

General Description

The MAX9310A is a fast, low-skew 1:5 differential driver with selectable LVPECL inputs and LVDS outputs, designed for clock distribution applications. This device features an ultra-low propagation delay of 340ps with 48mA of supply current.

The MAX9310A operates from a 3V to 3.6V power supply for use in 3.3V systems. A 2:1 input multiplexer is used to select one of two differential inputs. The input selection is controlled through the CLKSEL pin.

This device features a synchronous enable function. The MAX9310A LVPECL inputs can be driven by either a differential or single-ended signal. A VBB reference voltage output is provided for use with single-ended inputs. The device can also accept differential HSTL signals.

The MAX9310A is offered in a space-saving 20-pin TSSOP package and operates over the extended temperature range from -40°C to +85°C.

Applications

Data and Clock Drivers and Buffers

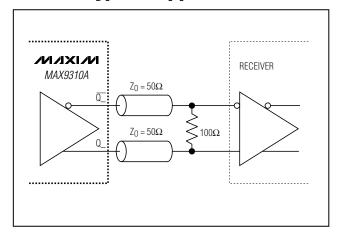
Central-Office Backplane Clock Distribution

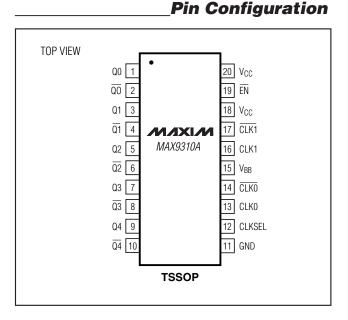
DSLAM

Base Stations

ATE

Features


- ♦ Guaranteed 1.0GHz Operating Frequency
- ♦ 8.0ps Output-to-Output Skew
- ♦ 340ps Propagation Delay
- ♦ Accepts LVPECL and Differential HSTL Inputs
- ♦ Synchronous Output Enable/Disable
- ◆ Two Selectable Differential Inputs
- ♦ 3V to 3.6V Supply Voltage
- ♦ On-Chip Reference for Single-Ended Operation
- ♦ ESD Protection: ±2kV (Human Body Model)
- ♦ Input Bias Resistors Drive Output Low for Open Inputs


Ordering Information

PART	TEMP RANGE	PIN-PACKAGE			
MAX9310AEUP	-40°C to +85°C	20 TSSOP			

Functional Diagram appears at end of data sheet.

Typical Application Circuit

NIXIN

Maxim Integrated Products 1

1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +4.1V <u>EN</u> , CLK <u>SEL</u> , CLK_, <u>CLK</u> _, to GND0.3V to (V _{CC} + 0.3V) CLK to <u>CLK</u> +3V
Continuous Output Current
Surge Output Current50mA
VBB Sink/Source Current±0.65mA
Continuous Power Dissipation (T _A = +70°C) Single-Layer PC Board
20-Pin TSSOP (derate 7.69mW/°C above +70°C)615mW Multilayer PC Board
20-Pin TSSOP (derate 11mW/°C above +70°C)879mW
Junction-to-Ambient Thermal Resistance in Still Air
Single-Layer PC Board
20-Pin TSSOP+130°C/W

Multilayer PC Board 20-Pin TSSOP Junction-to-Ambient Thermal Resistance with 500LF	
Airflow Single-Layer PC board 20-Pin TSSOP	+96°C/W
Junction-to-Case Thermal Resistance	100 0,11
20-Pin TSSOP	+20°C/W
Operating Temperature Range40	°C to +85°C
Junction Temperature	
Storage Temperature Range65°C	C to +150°C
ESD Protection	
Human Body Model (inputs and outputs)	±2kV
Lead Temperature (soldering, 10s)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC}$ - GND = 3V to 3.6V, outputs terminated with 100 Ω ±1%, unless otherwise noted. Typical values are at V_{CC} - GND = 3.3V, V_{IHD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1, 2, and 3)

DADAMETER	OVMBOL	CONDITIONS		-40°C		+25°C			+85°C			LINITO
PARAMETER	SYMBOL		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SINGLE-ENDED	INPUTS (CI	LKSEL, EN)										
Input High Voltage	VIH		V _{CC} - 1.165		V _{CC} - 0.88	V _{CC} - 1.165		V _{CC} - 0.88	V _{CC} - 1.165		V _{CC} - 0.88	V
Input Low Voltage	VIL		V _{CC} - 1.81		V _{CC} - 1.475	V _{CC} - 1.81		V _{CC} - 1.475	V _{CC} - 1.81		V _{CC} - 1.475	V
Input Current	I _{IN}	VIH(MAX), VIL(MAX)	-10		+70	-10		+70	-10		+70	μА
DIFFERENTIAL I	NPUTS (CL	.K_, <u>CLK_</u>)										
Single-Ended Input High Voltage	VIH	Figure 1	V _{CC} - 1.125		V _{CC} - 0.88	V _{CC} - 1.165		V _{CC} - 0.88	V _{CC} - 1.165		V _{CC} - 0.88	V
Single-Ended Input Low Voltage	VIL	Figure 1	V _{CC} - 1.81		V _{CC} - 1.475	V _{CC} - 1.81		V _{CC} - 1.475	V _{CC} - 1.81		V _{CC} - 1.495	V
Differential Input High Voltage	VIHD	Figure 2	1.2		Vcc	1.2		V _C C	1.2		V _C C	٧
Differential Input Low Voltage	V _{ILD}	Figure 2	GND		V _C C - 0.095	GND		V _{CC} - 0.095	GND		V _{CC} - 0.095	V
Differential Input Voltage	V _{ID}	V _{IHD} - V _{ILD}	0.095		3.0	0.095		3.0	0.095		3.0	V
Input Current	I _{IH} , I _{IL}	CLK_, or CLK_ = V _{IHD} or V _{ILD}	-100		+100	-100	_	+100	-100	_	+100	μА

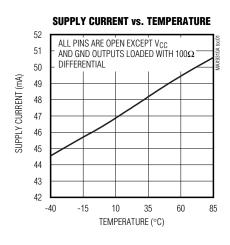
2 ______ *NIXIN*

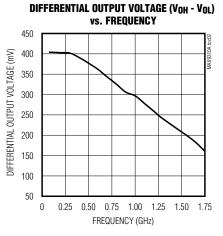
DC ELECTRICAL CHARACTERISTICS (continued)

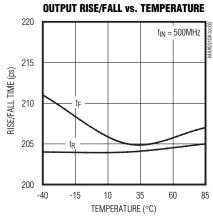
 $(V_{CC}$ - GND = 3V to 3.6V, outputs terminated with 100Ω ±1%, unless otherwise noted. Typical values are at V_{CC} - GND = 3.3V, V_{IHD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1, 2, and 3)

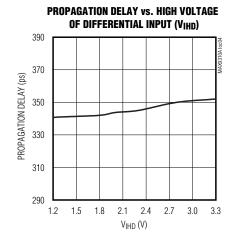
PARAMETER	SYMBOL	CONDITIONS		-40°C		+25°C			+85°C			UNITS
FANAMETER STRIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
OUTPUTS (Q_, G	OUTPUTS (Q_, $\overline{\text{Q}_{-}}$)											
Output High Voltage	VOH	Figure 2			1.6			1.6			1.6	V
Output Low Voltage	V _{OL}	Figure 2	0.9			0.9			0.9			V
Differential Output Voltage	V _{OD}	V _{OH} - V _{OL} , Figure 2	250	350	450	250	350	450	250	350	450	mV
Change in V _{OD} Between Complementary Output States	ΔV _{OD}				50			50			50	mV
Output Offset Voltage	Vos		1.125	1.25	1.375	1.125	1.25	1.375	1.125	1.25	1.375	mV
Change in VOS Between Complementary Output States	ΔVOCM				25			25			25	mV
		Q_ shorted to Q_			12			12			12	
Output Short- Circuit Current	losc	Q_ or Q_ shorted to GND			29			29			29	mA
REFERENCE												
Reference Voltage Output	V _{BB}	I _{BB} = ±0.65mA (Note 4)	V _{CC} - 1.38		V _{CC} - 1.22	V _{CC} - 1.38		V _{CC} - 1.26	V _{CC} - 1.40		V _{CC} - 1.26	V
POWER SUPPLY	7											
Power-Supply Current	lcc	(Note 5)		45	75		48	75		51	75	mA

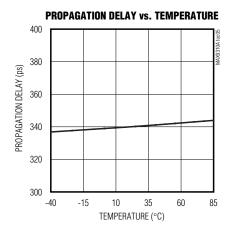
AC ELECTRICAL CHARACTERISTICS


 $(V_{CC}$ - GND = 3V to 3.6V, outputs terminated with 100 Ω ±1%, f_{IN} ≤ 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} - V_{ILD} = 0.15V to V_{CC} , unless otherwise noted. Typical values are at V_{CC} - GND = 3.3V, V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.) (Notes 1 and 6)


PARAMETER SYMBOL	CONDITIONS		-40°C		+25°C			+85°C			UNITS	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Propagation Delay CLK_, CLK_ to Q_, Q_	tpHL, tpLH	Figure 2	250	340	600	250	340	600	250	340	600	ps
Output-to- Output Skew	tskoo	(Note 7)		10	30		8	25		20	45	ps
Part-to-Part Skew	tskpp	(Note 8)			145			145			145	ps
Added Random Jitter	t _{RJ}	f _{IN} = 1.0GHz, clock pattern (Note 9)		0.3	1.0		0.3	1.0		0.3	1.0	ps (RMS)
Added Deterministic Jitter	tDJ	f _{IN} = 1.0Gsps, 2 ²³ - 1 PRBS pattern (Note 9)		50	60		50	60		50	60	ps (P-P)
Operating Frequency	fMAX	V _{OD} ≥ 250mV	1.0			1.0			1.0			GHz
Differential Output Rise/Fall Time	t _{R/t} F	20% to 80%, Figure 2	140	205	300	140	205	300	140	205	300	ps


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- **Note 3:** DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterized over the full operating temperature range.
- **Note 4:** Use V_{BB} only for inputs that are on the same device as the V_{BB} reference.
- **Note 5:** All pins are open except V_{CC} and GND, all outputs are loaded with 100Ω differentially.
- Note 6: Guaranteed by design and characterization. Limits are set to ±6 sigma.
- **Note 7:** Measured between outputs of the same part at the signal crossing points for a same-edge transition.
- **Note 8:** Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 9: Device jitter added to the input signal.


Typical Operating Characteristics


 $(V_{CC}$ - GND = 3.3V, outputs terminated with $100\Omega \pm 1\%$, f_{IN} = 1.0GHz, input transition time = 125ps (20% to 80%), V_{IHD} = V_{CC} - 1.0V, V_{ILD} = V_{CC} - 1.5V, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	Q0	Noninverting Differential Output 0. Typically terminated with 100Ω to $\overline{\Omega0}$.
2	Q0	Inverting Differential Output 0. Typically terminated with 100Ω to Q0.
3	Q1	Noninverting Differential Output 1. Typically terminated with 100Ω to $\overline{\Omega1}$.
4	Q1	Inverting Differential Output 1. Typically terminated with 100Ω to Q1.
5	Q2	Noninverting Differential Output 2. Typically terminated with 100Ω to $\overline{\Omega2}$.
6	Q2	Inverting Differential Output 2. Typically terminated with 100Ω to Q2.
7	Q3	Noninverting Differential Output 3. Typically terminated with 100Ω to $\overline{\Omega3}$.
8	Q3	Inverting Differential Output 3. Typically terminated with 100Ω to Q3.
9	Q4	Noninverting Differential Output 4. Typically terminated with 100Ω to $\overline{Q4}$.
10	Q4	Inverting Differential Output 4. Typically terminated with 100Ω to Q4.
11	GND	Ground
12	CLKSEL	Clock Select Input. Drive low to select the CLK0, $\overline{\text{CLK0}}$ input. Drive high to select the CLK1, $\overline{\text{CLK1}}$ input. The CLKSEL threshold is equal to V _{BB} . Internal 60k Ω pulldown to GND.
13	CLK0	Noninverting Differential Clock Input 0. Internal 75kΩ pulldown to GND.
14	CLK0	Inverting Differential Clock Input 0. Internal 75k Ω pullup to V _{CC} and 75k Ω pulldown to GND.
15	V _{BB}	Reference Output Voltage. Connect to the inverting or noninverting clock input to provide a reference for single-ended operation. When used, bypass with a $0.01\mu F$ ceramic capacitor to V_{CC} ; otherwise, leave open.
16	CLK1	Noninverting Differential Input 1. Internal 75kΩ pulldown to GND.
17	CLK1	Inverting Differential Input 1. Internal 75k Ω pullup to V _{CC} and 75k Ω pulldown to GND.
18, 20	Vcc	Positive Supply Voltage. Bypass V _{CC} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
19	ĒN	Output Enable Input. Outputs are synchronously enabled on the falling edge of the selected clock input when $\overline{\text{EN}}$ is low. Outputs are synchronously driven to a differential low state on the falling edge of the selected clock input when $\overline{\text{EN}}$ is high. Internal $60\text{k}\Omega$ pulldown to GND (Figure 3).

6 ______ /N/XI/N

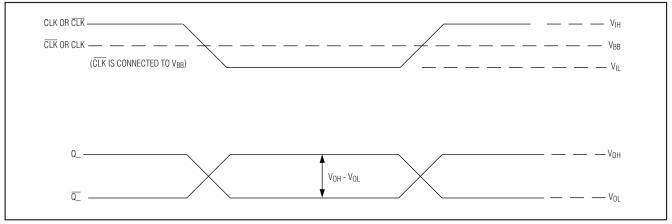


Figure 1. MAX9310A Switching Characteristics with Single-Ended Input

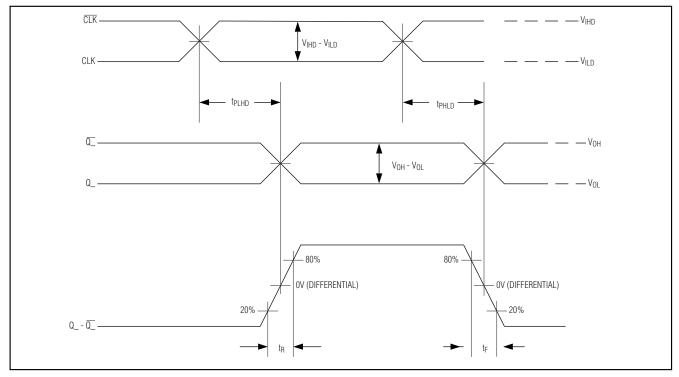


Figure 2. MAX9310A Timing Diagram

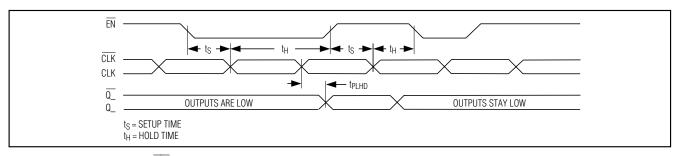


Figure 3. MAX9310A Timing EN Diagram

Detailed Description

The MAX9310A is a low-skew 1:5 differential driver with two selectable LVPECL inputs and LVDS outputs, designed for clock distribution applications. The selected clock accepts a differential input signal and reproduces it on five separate differential LVDS outputs. The inputs are biased with internal resistors such that the output is differential low when inputs are open. An onchip VBB reference output is available for single-ended input operation. The device is guaranteed to operate at frequencies up to 1.0GHz with LVDS output levels conforming to the EIA/TIA-644 standard.

The MAX9310A is designed for 3V to 3.6V operation in systems with a nominal 3.3V supply.

Differential LVPECL Input

The MAX9310A has two input differential pairs that accept differential LVPECL/HSTL inputs, and can be configured to accept single-ended LVPECL inputs through the use of the VBB voltage-reference output. Each differential input pair has to be independently terminated. A select pin (CLKSEL) is used to activate the desired input. The maximum magnitude of the differential signal applied to the input is 3V. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.

Single-Ended Inputs and VBB

The differential inputs can be configured to accept a single-ended input through the use of the VBB reference voltage. A noninverting, single-ended input is produced by connecting VBB to the \overline{CLK} input and applying a single-ended signal to the CLK input. Similarly, an inverting input is produced by connecting VBB to the CLK input and applying the signal to the CLK input. With a differential input configured as single ended (using VBB), the single-ended input can be driven to VCC and GND, or with a single-ended LVPECL signal. Note the single-ended input must be at least VBB ± 95 mV or a differential input of at least 95mV

to switch the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table (Figure 1).

When using the VBB reference output, bypass it with a 0.01 μ F ceramic capacitor to VCC. If the VBB reference is not used, leave unconnected. The VBB reference can source or sink 500 μ A. Use VBB only for inputs that are on the same device as the VBB reference.

Synchronous Enable

The MAX9310A is synchronously enabled and disabled with outputs in a differential low state to eliminate shortened clock pulses. \overline{EN} is connected to the input of an edge-triggered D flip-flop. After power-up, drive \overline{EN} low and toggle the selected clock input to enable the outputs. The outputs are enabled on the falling edge of the selected clock input after \overline{EN} goes low. The outputs are set to a differential low state on the falling edge of the selected clock input after \overline{EN} goes high (Figure 3).

Input Bias Resistors

Internal biasing resistors ensure a (differential) output low condition in the event that the inputs are not connected. The inverting input (\overline{CLK}_-) is biased with a 75k Ω pulldown to GND and a 75k Ω pullup to V_{CC}. The noninverting input (CLK_) is biased with a 75k Ω pulldown to GND.

Differential LVDS Output

The LVDS outputs must be terminated with 100Ω across Q and \overline{Q} , as shown in the *Typical Application Circuit*. The outputs are short-circuit protected.

Applications Information

Supply Bypassing

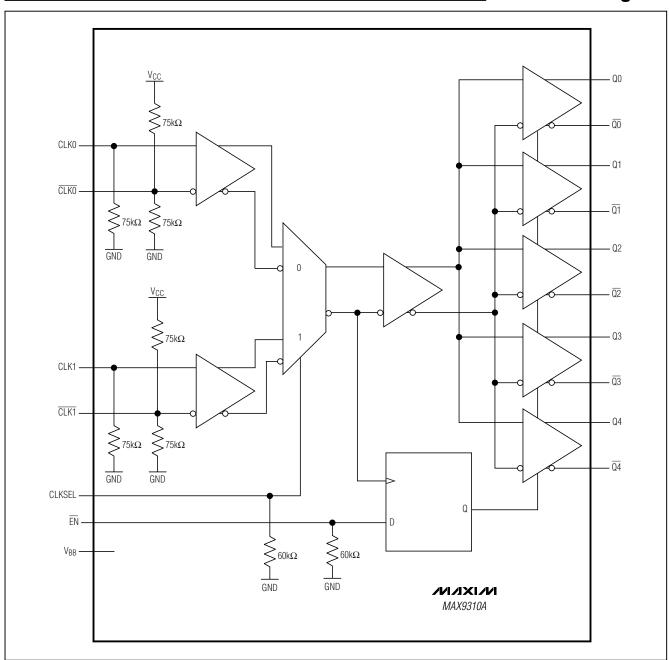
Bypass each VCC to GND with high-frequency surface-mount ceramic $0.1\mu F$ and $0.01\mu F$ capacitors in parallel as close to the device as possible, with the $0.01\mu F$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the VBB reference output, bypass it with a $0.01\mu F$ ceramic capacitor to VCC. If the VBB reference is not used, it can be left open.

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9310A. Connect high-frequency input and output signals to 50Ω characteristic impedance traces. Minimize the number of vias to prevent

impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

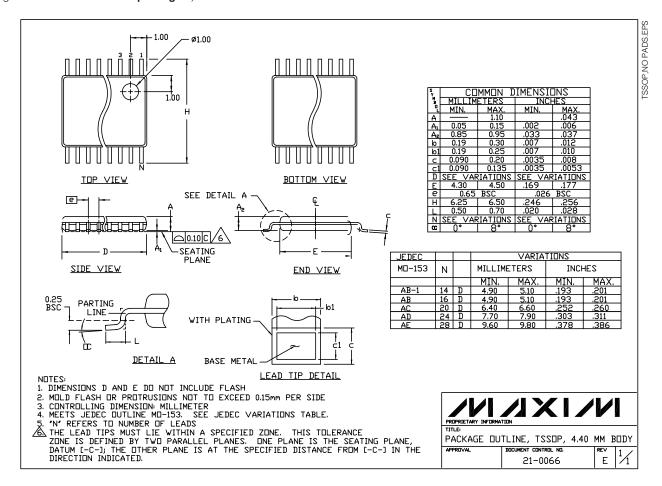
Output Termination


Terminate the outputs with 100Ω across Q_ and \overline{Q} _, as shown in the *Typical Application Circuit*.

Chip Information

TRANSISTOR COUNT: 716

PROCESS: Bipolar



10 _______/**N**/**X**|/**W**

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

_ 11