

General Description

The MAX9424-MAX9427 high-speed, low-skew quad PECL-to-ECL translators are designed for high-speed data and clock driver applications. These devices feature an ultra-low 0.24ps(RMS) random jitter and channel-tochannel skew is less than 90ps in asynchronous mode.

The four channels can be operated synchronously with an external clock, or in asynchronous mode determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.

The parts differ from one another by their input and output termination options. The input options are an open input or an internal differential 100Ω termination. The output options are an open-emitter output or a series 50Ω termination. See *Ordering Information*.

The MAX9424-MAX9427 operate from a positive voltage supply of +2.375V to +5.5V, and a negative supply voltage of -2.375V to -5.5V and operate across the extended temperature range of -40°C to +85°C. They are offered in 32-pin 5mm x 5mm TQFP and space-saving 5mm x 5mm QFN packages.

Applications

Data and Clock Driver and Buffer Central Office Backplane Clock Distribution **DSLAM Backplane Base Station ATE**

Features

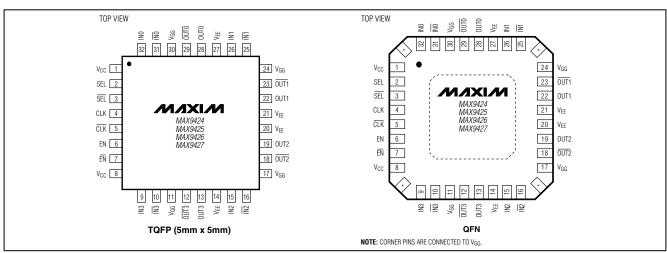
- ♦ 0.24ps RMS Added Random Jitter
- ♦ 10ps Channel-to-Channel Skew in Synchronous Mode
- ♦ Guaranteed 500mV Differential Output at 3GHz Clock Frequency
- ♦ 420ps Propagation Delay in Asynchronous Mode
- **♦** Functionally Compatible with

SK4426 (MAX9424)

SK4430 (MAX9425)

SK4436 (MAX9426)

SK4440 (MAX9427)


- ♦ Integrated 50Ω Outputs (MAX9425/MAX9427)
- ♦ Integrated 100Ω Inputs (MAX9426/MAX9427)
- ♦ Synchronous/Asynchronous Operation

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	INPUT (IN_, IN_)	OUTPUT (OUT_, OUT_)	
MAX9424EHJ	-40°C to +85°C	32 TQFP	Open	Open	
MAX9424EGJ*	-40°C to +85°C	32 QFN	Open	Open	
MAX9425EHJ	-40°C to +85°C	32 TQFP	Open	50Ω	
MAX9425EGJ*	-40°C to +85°C	32 QFN	Open	50Ω	
MAX9426EHJ	-40°C to +85°C	32 TQFP	100Ω	Open	
MAX9426EGJ*	-40°C to +85°C	32 QFN	100Ω	Open	
MAX9427EHJ	-40°C to +85°C	32 TQFP	100Ω	50Ω	
MAX9427EGJ*	-40°C to +85°C	32 QFN	100Ω	50Ω	

^{*}Future product—contact factory for availability.

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Vcc to Vgg Vgg to VEE Input Pins to Vgg Differential Input Voltage	-0.3V to +6.0V -0.3V to (V _{CC} + 0.3V) IV _{CC} - V _{GG} I or 3.0V,
Continuous Output Current	
Surge Output Current	
Continuous Power Dissipation (TA = +70°C	
32-Pin 5mm x 5mm TQFP	
(derate 9.5mW/°C above +70°C)	761mW
32-Pin 5mm x 5mm QFN	
(derate 21.3mW/°C above +70°C)	1.7W
Junction-to-Ambient Thermal Resistance in	Still Air
32-Pin 5mm x 5mm TQFP	+105°C/W
32-Pin 5mm x 5mm QFN	+47°C/W

Junction-to-Ambient Thermal Resistance with
500LFPM Airflow
32-Pin 5mm x 5mm TQFP+73°C/W
Junction-to-Case Thermal Resistance
32-Pin 5mm x 5mm TQFP+25°C/W
32-Pin 5mm x 5mm QFN+2°C/W
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
ESD Protection
Human Body Model (all input pins)±500V
Human Body Model (all output pins)±2kV
Soldering Temperature (10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

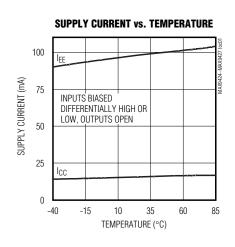
DC ELECTRICAL CHARACTERISTICS

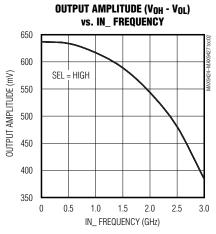
 $(V_{CC} - V_{GG} = 2.375 V \text{ to } 5.5 V, V_{GG} - V_{EE} = 2.375 V \text{ to } 5.5 V, MAX9424/MAX9426 \text{ outputs terminated with } 50\Omega \text{ to } V_{GG} - 2.0 V, MAX9425/MAX9427 \text{ not externally terminated, } T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{ Typical values are at } V_{CC} - V_{GG} = 3.3 V, V_{GG} - V_{EE} = 3.3 V, V_{IHD} = V_{CC} - 0.9 V, V_{ILD} = V_{CC} - 1.7 V, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.}) \text{ (Notes 1, 2, and 3)}$

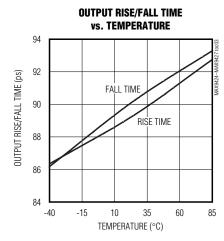
PARAMETER	SYMBOL	L CONDITIONS		MIN	TYP	MAX	UNITS
INPUTS (IN_, IN_, CLK, CLK, EN, EN, SEL, SEL)							
Differential Input High Voltage	VIHD	Figure 1		V _{GG} + 1.4		Vcc	V
Differential Input Low Voltage	V _{ILD}	Figure 1		Vgg		V _{CC} - 0.2	V
Differential Input Voltage	V _{ID}	Figure 1	V _{CC} - V _{GG} < 3.0V	0.2		V _{CC} - V _{GG}	V
			V _{CC} - V _{GG} ≥ 3.0V	0.2		3.0	
Input Current	l _{IH} , l _{IL}	MAX9424/ MAX9425	EN, EN, SEL, SEL, IN_, IN_, CLK or CLK = V _{IHD} or V _{ILD}	-10		25	μΑ
		MAX9426/ MAX9427	EN, EN, SEL, SEL, CLK, or CLK = V _{IHD} or V _{ILD}	-10		25	
Differential Input Resistance (IN_, IN_)	R _{IN}	MAX9426/MAX9427		86	100	114	Ω
OUTPUTS (OUT_, OUT_)							
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1		600	635		mV
Output Common-Mode Voltage	Vocm	Figure 1		V _{GG} - 1.50	V _{GG} - 1.25	V _{GG} - 1.05	V
Output Impedance	Rout	MAX9425/MAX9427		40	50	60	Ω
Internal Current Source	ISINK	MAX9425/MAX9427		6	8	10	mA
POWER SUPPLY							
Positive Supply Current	Icc	(Note 4)			16	27	mA
Negative Supply Current	IEE	MAX9424/MAX9426 (Note 4)			100	130	mA
		MAX9425/MAX9427 (Note 4)			172	230	

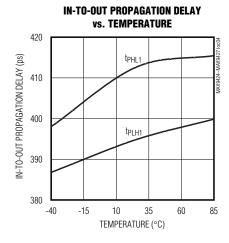
__ /N/XI/N

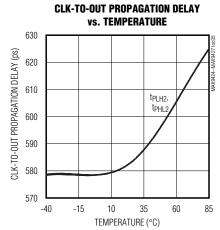
AC ELECTRICAL CHARACTERISTICS

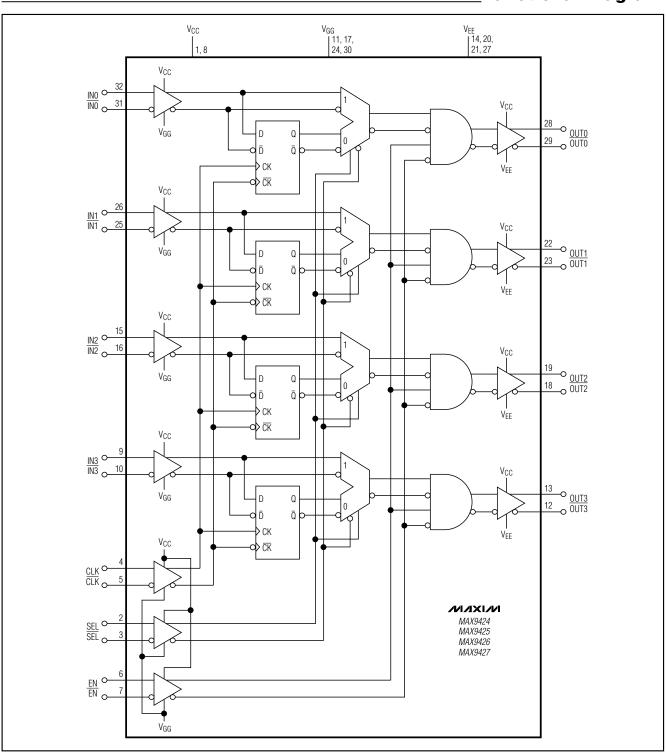

 $(V_{CC} - V_{GG} = 2.375 V \ to \ 5.5 V, \ V_{GG} - V_{EE} = 2.375 V \ to \ 5.5 V, \ outputs \ terminated \ with \ 50 \Omega \ to \ V_{GG} - 2.0 V, \ EN = V_{IHD}, \ \overline{EN} = V_{ILD}, \ f_{CLK} \leq 3.0 GHz, \ f_{IN} \leq 1.5 GHz, \ input \ transition \ time = 125 ps \ (20\% \ to \ 80\%), \ V_{IHD} = V_{GG} + 1.4 V \ to \ V_{CC}, \ V_{ILD} = V_{GG} \ to \ V_{CC} - 0.2 V, \ V_{IHD} - V_{ILD} = 0.2 V \ to \ smallest \ of \ IV_{CC} - V_{GG} \ in \ 3.0 V, \ T_A = -40 °C \ to \ +85 °C, \ unless \ otherwise \ noted. \ Typical \ values \ are \ at \ V_{CC} - V_{GG} = 3.3 V, \ V_{GG} - V_{EE} = 3.3 V, \ V_{IHD} = V_{CC} - 0.9 V, \ V_{ILD} = V_{CC} - 1.7 V, \ T_A = +25 °C, \ unless \ otherwise \ noted.) \ (Notes 1 \ and 5)$


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
IN_ to OUT_ Differential Propagation Delay	tPLH1 tPHL1	Figure 3, SEL = high, asynchronous operation	300	420	570	ps
CLK to OUT_ Differential Propagation Delay	tPLH2 tPHL2	Figure 4, SEL = low, synchronous operation	460	580	730	ps
OUT_ to OUT_ Skew	tskD1	SEL = high, asynchronous operation (Note 6)		38	90	ps
OUT_ to OUT_ Skew	tskd2	SEL = low, synchronous operation (Note 6)		10	70	ps
Maximum Clock Frequency	fCLK(MAX)	MAX9424/MAX9426, V _{OH} - V _{OL} ≥ 500mV, SEL = low MAX9425/MAX9427, V _{OH} - V _{OL} ≥ 300mV, SEL = low	3.0			GHz
Maximum Data Frequency	fIN(MAX)	$\begin{split} & \text{MAX9424/MAX9426, V}_{OH} - \text{V}_{OL} \geq 400\text{mV}, \\ & \text{SEL} = \text{high} \\ & \text{MAX9425/MAX9427, V}_{OH} - \text{V}_{OL} \geq 250\text{mV}, \\ & \text{SEL} = \text{high} \end{split}$	2.0			GHz
Added Random Jitter	t _{RJ}	SEL = low, f _{CLK} = 3.0GHz clock, f _{IN} = 1.5GHz (Note 7)		0.24	0.8	ps(RMS)
Added Deterministic Jitter	t _D J	SEL = high, f_{IN} = 2.0GHz (Note 7) SEL = low, f_{CLK} = 3.0GHz, $IN_{_}$ = 3.0Gbps 2^{23} - 1 PRBS pattern (Note 7)		0.3 27	0.8	
		SEL = high, IN_ = 2.0Gbps 2 ²³ - 1 PRBS pattern (Note 7)		20	80	ps(P-P)
IN_ to CLK Setup Time	ts	Figure 4	80			ps
CLK to IN_ Hold Time	tH	Figure 4	80			ps
Output Rise Time	t _R	Figure 3		89	120	ps
Output Fall Time	tF	Figure 3		87	120	ps
Propagation Delay Temperature Coefficient	Δt _{PD} /ΔT			0.2	1	ps/°C


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- **Note 3:** DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full operating temperature range.
- Note 4: All outputs open, all inputs biased differential high or low except VCC, VGG, and VEE.
- Note 5: Guaranteed by design and characterization, and are not production tested. Limits are set to ±6 sigma.
- Note 6: Measured between outputs of the same part at the signal crossing points for a same-edge transition.
- Note 7: Device jitter added to the input signal.


Typical Operating Characteristics


 $(\text{MAX9424: V}_{CC} - \text{V}_{GG} = 3.3\text{V}, \text{V}_{GG} - \text{V}_{EE} = 3.3\text{V}, \text{ outputs terminated with } 50\Omega \text{ to V}_{GG} - 2.0\text{V}, \text{ enabled, } f_{CLK} = 3.0\text{GHz}, f_{IN} = 1.5\text{GHz}, \text{ input transition time} = 125\text{ps} (20\% \text{ to } 80\%), \text{V}_{IHD} = \text{V}_{CC} - 0.9\text{V}, \text{V}_{ILD} = \text{V}_{CC} - 1.7\text{V}, \text{T}_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$



_Pin Description

PIN	NAME	FUNCTION
1, 8	Vcc	Positive Supply Voltage. Bypass V _{CC} to V _{GG} with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
2	SEL	Noninverting Differential Select Input. Setting $SEL = 1$ and $\overline{SEL} = 0$ enables all four channels to operate independently. Setting $SEL = 0$ and $\overline{SEL} = 1$ enables all four channels to be synchronized to CLK.
3	SEL	Inverting Differential Select Input
4	CLK	Noninverting Differential Clock Input
5	CLK	Inverting Differential Clock Input
6	EN	Noninverting Differential Output Enable Input. Setting EN = 1 and \overline{EN} = 0 enables all four outputs. Setting EN = 0 and \overline{EN} = 1 disables all four outputs.
7	ĒN	Inverting Differential Output Enable Input
9	IN3	Noninverting Differential Input 3
10	ĪN3	Inverting Differential Input 3
11, 17, 24, 30	V _G G	Ground Reference
12	OUT3	Inverting Differential Output 3
13	OUT3	Noninverting Differential Output 3
14, 20, 21, 27	VEE	Negative Supply Voltage. Bypass from V_{EE} to V_{GG} with $0.1\mu F$ and $0.01\mu F$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.
15	IN2	Noninverting Differential Input 2
16	ĪN2	Inverting Differential Input 2
18	OUT2	Inverting Differential Output 2
19	OUT2	Noninverting Differential Output 2
22	OUT1	Noninverting Differential Output 1
23	OUT1	Inverting Differential Output 1
25	ĪN1	Inverting Differential Input 1
26	IN1	Noninverting Differential Input 1
28	OUT0	Noninverting Differential Output 0
29	OUT0	Inverting Differential Output 0
31	ĪNO	Inverting Differential Input 0
32	IN0	Noninverting Differential Input 0

Functional Diagram

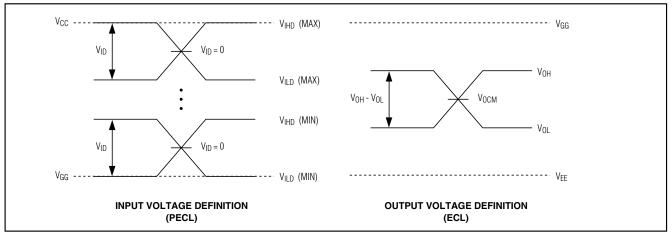


Figure 1. Input and Output Voltage Definitions

Figure 2. Input and Output Configurations

Detailed Description

The MAX9424–MAX9427 high-speed, low-skew PECL-to-ECL differential translators are designed for high-speed data and clock driver applications. These devices translate up to four PECL signals to ECL signals.

The four channels can be operated synchronously with an external clock, or in asynchronous mode, determined by the state of the SEL input. An enable input provides the ability to force all the outputs to a differential low state.

A variety of input and output terminations are offered for maximum design flexibility. The MAX9424 has open inputs and open-emitter outputs. The MAX9425 has open inputs and 50Ω series outputs. The MAX9426 has 100Ω differential input impedance and open-emitter outputs. The MAX9427 has 100Ω differential input impedance and 50Ω series outputs.

Supply Voltages

These devices require a positive voltage supply (connect to V_{CC}), a negative voltage supply (connect to V_{EE}), and a ground reference (connect to V_{GG}). V_{CC} is independent of V_{EE} and therefore the supply voltages do not need to be symmetrical. The PECL input voltages are referenced to V_{CC} , and the ECL output voltages are referenced to V_{GG} .

Data Inputs and Outputs

The input and output structures are shown in Figure 2. The open inputs of the MAX9424/MAX9425 require external termination, whereas the MAX9426/MAX9427 have integrated 100 Ω differential input termination resistors between IN and $\overline{\text{IN}}$.

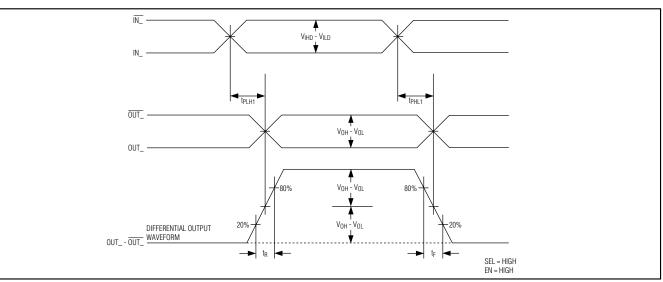


Figure 3. IN to OUT Propagation Delay and Transition Timing Diagram

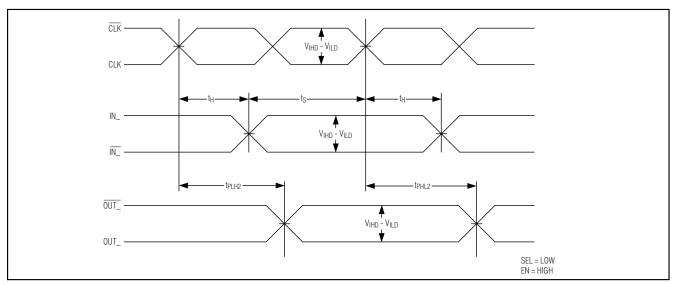


Figure 4. CLK to OUT Propagation Delay Timing Diagram

The MAX9425/MAX9427 have internal 50Ω series-output termination resistors and 8mA internal pulldown current sources, removing the need for external termination. The MAX9424/MAX9426 have open-emitter outputs, which require external termination (see the *Output Termination* section).

Enable

Setting EN = high and $\overline{\text{EN}}$ = low enables the device. Alternatively, setting EN = low and $\overline{\text{EN}}$ = high forces the outputs to a differential low; all changes on CLK, SEL, and IN_ are ignored.

Asynchronous Operation

Setting SEL = high and SEL = low enables the four channels to operate independently. The clock signal is ignored in this mode. When asynchronous mode is selected, drive or bias the CLK and CLK inputs. Biasing the clock inputs properly is shown in Figure 5. This prevents the unused clock inputs from toggling, which eliminates unnecessary switching noise.

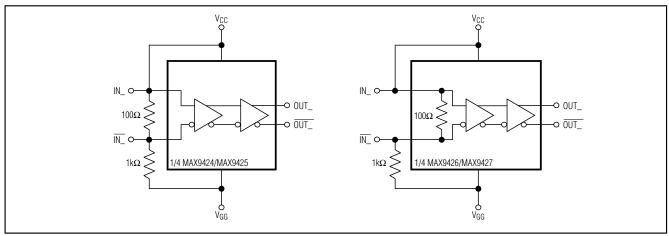


Figure 5. Input Bias Circuits for Unused Inputs

Synchronous Operation

Setting SEL = low and SEL = high enables all four channels to operate in synchronous mode where the buffered inputs are clocked out simultaneously on the rising edge of the differential clock input (CLK and CLK). To have the input signals clocked out on the falling edge, swap the clock lines.

Differential Signal Input

The maximum input signal magnitude for each of the devices is V_{CC} - V_{GG} or 3.0V, whichever is less. This includes IN_, \overline{IN} _, CLK, \overline{CLK} , \overline{SEL} , \overline{SEL} , \overline{EN} and \overline{EN} .

Applications Information

Input Bias

Bias any unused inputs as shown in Figure 5. This avoids noise coupling that can cause toggling of the unused outputs.

Output Termination

Terminate the open-emitter outputs (MAX9424/MAX9426) through 50Ω to V_{GG} - 2V or use equivalent Thevenin terminations. Terminate both outputs of a differential pair and use identical termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if OUT0 is used as a single-ended output, terminate both OUT0 and $\overline{OUT0}$.

Ensure that output currents do not exceed the current limits as specified in the *Absolute Maximum Ratings*. Under all operating conditions, the device's total thermal limits should be observed.

Power-Supply Bypassing

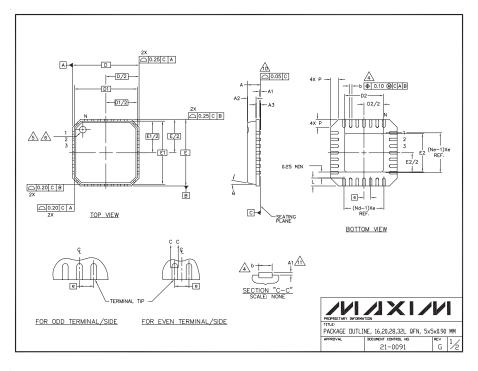
Typically, V_{GG} is directly connected to ground. Bypass each V_{CC} pin to V_{GG} with high-frequency surface-mount ceramic $0.01\mu F$ capacitors. Place these capacitors as close to the device as possible. Use the same bypass capacitor configuration between each V_{EE} pin and V_{GG} . In high-frequency, high-noise environments, add a $0.1\mu F$ capacitor in parallel with each $0.01\mu F$ capacitor.

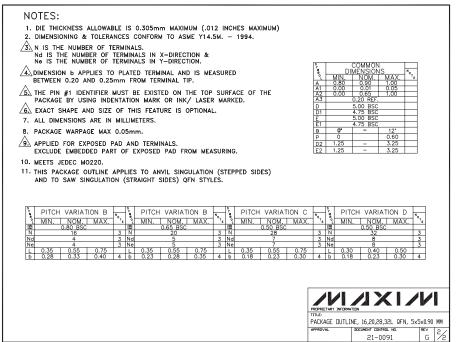
Use multiple vias when connecting the bypass capacitors to V_{GG} (ground). This reduces trace inductance, lowering power-supply bounce when drawing high transient currents.

Circuit Board Traces

Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals. Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing common-mode noise immunity.

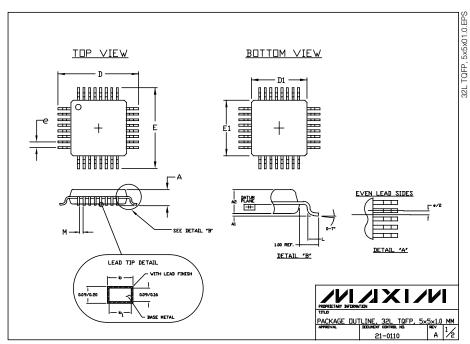
Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners, and using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.


Chip Information


TRANSISTOR COUNT: 882

PROCESS: Bipolar

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

NOTES: 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5-1982. 2. DATUM PLANE EHED IS LOCATED AT MOLD PARTING LINE AND COINCLIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE. 3. DIMENSIONS DI AND EL DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.254 MM ON DI AND EL DIMENSIONS. 4. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM OF PACKAGE BY OLS MILLIMETERS. 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE CONTINUE OF THE DAMBAR PROTRUSION AT MAXIMUM MATERIAL CONDITION. 7. THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95, REGISTRATION MO-136. JEDEC VARIATIONS DIMENSIONS IN MILLIMETERS AA 5×5×1.0 MM MIN. MAX. 1.20 سخر 0.05 0.15 0.95 1.05 8. LEADS SHALL BE COPLANAR WITHIN .004 INCH. 5.00 BSC. 5.00 BSC 0.45 0.75 0.15 ~~~ 0.17 0.27 0.17 0.23 PACKAGE DUTLINE, 32L TQFP, 5×5×1.0 MM _A | ½ 21-0110

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX9424EHJ-T MAX9424EHJ