

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

16-bit Microcontroller

CMOS

F²MC-16LX MB90330A Series

MB90333A/F334A/F335A/V330A

■ DESCRIPTION

The MB90330A series are 16-bit microcontrollers designed for applications, such as personal computer peripheral devices, that require USB communications. The USB feature supports not only 12-Mbps Function operation but also HOST operation. It is equipped with functions that are suitable for personal computer peripheral devices such as displays and audio devices, and control of mobile devices that support USB communications. While inheriting the AT architecture of the F²MC family, the instruction set supports the C language and extended addressing modes and contains enhanced signed multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, long word processing is now available by introducing a 32-bit accumulator.

Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- Clock
 - Built-in oscillation circuit and PLL clock frequency multiplication circuit
 - · Oscillation clock
 - The main clock is the oscillation clock divided into 2 (for oscillation 6 MHz: 3 MHz)
 - Clock for USB is 48 MHz
 - Machine clock frequency of 6 MHz, 12 MHz, or 24 MHz selectable
 - Minimum execution time of instruction : 41.7 ns (6 MHz oscillation clock, 4-time multiplied : machine clock 24 MHz and at operating Vcc = 3.3 V).
- The maximum memory space : 16 Mbytes
- 24-bit addressing

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the "Customer Design Review Supplement" which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

• Bank addressing

• Instruction system

- Data types: Bit, Byte, Word and Long word
- Addressing mode (23 types)
- Enhanced high-precision computing with 32-bit accumulator
- Enhanced Multiply/Divide instructions with sign and the RETI instruction

Instruction system compatible with high-level language (C language) and multi-task

- Employing system stack pointer
- Instruction set symmetry and barrel shift instructions

• Program Patch Function (2 address pointer)

• 4-byte instruction queue

• Interrupt function

- Priority levels are programmable
- 32 interrupts function

Data transfer function

- Extended intelligent I/O service function (El²OS): Maximum of 16 channels
- μDMAC : Maximum 16 channels

• Low Power Consumption Mode

- Sleep mode (with the CPU operating clock stopped)
- Time-base timer mode (with the oscillator clock and time-base timer operating)
- Stop mode (with the oscillator clock stopped)
- CPU intermittent operation mode (with the CPU operating at fixed intervals of set cycles)
- Watch mode (with 32 kHz oscillator clock and watch timer operating)

Package

- LQFP-120P (FPT-120P-M24: 0.40 mm pin pitch)
- LQFP-120P (FPT-120P-M21 : 0.50 mm pin pitch)

• Process : CMOS technology

• Operation guaranteed temperature : - 40 °C to + 85 °C (0 °C to + 70 °C when USB is in use)

■ INTERNAL PERIPHERAL FUNCTION (RESOURCE)

• I/O port : Max 94 ports

Time-base timer: 1 channel
Watchdog timer: 1 channel
Watch timer: 1 channel

• 16-bit reload timer: 3 channels

Multi-functional timer

- 16-bit free run timer: 1 channel
- Output compare : 4 channels

An interrupt request can be output when the 16-bit free-run timer value matches the compare register value.

- Input capture : 4 channels
 - Upon detection of the effective edge of the signal input to the external input pin, the input capture unit sets the input capture data register to the 16-bit free-run timer value to output an interrupt request.
- 8/16-bit PPG timer (8-bit × 6 channels or 16-bit × 3 channels) the period and duty of the output pulse can be set by the program.
- 16-bit PWC timer : 1 channel

Timer function and pulse width measurement function

• UART: 4 channels

- Full-duplex double buffer (8-bit length)
- Asynchronous transfer or clock-synchronous serial (Extended I/O serial) transfer can be set.

• Extended I/O serial interface : 1 channel

• DTP/External interrupt circuit (8 channels)

- Activate the extended intelligent I/O service by external interrupt input
- · Interrupt output by external interrupt input

Delay interrupt output module

Output an interrupt request for task switching

• 8/10-bit A/D converter: 16 channels

· 8-bit resolution or 10-bit resolution can be set.

• USB: 1 channel

- USB function (correspond to USB Full Speed)
- Full Speed is supported/Endpoint are specifiable up to six.
- Dual port RAM (The FIFO mode is supported).
- Transfer type: Control, Interrupt, Bulk, or Isochronous transfer possible
- USB HOST function

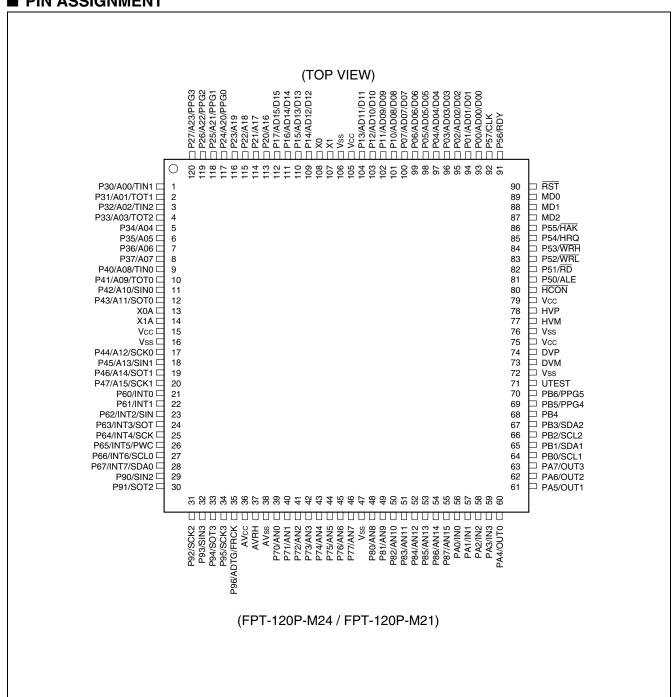
• I2C Interface: 3 channels

- Supports Intel SM bus standard and Phillips I²C bus standards
- Two-wire data transfer protocol specification
- Master and slave transmission/reception

■ PRODUCT LINEUP

Part number	MB90V330A	MB90F334A	MB90F335A	MB90333A		
Туре	For evaluation	Built-in Flash memory	Built-in Flash memory	Built-in MASK ROM		
ROM capacity	No	384 Kbytes	512 Kbytes	256 Kbytes		
RAM capacity	28 Kbytes	24 Kbytes	30 Kbytes	16 Kbytes		
Emulator-specific power supply *	Yes		_			
CPU functions	Number of basic instructions Minimum instruction execution time: 41.7 ns/at oscillation of 6 MHz (When 4 times are used: Machine clo of 24 MHz) Addressing type: 23 types Program Patch Function: For 2 address pointers Maximum memory space: 16 Mbytes					
Ports	I/O Ports (CMOS) 94	ports				
UART	Equipped with full-duplex double buffer Clock synchronous or asynchronous operation selectable It can also be used for I/O serial Built-in special baud-rate generator Built-in 4 channels					
16-bit reload timer	16-bit reload timer op Built-in 3 channels	eration				
Multi-functional timer	16-bit free run timer × Output compare × 4 cha Input capture × 4 cha 8/16-bit PPG timer (8- 16-bit PWC timer × 1	channels nnels -bit mode × 6 chann	els, 16-bit mode $ imes 3$	3 channels)		
8/10-bit A/D converter	16 channels (input mu 8-bit resolution or 10- Conversion time : 7.1	bit resolution can be		ck at maximum)		
DTP/External interrupt	8 channels Interrupt factor : "L"→	"H" edge/"H"→"L" e	dge/"L" level/"H" lev	rel selectable		
I ² C	3 channels					
Extended I/O serial interface	1 channel					
USB	1 channel USB function (correspond to USB Full Speed) USB HOST function					
External bus interface	For multi-bus/non-mu	lti-bus				
Withstand voltage of 5 V	16 ports (excluding U	TEST and I/O for I20	C)			
Low Power Consumption Mode	Sleep mode/Time-base timer mode/Stop mode/CPU intermittent mode/ Watch mode					
Process	CMOS					
Operating voltage	3.3 V ± 0.3 V (at max	imum machine clocl	< 24 MHz)			

^{*:} It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply Switching) about details.


■ PACKAGES AND PRODUCT MODELS

Package	MB90333A	MB90F334A	MB90F335A	MB90V330A
FPT-120P-M24 (LQFP-0.40 mm)	0	0	0	×
FPT-120P-M21 (LQFP-0.50 mm)	0	0	0	×
PGA-299C-A01 (PGA)	×	×	×	0

 $\bigcirc : \mathsf{Yes} \, \times : \mathsf{No}$

Note: For detailed information on each package, refer to "■ PACKAGE DIMENSIONS".

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

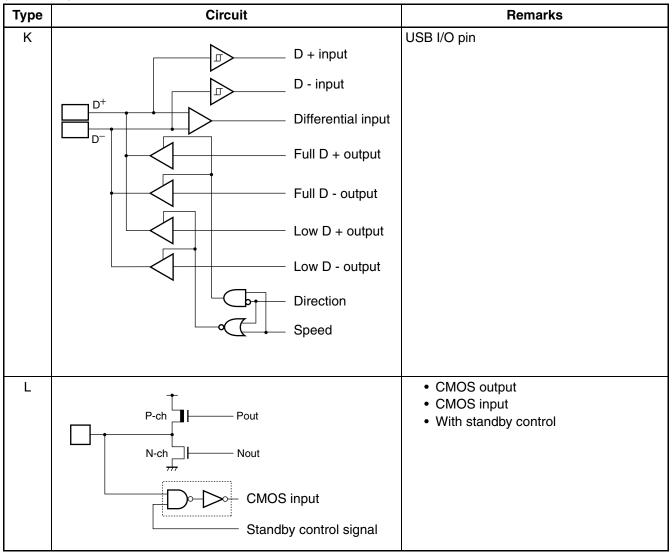
Pin no.	Pin name	I/O Circuit type*	Function
108, 107	X0, X1	А	Terminals to connect the oscillator. When connecting an external clock, leave the X1 pin side unconnected.
13, 14	X0A, X1A	Α	32 kHz oscillation terminals.
90	RST	F	External reset input pin.
00.1.400	P00 to P07		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD00 to RD07 = 1) by the pull-up resistor setting register (RDR0). (When the power output is set, it is invalid.)
93 to 100	AD00 to AD07	Н	Function as an I/O pin for the low-order external address and data bus in multiplex mode.
	D00 to D07		Function as an output pin for the low-order external data bus in non-multiplex mode.
	P10 to P13		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD10 to RD13 = 1) by the pull-up resistor setting register (RDR1). (When the power output is set, it is invalid.)
101 to 104	AD08 to AD11	Н	Function as an I/O pin for the high-order external address and data bus in multiplex mode.
	D08 to D11		Function as an output pin for the high-order external data bus in non-multiplex mode.
	P14 to P17		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD14 to RD17 = 1) by the pull-up resistor setting register (RDR1). (When the power output is set, it is invalid.)
109 to 112	AD12 to D15	Н	Function as an I/O pin for the high-order external address and data bus in multiplex mode.
	D12 to D15		Function as an output pin for the high-order external data bus in non-multiplex mode.
	P20 to P23		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
113 to 116	A16 to A19	D	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins.
	AIOIOAI9		When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins.

8

Pin no.	Pin name	I/O Circuit type*	Function				
	P24 to P27		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.				
117 to 120		D	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins.				
	A20 to A23		When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins.				
	PPG0 to PPG3		Function as ch.0 to ch.3 output pins for the 8-bit PPG timer.				
	P30		General purpose input/output port.				
1	A00	D	Function as the external address pin in non-multi-bus mode.				
	TIN1		Function as an event input pin for 16-bit reload timer ch.1.				
	P31		General purpose input/output port.				
2	A01	D	Function as the external address pin in non-multi-bus mode.				
	TOT1		Function as the output pin for 16-bit reload timer ch.1.				
	P32		General purpose input/output port.				
3	A02	D	Function as the external address pin in non-multi-bus mode.				
	TIN2		Function as an event input pin for 16-bit reload timer ch.2.				
	P33		General purpose input/output port.				
4	A03	D	Function as the external address pin in non-multi-bus mode.				
	TOT2		Function as the output pin for 16-bit reload timer ch.2.				
5 to 8	P34 to P37	2	General purpose input/output port.				
5 10 6	A04 to A07	D	Function as the external address pin in non-multi-bus mode.				
	P40		General purpose input/output port.				
9	A08	G	Function as the external address pin in non-multi-bus mode.				
	TIN0		Function as an event input pin for 16-bit reload timer ch.0.				
	P41		General purpose input/output port.				
10	A09	G	Function as the external address pin in non-multi-bus mode.				
	TOT0		Function as the output pin for 16-bit reload timer ch.0.				
	P42		General purpose input/output port.				
11	A10	G	Function as the external address pin in non-multi-bus mode.				
	SIN0		Function as a data input pin for UART ch.0.				
	P43		General purpose input/output port.				
12	A11	G	Function as the external address pin in non-multi-bus mode.				
	SOT0		Function as a data output pin for UART ch.0.				
	P44		General purpose input/output port.				
17	A12	G	Function as the external address pin in non-multi-bus mode.				
	SCK0		Function as a clock I/O pin for UART ch.0.				

Pin no.	Pin name	I/O Circuit type*	Function
	P45		General purpose input/output port.
18	A13	G	Function as the external address pin in non-multi-bus mode.
	18 A13 SIN1 P46		Function as a data input pin for UART ch.1.
	P46		General purpose input/output port.
19	A14	G	Function as the external address pin in non-multi-bus mode.
	SOT1		Function as a data output pin for UART ch.1.
	P47		General purpose input/output port.
20			Function as the external address pin in non-multi-bus mode.
	SCK1		Function as a clock I/O pin for UART ch.1.
04	P50		General purpose input/output port.
81	ALE	- L	Function as the address latch enable signal pin in external bus mode.
00	P51	1	General purpose input/output port.
82	RD	- L	Function as the read strobe output pin in external bus mode.
	P52		General purpose input/output port.
83	WRL	L	Function as the data write strobe output pin on the lower side in external bus mode. This pin functions as a general-purpose I/O port when the WRE bit in the EPCR register is "0".
	P53		General purpose input/output port.
84	WRH	L	Function as the data write strobe output pin on the higher side in bus width 16-bit external bus mode. This pin functions as a general-purpose I/O port when the WRE bit in the EPCR register is "0".
	P54		General purpose input/output port.
85	HRQ	L	Function as the hold request input pin in external bus mode. This pin functions as a general-purpose I/O port when the HDE bit in the EPCR register is "0".
	P55		General purpose input/output port.
86	HAK	L	Function as the hold acknowledge output pin in external bus mode. This pin functions as a general-purpose I/O port when the HDE bit in the EPCR register is "0".
	P56		General purpose input/output port.
91 RDY L		L	Function as the external ready input pin in external bus mode. This pin functions as a general-purpose I/O port when the RYE bit in the EPCR register is "0".
	P57		General purpose input/output port.
92	CLK	L	Function as the machine cycle clock output pin in external bus mode. This pin functions as a general-purpose I/O port when the CKE bit in the EPCR register is "0".
01 00	P60, P61		General purpose input/output port. (With stand voltage of 5 V)
21, 22	INTO, INT1	C	Function as external interrupt ch.0 and ch.1 input pins.

Pin no.	Pin name	I/O Circuit type*	Function
	P62		General purpose input/output ports. (Withstand voltage of 5 V)
23 INT2 SIN		С	Function as an external interrupt ch.2 input pin.
			Extended I/O serial interface data input pin.
	P63		General purpose input/output port. (Withstand voltage of 5 V)
24	INT3	С	Function as an external interrupt ch.3 input pin.
	SOT		Extended I/O serial interface data output pin.
	P64		General purpose input/output port. (Withstand voltage of 5 V)
25	INT4	С	Function as an external interrupt ch.4 input pin.
	SCK		Extended I/O serial interface clock input/output pin.
	P65		General purpose input/output port. (Withstand voltage of 5 V)
26	INT5	С	Function as an external interrupt ch.5 input pin.
	PWC		Function as the PWC input pin.
	P66		General purpose input/output port. (Withstand voltage of 5 V)
27	INT6	С	Function as an external interrupt ch.6 input pin.
21	SCL0		Function as the ch.0 clock I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.
	P67		General purpose input/output port. (Withstand voltage of 5 V)
20	INT7	С	Function as an external interrupt ch.7 input pin.
20	28 SDA0		Function as the ch.0 data I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.
00 to 40	P70 to P77	,	General purpose input/output port.
39 to 46	AN0 to AN7	'	Function as input pins for analog ch.0 to ch.7.
10 to EE	P80 to P87	,	General purpose input/output port.
48 to 55	AN8 to AN15	'	Function as input pins for analog ch.8 to ch.15.
20	P90	D	General purpose input/output port.
29	SIN2	D	Function as a data input pin for UART ch.2.
20	P91	_	General purpose input/output port.
30	SOT2	D	Function as a data output pin for UART ch.2.
0.1	P92	_	General purpose input/output port.
31	SCK2	D	Function as a clock I/O pin for UART ch.2.
00	P93	_	General purpose input/output port.
32	SIN3	D	Function as a data input pin for UART ch.3.
00	P94	_	General purpose input/output port.
33	SOT3	D	Function as a data output pin for UART ch.3.
0.4	P95	_	General purpose input/output port.
34	SCK3	D	Function as a clock I/O pin for UART ch.3.
	P96		General purpose input/output port. (Withstand voltage of 5 V)
35	ADTG	С	Function as the external trigger input pin when the A/D converter is being used.
	FRCK	1	Function as the external clock input pin when the free-run timer is being used.


(Continue	u <i>)</i>		
Pin no.	Pin name	I/O Circuit type*	Function
EC to E0	PA0 to PA3	С	General purpose input/output port. (Withstand voltage of 5 V)
56 to 59	IN0 to IN3	C	Function as the input capture ch.0 to ch.3 trigger inputs.
60 to 60	PA4 to PA7	С	General purpose input/output port. (Withstand voltage of 5 V)
60 to 63	OUT0 to OUT3	C	Function as the output compare ch.0 to ch.3 event output pins.
	PB0		General purpose input/output port. (Withstand voltage of 5 V)
64	SCL1	С	Function as the ch.1 clock I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.
	PB1		General purpose input/output port. (Withstand voltage of 5 V)
65	SDA1	С	Function as the ch.1 data I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.
	PB2		General purpose input/output port. (Withstand voltage of 5 V)
66	SCL2	С	Function as the ch.2 clock I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.
	PB3		General purpose input/output port. (Withstand voltage of 5 V)
67	67 SDA2 C		Function as the ch.2 data I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.
68	PB4	С	General purpose input/output port. (Withstand voltage of 5 V)
60.70	PB5, PB6	D	General purpose input/output port.
69, 70	PPG4, PPG5	D	Function as ch.4 and ch.5 output pins for the 8-bit PPG timer.
71	UTEST	С	USB test pin. Connect this to a pull-down resistor during normal usage.
73	DVM	K	USB function D- pin.
74	DVP	K	USB function D+ pin.
77	HVM	K	USB HOST D- pin.
78	HVP	K	USB HOST D+ pin.
80	HCON	Е	External pull-up resistor connect pin.
36	AVcc	_	A/D converter power supply pin.
37	AVRH	J	A/D converter external reference power supply pin.
38	AVss		A/D converter power supply pin.
87 to 89	MD2 to MD0	В	Operation mode select input pin.
15, 75, 79, 105	Vcc		Power supply pin.
16, 47, 72, 76, 106	Vss	_	Power supply pin (GND).

^{*:} For circuit information, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	Clock input X1A X0 X0A Standby control signal	 High-rate oscillation feedback resistor, approx.1 MΩ Low-rate oscillation feedback resistor, approx.10 MΩ With standby control
В	CMOS hysteresis input	CMOS hysteresis input
С	N-ch Nout CMOS hysteresis input Standby control signal	CMOS hysteresis input N-ch open drain output
D	P-ch Pout Nout CMOS hysteresis input Standby control signal	CMOS output CMOS hysteresis input (With input interception function at standby) Notes: Share one output buffer because both output of I/O port and internal resource are used. Share one input buffer because both input of I/O port and internal resource are used.
Е	P-ch Pout N-ch Nout	CMOS output
F	CMOS hysteresis input	CMOS hysteresis input with pull-up resistor

Туре	Circuit	Remarks
G	P-ch Pout Open drain control signal N-ch Nout CMOS hysteresis input Standby control signal	CMOS output CMOS hysteresis input (With input interception function at standby) With open drain control signal
Н	P-ch Pout N-ch Nout Nout Standby control signal	CMOS output CMOS input (With input interception function at standby) With input pull-up register control
I	P-ch Pout Nout CMOS hysteresis input Standby control signal A/D converter analog input	CMOS output CMOS hysteresis input (With input interception function at standby) Analog input (The A/D converter analog input is enabled when the corresponding bit in the analog input enable register (ADER) is 1.) Notes: Because the output of the I/O port and the output of internal resources are used combinedly, one output buffer is shared. Because the input of the I/O port and the input of internal resources are used combinedly, one input buffer is shared.
J	P-ch P-ch AVRH input A/D converter analog input enable signal	A/D converter (AVRH) voltage input pin

■ HANDLING DEVICES

1. Preventing latch-up and turning on power supply

Latch-up may occur on CMOS IC under the following conditions:

- If a voltage higher than Vcc or lower than Vss is applied to input and output pins.
- A voltage higher than the rated voltage is applied between Vcc pin and Vss pin.
- If the AVcc power supply is turned on before the Vcc voltage.

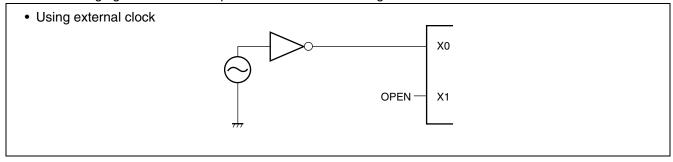
Ensure that you apply a voltage to the analog power supply at the same time as Vcc or after you turn on the digital power supply (when you perform power-off, turn off the analog power supply first or at the same time as Vcc and the digital power supply).

If latch-up occurs, the supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum rating.

2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage.

Unused input pins should always be pulled up or down through resistance of at least 2 $k\Omega$. Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.


3. Treatment of power supply pins on models with A/D converters

Even when the A/D converters are not in use, be sure to make the necessary connections $AV_{CC} = AVRH = V_{CC}$, and $AV_{SS} = V_{SS}$.

4. About the attention when the external clock is used

Even when using an external clock signal, an oscillation stabilization delay is applied after a power-on reset or when recovering from sub clock or stop mode. When suing an external clock, 25 MHz should be the upper frequency limit.

The following figure shows a sample use of external clock signals.

5. Treatment of power supply pins (Vcc/Vss)

In products with multiple $V_{\rm CC}$ or $V_{\rm SS}$ pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with the $V_{\rm CC}$ and $V_{\rm SS}$ pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between V_{CC} pin and V_{SS} pin near this device.

6. About Crystal oscillator circuit

Noise near the X0/X1 pins and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1 pins and X0A/X1A pins, the crystal oscillator (or the ceramic oscillator) and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X0/X1 pins and X0A/X1A pins surrounded by ground plane because stable operation can be expected with such a layout.

Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

7. Caution on Operations during PLL Clock Mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

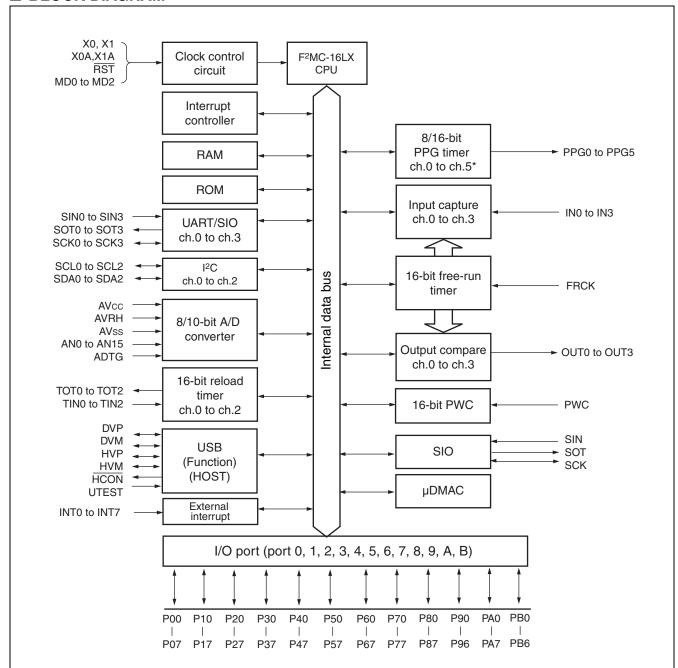
8. Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the Vcc supply voltage operating range. For stabilization reference, the supply voltage should be stabilized so that Vcc ripple variations (peak-to-peak value) at commercial frequencies (50 Hz/60 Hz) fall below 10% of the standard Vcc supply voltage and the transient regulation does not exceed 0.1 V/ms at temporary changes such as power supply switching.

9. When the dual-supply is used as a single-supply device

If you are using only a single-system of the MB90330A series that come in the dual-system product, use it with $X0A = V_{SS}$: X1A = OPEN.

10. Writing to flash memory


For serial writing to flash memory, always make sure that the operating voltage V_{CC} is between 3.13 V and 3.6 V. For normal writing to flash memory, always make sure that the operating voltage V_{CC} is between 3.0 V and 3.6 V.

11. Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example, apply a checksum to detect an error. If an error is detected, retransmit the data.

■ BLOCK DIAGRAM

*: Channel for use in 8-bit mode. 3 channels (ch.1, ch.3, ch.5) are used in 16-bit mode.

Note : I/O ports share pins with peripheral function (resources) $\mbox{.}$

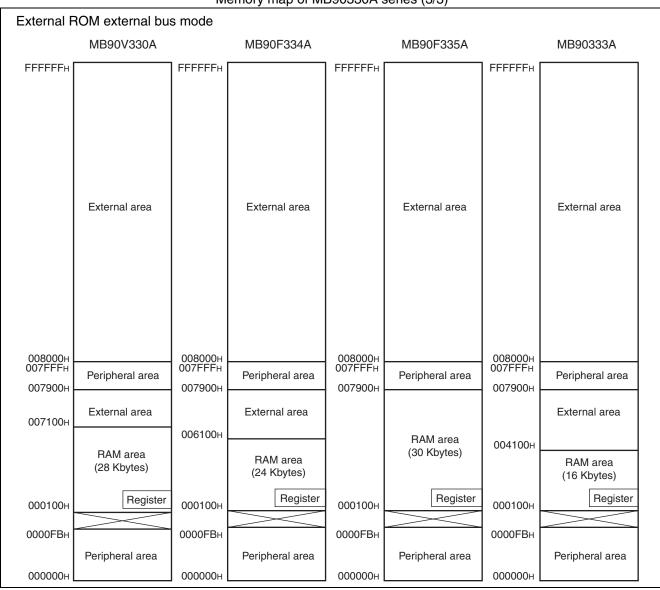
For details, refer to "■ PIN ASSIGNMENT" and "■ PIN DESCRIPTION".

Note also that pins used for peripheral function (resources) cannot serve as I/O ports.

■ MEMORY MAP

Memory map of MB90330A series (1/3)

Single chi	ip mode (with RC)M mirror	function)				
	MB90V330A		MB90F334A		MB90F335A		MB90333A
FF0000H	ROM (FF bank)	FFFFFFH FF0000H	ROM (FF bank)	FFFFFFH FF0000H	ROM (FF bank)	FFFFFFH FF0000H	ROM (FF bank)
FE0000H	ROM (FE bank)	FEFFFFH FE0000H	ROM (FE bank)	FEFFFFH FE0000H	ROM (FE bank)	FEFFFH FE0000H	ROM (FE bank)
DFFFFH D0000H	ROM (FD bank)	FDFFFFH FD0000H	ROM (FD bank)	FDFFFFH FD0000H	ROM (FD bank)	FDFFFFH FD0000H	ROM (FD bank)
CFFFFH C0000H	ROM (FC bank)	FCFFFFH FC0000H		FCFFFFH FC0000H	ROM (FC bank)	FCFFFFH FC0000H	
BFFFFH B0000H	ROM (FB bank)	FBFFFFH FB0000H	ROM (FB bank)	FBFFFFH FB0000H	ROM (FB bank)	FBFFFFH FB0000H	ROM (FB bank)
AFFFFH FA0000H F9FFFFH	ROM (FA bank)	FAFFFFH FA0000H F9FFFFH	ROM (FA bank)	FAFFFFH FA0000H F9FFFFH	ROM (FA bank)	FAFFFFH FA0000H F9FFFFH	
590000н 8FFFFн	ROM (F9 bank)	F90000H F8FFFFH	ROM (F9 bank)	F90000H F8FFFFH	ROM (F9 bank)	F90000H F8FFFFH	
F80000H	ROM (F8 bank)	F80000H		F80000H	ROM (F8 bank)	F80000н	
00FFFFн 008000н L	ROM (image of FF bank)	00FFFFн 008000н	ROM (image of FF bank)	00FFFFн 008000н	ROM (image of FF bank)	00FFFFн 008000н	ROM (image of FF bank
007FFFн 007900н	Peripheral area	007FFFн 007900н	Peripheral area	007FFFн 007900н	Peripheral area	007FFFн 007900н	Peripheral area
007900H		007900H		007900H		007900н	
007100н		006100н			RAM area		
	RAM area		RAM area		(30 Kbytes)	004100н	RAM area
	(28 Kbytes)		(24 Kbytes)		Dest		(16 Kbytes)
000100н	Register	000100н	Register	000100н	Register	000100н	Registe
0000FВн	D : 1	0000FВн		0000FВн		0000FВн	D :: 1 :
000000н	Peripheral area	000000н	Peripheral area	000000н	Peripheral area	000000н	Peripheral area

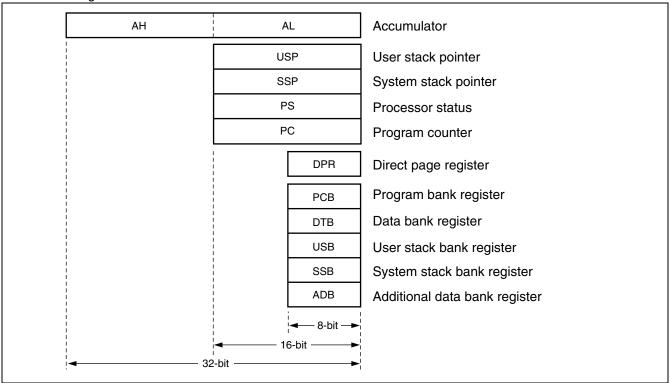

Memory map of MB90330A series (2/3)

Internal ROM external bus mode (with ROM mirror function)

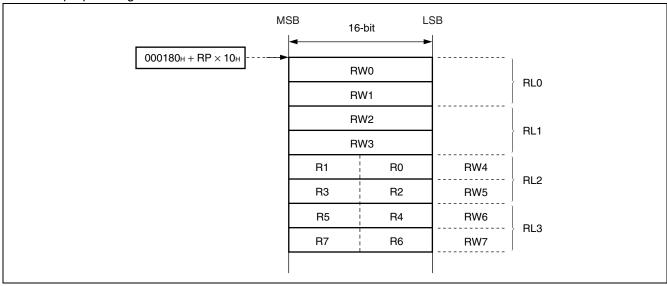
	MB90V330A		MB90F334A		MB90F335A		MB90333A
FFFFFFH FF0000H	ROM (FF bank)	FFFFFFH FF0000H	ROM (FF bank)	FFFFFFH FF0000H	ROM (FF bank)	FFFFFFH FF0000H	ROM (FF bank)
FEFFFFH FE0000H	ROM (FE bank)						
FDFFFFH FD0000H	ROM (FD bank)						
FCFFFFH FC0000н	ROM (FC bank)	FCFFFFH FC0000H	*1	FCFFFFH FC0000H	ROM (FC bank)	FCFFFFH FC0000H	*2
FBFFFFH FB0000H	ROM (FB bank)	FBFFFFH FB0000H	ROM (FB bank)	FBFFFFH FB0000H	ROM (FB bank)	FBFFFFн FB0000н	ROM (FB bank)
FAFFFFH FA0000H	ROM (FA bank)	FAFFFFH FA0000H	ROM (FA bank)	FAFFFFH FA0000H	ROM (FA bank)	FAFFFFH FA0000H	*2
F9FFFFн F90000н	ROM (F9 bank)	F9FFFFн F90000н	ROM (F9 bank)	F9FFFFн F90000н	ROM (F9 bank)	F9FFFFн F90000н	External area
F8FFFFн F80000н	ROM (F8 bank)	F8FFFFн F80000н	*1	F8FFFFн F80000н	ROM (F8 bank)	F8FFFFн F80000н	External area
	External area		External area		External area		External area
00FFFFн	ROM (image of FF bank)						
008000н 007FFFн 007900н	Peripheral area						
007100н	External area	006100н	External area		RAM area (30 Kbytes)	004100н	External area
	RAM area (28 Kbytes)		RAM area (24 Kbytes)		(00 1.23,100)		RAM area (16 Kbytes)
000100н	Register	000100н	Register	000100н	Register	000100н	Register
0000FВн		0000FВн		0000FВн		0000FВн	
	Peripheral area		Peripheral area		Peripheral area		Peripheral area
000000н		000000н		000000н		000000н	

^{*1:} In the area of F80000н to F8FFFFн and FC0000н to FCFFFFн at MB90F334A, a value of "1" is read at read operating.

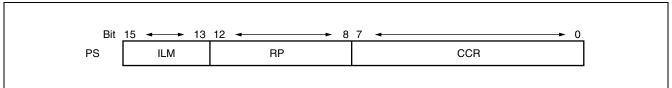
 $^{^*2}$: In the area of FA0000 $_{\rm H}$ to FAFFFF $_{\rm H}$ and FC0000 $_{\rm H}$ to FCFFFF $_{\rm H}$ at MB90333A, a value of "1" is read at read operating.


Memory map of MB90330A series (3/3)

Notes: • When the ROM mirror function register has been set, the mirror image data at higher addresses ("FF8000H to FFFFFH") of bank FF is visible from the higher addresses ("008000H to 00FFFFH") of bank 00


- The ROM mirror function is effective for using the C compiler small model.
- The lower 16-bit addresses of bank FF are equivalent to those of bank 00. Since the ROM area in bank FF exceeds 48 Kbytes, however, the mirror image of all the data in the ROM area cannot be reproduced in bank 00.
- When the C compiler small model is used, the data table mirror image can be shown at "008000H to 00FFFFH" by storing the data table at "FF8000H to FFFFFFH". Therefore, data tables in the ROM area can be referred without declaring the far addressing with the pointer.
- MB90F335A has the larger size of RAM area than MB90V330A, so that the emulation memory area needs
 to be set in the tools for a larger size of emulation area than 007100H.
 For details of setting, please refer to "Notes on Debug Environment Setting for MB90330A Series" by
 clicking "Application note" at the following URL.
 http://edevice.fujitsu.com/micom/en-support/
- 3 cycles are required to access to the emulation memory area (007100_H to 0078FF_H), which is 1 cycle more than to the mounted RAM area.

■ F²MC-16LX CPU PROGRAMMING MODEL


• Dedicated register

• General purpose register

Processor status

■ I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000000н	PDR0	Port 0 Data Register	R/W	Port 0	XXXXXXXX
000001н	PDR1	Port 1 Data Register	R/W	Port 1	XXXXXXXX
000002н	PDR2	Port 2 Data Register	R/W	Port 2	XXXXXXXX
000003н	PDR3	Port 3 Data Register	R/W	Port 3	XXXXXXXX
000004н	PDR4	Port 4 Data Register	R/W	Port 4	XXXXXXXX
000005н	PDR5	Port 5 Data Register	R/W	Port 5	XXXXXXXX
000006н	PDR6	Port 6 Data Register	R/W	Port 6	XXXXXXXX
000007н	PDR7	Port 7 Data Register	R/W	Port 7	XXXXXXXX
000008н	PDR8	Port 8 Data Register	R/W	Port 8	XXXXXXXXB
000009н	PDR9	Port 9 Data Register	R/W	Port 9	- XXXXXXXB
00000Ан	PDRA	Port A Data Register	R/W	Port A	XXXXXXXXB
00000Вн		Prohibit	ed		
00000Сн	PDRB	Port B Data Register	R/W	Port B	- XXXXXXXB
00000Дн	DDRB	Port B Direction Register	R/W	Port B	- 0 0 0 0 0 0 0 _B
00000Ен		Prohibit	od		
00000Fн		Pidilibii	.eu		
000010н	DDR0	Port 0 Direction Register	R/W	Port 0	0 0 0 0 0 0 0 0 _B
000011н	DDR1	Port 1 Direction Register	R/W	Port 1	0 0 0 0 0 0 0 0 _B
000012н	DDR2	Port 2 Direction Register	R/W	Port 2	0 0 0 0 0 0 0 0 _B
000013н	DDR3	Port 3 Direction Register	R/W	Port 3	0 0 0 0 0 0 0 0 _B
000014н	DDR4	Port 4 Direction Register	R/W	Port 4	0 0 0 0 0 0 0 0 _B
000015н	DDR5	Port 5 Direction Register	R/W	Port 5	0 0 0 0 0 0 0 0 _B
000016н	DDR6	Port 6 Direction Register	R/W	Port 6	0 0 0 0 0 0 0 0 _B
000017н	DDR7	Port 7 Direction Register	R/W	Port 7	0 0 0 0 0 0 0 0 _B
000018н	DDR8	Port 8 Direction Register	R/W	Port 8	0 0 0 0 0 0 0 0 _B
000019н	DDR9	Port 9 Direction Register	R/W	Port 9	- 0 0 0 0 0 0 0 _B
00001Ан	DDRA	Port A Direction Register	R/W	Port A	0 0 0 0 0 0 0 0 _B
00001Вн	ODR4	Port 4 Output Pin Register	R/W	Port 4 (open drain control)	0 0 0 0 0 0 0 0в
00001Сн	RDR0	Port 0 Pull-up Resistance Register	R/W	Port 0 (PULL-UP)	0 0 0 0 0 0 0 0 _B
00001Dн	RDR1	Port 1 Pull-up Resistance Register	R/W	Port 1 (PULL-UP)	0 0 0 0 0 0 0 0 _B
00001Ен	ADER0	Analog Input Enable Register 0	R/W	Port 7, 8, A/D	11111111
00001Fн	ADER1	Analog Input Enable Register 1	R/W	Port 7, 8, A/D	11111111
000020н	SMR0	Serial Mode Register 0	R/W		0 0 1 0 0 0 0 0 _B
000021н	SCR0	Serial Control Register 0	R/W		00000100в
000022н	SIDR0	Serial Input Data Register 0	R	UART0	XXXXXXXXB
UUUUZZH	SODR0	Serial Output Data Register 0	W	1	
000023н	SSR0	Serial Status Register 0	R/W	1	0 0 0 0 1 0 0 0в
000024н	UTRLR0	UART Prescaler Reload Register 0	R/W	Communication	0 0 0 0 0 0 0 0в
000025н	UTCR0	UART Prescaler Control Register 0	R/W	Prescaler (UART0)	0 0 0 0 - 0 0 0 _B

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000026н	SMR1	Serial Mode Register 1	R/W		00100000в
000027н	SCR1	Serial Control Register 1	R/W	-	00000100в
000028н	SIDR1	Serial Input Data Register 1	R	UART1	XXXXXXXX
000026H	SODR1	Serial Output Data Register 1	W		AAAAAAAB
000029н	SSR1	Serial Status Register 1	R/W		0 0 0 0 1 0 0 0в
00002Ан	UTRLR1	UART Prescaler Reload Register 1	R/W	Communication	0 0 0 0 0 0 0 0в
00002Вн	UTCR1	UART Prescaler Control Register 1	R/W	Prescaler (UART1)	0 0 0 0 - 0 0 0 _B
00002Сн	SMR2	Serial Mode Register 2	R/W		0 0 1 0 0 0 0 0в
00002Dн	SCR2	Serial Control Register 2	R/W		0 0 0 0 0 1 0 0в
00000	SIDR2	Serial Input Data Register 2	R	UART2	VVVVVVV
00002Ен	SODR2	Serial Output Data Register 2	W		XXXXXXX
00002Fн	SSR2	Serial Status Register 2	R/W		00001000в
000030н	UTRLR2	UART Prescaler Reload Register 2	R/W	Communication	0 0 0 0 0 0 0 0в
000031н	UTCR2	UART Prescaler Control Register 2	R/W	Prescaler (UART2)	0000-000в
000032н	SMR3	Serial Mode Register 3	R/W		00100000в
000033н	SCR3	Serial Control Register 3	R/W		00000100в
000004	SIDR3	Serial Input Data Register 3	R	UART3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
000034н	SODR3	Serial Output Data Register 3	W		XXXXXXXXB
000035н	SSR3	Serial Status Register 3	R/W		00001000в
000036н	UTRLR3	UART Prescaler Reload Register 3	R/W	Communication	00000000
000037н	UTCR3	UART Prescaler Control Register 3	R/W	Prescaler (UART3)	0 0 0 0 - 0 0 0 _B
000038н					
to		Prohibite	ed		
00003Вн	ENIB	IDTD#	D 444	T	
00003Cн	ENIR	DTP/Interrupt Enable Register	R/W		0 0 0 0 0 0 0 0 _B
00003Dн	EIRR	DTP/Interrupt Source Register	R/W	DTP/External	0 0 0 0 0 0 0 0 _B
00003Ен	ELVR	Request Level Setting Register Lower	R/W	Interrupt	0 0 0 0 0 0 0 0 _B
00003Fн	10000	Request Level Setting Register Upper	R/W		0 0 0 0 0 0 0 0 _B
000040н	ADCS0	A/D Control Status Register Lower	R/W	-	0 0 Ов
000041н	ADCS1	A/D Control Status Register Upper	R/W	8/10-bit	0 0 0 0 0 0 0 0 B
000042н	ADCR0	A/D Data Register Lower	R/W	A/D Converter	XXXXXXXXB
000043н	ADCR1	A/D Data Register Upper	R/W		0 0 1 0 1 XXX _B
000044н		Prohibite	ed	0//01/	1
000045н	ADMR	A/D Conversion Channel Selection Register	R/W	8/10-bit A/D Converter	0 0 0 0 0 0 0 0в
000046н	PPGC0	PPG0 Operation Mode Control Register	R/W	PPG ch.0	0Х0 0 0ХХ1в
000047н	PPGC1	PPG1 Operation Mode Control Register	R/W	PPG ch.1	0Х0 0 0 0 0 1в
000048н	PPGC2	PPG2 Operation Mode Control Register	R/W	PPG ch.2	0Х0 0 0ХХ1в

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000049н	PPGC3	PPG3 Operation Mode Control Register	R/W	PPG ch.3	0Х0 0 0 0 0 1в
00004Ан	PPGC4	PPG4 Operation Mode Control Register	R/W	PPG ch.4	0Х0 0 0ХХ1в
00004Вн	PPGC5	PPG5 Operation Mode Control Register	R/W	PPG ch.5	0Х0 0 0 0 0 1в
00004Сн	PPG01	PPG0 and PPG1 Output Control Register	R/W	PPG ch.0/ch.1	0 0 0 0 0 0XXB
00004Дн		Prohibited			
00004Ен	PPG23	PPG2 and PPG3 Output Control Register	R/W	PPG ch.2/ch.3	0 0 0 0 0 0 XXB
00004Fн		Prohibited			l
000050н	PPG45	PPG4 and PPG5 Output Control Register	R/W	PPG ch.4/ch.5	0 0 0 0 0 0 XXB
000051н		Prohibited		l	l
000052н	ICS01	Input Capture Control Status Register 01	R/W	Input Capture ch.0/ch.1	0 0 0 0 0 0 0 0 0в
000053н	ICS23	Input Capture Control Status Register 23	trol Status Register 23 R/W Capture ch.2/ch.3		0 0 0 0 0 0 0 0в
000054н	OCS0	Output Compare Control Register ch.0 Lower	R/W	Output Compare	0 0 0 0 0 Ов
000055н	OCS1	Output Compare Control Register ch.1 Upper	R/W	ch.0/ch.1	ОООООВ
000056н	OCS2	Output Compare Control Register ch.2 Lower	R/W	Output Compare	0 0 0 0 0 Ов
000057н	OCS3	Output Compare Control Register ch.3 Upper	R/W	ch.2/ch.3	00000
000058н	SMCS	Serial Mode Control Status Register	R/W	Extended Serial	XXXX0 0 0 0 _B
000059н	Sivios	Genal Mode Control Status Hegister		I/O	0 0 0 0 0 0 1 0 _B
00005Ан	SDR	Serial Data Register	R/W	., 0	XXXXXXXX
00005Вн	SDCR	Communication Prescaler Control Register	R/W	Communication Prescaler	0ХХХО О О Ов
00005Сн	PWCSR	PWC Control Status Register	R/W		0 0 0 0 0 0 0 0 _B
00005Dн	1 WCSH	1 WC Control Status Negister	1 1/ V V	16 hit	0 0 0 0 0 0 0 X _B
00005Ен	PWCR	PWC Data Buffer Register	R/W	16-bit PWC Timer	0 0 0 0 0 0 0 0в
00005Fн	FVVCh	PWC Data Bullet Negister	Γ1/ V V	1 WO TIME	0 0 0 0 0 0 0 0 _B
000060н	DIVR	PWC Dividing Ratio Control Register	R/W		0 0 B
000061н		Prohibited			
000062н	TMCSR0	Timer Control Status Register 0	R/W		0 0 0 0 0 0 0 0 _B
000063н	TWOSHU	Timer Control Status negister 0	□/ V V		XXXX 0 0 0 0 _B
000064н	TMR0	16-bit Timer Register 0 Lower	R	16-bit Reload Timer	XXXXXXXX
000064H	TMRLR0	16-bit Reload Register 0 Lower	W	ch.0	XXXXXXXX
000065н	TMR0	16-bit Timer Register 0 Upper	R		XXXXXXXX
ОООООЭН	TMRLR0	16-bit Reload Register 0 Upper	W		XXXXXXXX

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value	
000066н	TMCSR1	Timer Central Status Beginter 1	R/W		0 0 0 0 0 0 0 0 _B	
000067н	TIVICSHT	Timer Control Status Register 1	h/vv		XXXX 0 0 0 0 _B	
000068н	TMR1	16-bit Timer Register 1 Lower	R	16-bit Reload	XXXXXXXXB	
ООООООН	TMRLR1	16-bit Reload Register 1 Lower	W	Timer ch.1	XXXXXXXXB	
000069н	TMR1	16-bit Timer Register 1 Upper	R	1	XXXXXXXXB	
ОООООЭН	TMRLR1	16-bit Reload Register 1 Upper	W	1	XXXXXXXXB	
00006Ан	TMCSR2	Timer Central Status Bagistar 2	R/W		0 0 0 0 0 0 0 0 _B	
00006Вн	TIVICSHZ	Timer Control Status Register 2 R/\			XXXX 0 0 0 0 _B	
00006Сн	TMR2	16-bit Timer Register 2 Lower	R	16-bit Reload	XXXXXXXXB	
ОООООСН	TMRLR2	16-bit Reload Register 2 Lower	W	Timer ch.2	XXXXXXXXB	
00006Dн	TMR2	16-bit Timer Register 2 Upper	R		XXXXXXXX	
НООООО	TMRLR2	16-bit Reload Register 2 Upper	W	1	XXXXXXXXB	
00006Ен		Prohibite	d			
00006Fн	ROMM	ROM Mirror Function Selection Register	I W I Function		1 1в	
000070н	IBSR0	I ² C Bus Status Register 0	R		0 0 0 0 0 0 0 0 _B	
000071н	IBCR0	I ² C Bus Control Register 0 R/		1,,,,,	0 0 0 0 0 0 0 0 _B	
000072н	ICCR0	I ² C Bus Clock Control Register 0	R/W	I ² C Bus Interface ch.0	XX 0 XXXXX _B	
000073н	IADR0	I ² C Bus Address Register 0	R/W	011.0	XXXXXXXXB	
000074н	IDAR0	I ² C Bus Data Register 0	R/W		XXXXXXXXB	
000075н		Prohibite	d			
000076н	IBSR1	I ² C Bus Status Register 1	R		0 0 0 0 0 0 0 0 _B	
000077н	IBCR1	I ² C Bus Control Register 1	R/W		0 0 0 0 0 0 0 0 _B	
000078н	ICCR1	I ² C Bus Clock Control Register 1	R/W	I ² C Bus Interface ch.1	XX 0 XXXXXB	
000079н	IADR1	I ² C Bus Address Register 1	R/W	011.1	XXXXXXXXB	
00007Ан	IDAR1	I ² C Bus Data Register 1	R/W	1	XXXXXXXXB	
00007Вн		Prohibite	d			
00007Сн	IBSR2	I ² C Bus Status Register 2	R		0 0 0 0 0 0 0 0 _B	
00007Dн	IBCR2	I ² C Bus Control Register 2	R/W	1,,,,,	0 0 0 0 0 0 0 0в	
00007Ен	ICCR2	ICCR2 I ² C Bus Clock Control Register 2 R/W IADR2 I ² C Bus Address Register 2 R/W		I ² C Bus Interface ch.2	XX 0 XXXXXB	
00007Fн	IADR2			GII.Z	XXXXXXXXB	
000080н	IDAR2	I ² C Bus Data Register 2	R/W		XXXXXXXXB	
000081н to 000085н	0081н to Prohibited					

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000086н	TCDT	Timer Data Register Lower	R/W		0 0 0 0 0 0 0 0в
000087н	TODT	Timer Data Register Upper	R/W		0 0 0 0 0 0 0 0 _B
000088н	TCCS	Timer Control Status Register Lower	R/W	16-bit Free-Run	0 0 0 0 0 0 0 0 0в
000089н	1003	Timer Control Status Register Upper	R/W	Timer	0 0 0 0 0 0в
00008Ан	CPCLR	Compare Clear Register Lower	R/W		XXXXXXXXB
00008Вн	OFOLN	Compare Clear Register Upper	R/W		XXXXXXXXB
00008Сн to 00009Ан		Prohibited	d		
00009Вн	DCSR	DMA Descriptor Channel Specification Register	R/W	DMAG	0 0 0 0 0 0 0 0 0в
00009Сн	DSRL	DMA Status Register Lower	R/W	μDMAC	0 0 0 0 0 0 0 0 _B
00009Dн	DSRH	DMA Status Register Upper	R/W		0 0 0 0 0 0 0 0 _B
00009Ен	PACSR	Program Address Detection Control Status Register	R/W	Address Match Detection	0 0 0 0 0 0 0 0в
00009Fн	DIRR	Delay Interruption Factor Generation/ Release Register	R/W	Delay Interrupt	Ов
0000А0н	LPMCR	Low Power Consumption Mode Control Register	R/W	Low Power Consumption Control Circuit	0 0 0 1 1 0 0 Ов
0000А1н	CKSCR	Clock Selection Register	R/W	Clock	11111100в
0000А2н		Prohibited	J		
0000АЗн		Prombiled	,		
0000А4н	DSSR	DMA Stop Status Register	R/W	μDMAC	0 0 0 0 0 0 0 0 _B
0000А5н	ARSR	Automatic Ready Function Selection Register	W		0 0 1 1 0 Ов
0000А6н	HACR	External Address Output Control Register	W	External Pin	******
0000А7н	EPCR	Bus Control Signal Selection Register	W		1000*10-в
0000А8н	WDTC	Watchdog Timer Control Register	R/W	Watchdog Timer	X - XXX 1 1 1в
0000А9н	TBTC	Time-base Timer Control Register	R/W	Time-base Timer	1 0 0 1 0 Ов
0000ААн	WTC	Watch Timer Control Register	R/W	Watch Timer	10001000в
0000АВн		Prohibited	k		
0000АСн	DERL	DERL DMA Enable Register Lower		μDMAC	0 0 0 0 0 0 0 0 _B
0000АДн	DERH	DMA Enable Register Upper	R/W	μυίνιΑΟ	0 0 0 0 0 0 0 0 _B
0000АЕн	FMCS	Flash Memory Control Status Register		Flash Memory I/F	0 0 0 Х 0 0 0 0в
0000АFн		Prohibited	k		

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000В0н	ICR00	Interrupt Control Register 00	R/W		00000111в
0000В1н	ICR01	Interrupt Control Register 01	R/W	1	00000111в
0000В2н	ICR02	Interrupt Control Register 02	R/W		00000111в
0000ВЗн	ICR03	Interrupt Control Register 03	R/W	1	00000111в
0000В4н	ICR04	Interrupt Control Register 04	R/W	1	00000111в
0000В5н	ICR05	Interrupt Control Register 05	R/W	1	00000111в
0000В6н	ICR06	Interrupt Control Register 06	R/W		00000111в
0000В7н	ICR07	Interrupt Control Register 07	R/W	Interrupt	00000111в
0000В8н	ICR08	Interrupt Control Register 08	R/W	Controller	00000111в
0000В9н	ICR09	Interrupt Control Register 09	R/W	1	00000111в
0000ВАн	ICR10	Interrupt Control Register 10	R/W	1	00000111в
0000ВВн	ICR11	Interrupt Control Register 11	R/W	1	00000111в
0000ВСн	ICR12	Interrupt Control Register 12	R/W	1	00000111в
0000ВDн	ICR13	Interrupt Control Register 13	R/W	1	00000111в
0000ВЕн	ICR14	Interrupt Control Register 14	R/W	1	00000111в
0000ВFн	ICR15	Interrupt Control Register 15	R/W	1	00000111в
0000С0н	HCNT0	Host Control Register 0	R/W		0 0 0 0 0 0 0 0в
0000С1н	HCNT1	Host Control Register 1	R/W	1	0000001в
0000С2н	HIRQ	Host Interruption Register	R/W	1	0 0 0 0 0 0 0 0 _B
0000СЗн	HERR	Host Error Status Register	R/W	1	0000011в
0000С4н	HSTATE	Host State Status Register	R/W	1	XX 0 1 0 0 1 0 _B
0000С5н	HFCOMP	SOF Interrupt FRAME Compare Register	R/W		0 0 0 0 0 0 0 0в
0000С6н			R/W		0 0 0 0 0 0 0 0в
0000С7н	HRTIMER	Retry Timer Setting Register	R/W	USB HOST	0 0 0 0 0 0 0 0в
0000С8н			R/W	1	XXXXXX 0 0 _B
0000С9н	HADR	Host Address Register	R/W	1	Х 0 0 0 0 0 0 0в
0000САн	LIEOE	FOE Catting Designation	R/W		0 0 0 0 0 0 0 0в
0000СВн	HEOF	EOF Setting Register	R/W	1	XX 0 0 0 0 0 0 _B
0000ССн	LIEDAME	EDAME Catting Desistan	R/W		0 0 0 0 0 0 0 0в
0000СDн	HFRAME	FRAME Setting Register	R/W		XXXXX 0 0 0 _B
0000СЕн	HTOKEN	Host Token End Point Register	R/W	1	0 0 0 0 0 0 0 0в
0000СFн		Prohibited	i	1	,
0000D0н	LIDCO	LIDC Control Dogistes	R/W	LICD Constinu	1 0 1 0 0 0 0 0в
0000D1н	UDCC	UDC Control Register	R/W	USB Function	0 0 0 0 0 0 0 0в

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000D2н	EP0C	EDO Control Dogistor	R/W		0 1 0 0 0 0 0 0в
0000Д3н	EFUC	EP0 Control Register	R/W		XXXX 0 0 0 0 _B
0000Дн	EP1C	EP1 Control Register	R/W		0 0 0 0 0 0 0 0 _B
0000Д5н	EPIC	EF I Control Register	R/W		0 1 1 0 0 0 0 1в
0000D6н	EP2C	EP2 Control Register	R/W		0 1 0 0 0 0 0 0в
0000D7н	EF20	EF2 Control Register	R/W		0 1 1 0 0 0 0 0в
0000D8н	EP3C	EP3 Control Register	R/W		0 1 0 0 0 0 0 0в
0000D9н	EFSC	EF3 Control Register	R/W		0 1 1 0 0 0 0 0в
0000Дн	EP4C	EP4 Control Register	R/W		0 1 0 0 0 0 0 0в
0000ДВн	EF40	EF4 Control Register	R/W		0 1 1 0 0 0 0 0в
0000DСн	EP5C	EP5 Control Register	R/W		0 1 0 0 0 0 0 0в
0000DDн	EFSC	EF3 Control Register	R/W		0 1 1 0 0 0 0 0в
0000ДЕн	TMSP	Time Stamp Register	R		0 0 0 0 0 0 0 0 _B
0000DFн	TIVISE	Time Stamp negister	R		XXXXX0 0 0 _B
0000Е0н	UDCS	UDC Status Register R/W			XX0 0 0 0 0 0 _B
0000Е1н	UDCIE	UDC Interrupt Enable Register R/W, R		0 0 0 0 0 0 0 0 _B	
0000Е2н	EP0IS	EP0I Status Register	R/W		XXXXXXXXB
0000ЕЗн	LI 013	Li di Status Hegister	R/W		1 0 XXX 1 XX _B
0000Е4н	EP0OS	EP0O Status Register	R/W, R	USB Function	0 XXXXXXXB
0000Е5н	LI 003	Li 00 Status Negister	R/W		1 0 0 XX 0 0 0 _B
0000Е6н	EP1S	EP1 Status Register	R		XXXXXXXX
0000Е7н	EF13	Er i Status negister	R/W, R		1 0 0 0 0 0 0 X _B
0000Е8н	EP2S	EP2 Status Register	R		XXXXXXXX
0000Е9н	LI 23	Li 2 Status Negister	R/W, R		1 0 0 0 0 0 0 0в
0000ЕАн	EP3S	EP3 Status Register	R		XXXXXXXX
0000ЕВн	LI 33	Li o otatus riegistei	R/W, R		1 0 0 0 0 0 0 0в
0000ЕСн	EP4S	EP4 Status Register	R		XXXXXXXX
0000ЕДн	LI 43	Li 4 Status Negister	R/W, R		1 0 0 0 0 0 0 0в
0000ЕЕн	EP5S	EP5 Status Register	R		XXXXXXXX
0000EFн	LI 30	Li 3 Status Hegister	R/W, R		1 0 0 0 0 0 0 0в
0000F0н	EP0DT	EP0 Data Register	R/W		XXXXXXXX
0000F1н	LIODI	Li o Data Negistei	R/W		XXXXXXXX
0000F2н	EP1DT	EP1 Data Register	R/W		XXXXXXXXB
0000F3н		Li i Data i tegistei	R/W		XXXXXXXXB
0000F4н	EP2DT	EP2 Data Register	R/W		XXXXXXXXB
0000F5н	LFZDI	Li Z Dala Heyistei	R/W		XXXXXXXXB
0000F6н	EP3DT	EP3 Data Register	R/W		XXXXXXXXB
0000F7н	EFSDI	LI 3 Data negistel	R/W]	XXXXXXXXB

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value		
0000F8н	ED4DT	ED4 Data Degister	R/W		XXXXXXXXB		
0000F9н	EP4DT	EP4 Data Register	R/W	USB Function	XXXXXXXXB		
0000FAн	EDEDT	EDE Data Danista	R/W	USB Function	XXXXXXXX		
0000FBн	EP5DT	EP5 Data Register	R/W	· 	XXXXXXXX		
0000FC _H to 0000FF _H	Prohibited						
000100н to #н		RAM Area	a				
001FF0н		Program Address Detection Register ch.0 Lower	R/W		XXXXXXXX		
001FF1н	PADR0	Program Address Detection Register ch.0 Middle	R/W		XXXXXXXX		
001FF2н		Program Address Detection Register ch.0 Upper	R/W	Address Match	XXXXXXX		
001FF3н		Program Address Detection Register ch.1 Lower	R/W	Detection	XXXXXXXX		
001FF4н	PADR1	Program Address Detection Register ch.1 Middle	R/W		XXXXXXXX		
001FF5н		Program Address Detection Register ch.1 Upper	R/W		XXXXXXX		
#н to 0078FFн		Unused Are	ea				
007900н	PRLL0	PPG Reload Register Lower ch.0	R/W	DD0 1 0	XXXXXXXX		
007901н	PRLH0	PPG Reload Register Upper ch.0	R/W	PPG ch.0	XXXXXXXX		
007902н	PRLL1	PPG Reload Register Lower ch.1	R/W	DD0 1 4	XXXXXXXX		
007903н	PRLH1	PPG Reload Register Upper ch.1	R/W	PPG ch.1	XXXXXXXX		
007904н	PRLL2	PPG Reload Register Lower ch.2	R/W	DD0 1 0	XXXXXXXX		
007905н	PRLH2	PPG Reload Register Upper ch.2	R/W	PPG ch.2	XXXXXXXX		
007906н	PRLL3	PPG Reload Register Lower ch.3	R/W	DDO at a	XXXXXXXX		
007907н	PRLH3	PPG Reload Register Upper ch.3	R/W	PPG ch.3	XXXXXXXX		
007908н	PRLL4	PPG Reload Register Lower ch.4	R/W	DDO at 4	XXXXXXXX		
007909н	PRLH4	PPG Reload Register Upper ch.4	R/W	PPG ch.4	XXXXXXXX		
00790Ан	PRLL5			DDC -b 5	XXXXXXXX		
00790Вн	PRLH5			PPG ch.5	XXXXXXXX		
00790Сн to 00790Fн	Prohibited						

(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
007910н	IPCP0	Input Capture Data Register Lower ch.0	R		XXXXXXXX
007911н	IFCFU	Input Capture Data Register Upper ch.0	R	Input Capture	XXXXXXXXB
007912н	IPCP1	Input Capture Data Register Lower ch.1	R	ch.0/ch.1	XXXXXXXXB
007913н	IFCF1	Input Capture Data Register Upper ch.1	R	1	XXXXXXXXB
007914н	IPCP2	Input Capture Data Register Lower ch.2	R		XXXXXXXXB
007915н	IFCF2	Input Capture Data Register Upper ch.2	R	Input Capture	XXXXXXXXB
007916н	IPCP3	Input Capture Data Register Lower ch.3	R	ch.2/ch.3	XXXXXXXXB
007917н	IFCF3	Input Capture Data Register Upper ch.3	R	1	XXXXXXXX
007918н	OCCP0	Output Compare Register Lower ch.0	R/W		XXXXXXXX
007919н	OCCFU	Output Compare Register Upper ch.0	R/W	Output Compare	XXXXXXXXB
00791Ан	OCCP1	Output Compare Register Lower ch.1	R/W	ch.0/ch.1	XXXXXXXXB
00791Вн	OCCF1	Output Compare Register Upper ch.1	R/W	1	XXXXXXXXB
00791Сн	OCCP2	Output Compare Register Lower ch.2	R/W		XXXXXXXXB
00791Dн	OCCF2	Output Compare Register Upper ch.2	R/W	Output Compare	XXXXXXXXB
00791Ен	OCCP3	Output Compare Register Lower ch.3	R/W	ch.2/ch.3	XXXXXXXX
00791Fн	OCCF3	Output Compare Register Upper ch.3	R/W	1	XXXXXXXX
007920н	DBAPL	DMA Buffer Address Pointer Lower 8-bit	R/W		XXXXXXXX
007921н	DBAPM	DMA Buffer Address Pointer Middle 8-bit	R/W	1	XXXXXXXXB
007922н	DBAPH	DMA Buffer Address Pointer Upper 8-bit	R/W	1	XXXXXXXXB
007923н	DMACS	DMA Control Register	R/W	1	XXXXXXXXB
007924н	DIOAL	DMA I/O Register Address Pointer Lower 8-bit	R/W	μDMAC	XXXXXXXX
007925н	DIOAH	DMA I/O Register Address Pointer Upper 8-bit	R/W		XXXXXXXX
007926н	DDCTL	DMA Data Counter Lower 8-bit	R/W	1	XXXXXXXX
007927н	DDCTH	DMA Data Counter Upper 8-bit	R/W	1	XXXXXXXX
007928н to 007FFFн	Prohibited				

• Explanation on read/write R/W: Readable / Writable

R: Read only W: Write only

• Explanation on initial values

1 : Initial value is "0".1 : Initial value is "1".

X : Initial value is undefined.

: Initial value is undefined (None) .* : Initial value of this bit is "1" or "0".

Note: No I/O instruction can be used for registers located between 007900H and 007FFFH.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	El ² OS support	μ DMAC	Int	Interrupt vector			Interrupt control register		
	Support		Num	ber*1	Address	ICR	Address		
Reset	×	×	#08	08н	FFFFDCH		_	High	
INT 9 instruction	×	×	#09	09н	FFFFD8 _H	_	_	1	
Exceptional treatment	×	×	#10	ОАн	FFFFD4 _H	_	_	1 T	
USB Function1	×	0, 1	#11	0Вн	FFFFD0 _H	ICR00	0000В0н		
USB Function2	×	2 to 6*2	#12	0Сн	FFFCCH	ICHUU	ООООВОН		
USB Function3	×	×	#13	0Дн	FFFFC8 _H	ICR01	0000В1н		
USB Function4	×	×	#14	0Ен	FFFFC4 _H	ICHUI			
USB HOST1	×	×	#15	0Гн	FFFFC0 _H	ICR02	0000B0		
USB HOST2	×	×	#16	10н	FFFFBCH	ICNUZ	0000В2н		
I ² C ch.0	×	×	#17	11н	FFFFB8 _H	ICR03	0000ВЗн		
DTP/External interrupt ch.0/ch.1	0	×	#18	12н	FFFFB4 _H	ICHUS	ООООБЗН		
I ² C ch.1	×	×	#19	13н	FFFFB0 _H	ICR04	0000В4н		
DTP/External interrupt ch.2/ch.3	0	×	#20	14н	FFFFACH	ICHU4	000064н		
I ² C ch.2	×	×	#21	15н	FFFFA8 _H	ICR05	0000В5н		
DTP/External interrupt ch.4/ch.5	0	×	#22	16н	FFFFA4 _H	ICHUS	ООООВЭН		
PWC/Reload timer ch.0	\triangle	14	#23	17н	FFFFA0 _H	ICR06	0000В6н		
DTP/External interrupt ch.6/ch.7	Δ	×	#24	18н	FFFF9C _H	ICHUO			
Input capture ch.0/ch.1	Δ	7	#25	19н	FFFF98 _H	ICR07	0000P7		
Reload timer ch.1	\triangle	×	#26	1Ан	FFFF94 _H	IChu/	0000В7н		
Input capture ch.2/ch.3	\triangle	8	#27	1Вн	FFFF90 _H	ICR08	0000В8н		
Reload timer ch.2	Δ	×	#28	1Сн	FFFF8C _H	ICHUO	ООООБОН		
Output compare ch.0/ch.1	0	×	#29	1Dн	FFFF88⊦	ICR09	0000В9н		
PPG ch.0/ch.1	×	×	#30	1Ен	FFFF84 _H	ICHUS	ООООБЭН		
Output compare ch.2/ch.3	0	×	#31	1Fн	FFFF80 _H	ICR10	0000ВАн		
PPG ch.2/ch.3	×	×	#32	20н	FFFF7C _H	ICHIU	UUUUDAH		
UART (Send completed) ch.2/ch.3	0	11	#33	21н	FFFF78 _H	ICR11	0000ВВн		
PPG ch.4/ch.5	×	×	#34	22н	FFFF74 _H	ICHTT	ООООВЬН		
UART (Reception completed) ch.2/ch.3	0	10	#35	23н	FFFF70 _H	ICR12	0000ВСн		
A/D converter/Free-run timer	Δ	15	#36	24н	FFFF6C _H	IUNIZ	ООООВСН		
UART (Send completed) ch.0/ch.1	0	13	#37	25н	FFFF68 _H	ICD10	000000]	
Extended serial I/O	×	9	#38	26н	FFFF64 _H	ICR13	0000ВДн		
UART (Reception completed) ch.0/ch.1	0	12	#39	27н	FFFF60 _H	ICD14	00000]	
Time-base timer/Watch timer	×	×	#40	28н	FFFF5C _H	ICR14	0000ВЕн	🔻	
Flash memory status	×	×	#41	29н	FFFF58 _H	ICD1E	OOODE]	
Delay interrupt output module	×	×	#42	2Ан	FFFF54 _H	ICR15	0000ВFн	Low	

(Continued)

- Available, El²OS stop function provided (The interrupt request flag is cleared by the interrupt clear signal.
 With a stop request).
- : Available (The interrupt request flag is cleared by the interrupt clear signal.)
- △: Available when any interrupt source sharing ICR is not used.
- × : Unavailable
- *1: If the same level interrupt is output simultaneously, the lower interrupt factor of interrupt vector number has priority.
- *2 : ch.2 and 3 can also be used during USB HOST operation.
- Notes: If the same interrupt control register (ICR) has two interrupt factors and the use of the El²OS is permitted, the El²OS is activated when either of the factors is detected. As any interrupt other than the activation factor is masked while the El²OS is running, it is recommended that you should mask either of the interrupt requests when using the El²OS.
 - The interrupt flag is cleared by the El²OS interrupt clear signal for the resource that has two interrupt factors in the same interrupt control register (ICR).
 - If a resource has two interrupt sources for the same interrupt number, both of the interrupt request flags are cleared by the μDMAC interrupt clear signal. Therefore, when you use either of two interrupt factors for the DMAC function, another interrupt function is disabled. Set the interrupt request permission bit to "0" in the appropriate resource, and take measures by software polling.

• Content of USB interruption factor

USB interrupt factor	Details
USB function 1	End Point0-IN End Point0-OUT
USB function 2	End Point1-5 *
USB function 3	SUSP SOF BRST WKUP CONF
USB function 4	SPK
USB HOST1	DIRQ CNNIRQ URIRQ RWKIRQ
USB HOST2	SOFIRQ CMPIRQ

^{*:} Endpoints 1 and 2 can also be used during USB HOST operation.

■ USB

1. USB Function

The USB function is an interface supporting the USB (Universal Serial Bus) communications protocol.

- Feature of USB function
 - Correspond to USB Full Speed
 - Full speed (12 Mbps) is supported.
 - The device status is auto-answer.
 - Bit stripping, bit stuffing, and automatic generation and check of CRC5 and CRC16
 - Toggle check by data synchronization bit
 - Automatic response to all standard commands except Get/SetDescriptor and SynchFrame commands (these 3 commands can be processed the same way as the class vendor commands).
 - The class vendor commands can be received as data and responded via firmware.
 - Supports up to 6 EndPoints (EndPoint0 is fixed to control transfer)
 - 2 transfer data buffers integrated for each end point (one IN buffer and one OUT buffer for EndPoint 0)
 - Supports automatic transfer mode for transfer data via DMA (except buffers for EndPoint 0)

2. USB HOST

USB HOST provides the minimal host operations required and is a function that enables data to be transferred to and from a device without PC intervention.

• Feature of USB HOST

- · Automatic detection of Low Speed/Full Speed transfer
- Low Speed/Full Speed transfer support
- · Automatic detection of connection and cutting device
- Reset sending function support to USB-bus
- Support of IN/OUT/SETUP/SOF token
- In-token handshake packet automatic transmission (excluding STALL)
- Out-token handshake packet automatic detection
- Supports a maximum packet length of 256 bytes.
- Error (CRC error/toggle error/time-out) various supports
- Wake-Up function support

• Restrictions of USB HOST

		USB HOST
HUB support		O*
	Bulk transfer	0
Transfer	Control transfer	0
Transier	Interrupt transfer	0
	Isochronous transfer	×
Transfer and	Low Speed	0
Transfer speed	Full Speed	0
PRE packet support		×
SOF packet support		0
	CRC error	0
Error	Toggle error	0
EIIOI	Time-out	0
	Maximum packet < receive data	0
Detection of connection and cutting of device		0
Transfer speed detection		0

○ : Supported× : Not supported

^{*:} It corresponds to Full Speed only, and the HUB supports up to one step.

■ SECTOR CONFIGURATION OF FLASH MEMORY

• Sector configuration of 3Mbit flash memory

3 Mbits flash memory is located in $F9_H$ to FF_H bank on the CPU memory map.

Flash Memory	CPU address	Writer address *
Prohibited	F80000н	00000н
Frombited	F8FFFFH	0FFFFH
CAO (CA Klautaa)	F90000н	10000н
SA0 (64 Kbytes)	F9FFFFH	1FFFFH
CA4 (CA1/butas)	FA0000H	20000н
SA1 (64 Kbytes)	FAFFFFH	2FFFFH
0.00 (0.110)	FB0000н	30000н
SA2 (64 Kbytes)	FBFFFFH	3FFFFH
Prohibited	FC0000н	40000н
Profibiled	FCFFFFH	4FFFFH
CAR (CA Khutaa)	FD0000н	50000н
SA3 (64 Kbytes)	FDFFFFH	5FFFFH
CA4 (C4 Khyton)	FE0000H	60000н
SA4 (64 Kbytes)	FEFFFFH	6FFFFH
0.45 (00.165.45.5)	FF0000H	70000н
SA5 (32 Kbytes)	FF7FFFH	77FFFH
CAC (Q Kbytos)	FF8000H	78000н
SA6 (8 Kbytes)	FF9FFFH	79FFFн
CA7 (9 Kbytca)	FFA000H	7А000н
SA7 (8 Kbytes)	FFBFFFH ;	7BFFF _H
040 (40 K/- /)	FFC000H	7С000н
SA8 (16 Kbytes)	FFFFFFH	7FFFFн

^{*:} The writer address is relative to the CPU address when data is programmed into flash memory by a parallel programmer. Programming and erasing by the general-purpose parallel programmer are executed based on writer addresses.

- Sector configuration of 4Mbit flash memory
- 4 Mbits flash memory is located in F8_H to FF_H bank on the CPU memory map.

Flash Memory	CPU address	Writer address *		
SA0 (64 Kbytes)	F80000н	. 00000н		
Onto (04 hbytco)	F8FFFFH_	L OFFFFH		
SA1 (64 Kbytes)	F 90000н	10000н		
OAT (04 Rbytes)	F9FFFFH_	1 1FFFFH		
SA2 (64 Kbytes)	F A0000н	20000н		
0/12 (0 1 110 y 100)	FAFFFFH	<u> 2FFFFн</u>		
SA3 (32 Kbytes)	FB0000н	30000 Н		
07 to (02 1 to)	FB7FFFH	! 37FFFн		
SA4 (8 Kbytes)	FB8000H	38000н		
<i>0,11 (0.115)100)</i>	FB9FFFH	39FFFн		
SA5 (8 Kbytes)	FBA000H	3А000н		
	FBBFFFH	3BFFFH		
SA6 (16 Kbytes)	FBC000H	3С000н		
(FBFFFFH	3FFFFH		
SA7 (64 Kbytes)	FC0000	¦ 40000н		
, , ,	FCFFFF	4FFFH		
SA8 (64 Kbytes)	FD0000	50000н		
, , ,	FDFFFF	5FFFFH		
SA9 (64 Kbytes)	FE0000H	¦ 60000н		
, , ,	FEFFFFH FF0000H	<u>і 6FFFFн</u>		
SA10 (32 Kbytes)		1		
	FF7FFFH FF8000H	; 77FFFн ' 78000н		
SA11 (8 Kbytes)		1		
	FF9FFFH FFA000H	<u>.</u> 79FFFн		
SA12 (8 Kbytes)		1		
	FEBFFEH FFC000H	<u>і 7ВГГРн</u>		
SA13 (16 Kbytes)	FFFFFFH	, 7FFFFн		
	T:53557	L:::::::		

^{*:} The writer address is relative to the CPU address when data is programmed into flash memory by a parallel programmer. Programming and erasing by the general-purpose parallel programmer are executed based on writer addresses.

■ ELECTRICAL CHARACTERISTICS

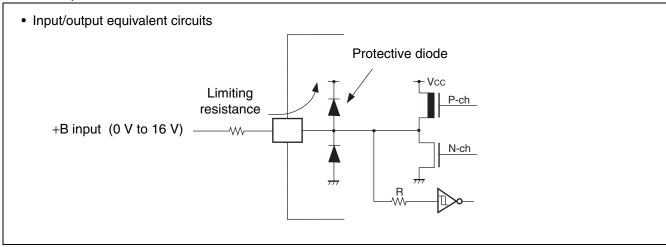
1. Absolute Maximum Ratings

Doromotor	Symbol	Rat	ting	Unit	Domorko
Parameter	Syllibol	Min	Max	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 4.0	V	
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 4.0	V	Vcc ≥ AVcc*2
	AVRH	Vss - 0.3	Vss + 4.0	V	AVcc ≥ AVR ≥ 0 V*3
		Vss - 0.3	Vss + 4.0	V	*4
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	N-ch open-drain (Withstand voltage of 5 V I/O)*5
		- 0.5	Vss + 4.5	V	USB I/O
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*4
Output voltage*1	Vo	- 0.5	Vss + 4.5	V	USB I/O
Maximum clamp current	ICLAMP	- 2.0	+2.0	mA	*6
Total maximum clamp current	Σ ICLAMP	_	20	mA	*6
"I " lovel movies as to the standard	l _{OL1}	_	10	mA	Other than USB I/O*7
"L" level maximum output current	lol2	_	43	mA	USB I/O*7
	lolav1	_	4	mA	*8
"L" level average output current	lolav2	_	15/4.5	mA	USB-IO (Full speed/ Low speed) *8
"L" level maximum total output current	Σ loL	_	100	mA	
"L" level average total output current	Σ lolav	_	50	mA	*9
"L!" lovel maximum output ourrent	І он1	_	– 10	mA	Other than USB I/O*7
"H" level maximum output current	І он2	_	- 43	mA	USB I/O*7
	lohav1	_	- 4	mA	*8
"H" level average output current	lohav2	_	-15/-4.5	mA	USB-IO (Full speed/ Low speed) *8
"H" level maximum total output current	ΣІон	_	- 100	mA	
"H" level average total output current	ΣΙομαν	_	- 50	mA	*9
Power consumption	Pd	_	340	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storage temperature	Tota	- 55	+ 150	°C	
Storage temperature	Tstg	- 55	+ 125	°C	USB I/O

^{*1 :} The parameter is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}$.

(Continued)

^{*2 :} Be careful not to let AVcc exceed Vcc, for example, when the power is turned on.


^{*3:} Be careful not to let AVRH exceed AVcc.

^{*4 :} V_I and V_O must not exceed Vcc + 0.3 V. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

^{*5 :} Applicable to pins : P60 to P67, P96, PA0 to PA7, PB0 to PB4, UTEST

(Continued)

- *6: Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95, PB5, PB6
 - Use within recommended operating conditions.
 - Use at DC voltage (current)
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins other than P60 to P67, P96, PA0 to PA7, PB0 to PB4, DVP, DVM, HVP, HVM, UTEST, HCON
 - Sample recommended circuits:

- *7: A peak value of an applicable one pin is specified as a maximum output current.
- *8 : The average output current specifies the mean value of the current flowing in the relevant single pin during a period of 100 ms.
- *9: The average total output current specifies the mean value of the currents flowing in all of the relevant pins during a period of 100 ms.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Syllibol	Min	Max	Ollit	nemarks
		3.0	3.6	V	At normal operation (when using USB)
Power supply voltage	Vcc	2.7	3.6	V	At normal operation (when not using USB)
		1.8	3.6	V	Hold state of stop operation
	VIH	0.7 Vcc	Vcc + 0.3	V	CMOS input pin
	V _{IHS1}	0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input pin
Input "H" voltage	V _{IHS2}	0.8 Vcc	Vss + 5.3	V	N-ch open-drain (Withstand voltage of 5 V I/O)*
	VIHM	Vcc - 0.3	Vcc + 0.3	V	MD pin input
	VIHUSB	2.0	Vcc + 0.3	V	USB pin input
	VıL	Vss - 0.3	0.3 Vcc	V	CMOS input pin
Input "L" voltage	VILS	Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input pin
Input L Voltage	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input
	VILUSB	Vss	0.8	V	USB pin input
Differential input sensitivity	VDI	0.2	_	V	USB pin input
Differential common mode input voltage range	Vсм	0.8	2.5	V	USB pin input
Operating		- 40	+ 85	°C	When not using USB
temperature	Та	0	+ 70	°C	When using USB, at external bus operation

^{*:} Applicable to pins: P60 to P67, P96, PA0 to PA7, PB0 to PB4, UTEST

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges.

Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

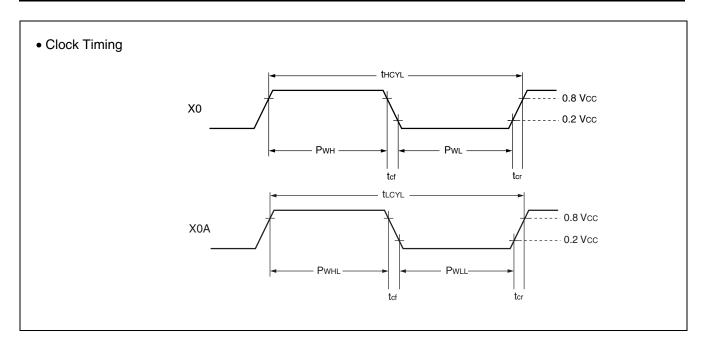
(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = - 40 °C to + 85 °C)

Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
rarameter	bol		Conditions	Min	Тур	Max	Unit	nemarks
Output "H" voltage	Vон	Output pins other than P60 to P67, P96, PA0 to PA7, PB0 to PB4, HVP, HVM, DVP, DVM	Iон = - 4.0 mA	Vcc - 0.5		Vcc	٧	
		HVP, HVM, DVP, DVM	$R_L=15~k\Omega\pm5\%$	2.8		3.6	V	
Output "L" voltage	Vol	Output pins other than HVP, HVM, DVP, DVM	IoL = 4.0 mA	Vss		Vss + 0.4		
voltage		HVP, HVM, DVP, DVM	$R_L = 1.5 \text{ k}\Omega \pm 5\%$	0	_	0.3	V	
Input leak current	Iι∟	Output pins other than P60 to P67, P96, PA0 to PA7, PB0 to PB4, HVP, HVM, DVP, DVM	Vcc = 3.3 V, Vss < Vı < Vcc	- 10		+ 10	μΑ	
		HVP, HVM, DVP, DVM	_	- 5		+ 5	μΑ	
Pull-up resistance	RPULL	P00 to P07, P10 to P17	$V_{CC} = 3.3 \text{ V},$ $T_A = +25 ^{\circ}\text{C}$	25	50	100	kΩ	
Open drain output current	ILIOD	P60 to P67, P96, PA0 to PA7, PB0 to PB4	_		0.1	10	μΑ	
			Vcc = 3.3 V, Internal frequency 24 MHz,		75	85	mA	MB90F334A MB90F335A
	Icc		At normal operating At USB operating (USTP = 0)	_	65	75	mA	MB90333A
	ICC		Vcc = 3.3 V, Internal frequency 24 MHz, At normal operating		70	80	mA	MB90F334A MB90F335A
			At non-operating USB (USTP = 1)	_	60	70	mA	MB90333A
Power supply current	Iccs	Vcc	Vcc = 3.3 V, Internal frequency 24 MHz, At sleep mode		27	40	mA	
	loro		Vcc = 3.3 V, Internal frequency 24 MHz, At timer mode		3.5	10	mA	
	Істs		Vcc = 3.3 V, Internal frequency 3 MHz, At timer mode		1	2	mA	
	Iccl		$V_{\rm CC} = 3.3 \text{ V},$ Internal frequency 8 kHz, At sub clock operation, $(T_{\rm A} = +25 ^{\circ}{\rm C})$	_	25	150	μА	

(Continued)

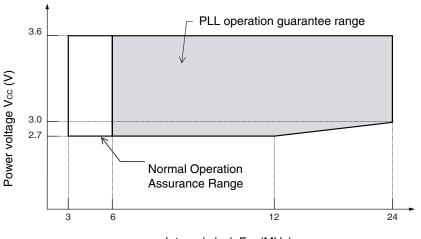
(Continued)

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = - 40 °C to + 85 °C)


Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
rarameter	bol	T III Hame	Conditions	Min	Тур	Max	Oiiit	Hemarks
Power	IccLs		$V_{\rm CC}=3.3~V,$ Internal frequency 8 kHz, At sub clock, At sleep operating, $(T_{\rm A}=+25~^{\circ}C)$	_	10	50	μА	
supply current	Ісст	Vcc	$V_{\text{CC}} = 3.3 \text{ V},$ Internal frequency 8 kHz, Watch mode, $(T_{\text{A}} = +25 ^{\circ}\text{C})$	_	1.5	40	μА	
	Іссн		$T_A = +25 ^{\circ}\text{C},$ At stop	_	1	40	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	5	15	pF	
Pull-up resistor	Rup	RST	_	25	50	100	kΩ	
USB I/O output impedance	Zusb	DVP, DVM HVP, HVM	_	3	_	14	Ω	

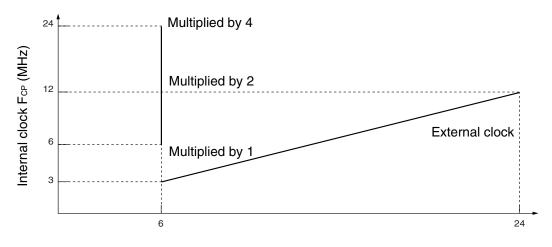
Note: P60 to P67, P96, PA0 to PA7, and PB0 to PB4 are N-ch open-drain pins usually used as CMOS.

4. AC Characteristics (1)Clock input timing

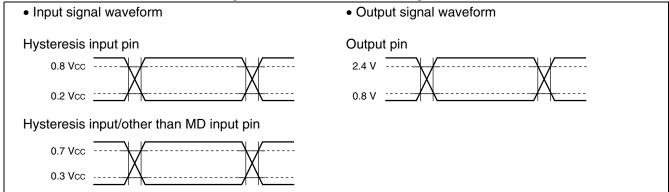

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = - 40 °C to + 85 °C)

Parameter	Sym-	Pin name		Value		Unit	Remarks
i diametei	bol	T III IIailie	Min	Тур	Max	Oilit	Hemarks
	fсн	X0, X1	_	6	_	MHz	When oscillator is used
Clock frequency	ICH	λυ, λι	6		24	MHz	External clock input
	fcL	X0A, X1A	_	32.768	—	kHz	
	tuovi	X0, X1		166.7		ns	When oscillator is used
Clock cycle time	t HCYL	Λυ, Λ1	166.7		41.7	ns	External clock input
	tLCYL	X0A, X1A	_	30.5		S	
Input clock pulse width	Pwh Pwl	X0	10		_	ns	A reference duty ratio is 30% to 70%.
input clock pulse width	P _{WHL} P _{WLL}	X0A		15.2	_	s	
Input clock rise time and fall time	tcr tcf	X0			5	ns	At external clock
Internal operating clock	f cP		3		24	MHz	When main clock is used
frequency	fcpl	_	_	8.192	—	kHz	When sub clock is used
Internal operating clock	t CP	_	42	—	333	ns	When main clock is used
cycle time	t CPL		_	122.1		s	When sub clock is used

• PLL operation guarantee range


Relation between power supply voltage and internal operation clock frequency

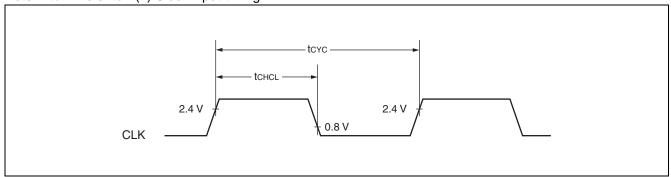
Internal clock Fcp (MHz)


Note: When the USB is used, operation is guaranteed at voltages between 3.0 V and 3.6 V.

Relation between internal operation clock frequency and external clock frequency

External clock Fc (MHz)

The AC standards assume the following measurement reference voltages.

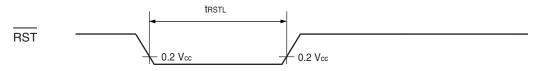


(2)Clock output timing

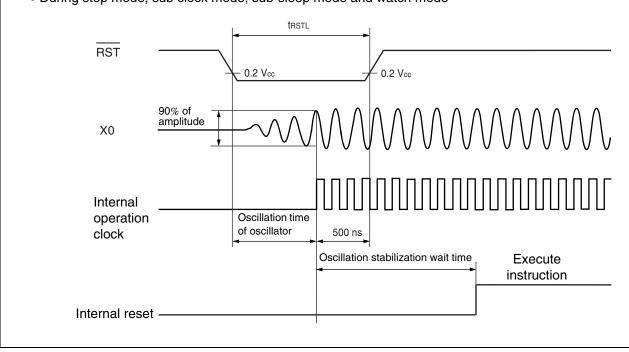
 $(V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
Parameter	Symbol		Conditions	Min	Max	Oilit	nemarks
Cycle time	tcyc	CLK	_	t CP	_	ns	
CLK↑→CLK↓	tснсL	CLK	Vcc = 3.0 V to 3.6 V	tcp/2 - 15	tcp/2 + 15	ns	At fcp = 24 MHz
				tcp/2 - 20	tcp/2 + 20	ns	At fcp = 12 MHz
				tcp/2 - 64	tcp/2 + 64	ns	At fcp = 6 MHz

Note: tcp: Refer to "(1) Clock input timing".

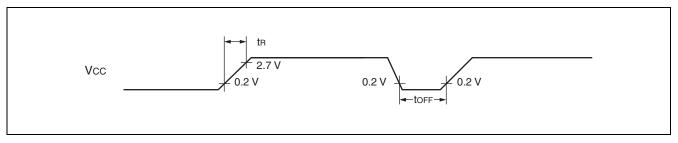

(3) Reset

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = -40 °C to + 85 °C)


Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks	
Farameter	Syllibol			Min	Max	Oilit	nemarks	
Poset input time	toor	БСТ		500	_	ns	At normal operating, At time base timer mode, At main sleep mode, At PLL sleep mode	
Reset input time	tHSTL	tristl RST	_	Oscillation time of oscillator* + 500 ns		μs	At stop mode, At sub clock mode, At sub sleep mode, At watch mode	

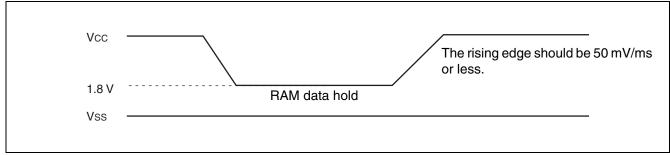
^{*:} Oscillation time of oscillator is the time that the amplitude reaches 90%. It takes several milliseconds to several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds on a ceramic oscillator, and 0 milliseconds on an external clock.

• During normal operation, time-base timer mode, main sleep mode and PLL sleep mode


• During stop mode, sub clock mode, sub-sleep mode and watch mode

(4) Power-on reset

(Vcc = AVcc = 3.3 V
$$\pm$$
 0.3 V, Vss = AVss = 0.0 V, T_A = $-$ 40 °C to +85 °C)


Parameter	Symbol	Pin name	Conditions -	Val	lue	Unit	Remarks	
	Symbol			Min	Max	Oilit		
Power supply rising time	t _R	Vcc		0.05	30	ms		
Power supply shutdown time	toff	Vcc	_	1	_	ms	Waiting time until power-on	

Notes: • Vcc must be lower than 0.2 V before the power supply is turned on.

- The above standard is a value for performing a power-on reset.
- In the device, there are internal registers which is initialized only by a power-on reset.

 When the initialization of these items is expected, turn on the power supply according to the standards.
- Sudden change of power supply voltage may activate the power-on reset function.
 When changing the power supply voltage during operation as illustrated below, voltage fluctuation should be minimized so that the voltage rises as smoothly as possible. When raising the power, do not use PLL clock. However, if voltage drop is 1 V/s or less, use of PLL clock is allowed during operation.

(5) UART0, UART1, UART2, UART3 I/O extended serial timing


 $(Vcc = AVcc = 3.3 \text{ V} \pm 0.3 \text{ V}, Vss = AVss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C})$

Parameter	Cumbal	Pin name	Conditions	Va	lue	Unit
Parameter	Symbol	Pili liaille	Conditions	Min	Max	Offic
Serial clock cycle time	tscyc	SCKx		8 tcp	_	ns
SCK↓→SOT delay time	tsLov	SCKx, SOTx	Internal shift clock	- 80	+ 80	ns
Valid SIN→SCK↑	tıvsн	SCKx, SINx	mode output pin is : $C_L = 80 \text{ pF} + 1 \text{TTL}$	100	_	ns
SCK↑→valid SIN hold time	tsнıх	SCKx, SINx		60	_	ns
Serial clock H pulse width	tshsl	SCKx, SINx		4 tcp	_	ns
Serial clock L pulse width	tslsh	SCKx, SINx		4 tcp	_	ns
SCK↓→SOT delay time	tsLov	SCKx, SOTx	External shift clock mode output pin is:	_	150	ns
Valid SIN→SCK↑	tıvsн	SCKx, SINx	C _L = 80 pF + 1TTL	60	_	ns
SCK↑→valid SIN hold time	tsнıx	SCKx, SINx		60	_	ns

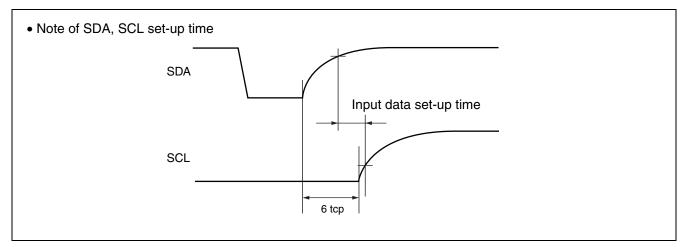
Notes : \bullet Above rating is the case of CLK synchronous mode.

• C_L is a load capacitance value on pins for testing.

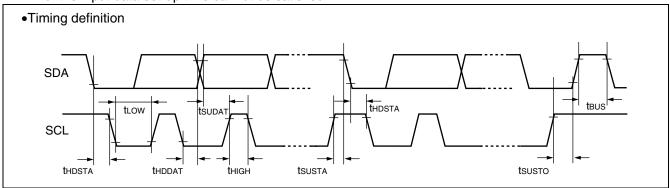
• tcp: Refer to "(1) Clock input timing".

(6) I²C timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = -40 °C to + 85 °C)


Parameter	Symbol	Conditions	Va	lue	Unit
Parameter	Syllibol	Conditions	Min	Max	Ollit
SCL clock frequency	fscL		0	100	kHz
(Repeat) [start] condition hold time SDA $\downarrow \to$ SCL \downarrow	t hdsta	Power-supply voltage of external pull-up resistor at 5.0 V.	4.0	_	μs
SCL clock "L" width	tLOW	R = 1.2 kΩ, C = 50 pF* ²	4.7	_	μs
SCL clock "H" width	t HIGH	Power-supply voltage of external pull-up	4.0	_	μs
Repeat [start] condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	resistor at 3.6 V. R = 1.0 kΩ, C = 50 pF* ²	4.7		μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thddat		0	3.45*3	μs
Data setup time	•	Power-supply voltage of external pull-up resistor at 5.0 V. fcp*1 \leq 20 MHz, R = 1.2 k Ω , C = 50 pF*2 Power-supply voltage of external pull-up resistor at 3.6 V. fcp*1 \leq 20 MHz, R = 1.0 k Ω , C = 50 pF*2	250*4	_	9
SDA ↓↑→ SCL↑	tsudat	Power-supply voltage of external pull-up resistor at 5.0 V. fcp*1 > 20 MHz, R = 1.2 k Ω , C = 50 pF*2 Power-supply voltage of external pull-up resistor at 3.6 V. fcp*1 > 20 MHz, R = 1.0 k Ω , C = 50 pF*2	200*4	_	ns
[Stop] condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsusто	Power-supply voltage of external pull-up resistor at 5.0 V.	4.0	_	μs
Bus free time between [stop] condition and [start] condition	t BUS	R = 1.2 kΩ, C = 50 pF* ² Power-supply voltage of external pull-up resistor at 3.6 V. R = 1.0 kΩ, C = 50 pF* ²	4.7	_	μs

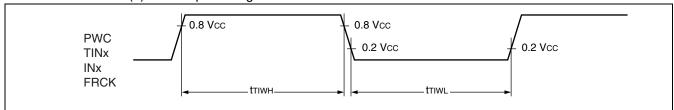
^{*1 :} fcp is internal operating clock frequency. Refer to " (1) Clock input timing".


^{*2 :} R and C are pull-up resistance of SCL and SDA lines and load capacitance.

^{*3 :} The maximum thddat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

^{*4 :} Refer to "• Note of SDA, SCL set-up time".

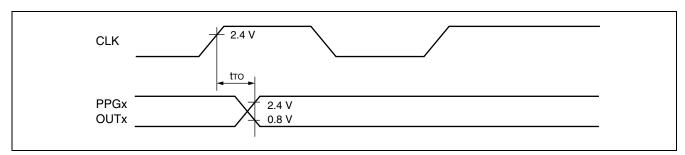
Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.



(7) Timer input timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = - 40 °C to + 85 °C)

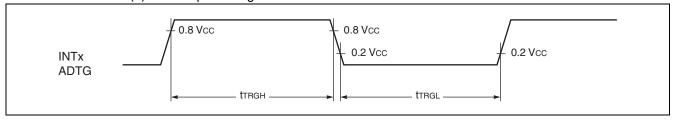
Parameter	Symbol	Pin name	Conditions	Va	Unit	
	Syllibol	Fili lialile		Min	Max	Oill
Input pulse width	tтıwн tтıwL	FRCK, INx, TINx, PWC	_	4 tcp	_	ns


Note: tcp: Refer to "(1) Clock input timing".

(8) Timer output timing

 $(V_{CC} = AV_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{SS} = AV_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to} + 85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	ame Conditions Value		lue	Unit
raiailletei	Syllibol	Fili liallie	Conditions	Min	Max	Oilit
CLK↑→Touт change time		TOTx,				
PPG0 to PPG5 change time	t TO	PPGx,	_	30	_	ns
OUT0 to OUT3 change time		OUTx				

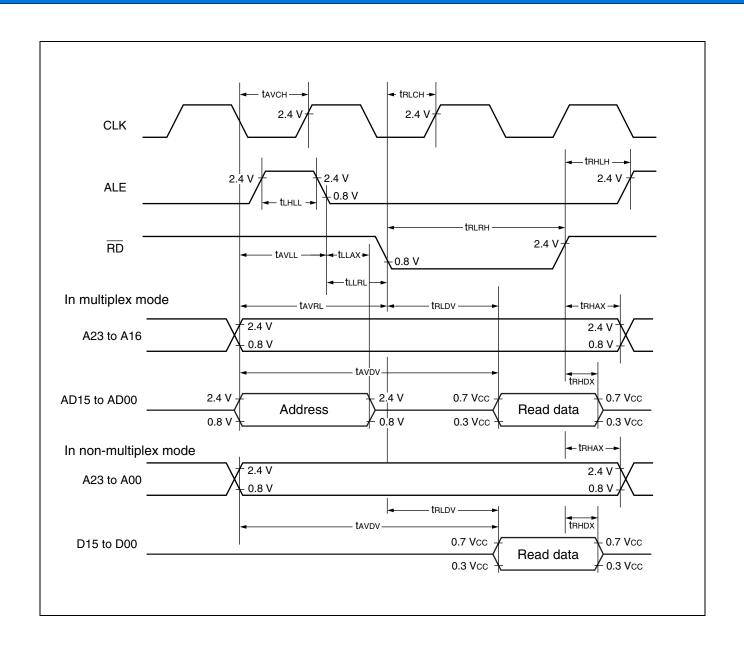


(9) Trigger input timing

 $(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol	Din name	name Conditions		name Conditions		lue	Unit	Remarks
Parameter	Syllibol	Fili liaille	Conditions	Min	Max	Oilit	nemarks		
Input pulse width	t TRGH	INTx,		5 t cp	_	ns	At normal operating		
Imput puise width	t TRGL	ADTG	_	1	_	μs	In Stop mode		

Note: tcp: Refer to "(1) Clock input timing".

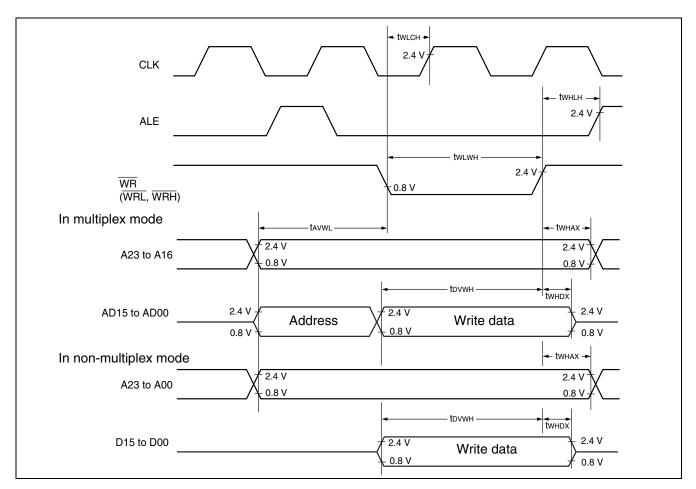


(10) Bus read timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)

Parameter	Sym-	Pin name	Conditions		llue	Unit	Remarks	
Farameter	bol	riii iiaiiie	Conditions	Min	Max	Oiiit		
				tcp/2 - 15		ns	$At \ f_{\text{cp}} = 24 \ MHz$	
ALE pulse width	tlhll	ALE		$t_{\text{CP}}/2-20$		ns	$At f_{cp} = 12 MHz$	
				$t_{\text{CP}}/2-35$		ns	At $f_{cp} = 6 \text{ MHz}$	
Valid address→ALE↓time	tavll	Address,		$t_{\text{CP}}/2-17$		ns		
Valid address—ALLVIIIIe	LAVLL	ALE		$t_{\text{CP}}/2-40$		ns	At $f_{cp} = 6 \text{ MHz}$	
ALE↓→Address valid time	tLLAX	ALE, Address	_	tcp/2 - 15	_	ns		
Valid address→ RD ↓time	tavrl	RD, Address	_	tcp - 25		ns		
Valid address→valid data	+	Address/			5 tcp/2 - 55	ns		
input	tavdv	data			5 tcp/2 - 80	ns	At fcp = 6 MHz	
RD pulse width	trlrh	RD		3 tcp/2 - 25	_	ns	At f _{cp} = 24 MHz	
no puise widin	LKLKH	טח	_	3 tcp/2 - 20	_	ns	At fcp = 12 MHz	
RD↓→valid data input	trldv	RD,			3 tcp/2 - 55	ns		
TIDV—Valid data iriput	L HLDV	Data		_	3 tcp/2 - 80	ns	At $f_{cp} = 6 \text{ MHz}$	
RD↓→data hold time	tRHDX	RD, Data	_	0	_	ns		
RD↑→ALE↑time	trhlh	RD, ALE	_	tcp/2 - 15	_	ns		
RD↑→address valid time	trhax	Address, RD	_	tcp/2 - 10		ns		
Valid address→CLK [↑] time	tavch	Address, CLK	_	tcp/2 - 17		ns		
RD↓→CLK↑time	trlch	RD, CLK	_	$t_{\text{CP}}/2-17$	_	ns		
ALE↓→RD↓time	turl	RD, ALE	_	tcp/2 - 15	_	ns		

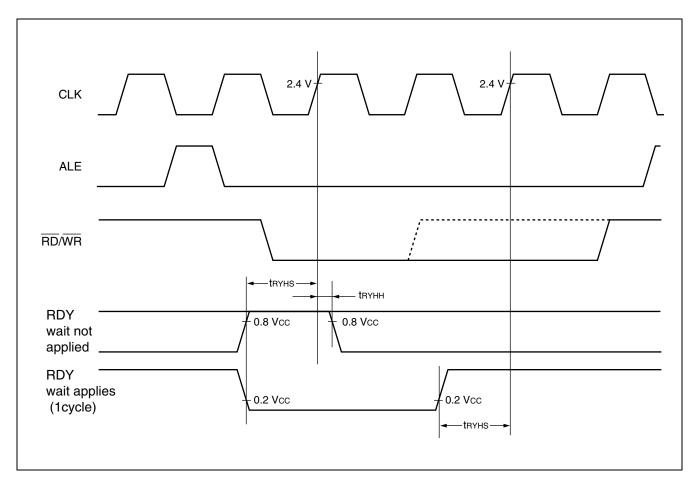
Note: tcp: Refer to "(1) Clock input timing".



(11) Bus write timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = 0 °C to + 70 °C)

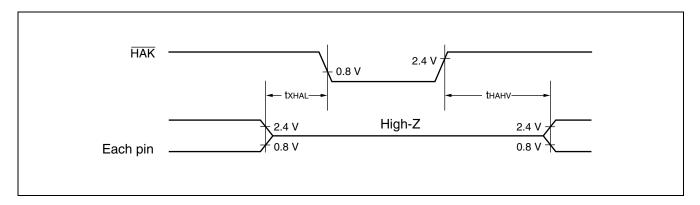
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
Farameter	Syllibol	Pili lialile	Conditions	Min	Max	Ollit	nemarks
Valid address→WR↓ time	tavwl	Address, WR	_	tcp — 15	_	ns	
WR pulse width	twLwH	WRL, WRH	_	3 tcp/2 - 25		ns	At $f_{cp} = 24 \text{ MHz}$
Wit puise width	LVVLVVH	VVIIL, VVIIII	_	3 tcp/2 - 20		ns	At fcp = 12 MHz
Valid data output→WR↑ time	tоvwн	Data, WR	_	3 tcp/2 - 15	_	ns	
		WD	_	10		ns	At fcp = 24 MHz
$\overline{WR} {\uparrow} {\rightarrow} data \ hold \ time$	twhox	WR, Data	_	20		ns	At fcp = 12 MHz
		Data	_	30	_	ns	At fcp = 6 MHz
WR↑→address valid time	twhax	WR, Address	_	tcp/2 - 10	_	ns	
WR↑→ALE↑time	twhlh	WR, ALE	_	tcp/2 - 15		ns	
WR↓→CLK↑time	twlch	WR, CLK		tcp/2 - 17		ns	


Note: tcp: Refer to "(1) Clock input timing".

(12) Ready input timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)

Parameter	Symbol	Pin name	Conditions	Val	ue	Unit	Remarks
raiailletei	Symbol	1 III Hame Conditions	Min	Max	Oilit	Hemarks	
RDY set-up time	tryhs		_	35	_	ns	
Tho i set-up time	LHYHS	RDY		70		ns	f _{cp} = 6 MHz
RDY hold time	t RYHH			0		ns	


(13) Hold timing

(Vcc = AVcc = 3.3 V
$$\pm$$
 0.3 V, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)

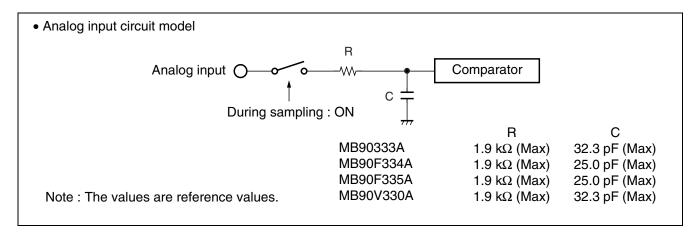
Parameter	Symbol	Din nama	in name Conditions		Value			
raiailletei	Syllibol	Pili liaille	Conditions	Min	Max	Unit		
$\overline{\text{Pin floating}} \to \overline{\text{HAK}} \downarrow \text{time}$	txhal	HAK	_	30	t cp	ns		
$\overline{HAK} \downarrow \to pin \ valid \ time$	thahv	HAK		t cp	2 tcp	ns		

Notes: • It takes one cycle or more for $\overline{\text{HAK}}$ to change after the HRQ pin is captured.

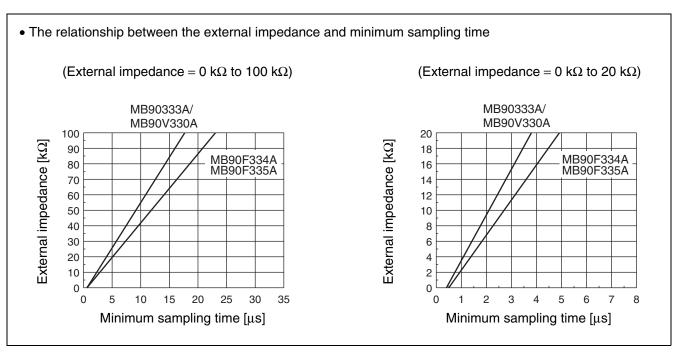
• tcp: Refer to "(1) Clock input timing".

5. Electrical Characteristics for the A/D Converter

 $(Vcc = AVcc = 3.3 \text{ V} \pm 0.3 \text{ V}, Vss = AVss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C})$


Parameter	Sym-	Pin name		Value		Unit	Remarks
Parameter	bol	Pili liaille	Min	Тур	Max	Offic	nemarks
Resolution	_	_		_	10	bit	
Total error	_	_		_	± 3.0	LSB	
Nonlinear error	_	_		_	± 2.5	LSB	
Differential linear error	_	_	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN15	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	٧	1 LSB = (AVRH –
Full-scale transition voltage	V _{FST}	AN0 to AN15	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	٧	AVss)/1024
Conversion time	_		_	176 tcp*1		ns	
Sampling time	_			64 tcp*1		ns	
Analog port input current	Iain	AN0 to AN15	_		10	μА	
Analog input voltage	Vain	AN0 to AN15	0	_	AVRH	٧	
Reference voltage		AVRH	2.7	_	AVcc	٧	
Power supply	lΑ	AVcc		1.4	3.5	mA	
current	Іан	AVcc			5	μΑ	*2
Reference voltage	IR	AVRH	_	95	170	μΑ	
supplying current	I _{RH}	AVRH			5	μΑ	*2
Interchannel disparity		AN0 to AN15	_	_	4	LSB	

^{*1 :} tcp : Refer to " 4. AC Characteristics (1) Clock input timing".


^{*2:} The current when the CPU is in stop mode and the A/D converter is not operating (For Vcc = AVcc = AVRH = 3.3 V).

Notes:

- About the external impedance of the analog input and its sampling time
 - A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

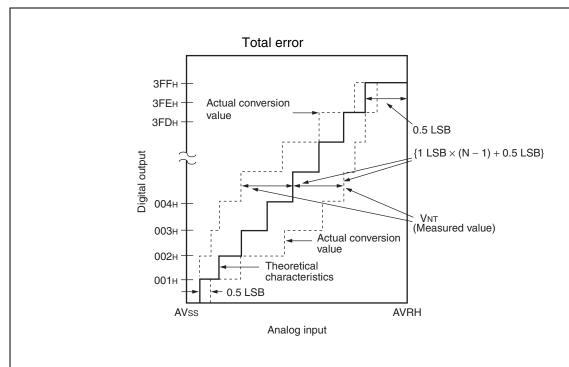
About errors

As |AVRH| becomes smaller, values of relative errors grow larger.

A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter.

Linearity error: The deviation of the straight line connecting the zero transition point


("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics.

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the

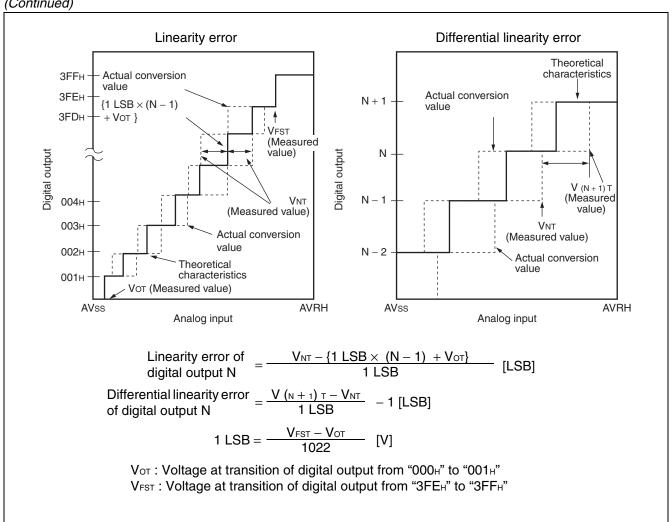
theoretical value.

Total error: The total error is defined as a difference between the actual value and the theoretical

value, which includes zero-transition error/full-scale transition error and linearity error.

$$Total\ error\ for\ digital\ output\ N = \frac{V_{NT} - \ \{1\ LSB \times \ (N-1)\ + 0.5\ LSB\}}{1\ LSB} \quad [LSB]$$

1 LSB (Theoretical value) =
$$\frac{AVRH - AVss}{1024}$$
 [V]

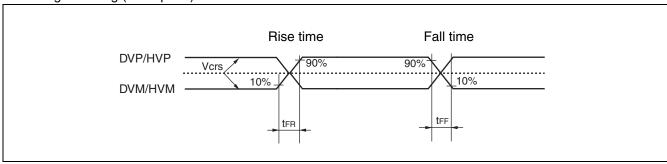

Vot (Theoretical value) = AVss + 0.5 LSB [V]

V_{FST} (Theoretical value) = AVRH - 1.5 LSB [V]

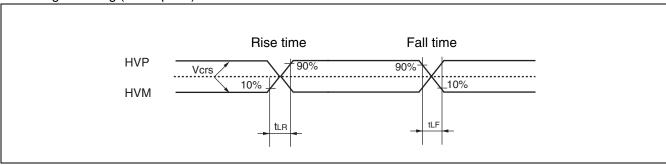
V_{NT}: Voltage at a transition of digital output from (N - 1) to N

(Continued)

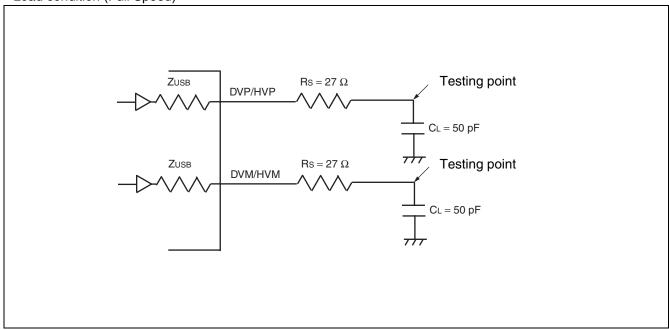
(Continued)

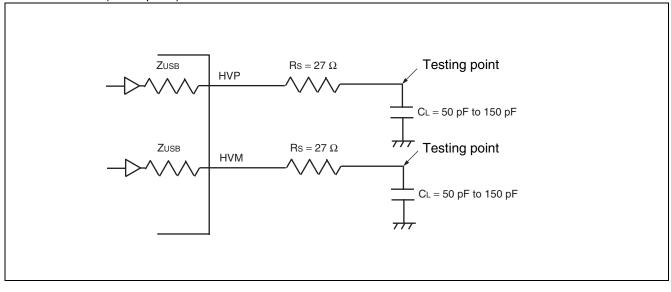

6. USB characteristics

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)


	Parameter	Sym-	Va	lue	Unit	Remarks
	raiaillelei		Min	Max	Ollit	neiliaiks
	Input High level voltage		2.0	_	V	
Input	Input Low level voltage	VıL	_	0.8	V	
characteristics	Differential input sensitivity	VDI	0.2	_	V	
	Differential common mode range	Vсм	0.8	2.5	V	
	Output High level voltage	Vон	2.8	3.6	V	Іон = – 200 μА
	Output Low level voltage	Vol	0.0	0.3	V	IoL = 2 mA
	Cross over voltage	Vcrs	1.3	2.0	V	
	Rise time	t _{FR}	4	20	ns	Full Speed
Output	nise time	tlr	75	300	ns	Low Speed
characteristics	Fall time	tff	4	20	ns	Full Speed
	Fall time	tlf	75	300	ns	Low Speed
	Digina/falling time matching	tпFM	90	111.11	%	(Tfr/Tff)
	Rising/falling time matching	t RLM	80	125	%	(Tlr/Tlf)
	Output impedance	ZDRV	28	44	Ω	Including Rs = 27 Ω
Series resistance		Rs	25	30	Ω	Recommended value = 27Ω at using USB*

^{*:} Arrange the series resistance Rs values in order to set the impedance value within the output impedance ZSRV.

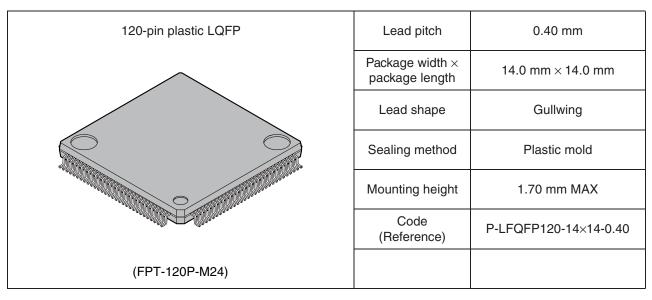

• Data signal timing (Full Speed)

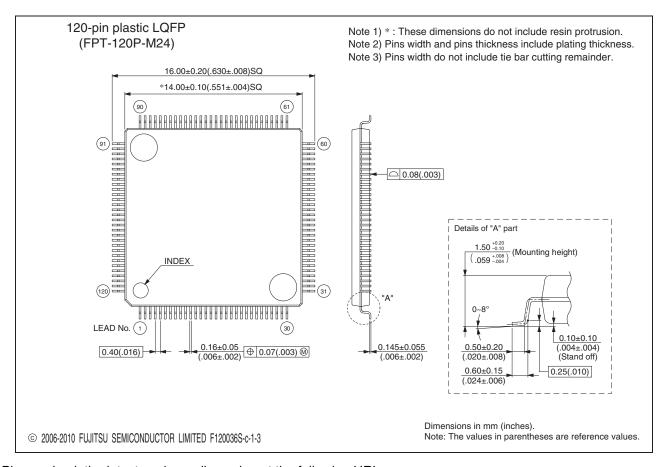

• Data signal timing (Low Speed)

• Load condition (Full Speed)

• Load condition (Low Speed)

7. Flash memory write/erase characteristics

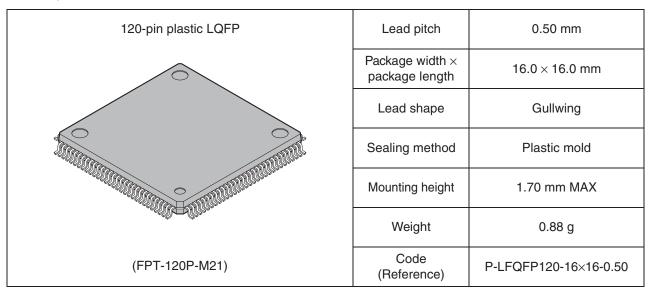

Doromotor	Condition		Value		Unit	Remarks
Parameter	Condition	Min	Тур	Max	Unit	Remarks
Sector erase time		_	1	15	S	Excludes 00 _H programming prior to erasure.
Chip erase time	T _A = +25 °C	_	9	_	s	*:MB90F334A (384 Kbytes) Excludes 00 _H programming prior to erasure.
Chip erase time	Vcc = 3.0 V	_	14	_	5	*:MB90F335A (512 Kbytes) Excludes 00 _H programming prior to erasure.
Word (16-bit width) programming time			16	3600	μs	Except for over head time of system level
Programming/erase cycle		10000			cycle	
Flash memory data retaining period	Average T _A = +85 °C	20	_	_	year	*

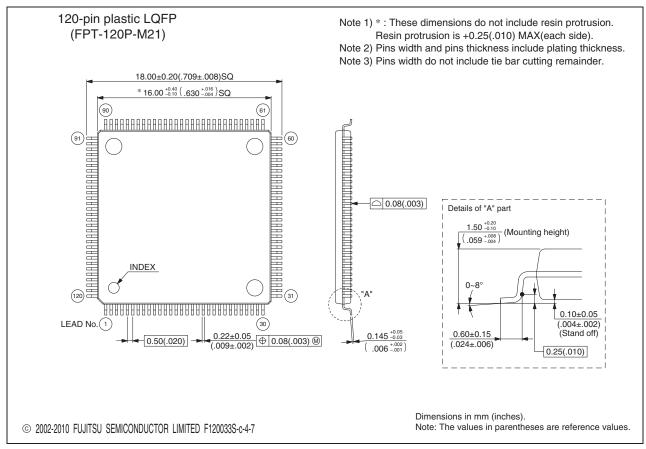

^{*:} This value comes from the technology qualification. (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C)

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F334APMC1 MB90F335APMC1 MB90333APMC1	120-pin plastic LQFP (FPT-120P-M24)	
MB90F334APMC MB90F335APMC MB90333APMC	120-pin plastic LQFP (FPT-120P-M21)	
MB90V330ACR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation

■ PACKAGE DIMENSIONS

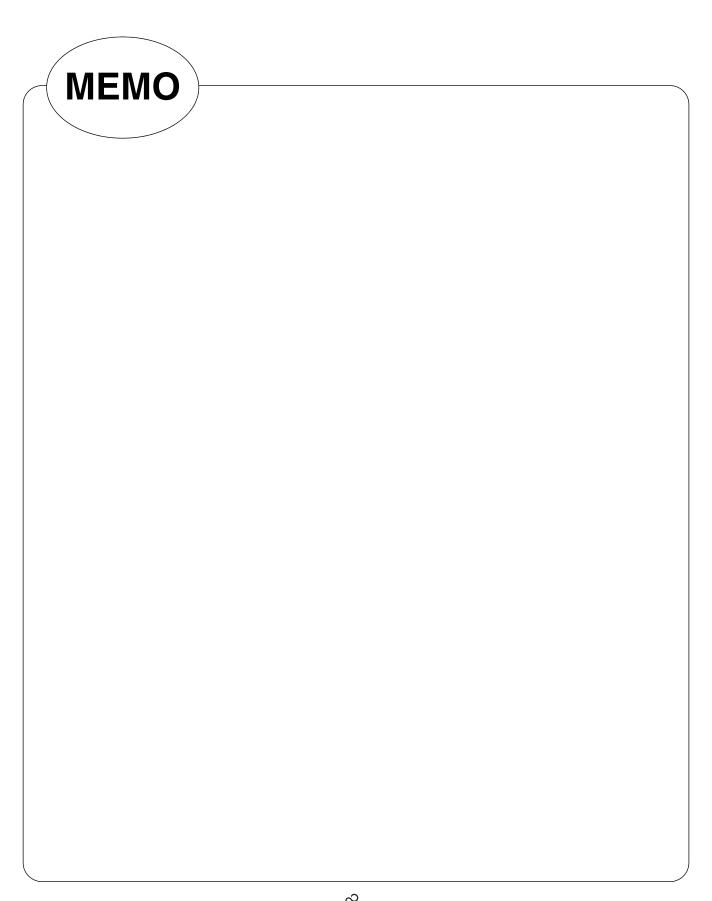




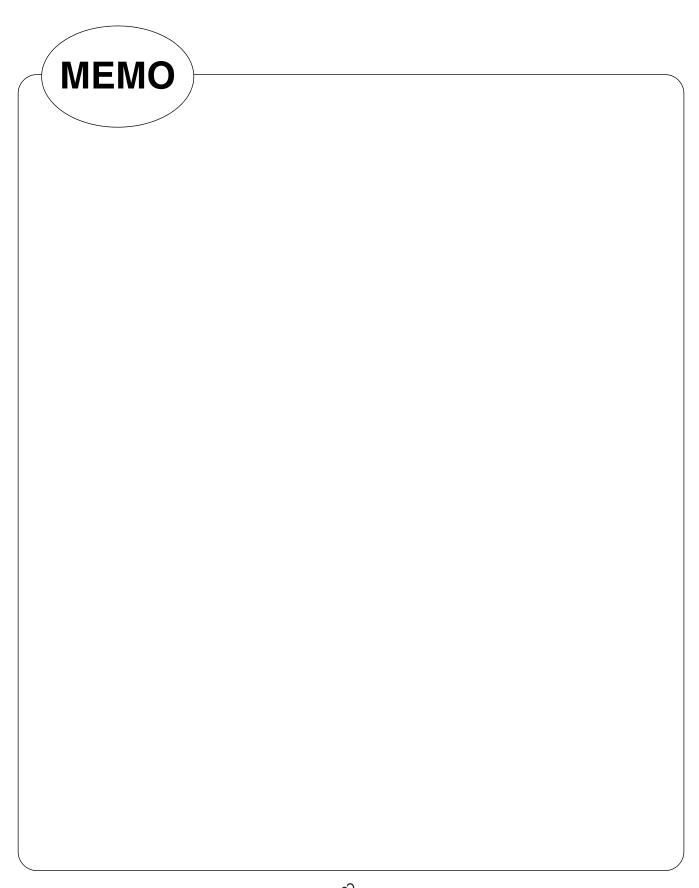
Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

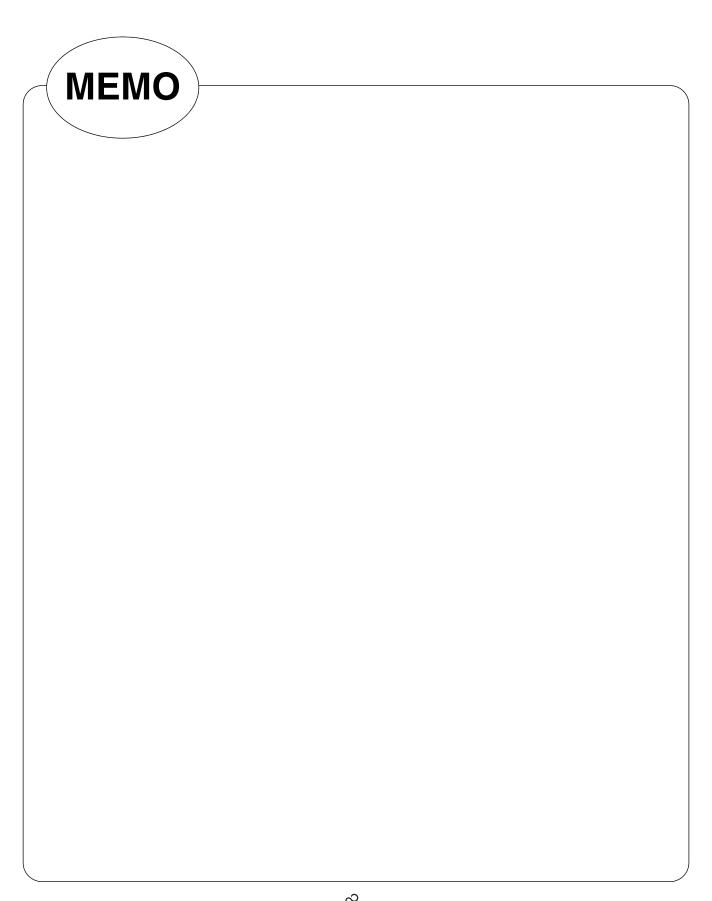
(Continued)

(Continued)



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/


■ MAIN CHANGES IN THIS EDITION


Page	Section	Change Results
		Corrected the remarks for operating temperature as follows; When using USB \rightarrow When using USB, at external bus operation

The vertical lines marked in the left side of the page show the changes.

70

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan

Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD.
151 Lorong Chuan,
#05-08 New Tech Park 556741 Singapore
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China
Tel: +86-21-6146-3688 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department