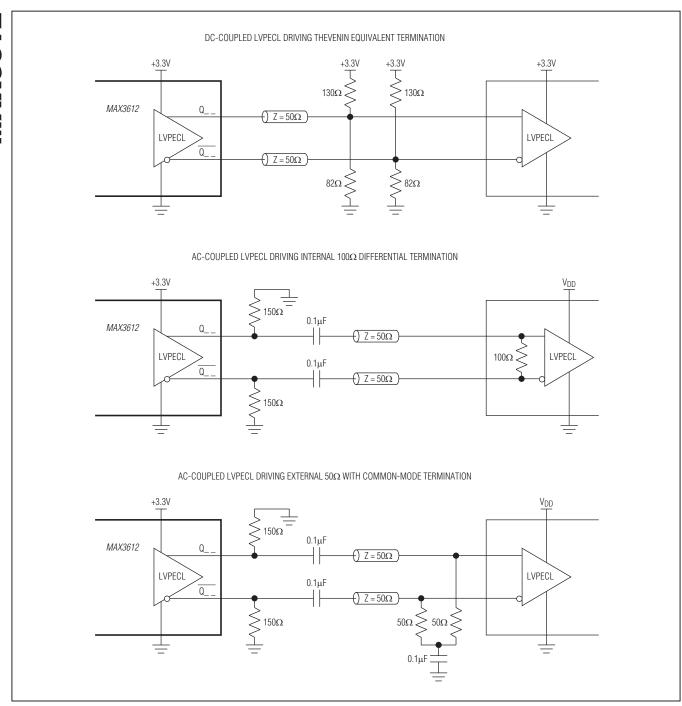


Figure 11. Interface to LVPECL Outputs

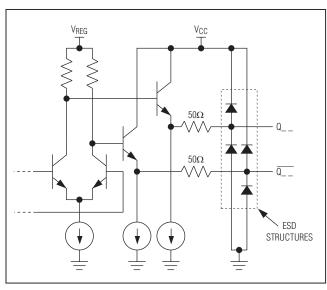


Figure 12. Equivalent LVDS Output Circuit

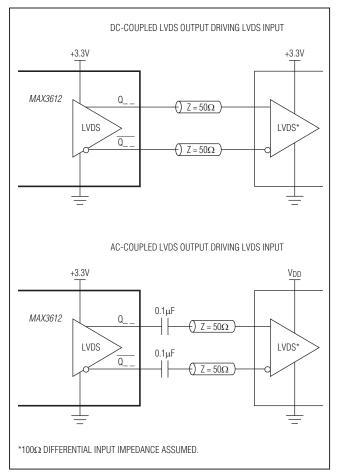


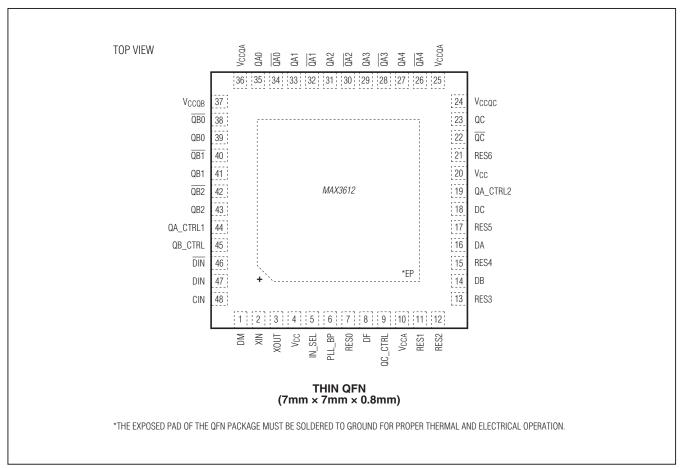
Figure 13. Interface to LVDS Outputs

Interfacing with LVDS Outputs

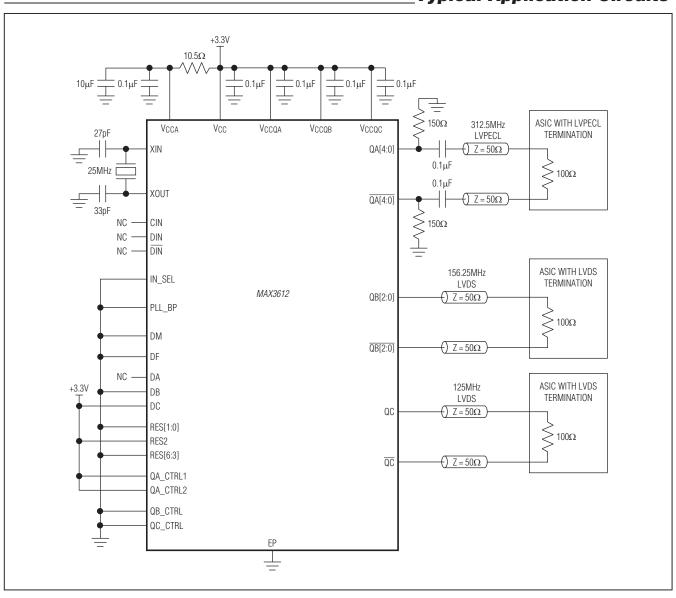
The equivalent LVDS output circuit is given in Figure 12. These outputs provide 100Ω differential output impedance designed to drive a 100Ω differential transmission line terminated with a 100Ω differential load. Example interface circuits are shown in Figure 13. For more information on LVDS terminations and how to interface with other logic families, refer to Application Note 291: *HFAN-01.0: Introduction to LVDS, PECL, and CML*.

Layout Considerations

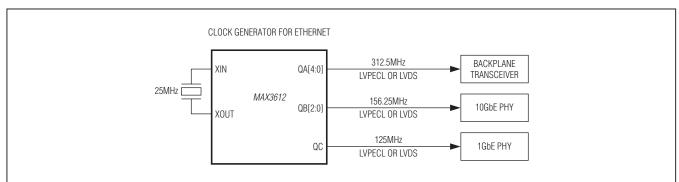
The inputs and outputs are the most critical paths for the MAX3612; great care should be taken to minimize discontinuities on the transmission lines. Here are some suggestions for maximizing the performance of the MAX3612:

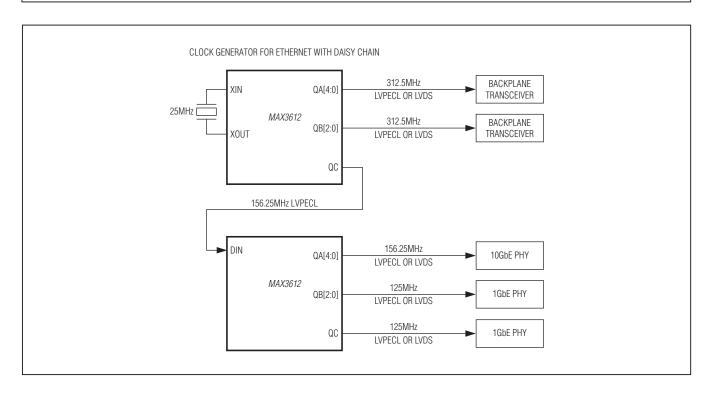

- An uninterrupted ground plane should be positioned beneath the clock outputs. The ground plane under the crystal should be removed to minimize capacitance.
- Supply decoupling capacitors should be placed close to the supply pins, preferably on the same side of the board as the MAX3612.
- Take care to isolate input traces from the MAX3612 outputs.
- The crystal, trace, and two external capacitors should be placed on the board as close as possible to the XIN and XOUT pins to reduce crosstalk of active signals into the oscillator.
- Maintain 100Ω differential (or 50Ω single-ended) transmission line impedance into and out of the part.
- Provide space between differential output pairs to reduce crosstalk, especially if the outputs are operating at different frequencies.
- Use multilayer boards with an uninterrupted ground plane to minimize EMI and crosstalk.

Refer to the MAX3612 evaluation kit for more information.


_Chip Information

PROCESS: BICMOS


Pin Configuration



Typical Application Circuits

Typical Application Circuits (continued)

Package Information

For the latest package outline information and land patterns, go to **http://www.microsemi.com.** Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
48 TQFN-EP	T4877+4	<u>21-0144</u>	90-0130

Revision History					
REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED		
0	11/09	Initial release	_		
1	6/10	Added the lead and soldering temperatures to the <i>Absolute Maximum Ratings</i> section; changed the descriptions in the <i>Pin Description</i> table for RES2 (connect to VCC) and RES6 (connect to GND); replaced Figure 5 with customer board layout; revised the RES pin connections to match the <i>Pin Description</i> descriptions in the <i>Typical Application Circuits</i> ; updated the package code and added the land pattern no. to the <i>Package Information</i> table	2, 7, 12, 17, 18		

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microsemi:

MAX3612ETM+T MAX3612ETM+