

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

ASSP For Power Management

BIPOLAR

POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER

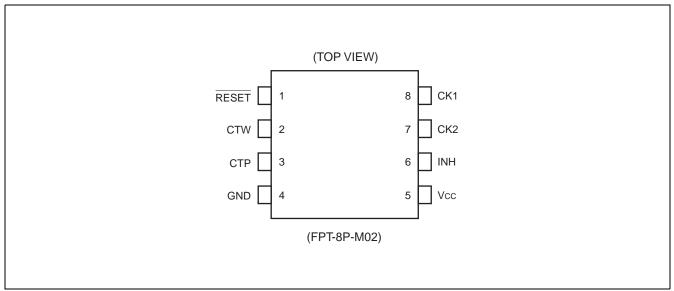
MB3793-34A

■ DESCRIPTION

The MB3793 is an integrated circuit to monitor power voltage; it incorporates a watchdog timer. A reset signal is output when the power is cut or falls abruptly. When the power recovers normally after resetting, a power-on reset signal is output to microprocessor units (MPUs). An internal watchdog timer with two inputs for system operation diagnosis can provide a fail-safe function for various application systems.

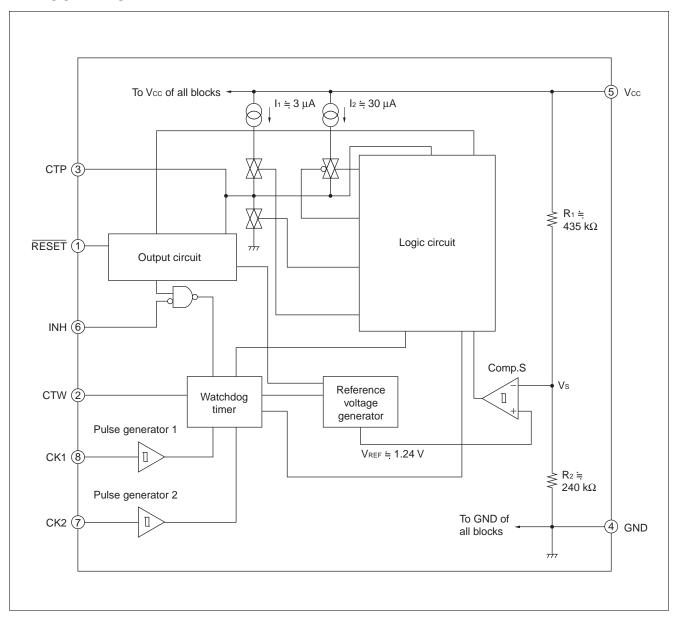
Model No.	Marking Code	Detection voltage
MB3793-34A	3793AJ	3.4 V

■ FEATURES


- Precise detection of power voltage fall: ±2.5%
- · Detection voltage with hysteresis
- Low power dispersion: $Icc = 38 \mu A (Typ)$
- · Internal dual-input watchdog timer
- · Watchdog timer halt function
- Independently-set watchdog and reset times

■ APPLICATION

Arcade Amusement etc.


■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Symbol	Description
1	RESET	Outputs reset pin
2	CTW	Sets watchdog timer monitoring time pin
3	СТР	Sets power-on reset hold time pin
4	GND	Ground pin
5	Vcc	Power supply pin
6	INH	This pin forces the watchdog timer on/off. When this pin is High level, the watchdog timer is stopped.
7	CK2	Inputs clock 2 pin
8	CK1	Inputs clock 1 pin

■ BLOCK DIAGRAM

■ BLOCK FUNCTIONS

1. Comp.S

Comp.S is a comparator with hysteresis to compare the reference voltage with a voltage (V_s) that is the result of dividing the power voltage (V_c) by resistors R_1 and R_2 . When V_s falls below 1.24 V, a reset signal is output. This function enables the MB3793 to detect an abnormality within 1 μ s when the power is cut or falls abruptly.

2. Output circuit

The output circuit has a comparator to control the reset signal (RESET) output. When the voltage at the CTP pin for setting the power-on reset hold time exceeds the threshold voltage, resetting is canceled.

Since the reset (RESET) output buffer has the CMOS organization, no pull-up resistor is needed.

3. Pulse generator

The pulse generator generates pulses when the voltage at the CK1 and CK2 input clock pins changes from Low level to High level (positive-edge trigger) and exceeds the threshold voltage; it sends the clock signal to the watchdog timer.

4. Watchdog timer

The watchdog timer can monitor two clock pulses. Short-circuit the CK1 and CK2 clock pins to monitor a single clock pulse.

5. Logic circuit

Logic circuit controls charging and discharging of the power-on reset hold time setting capacity (C_{TP}) on a signal of Comp.S and Watchdog timer.

■ ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol Conditions		Rat	Unit	
		Syllibol	Conditions	Min	Max	Onit
Power supply voltage*		Vcc	_	-0.3	+7	V
	CK1	Vск1				
Input voltage*	CK2	Vск ₂		-0.3 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} Vcc + 0.3 \\ (\leq +7) \end{array}$	V
	INH	VINH			(= 11)	
Reset output voltage*	RESET	Vol Voh	_	-0.3	Vcc + 0.3 (≤+7)	V
Reset output current	RESET	Іоь Іон	_	-10	+10	mA
Power dissipation		Po	Ta ≤ +85 °C	_	200	mW
Storage temperature		Tstg	_	– 55	+125	°C

^{*:} The voltage is based on the ground voltage (0 V).

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol Conditions		Value			Unit	
Farameter	Syllibol	Conditions	Min	Тур	Max	Onit	
Power supply voltage	Vcc	_	1.2	5.0	6.0	V	
Reset (RESET) output current	Іоь	_	0	_	+ 5	mA	
	Іон	_	-5	_	0	IIIA	
Power-on reset hold time setting capacity	Стр	_	0.001	0.1	10	μF	
Watchdog-timer monitoring time setting capacity*	Стw	_	0.001	0.01	1	μF	
Operating ambient temperature	Та	_	-40	+25	+85	°C	

^{*:} The watchdog timer monitor time range depends on the rating of the setting capacitor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

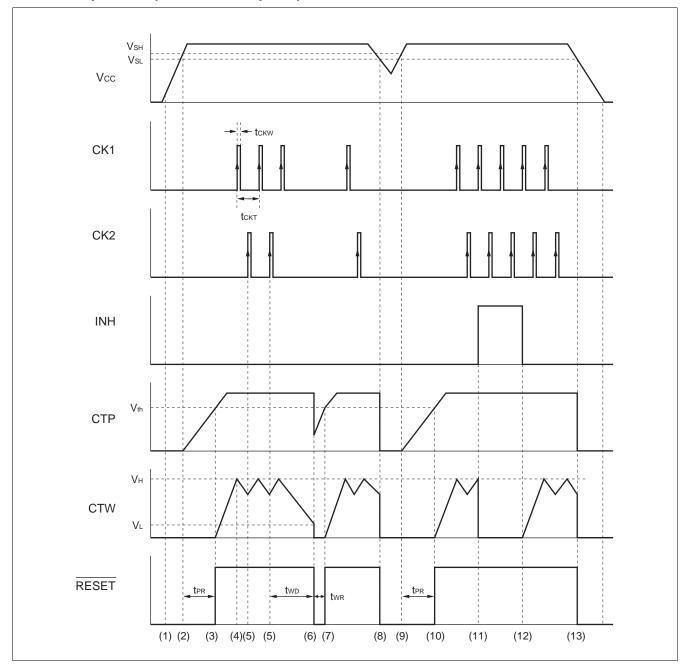
1. DC Characteristics

 $(Vcc = +5 V, Ta = +25^{\circ}C)$

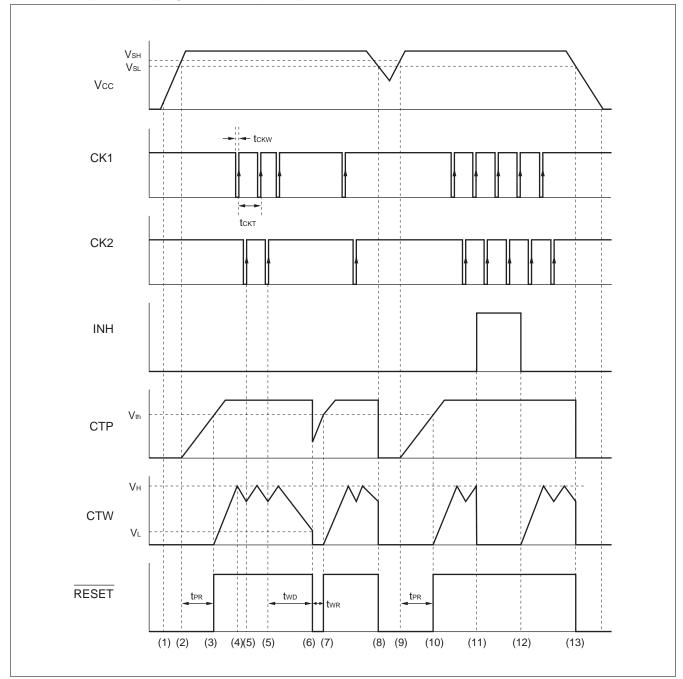
Parameter	Symbol	C	onditions	Value			Unit
Parameter	Symbol	Conditions		Min	Тур	Max	Ullit
Power current	Icc1	After exit fro	m reset		38	50	μΑ
	VsL	Vcc falling	Ta = +25°C	3.32	3.40	3.48	V
Detection voltage	V SL	vec failing	$Ta = -40 \text{ to } +85^{\circ}C$	3.27*	3.40	3.53*	V
Detection voitage	Vsн	Vcc rising	Ta = +25°C	3.40	3.48	3.56	V
	VSH	vectising	$Ta = -40 \text{ to } +85^{\circ}C$	3.35*	3.48	3.61*	V
Detection voltage hysteresis difference	Vshys	Vsh - Vsl		35	80	120	mV
	Vсін	_		1.4*	1.9	2.5	V
CK input threshold voltage	VcIL	_		0.8	1.3	1.8*	V
CK input hysteresis	Vchys	_		0.4*	0.6	0.8*	V
INH input voltage	VIIH	_		3.5	_	Vcc	V
INT Input Voltage	VIIL	_		0	_	0.8	V
Input current	Іін	VIH = VCC			0	1.0	μΑ
(CK1,CK2,INH)	IIL	VIL = 0 V		-1.0	0		μΑ
Reset output voltage	Vон	IRESET = -5 mA		4.5	4.75		V
	Vol	IRESET = +5 mA			0.12	0.4	V
Reset-output minimum power voltage	Vccl	IRESET = +50	0 μΑ	_	0.8	1.2	V

^{*:} This parameter is guaranteed by design, which is not supported by a final test.

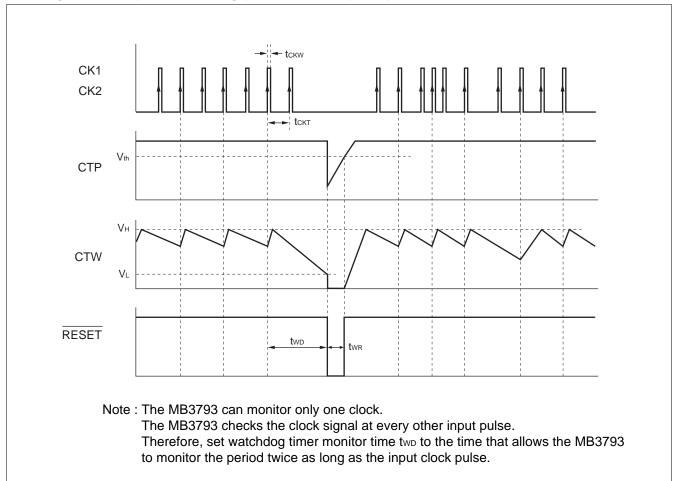
2. AC Characteristics

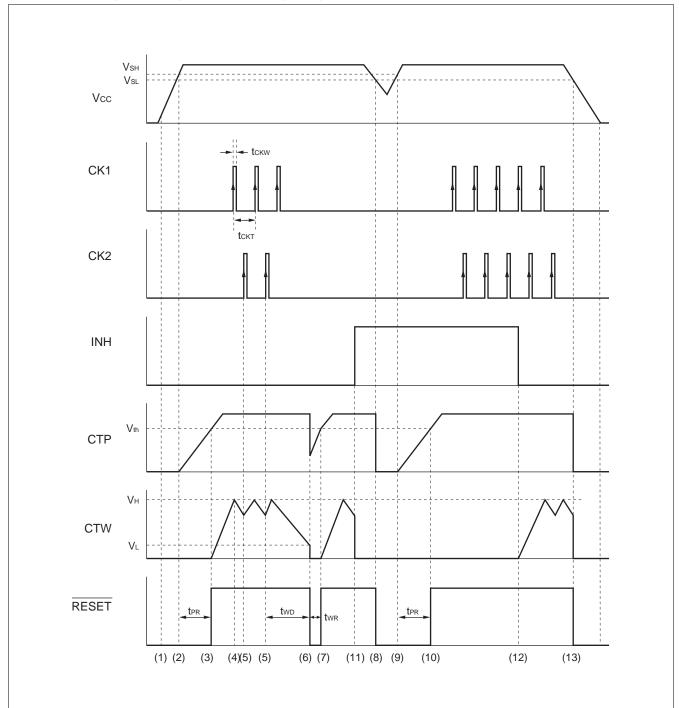

 $(Vcc = +5 V, Ta = +25^{\circ}C)$

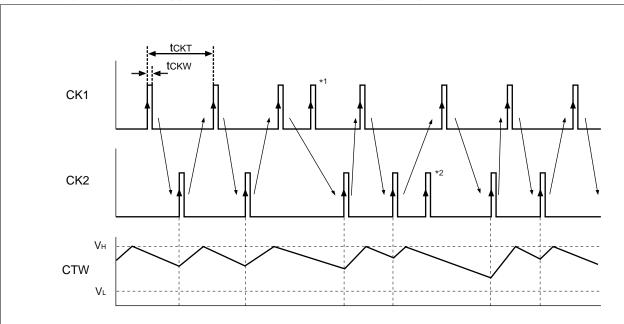
Parameter		Symbol Conditions		Value			Unit
		Syllibol	Conditions	Min	Тур	Max	Oilit
Power-on reset hold time		t PR	Стр = 0.1 μF	80	130	180	ms
Watchdog timer monitoring time		two	$C_{TW} = 0.01 \mu F$ $C_{TP} = 0.1 \mu F$	7.5	15	22.5	ms
Watchdog timer reset time		twr	C _{TP} = 0.1 μF	5	10	15	ms
CK input pulse width		tckw	_	500		_	ns
CK input pulse cycle		tскт	_	20			μs
Reset (RESET) output transition time	Rising	tr*	CL = 50 pF	—		500	ns
	Falling	tf*	CL = 50 pF	_		500	ns


^{*:} The voltage range is 10% to 90% at testing the reset output transition time.

■ TIMING DIAGRAM


1. Basic operation (Positive clock pulse)


2. Basic operation (Negative clock pulse)


3. Single-clock input monitoring (Positive clock pulse)

4. Inhibition operation (Positive clock pulse)

5. Clock pulse input supplementation (Positive clock pulse)

Note: The MB3793 watchdog timer monitors Clock1 (CK1) and Clock2 (CK2) pulses alternately. When a CK2 pulse is detected after detecting a CK1 pulse, the monitoring time setting capacity (C_{TW}) switches to charging from discharging.

When two consecutive pulses occur on one side of this alternation before switching, the second pulse is ignored.

In the above figure, pulse *1 and *2 are ignored.

■ OPERATION SEQUENCE

1. Positive clock pulse input

Refer to "1. Basic operation (positive clock pulse)" under "■ TIMING DIAGRAM."

2. Negative clock pulse input

Refer to "2. Basic operation (negative clock pulse)" under "■ TIMING DIAGRAM."

The MB3793 operates in the same way whether it inputs positive or negative pulses.

3. Single-clock input monitoring

To use the MB3793 while monitoring only one clock, connect clock pins CK1 and CK2.

Although the MB3793 operates basically in the same way as when monitoring two clocks, it monitors the clock signal at every other input pulse.

Refer to "3. Single-clock input monitoring (positive clock pulse)" under "■ TIMING DIAGRAM."

4. Description of Operations

The numbers given to the following items correspond to numbers (1) to (13) used in "
TIMING DIAGRAM."

- (1) The MB3793 outputs a reset signal when the supply voltage (Vcc) reaches about 0.8 V (Vccl).
- (2) If Vcc reaches or exceeds the rise-time detected voltage VsH, the MB3793 starts charging the power-on reset hold time setting capacitor CTP. At this time, the output remains in a reset state. The VsH value is 3.48 V (Typ).
- (3) When C_{TP} has been charged for a certain period of time T_{PR} (until the CTP pin voltage exceeds the threshold voltage (V_{th}) after the start of charging), the MB3793 cancels the reset (setting the RESET pin to "H" level from "L" level).

The V_{th} value is about 3.6 V with $V_{CC} = 5.0 \text{ V}$

The power-on reset hold time t_{PR} is set with the following equation:

 t_{PR} (ms) $= A \times C_{TP}$ (μF)

The value of A is about 1300 with Vcc = 5.0 V. The MB3793 also starts charging the watchdog timer monitor time setting capacitor (C_{TW}).

- (4) When the voltage at the watchdog timer monitor time setting pin C_{Tw} reaches the "H" level threshold voltage V_H, the CTW switches from the charge state to the discharge state.
 - The value of V_H is always about 1.24 V regardless of the detected voltage.
- (5) If the CK2 pin inputs a clock pulse (positive edge trigger) when the C_{TW} is being discharged in the CK1-CK2 order or simultaneously, the C_{TW} switches from the discharge state to the charge state. The MB3793 repeats operations (4) and (5) as long as the CK1/CK2 pin inputs clock pulses with the system logic circuit operating normally.
- (6) If no clock pulse is fed to the CK1 or CK2 pin within the watchdog timer monitor time two due to some problem with the system logic circuit, the CTW pin is set to the "L" level threshold voltage V_L or less and the MB3793 outputs a reset signal (setting the RESET pin to "L" level from "H" level).

The value of V_L is always about 0.24 V regardless of the detected voltage.

The watchdog timer monitor time two is set with the following equation:

two (ms) = $B \times C_{TW} (\mu F) + C \times C_{TP} (\mu F)$

The value of B is hardly affected by the power supply voltage; it is about 1500 with Vcc = 5.0 V.

The value of C is 0.

For this reason:

two (ms) = B \times C_{TW} (μ F)

(7) When a certain period of time twee has passed (until the CTP pin voltage reaches or exceeds Vth again after recharging the CTP), the MB3793 cancels the reset signal and starts operating the watchdog timer. The watchdog timer monitor reset time twee is set with the following equation:

twr (ms)
$$=$$
 D \times C_{TP} (μ F)

The value of D is 100 with Vcc = 5.0 V.

The MB3793 repeats operations (4) and (5) as long as the CK1/CK2 pin inputs clock pulses. If no clock pulse is input, the MB3793 repeats operations (6) and (7).

- (8) If Vcc is lowered to the fall-time detected voltage (Vsl) or less, the CTP pin voltage decreases and the MB3793 outputs a reset signal (setting the RESET pin to "L" level from "H" level). The value of Vsl is 3.40 V (Typ).
- (9) When Vcc reaches or exceeds VsH again, the MB3793 starts charging the CTP.
- (10) When the CTP pin voltage reaches or exceeds V_{th}, the MB3793 cancels the reset and restarts operating the watchdog timer. It repeats operations (4) and (5) as long as the CK1/CK2 pin inputs clock pulses.
- (11) Making the inhibit pin active (setting the INH pin to "H" from "L") forces the watchdog timer to stop operation.

This stops only the watchdog timer, leaving the MB3793 monitoring Vcc (operations (8) to (10)).

The watchdog timer remains inactive unless the inhibit input is canceled.

The inhibition (INH) pin must be connecting a voltage of more low impedance, to evade of the noise.

- (12) Canceling the inhibit input (setting the INH pin to "L" from "H") restarts the watchdog timer.
- (13) The reset signal is output when the power supply is turned off to set Vcc to VsL or less.

1. Equation of time-setting capacitances (CTP and CTW) and set time

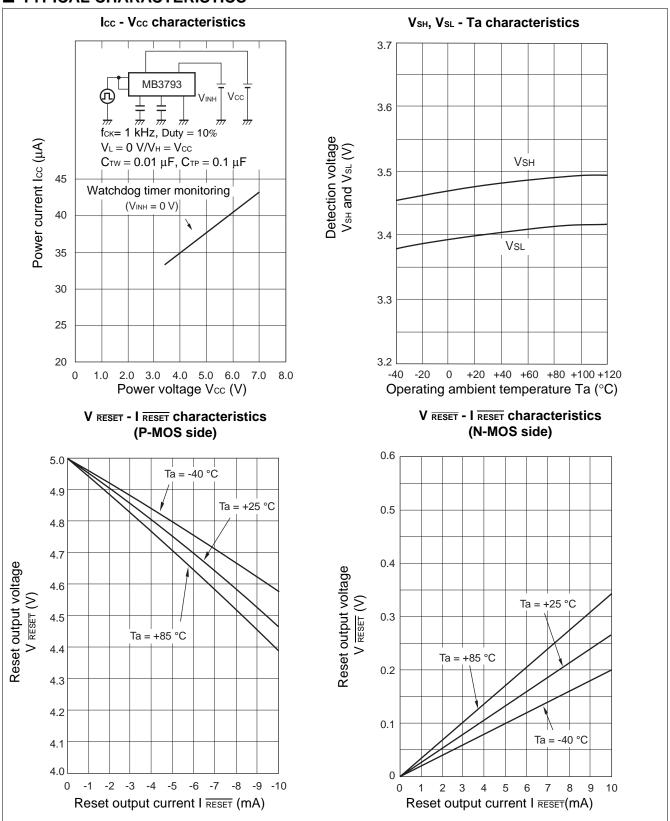
$$t_{PR}$$
 [ms] $= A \times C_{TP}$ [μ F]

two [ms]
$$=$$
 B \times CTW [μ F] + C \times CTP [μ F]

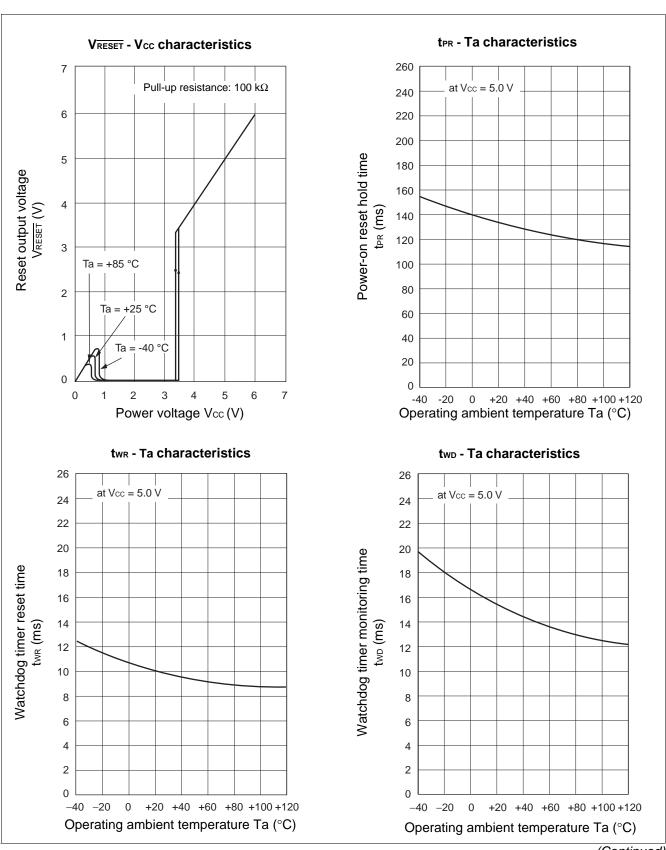
However, when $C_{TP}/C_{TW} = 10$ or less, t_{WD} [ms] $= B \times C_{TW}$ [μ F]

twr [ms]
$$=$$
 D \times C_{TP} [μ F]

Values of A, B, C, and D

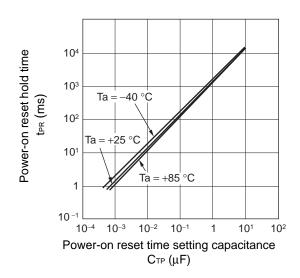

Α	В	С	D	Remark
1300	1500	0	100	Vcc = 5.0 V

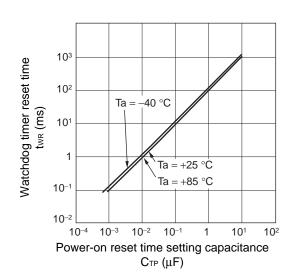
Note: The width of value of tpr, two and twr becomes the same ratio as width (Min, Max) of each specification value.


2. Example (when $C_{TP} = 0.1 \mu F$ and $C_{TW} = 0.01 \mu F$)

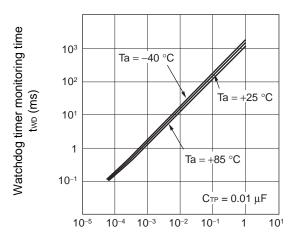
	Symbol	Vcc = 5.0 V
time	t PR	130
(ms)	t wD	15
	twr	10

■ TYPICAL CHARACTERISTICS


(Continued)

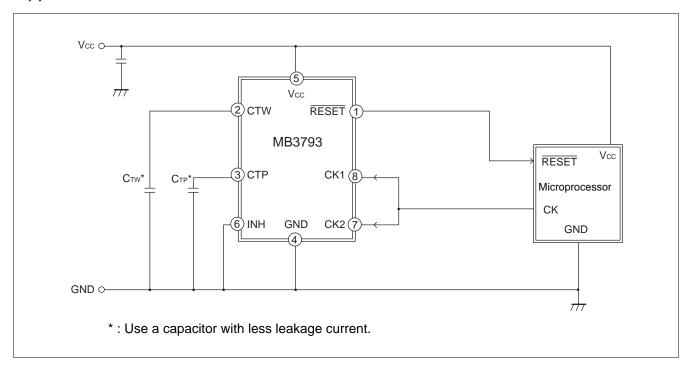

(Continued)

(Continued)

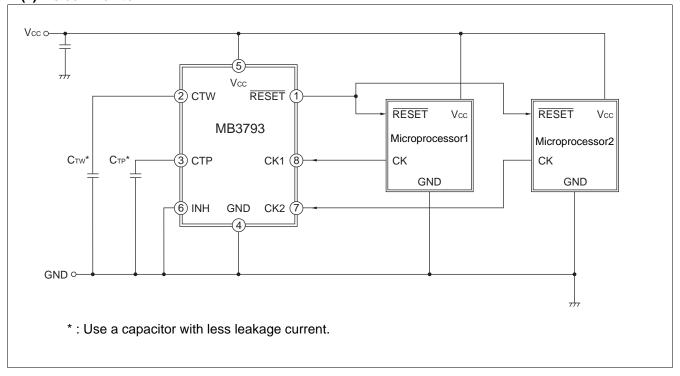


twr - CTP characteristics

two - CTW characteristics

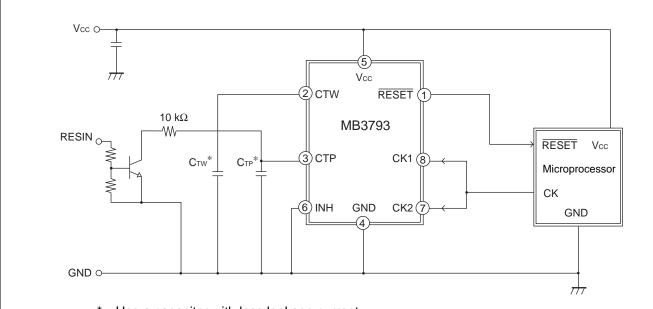


Watchdog timer monitoring time setting capacitance $C_{\text{TW}}\left(\mu F\right)$


■ APPLICATION EXAMPLE

1. Supply voltage monitor and watchdog timer


(1) 1-clock monitor


(2) 2-clock monitor

2. Supply voltage monitor and watchdog timer stop

3. Setting of compulsory reset

*: Use a capacitor with less leakage current.

It is possible for the $\overline{\text{RESET}}$ pin to fix to "L" if the CTP pin is short-circuited to GND. Take care not to change the value of the C_{TP} capacity because of the influence of Tr that is used at the time.

■ USAGE PRECAUTION

1. Do not configure the IC over the maximum ratings

If the IC is used over the maximum ratings, the LSI may be permanently damaged. It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions can have a bad effect on the reliability of the LSI.

2. Use the devices within recommended operating conditions

The recommended operating conditions are under which the LSI is guaranteed to operate. The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.

3. Printed circuit board ground lines should be set up with consideration for common impedance

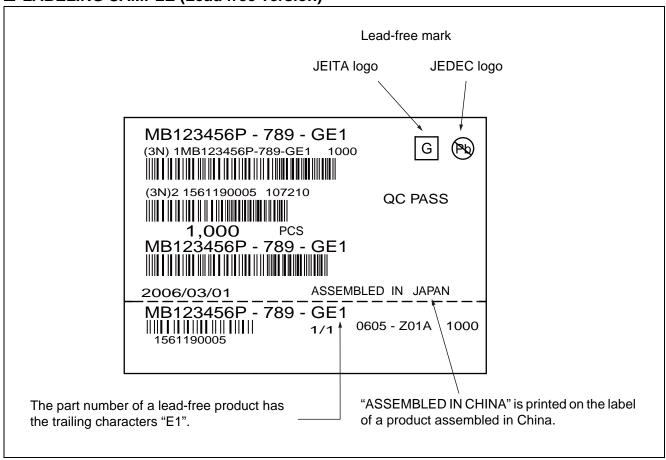
4. Take appropriate measures against static electricity

- Containers for semiconductor materials should have anti-static protection or be made of conductive material.
- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- Working personnel should be grounded with resistance of 250 k Ω to 1 M Ω between body and ground.

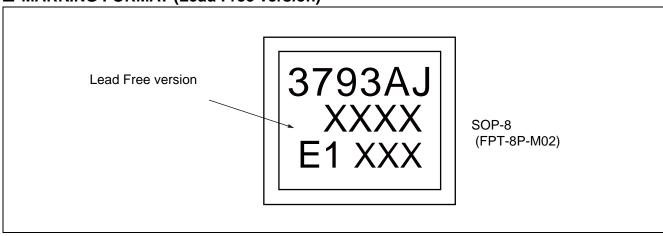
5. Do not apply negative voltages

The use of negative voltages below –0.3 V may create parasitic transistors on LSI lines, which can cause malfunctions.

■ ORDERING INFORMATION


Part number	Package	Remarks
MB3793-34APNF	8-pin plastic SOP (FPT-8P-M02)	

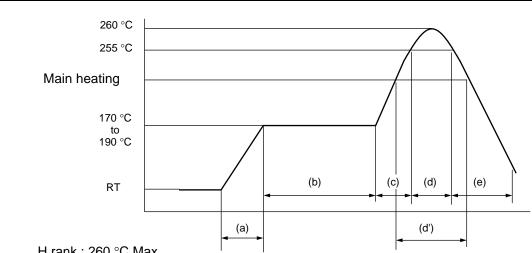
■ RoHS Compliance Information of Lead (Pb) Free version


The LSI products of Fujitsu Microelectronics with "E1" are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

The product that conforms to this standard is added "E1" at the end of the part number.

■ LABELING SAMPLE (Lead free version)

■ MARKING FORMAT (Lead Free version)



■ MB3793-34APNF RECOMMENDED CONDITIONS OF MOISTURE SENSITIVITY LEVEL

Item	Condition			
Mounting Method	IR (infrared reflow), Manual so	oldering (partial heating method)		
Mounting times	2 ti	mes		
	Before opening	Please use it within two years after Manufacture.		
Storage period	From opening to the 2nd reflow	Less than 8 days		
	When the storage period after please processes within 8 opening was exceeded after baking (125 °C, 24)			
Storage conditions	5 °C to 30 °C, 70%RH or less (the lowest possible humidity)			

[Temperature Profile for FJ Standard IR Reflow]

(1) IR (infrared reflow)

H rank: 260 °C Max

(a) Temperature Increase gradient : Average 1 °C/s to 4 °C/s

(b) Preliminary heating : Temperature 170 °C to 190 °C, 60s to 180s

(c) Temperature Increase gradient : Average 1 °C/s to 4 °C/s

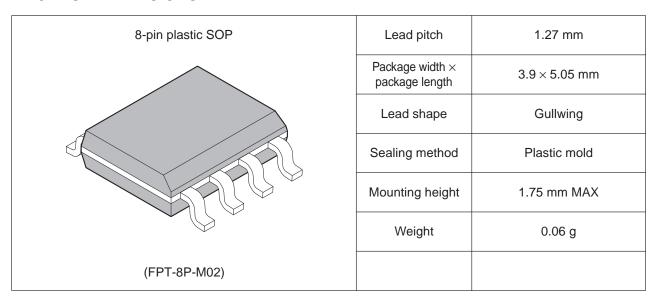
(d) Peak temperature : Temperature 260 °C Max; 255 °C or more, 10s or less

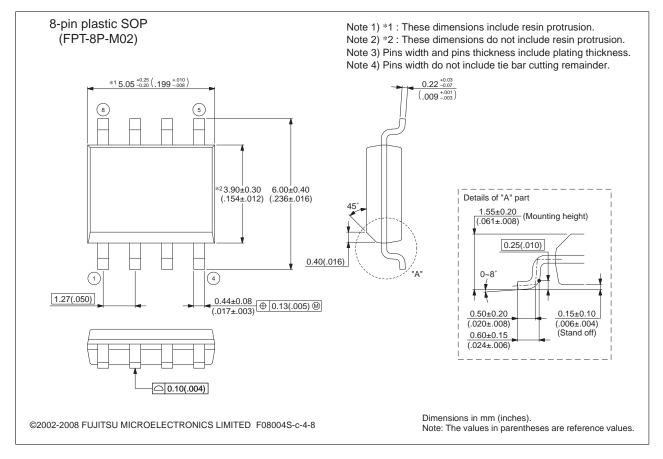
(d') Main heating : Temperature 230 °C or more, 40s or less

Temperature 225 °C or more, 60s or less

Temperature 220 °C or more, 80s or less

(e) Cooling : Natural cooling or forced cooling

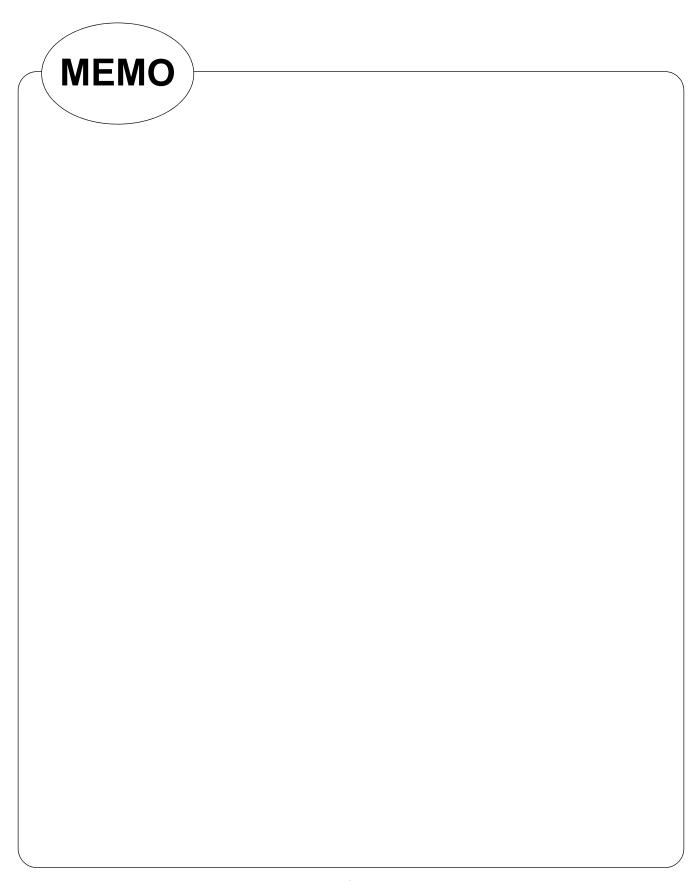

Note: Temperature: the top of the package body

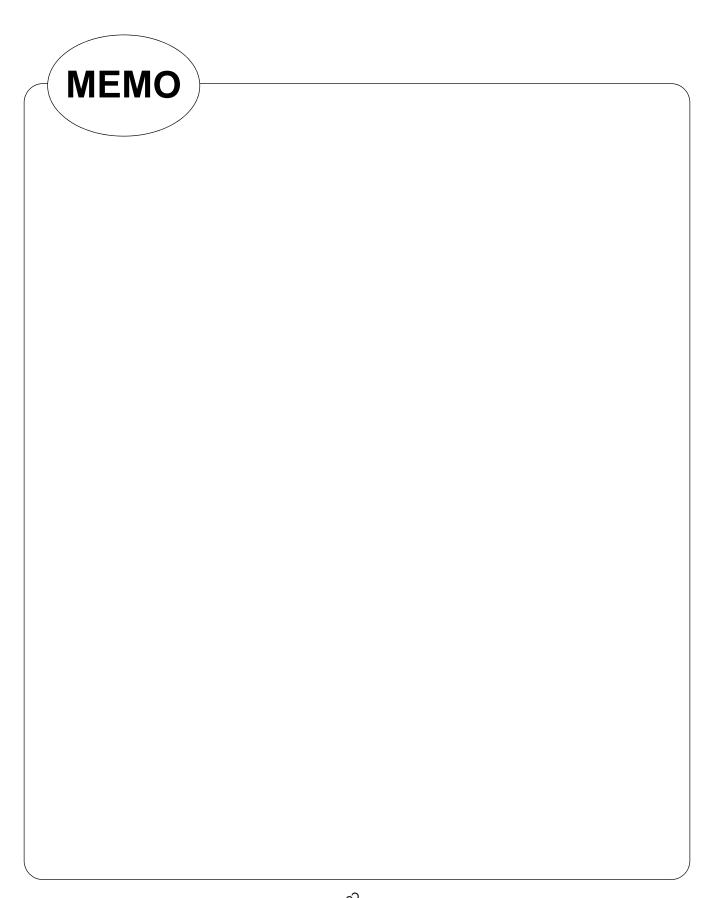

(2) Manual soldering (partial heating method)

Conditions : Temperature 400 °C Max

Times : 5 s max/pin

■ PACKAGE DIMENSIONS





Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

■ CONTENTS

	page
- DESCRIPTION	1
- FEATURES	1
- APPLICATION	1
- PIN ASSIGNMENT	2
- PIN DESCRIPTION	2
- BLOCK DIAGRAM	3
- BLOCK FUNCTIONS	4
- ABSOLUTE MAXIMUM RATINGS	5
- RECOMMENDED OPERATING CONDITIONS	5
- ELECTRICAL CHARACTERISTICS	
- TIMING DIAGRAM	8
- OPERATION SEQUENCE	13
- TYPICAL CHARACTERISTICS	15
- APPLICATION EXAMPLE	
- USAGE PRECAUTION	20
- ORDERING INFORMATION	21
- RoHS Compliance Information of Lead (Pb) Free version	
- LABELING SAMPLE (Lead free version)	22
- MARKING FORMAT (Lead Free version)	22
- MB3793-34APNF RECOMMENDED CONDITIONS OF MOISTURE SENSITIVITY LEVEL	23
- PACKAGE DIMENSIONS	24

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3329 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel: +86-21-6146-3688 Fax: +86-21-6335-1605

http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department