

256 Mb (16M x 16 bit), 1.8V Burst Mode Flash DDR DRAM on Split Bus

Features

- Power supply voltage of 1.7V to 1.95V
- Burst Speeds
 □ Flash = 83 MHz or 108 MHz
 □ DDR DRAM = 166 MHz

- Packages
 □ 8.0 × 8.0 mm, 133-ball MCP
- Operating Temperature

 □ Wireless, -25 °C to +85 °C

 □ Industrial, -40 °C to +85 °C

General Description

This document contains information on the S72VS-R MCP stacked products. Refer to the S29VS/XS-R datasheet (002-00833) for full electrical specifications of the Flash memory component.

The S72VS Series is a product line of stacked products (MCPs), and consists of:

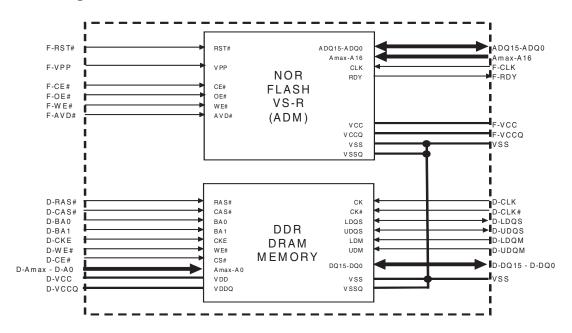
- S29VS family Address-Data Multiplexed Flash memory die
- DDR DRAM

The products covered by this document are listed in the below tables below.

Flash Density	DRAM Density (256 Mb)		
256 Mb	S72VS256RE0		

DDR Specification Reference

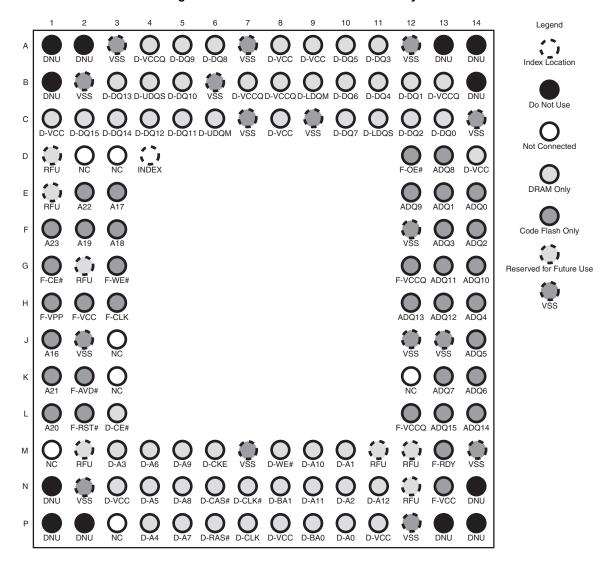
Density	Reference Name	Document Identification Number	
256 Mb	256 Mb (16M x 16 bit) DDR DRAM	SDM256D166D1R/D3R	


Cypress Semiconductor CorporationDocument Number: 002-00773 Rev. *F

Electronic Serial Number

For applicable devices, the Factory Secured Silicon Area contains a random, 128-bit ESN, stored in the address range 000000h-00007h.

Product Block Diagram


Notes

- Amax indicates highest address bit for memory component:
 a. Amax = A23 for VS256R.
 - b. Amax = A23 for V3230K.
 b. Amax = A12 for 256 Mb DDR DRAM.

Connection Diagrams

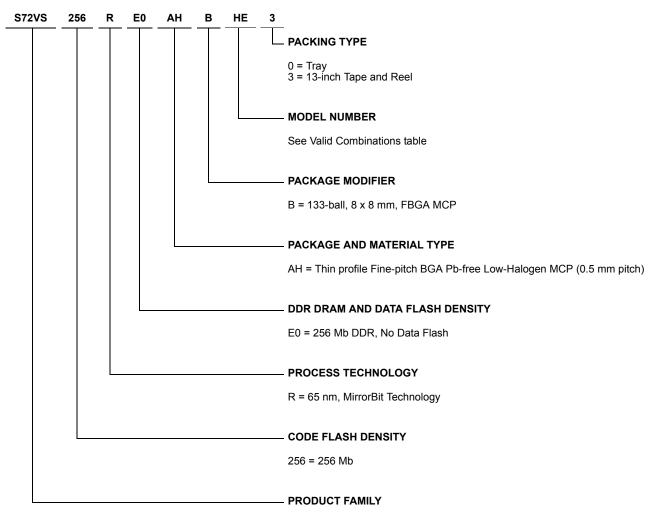
Figure 1. 133-ball Fine-Pitch Ball Grid Array MCP

MCP	Flash Amax	DDR DRAM Density	D-Amax	
S72VS256RE0	A23	256 Mb	D-A12	

Input/Output Description

Table 1. Input/Output Description

Symbol	Description	Flash	RAM	
Amax – A16	Flash Address inputs	Х	_	
ADQ15 – ADQ0	Flash multiplexed Address and Data	X	_	
F-CE#	Flash Chip-enable input.	X	_	
F-OE#	Flash Output Enable input. Asynchronous relative to CLK for Burst mode.	Χ	_	
F-WE#	Flash Write Enable input	X	_	
F-VCC	Flash device power supply (1.7 V to 1.95 V)	Х	_	
F-VCCQ	Flash Input/Output Buffer power supply	X	_	
VSS	Ground	X	Х	
F-RDY	Flash ready output. Indicates the status of the Burst read. V_{OL} = data invalid. V_{OH} = data valid.	Х	_	
F-CLK	Flash Clock. The first rising edge of CLK in conjunction with AVD# low latches the address input and activates burst mode operation. After the initial word is output, subsequent rising edges of CLK increment the internal address counter. CLK should remain low during asynchronous access.	Х	_	
F-AVD#	Flash Address Valid input. Indicates to device that the valid address is present on the address inputs. $V_{\rm IL}$ = for asynchronous mode, indicates valid address; for burst mode, causes starting address to be latched on rising edge of CLK. $V_{\rm IH}$ = device ignores address inputs	Х	_	
F-RST#	Flash hardware reset input. $V_{\rm IL}$ = device resets and returns to reading array data	Х	_	
F-VPP	Flash accelerated input. At V_{HH} , accelerates programming; automatically places device in unlock bypass mode. At V_{IL} , disables all program and erase functions. Should be at V_{IH} for all other conditions.	X	_	
D-Amax – D-A0	DRAM Address inputs.	_	Х	
D-DQ15 – D-DQ0	DRAM Data input/output	_	Х	
D-CLK	DRAM System Clock	_	Х	
D-CE#	DRAM Chip Select	_	Х	
D-CKE	DRAM Clock Enable	_	Х	
D-BA1 – BA0	DRAM Bank Select	_	Х	
D-RAS#	DRAM Row Address Strobe	_	Х	
D-CAS#	DRAM Column Address Strobe	_	Х	
D-UDQM – D-LDQM	DRAM Data Input Mask	_	Х	
D-WE#	DRAM Write Enable input	_	Х	
D-VCCQ	DRAM Input/Output Buffer power supply	_	Х	
D-VCC	DRAM device power supply	_	Х	
D-UDQS	DRAM Upper Data Strobe, output with read data and input with write data	_	Х	
D-LDQS	DRAM Lower Data Strobe, output with read data and input with write data	_	Х	
D-CLK#	DDR Clock for negative edge of CLK	_	Х	


Table 1. Input/Output Description (Continued)

Symbol	Description	Flash	RAM
RFU	Reserved for Future Use. No device internal signal is currently connected to the package connector but there is potential future use for the connector for a signal. It is recommended to not use RFU connectors for PCB routing channels so that the PCB may take advantage of future enhanced features in compatible footprint devices.	_	_
NC	Not Connected. No device internal signal is connected to the package connector nor is there any future plan to use the connector for a signal. The connection may safely be used for routing space for a signal on a Printed Circuit Board (PCB).	_	_
DNU	Do Not Use. A device internal signal may be connected to the package connector. The connection may be used by Spansion for test or other purposes and is not intended for connection to any host system signal. Any DNU signal related function will be inactive when the signal is at $\rm V_{IL}$. The signal has an internal pull-down resistor and may be left unconnected in the host system or may be tied to $\rm V_{SS}$. Do not use these connections for PCB signal routing channels. Do not connect any host system signal to these connections.	-	_

Ordering Information

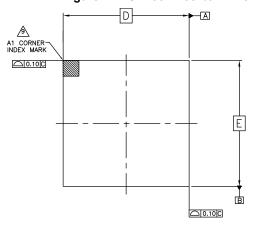
The order number (Valid Combination) is formed by the following:

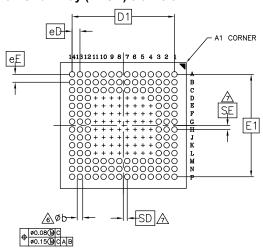
S72VS Multi-Chip Product (MCP) 1.8V Address-Data Multiplexed, SRW, Burst Mode Flash and DDR DRAM on Split Bus

Valid Combinations

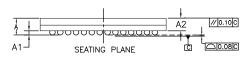
Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Base OPN	Package	Model Number	Packing Type	Flash Boot	Temp Range	Electronic Serial Number	Flash Density	DDR DRAM Density	Flash Speed (MHz)	DRAM Speed (MHz)	DRAM Specification	Package
	S72VS256RE0 AHB	H1		Тор	Bottom Wireless Top	Yes	- 256 Mb	256 Mb 256 Mb	108	166	SDM256D166D 1R	8.0 x 8.0 mm 133-ball MCP (RSC133)
070\/0056DE0		J1	0. 3 ^[2]	Bottom		No						
5/2V5256REU		НН	0, 3,	Тор		Yes					SDM256D166D	
		JH		Bottom	Industrial	Yes					3R	


Note


- Packing Type 0 is standard. Specify other options as required.
- Packing Type 0 is standard. Specify other options as requireu.
 BGA package marking omits leading "S" and packing type designator from ordering part number.

Physical Dimensions


Figure 2. RSC133—133-ball Fine-Pitch Ball Grid Array (FBGA) 8.0 x 8.0 mm

TOP VIEW

BOTTOM VIEW

SIDE VIEW

PACKAGE		RSC 133				
JEDEC		N/A		NOTE		
DXE	8.00mm	X 8.00mm l	PACKAGE	NOTE		
SYMBOL	MIN.	NOM.	MAX.			
A	-	-	1.00	PROFILE		
A1	0.18	-	-	BALL HEIGHT		
A2	0.62	-	0.74	BODY THICKNESS		
D		8.00 BSC		BODY SIZE		
E		8.00 BSC		BODY SIZE		
D1		6.50 BSC		MATRIX FOOTPRINT		
E1		6.50 BSC		MATRIX FOOTPRINT		
MD		14		MATRIX SIZE D DIRECTION		
ME		14		MATRIX SIZE E DIRECTION		
n		133		BALL COUNT		
Øb	0.25	0.30	0.35	BALL DIAMETER		
е		0.50 BSC		BALL PITCH		
SE/SD		0.25 BSC		SOLDER BALL PLACEMENT		
		4–E11, F4–F1 4–J11, K4–K1		DEPOPULATED SOLDER BALL		

NOTES:

- 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 4.3, SPP-010.
- 4. @ REPRESENTS THE SOLDER BALL GRID PITCH.
- 5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. ${\bf n}$ IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- $\stackrel{\frown}{\otimes}$ dimension "b" is measured at the maximum ball diameter in a plane parallel to datum c.
- $\stackrel{\textstyle \checkmark}{\cancel{\uparrow}}$ SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE = 0.000. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = WE
 - "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
- 9 AI CORNER TO BE IDENTIFIED BY CHAMPER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

3643/16-038 63/12 16 09

Revision History

Document History Page

Document Title: S72VS-R MCP, 256 Mb (16M x 16 bit), 1.8V Burst Mode Flash DDR DRAM on Split Bus Document Number: 002-00773						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	_	_	07/21/2010	Initial release		
*A	_	_	08/24/2010	Global: Added information for OPN S72VS256RE0AHBH1		
*B	_	_	12/10/2010	Global: Updated 256 Mb DRAM specification reference		
*C	_	_	03/18/2011	Global: Added OPN S72VS256RE0AHBJ1		
*D	_	_	10/05/2011	Ordering Information: Replaced Product Selector Guide section Valid Combinations: Made a separate section Added OPNs: S72VS256RE0AHBHH/JH		
*E	_	_	04/17/2012	Ordering Information: Added ESN support for S72VS256RE0AHBH1		
*F	5185100	TOCU	03/22/2016	Updated to Cypress template. Removed any occurrence of 128 Mb and 8M in the document.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
Memory
PSoC
Covers Microcontrol
Microcontrol
Cypress.com/automotive
Cypress.com/clocks
Cypress.com/interface
Cypress.com/powerpsoc
Cypress.com/memory
Cypress.com/psoc
Cypress.com/psoc

Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless/RF cypress.com/wireless

PSoC® Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2010-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties and the countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.