

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

#### **Continuity of Specifications**

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

#### **Continuity of Ordering Part Numbers**

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

#### For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

#### **About Cypress**

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

## 8-bit Microcontroller

**CMOS** 

# F<sup>2</sup>MC-8FX MB95220H Series

## MB95F222H/F223H MB95F222K/F223K

#### ■ DESCRIPTION

MB95220H are a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of these series contain a variety of peripheral resources.

Note: F<sup>2</sup>MC is the abbreviation of FUJITSU Flexible Microcontroller.

#### **■ FEATURES**

• F2MC-8FX CPU core

Instruction set optimized for controllers

- · Multiplication and division instructions
- 16-bit arithmetic operations
- · Bit test branch instructions
- · Bit manipulation instructions, etc.
- Clock
  - Selectable main clock source

External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz) Main internal CR clock (1/8/10 MHz ±3%, maximum machine clock frequency: 10 MHz)

• Selectable subclock source

External clock (32.768 kHz)

Sub-internal CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)

- Timer
  - 8/16-bit composite timer
  - · Timebase timer
  - · Watch prescaler
- LIN-UART (MB95F222H/F222K/F223H/F223K)
  - Full duplex double buffer
  - Capable of clock-synchronized serial data transfer and clock-asynchronized serial data transfer

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/



- External interrupt
  - Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
  - Can be used to wake up the device from different low power consumption (standby) modes
- 8/10-bit A/D converter
  - 8-bit or 10-bit resolution can be selected.
- Low power consumption (standby) modes
  - Stop mode
  - Sleep mode
  - · Watch mode
  - Timebase timer mode
- I/O port (Max: 13) (MB95F222K/F223K)
  - General-purpose I/O ports (Max):
    - CMOS I/O: 11, N-ch open drain: 2
- I/O port (Max: 12) (MB95F222H/F223H)
  - General-purpose I/O ports (Max):
    - CMOS I/O: 11, N-ch open drain: 1
- On-chip debug
  - 1-wire serial control
  - Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
  - Built-in hardware watchdog timer
- Low-voltage detection reset circuit
  - Built-in low-voltage detector
- Clock supervisor counter
  - Built-in clock supervisor counter function
- Programmable port input voltage level
  - CMOS input level / hysteresis input level
- Flash memory security function
  - · Protects the contents of flash memory

### ■ PRODUCT LINE-UP

| Part number                    |                                                                                                                                                                                                                                                                                                                   |                       |                                  |                   |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|-------------------|--|--|--|--|
|                                | MB95F223H                                                                                                                                                                                                                                                                                                         | MB95F222H             | MB95F223K                        | MB95F222K         |  |  |  |  |
| Parameter                      |                                                                                                                                                                                                                                                                                                                   |                       |                                  |                   |  |  |  |  |
| Туре                           | Flash memory product                                                                                                                                                                                                                                                                                              | <u> </u>              |                                  |                   |  |  |  |  |
| Clock<br>supervisor<br>counter | It supervises the main                                                                                                                                                                                                                                                                                            | clock oscillation.    |                                  |                   |  |  |  |  |
| ROM capacity                   | 8 KB                                                                                                                                                                                                                                                                                                              | 4 KB                  | 8 KB                             | 4 KB              |  |  |  |  |
| RAM capacity                   | 496 B                                                                                                                                                                                                                                                                                                             | 240 B                 | 496 B                            | 240 B             |  |  |  |  |
| Low-voltage detection reset    | N                                                                                                                                                                                                                                                                                                                 | 0                     | Y                                | es                |  |  |  |  |
| Reset input                    | Dedi                                                                                                                                                                                                                                                                                                              | cated                 | Selected b                       | y software        |  |  |  |  |
| CPU functions                  | Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes Data bit length : 1, 8, and 16 bits Minimum instruction execution time : 61.5 ns (with machine clock = 16.25 MHz) Interrupt processing time : 0.6 µs (with machine clock = 16.25 MHz)                        |                       |                                  |                   |  |  |  |  |
| General-<br>purpose I/O        | I/O ports (Max): 12       I/O ports (Max): 13         CMOS: 11,       CMOS: 11,         N-ch: 1       N-ch: 2                                                                                                                                                                                                     |                       |                                  |                   |  |  |  |  |
| Timebase timer                 | Interrupt cycle: 0.256                                                                                                                                                                                                                                                                                            | ms - 8.3 s (when ext  | ernal clock = 4 MHz)             |                   |  |  |  |  |
|                                | Reset generation cycle<br>Main oscillation clock of<br>The sub-CR clock can                                                                                                                                                                                                                                       | at 10 MHz : 105 ms (  | Min)<br>ce clock of the hardware | e watchdog timer. |  |  |  |  |
| Wild register                  | It can be used to repla                                                                                                                                                                                                                                                                                           | ce three bytes of dat | a.                               |                   |  |  |  |  |
| LIN-UART                       | A wide range of communication speed can be selected by a dedicated reload timer.  It has a full duplex double buffer.  Clock-synchronized serial data transfer and clock-asynchronized serial data transfer is enabled.  The LIN function can be used as a LIN master or a LIN slave.                             |                       |                                  |                   |  |  |  |  |
| 8/10-bit A/D                   | 5 ch.                                                                                                                                                                                                                                                                                                             |                       |                                  |                   |  |  |  |  |
| converter                      | 8-bit or 10-bit resolution                                                                                                                                                                                                                                                                                        | n can be selected.    |                                  |                   |  |  |  |  |
| 8/16-bit<br>composite<br>timer | 1 ch.  The timer can be configured as an "8-bit timer x 2 channels" or a "16-bit timer x 1 channel".  It has built-in timer function, PWC function, PWM function and input capture function.  Count clock: it can be selected from internal clocks (seven types) and external clocks.  It can output square wave. |                       |                                  |                   |  |  |  |  |
| External interrupt             | 6 ch.  Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected.)  It can be used to wake up the device from standby modes.                                                                                                                                                      |                       |                                  |                   |  |  |  |  |
| On-chip debug                  | 1-wire serial control<br>It supports serial writin                                                                                                                                                                                                                                                                | g. (asynchronous m    | ode)                             |                   |  |  |  |  |

| Part number        |                                                                                                                                                                                                                                                                                                                                                                                         |           |           |           |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|--|--|--|--|
|                    | MB95F223H                                                                                                                                                                                                                                                                                                                                                                               | MB95F222H | MB95F223K | MB95F222K |  |  |  |  |
| Parameter          |                                                                                                                                                                                                                                                                                                                                                                                         |           |           |           |  |  |  |  |
| Watch<br>prescaler | Eight different time intervals can be selected.                                                                                                                                                                                                                                                                                                                                         |           |           |           |  |  |  |  |
| Flash memory       | It supports automatic programming, Embedded Algorithm, write/erase/erase-suspend/erase-resume commands.  It has a flag indicating the completion of the operation of Embedded Algorithm.  Number of write/erase cycles: 100000  Data retention time: 20 years  For write/erase, external Vpp(+10 V) input is required.  Flash security feature for protecting the contents of the flash |           |           |           |  |  |  |  |
| Standby mode       | Sleep mode, stop mode, watch mode, timebase timer mode                                                                                                                                                                                                                                                                                                                                  |           |           |           |  |  |  |  |
| Package            | DIP-16P-M06<br>FPT-16P-M06                                                                                                                                                                                                                                                                                                                                                              |           |           |           |  |  |  |  |

### ■ PACKAGES AND CORRESPONDING PRODUCTS

| Part number Package |   | MB95F222H | MB95F223K | MB95F222K |
|---------------------|---|-----------|-----------|-----------|
| DIP-16P-M06         | 0 | 0         | 0         | 0         |
| FPT-16P-M06         | 0 | 0         | 0         | 0         |

O: Available

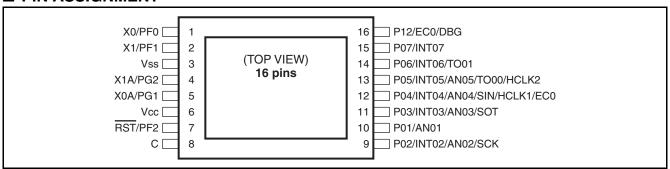
#### ■ DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

#### Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/program. For details of current consumption, see "■ ELECTRICAL CHARACTERISTICS".

#### Package

For details of information on each package, see "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".


#### Operating voltage

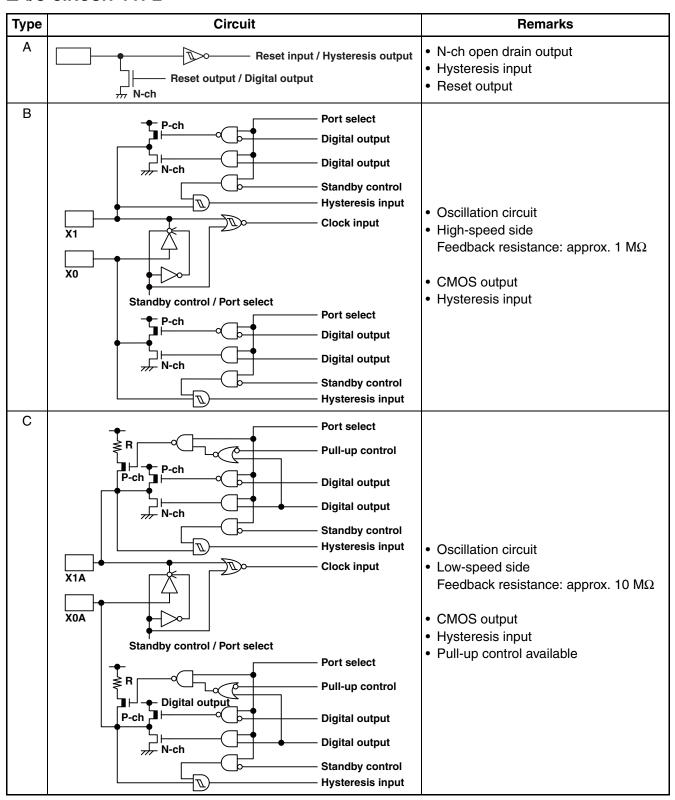
The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of the operating voltage, see "■ ELECTRICAL CHARACTERISTICS".

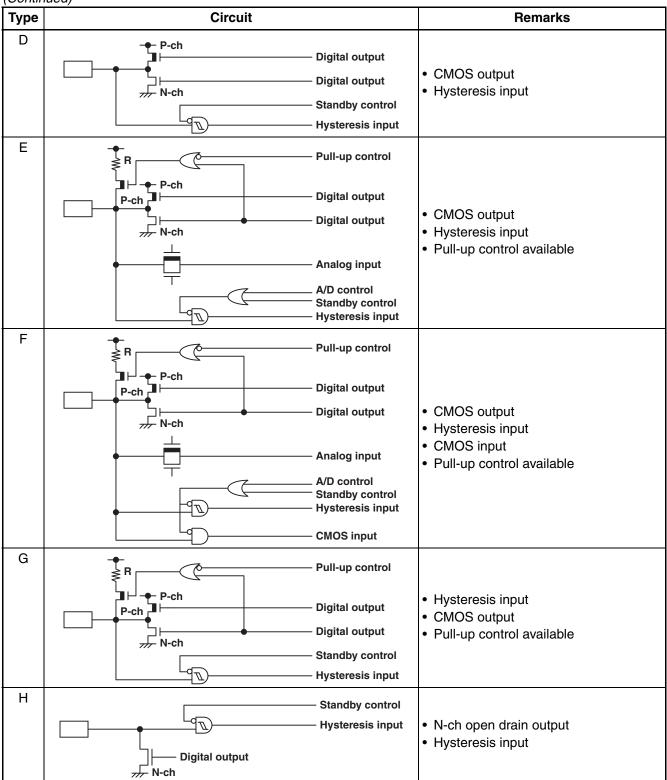
#### • On-chip debug function

The on-chip debug function requires that  $V_{CC}$ ,  $V_{SS}$  and 1 serial-wire be connected to an evaluation tool. In addition, if the flash memory data has to be updated, the  $\overline{RST}/PF2$  pin must also be connected to the same evaluation tool.

### **■ PIN ASSIGNMENT**




## ■ PIN DESCRIPTION (MB95220H Series)


| Pin no. | Pin name | I/O<br>circuit<br>type* | Function                                                        |  |  |
|---------|----------|-------------------------|-----------------------------------------------------------------|--|--|
| 4       | 1 PF0 B  |                         | General-purpose I/O port                                        |  |  |
| ı       |          |                         | Main clock input oscillation pin                                |  |  |
| 0       | PF1      | В                       | General-purpose I/O port                                        |  |  |
| 2       | X1       | В                       | Main clock I/O oscillation pin                                  |  |  |
| 3       | Vss      | _                       | Power supply pin (GND)                                          |  |  |
| 4       | PG2      |                         | General-purpose I/O port                                        |  |  |
| 4       | X1A      | C                       | Subclock I/O oscillation pin                                    |  |  |
| 5       | PG1      | С                       | General-purpose I/O port                                        |  |  |
| 5       | X0A      | 7 .                     | Subclock input oscillation pin                                  |  |  |
| 6       | Vcc      | _                       | Power supply pin                                                |  |  |
|         | PF2      |                         | General-purpose I/O port                                        |  |  |
| 7 RST   |          | A                       | Reset pin This pin is a dedicated reset pin in MB95F222H/F223H. |  |  |
| 8       | С        | _                       | Capacitor connection pin                                        |  |  |
|         | P02      |                         | General-purpose I/O port                                        |  |  |
| 9       | INT02    |                         | External interrupt input pin                                    |  |  |
| 9       | AN02     | E                       | A/D converter analog input pin                                  |  |  |
|         | SCK      |                         | LIN-UART clock I/O pin                                          |  |  |
| 10      | P01      | _ E                     | General-purpose I/O port                                        |  |  |
| 10      | AN01     |                         | A/D converter analog input pin                                  |  |  |
|         | P03      |                         | General-purpose I/O port                                        |  |  |
| 11      | INT03    | E                       | External interrupt input pin                                    |  |  |
| 11      | AN03     | 7 -                     | A/D converter analog input pin                                  |  |  |
|         | SOT      |                         | LIN-UART data output pin                                        |  |  |
|         | P04      |                         | General-purpose I/O port                                        |  |  |
|         | INT04    |                         | External interrupt input pin                                    |  |  |
| 12      | AN04     | F                       | A/D converter analog input pin                                  |  |  |
| 14      | SIN      |                         | LIN-UART data input pin                                         |  |  |
|         | HCLK1    |                         | External clock input pin                                        |  |  |
|         | EC0      |                         | 8/16-bit composite timer ch. 0 clock input pin                  |  |  |

| Pin no.  | Pin name | I/O<br>circuit<br>type* | Function                                       |  |
|----------|----------|-------------------------|------------------------------------------------|--|
|          | P05      |                         | General-purpose I/O port<br>High-current port  |  |
|          | INT05    | _                       | External interrupt input pin                   |  |
| 13       | AN05     | E                       | A/D converter analog input pin                 |  |
| TO00     |          |                         | 8/16-bit composite timer ch. 0 clock input pin |  |
|          | HCLK2    |                         | External clock input pin                       |  |
| P06      |          |                         | General-purpose I/O port<br>High-current port  |  |
| 14       | INT06    | G                       | External interrupt input pin                   |  |
|          | TO01     |                         | 8/16-bit composite timer ch. 0 clock input pin |  |
| 15       | P07      | G                       | General-purpose I/O port                       |  |
| 15 INT07 |          | "                       | External interrupt input pin                   |  |
|          | P12      |                         | General-purpose I/O port                       |  |
| 16       | EC0      | Н                       | 8/16-bit composite timer ch. 0 clock input pin |  |
|          | DBG      |                         | DBG input pin                                  |  |

<sup>\*:</sup> For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

#### **■ I/O CIRCUIT TYPE**





#### ■ NOTES ON DEVICE HANDLING

#### Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than V<sub>CC</sub> or a voltage lower than V<sub>SS</sub> is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in 1. Absolute Maximum Ratings of ■ ELECTRICAL CHARACTERISTICS" is applied to the V<sub>CC</sub> pin or the V<sub>SS</sub> pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

#### Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in Vcc ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard Vcc value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

#### Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

#### **■ PIN CONNECTION**

#### Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k $\Omega$ . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

#### Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the  $V_{\rm CC}$  pin and the  $V_{\rm SS}$  pin to the power supply and ground outside the device. In addition, connect the current supply source to the  $V_{\rm CC}$  pin and the  $V_{\rm SS}$  pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1  $\mu$ F as a bypass capacitor between the  $V_{CC}$  pin and the  $V_{SS}$  pin at a location close to this device.

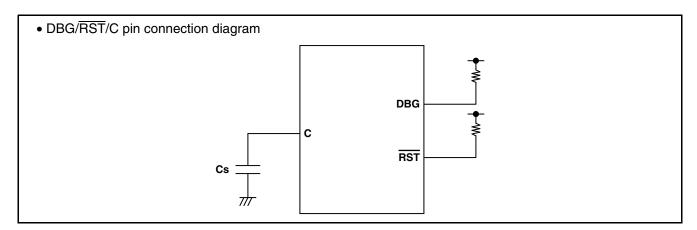
#### • DBG pin

Connect the DBG pin directly to an external pull-up resistor.

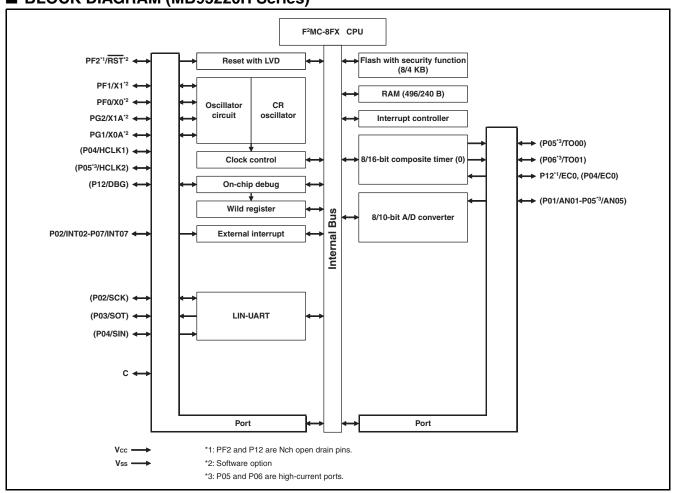
To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the Vcc or Vss pin when designing the layout of the printed circuit board.

The DBG pin should not stay at "L" level after power-on until the reset output is released.

#### • RST pin


Connect the RST pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the  $\overline{RST}$  pin and the Vcc or Vss pin when designing the layout of the printed circuit board.

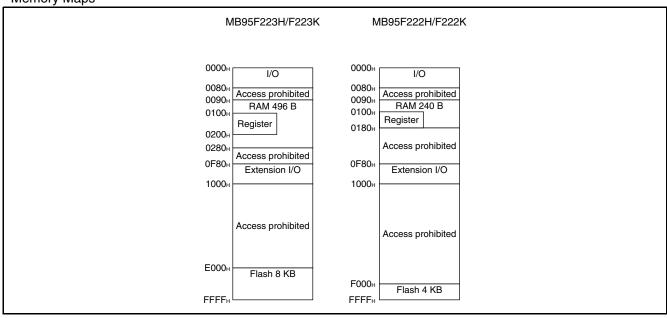

The  $\overline{\text{RST}}/\text{PF2}$  pin functions as the reset input/output pin after power-on. In addition, the reset output of the  $\overline{\text{RST}}/\text{PF2}$  pin can be enabled by the RSTOE bit of the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit of the SYSC register.

#### • C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the  $V_{\rm CC}$  pin must have a capacitance larger than  $C_{\rm S}$ . For the connection to a smoothing capacitor  $C_{\rm S}$ , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and  $C_{\rm S}$  and the distance between  $C_{\rm S}$  and the  $V_{\rm SS}$  pin when designing the layout of a printed circuit board.



### ■ BLOCK DIAGRAM (MB95220H Series)




#### **■ CPU CORE**

• Memory Space

The memory space of the MB95220H Series is 64 KB in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95220H Series are shown below.

Memory Maps



## ■ I/O MAP (MB95220H Series)

| Address              | Register abbreviation | Register name                                               | R/W          | Initial value         |
|----------------------|-----------------------|-------------------------------------------------------------|--------------|-----------------------|
| 0000н                | PDR0                  | Port 0 data register                                        | R/W          | 0000000В              |
| 0001н                | DDR0                  | Port 0 direction register                                   | R/W          | 0000000в              |
| 0002н                | PDR1                  | Port 1 data register                                        | R/W          | 0000000в              |
| 0003н                | DDR1                  | Port 1 direction register                                   | R/W          | 0000000в              |
| 0004н                | _                     | (Disabled)                                                  | _            | _                     |
| 0005н                | WATR                  | Oscillation stabilization wait time setting register        | R/W          | 111111111             |
| 0006н                | _                     | (Disabled)                                                  | _            | _                     |
| 0007н                | SYCC                  | System clock control register                               | R/W          | 0000Х011в             |
| 0008н                | STBC                  | Standby control register                                    | R/W          | 00000XXX <sub>B</sub> |
| 0009н                | RSRR                  | Reset source register                                       | R            | XXXXXXXX              |
| 000Ан                | TBTC                  | Timebase timer control register                             | R/W          | 0000000в              |
| 000Вн                | WPCR                  | Watch prescaler control register                            | R/W          | 0000000в              |
| 000Сн                | WDTC                  | Watchdog timer control register                             | R/W          | 0000000В              |
| 000Dн                | SYCC2                 | System clock control register 2                             | R/W          | ХХ100011в             |
| 000Ен<br>to<br>0015н | _                     | (Disabled)                                                  | _            | _                     |
| 0016н                | _                     | (Disabled)                                                  | +_           | _                     |
| 0017н                | _                     | (Disabled)                                                  | _            | _                     |
| 0018н<br>to<br>0027н | _                     | (Disabled)                                                  | _            | _                     |
| 0028н                | PDRF                  | Port F data register                                        | R/W          | 0000000в              |
| 0029н                | DDRF                  | Port F direction register                                   | R/W          | 0000000в              |
| 002Ан                | PDRG                  | Port G data register                                        | R/W          | 0000000в              |
| 002Вн                | DDRG                  | Port G direction register                                   | R/W          | 0000000в              |
| 002Сн                | PUL0                  | Port 0 pull-up register                                     | R/W          | 0000000В              |
| 002Dн<br>to<br>0034н | _                     | (Disabled)                                                  | _            | _                     |
| 0035н                | PULG                  | Port G pull-up register                                     | R/W          | 0000000в              |
| 0036н                | T01CR1                | 8/16-bit composite timer 01 status control register 1 ch. 0 | R/W          | 0000000               |
| 0037н                | T00CR1                | 8/16-bit composite timer 00 status control register 1 ch. 0 | R/W          | 0000000в              |
| 0038н                | _                     | (Disabled)                                                  | <del> </del> | _                     |
| 0039н                | <del>_</del>          | (Disabled)                                                  | <del> </del> | _                     |
| 003Ан<br>to<br>0048н | _                     | (Disabled)                                                  | _            | _                     |
| 0049н                | EIC10                 | External interrupt circuit control register ch. 2/ch. 3     | R/W          | 0000000в              |

| Address              | Register abbreviation | Register name                                                     | R/W      | Initial value |
|----------------------|-----------------------|-------------------------------------------------------------------|----------|---------------|
| 004Ан                | EIC20                 | External interrupt circuit control register ch. 4/ch. 5           | R/W      | 0000000В      |
| 004Вн                | EIC30                 | External interrupt circuit control register ch. 6/ch. 7           | R/W      | 0000000В      |
| 004Сн<br>to<br>004Fн | _                     | (Disabled)                                                        | _        | _             |
| 0050н                | SCR                   | LIN-UART serial control register                                  | R/W      | 0000000В      |
| 0051н                | SMR                   | LIN-UART serial mode register                                     | R/W      | 0000000В      |
| 0052н                | SSR                   | LIN-UART serial status register                                   | R/W      | 00001000в     |
| 0053н                | RDR/TDR               | LIN-UART receive/transmit data register                           | R/W      | 0000000В      |
| 0054н                | ESCR                  | LIN-UART extended status control register                         | R/W      | 00000100в     |
| 0055н                | ECCR                  | LIN-UART extended communication control register                  | R/W      | 000000XXB     |
| 0056н<br>to<br>006Вн | _                     | (Disabled)                                                        | _        | _             |
| 006Сн                | ADC1                  | 8/10-bit A/D converter control register 1                         | R/W      | 0000000В      |
| 006Dн                | ADC2                  | 8/10-bit A/D converter control register 2                         | R/W      | 00000000в     |
| 006Ен                | ADDH                  | 8/10-bit A/D converter data register (Upper)                      | R/W      | 00000000в     |
| 006Fн                | ADDL                  | 8/10-bit A/D converter data register (Lower)                      |          | 0000000В      |
| 0070н,<br>0071н      | _                     | (Disabled)                                                        |          | _             |
| 0072н                | FSR                   | Flash memory status register                                      | R/W      | 000Х0000в     |
| 0073н<br>to<br>0075н | _                     | (Disabled)                                                        | _        | _             |
| 0076н                | WREN                  | Wild register address compare enable register                     | R/W      | 0000000В      |
| 0077н                | WROR                  | Wild register data test setting register                          | R/W      | 0000000В      |
| 0078н                | _                     | Mirror of register bank pointer (RP) and direct bank pointer (DP) | _        | _             |
| 0079н                | ILR0                  | Interrupt level setting register 0                                | R/W      | 111111111     |
| 007Ан                | ILR1                  | Interrupt level setting register 1                                | R/W      | 111111111     |
| 007Вн                | ILR2                  | Interrupt level setting register 2                                | R/W      | 111111111в    |
| 007Сн                | _                     | (Disabled)                                                        | <u> </u> | _             |
| 007Dн                | ILR4                  | Interrupt level setting register 4                                |          | 111111111в    |
| 007Ен                | ILR5                  | Interrupt level setting register 5                                | R/W      | 111111111     |
| 007Fн                | _                     | (Disabled)                                                        | _        | _             |
| 0F80н                | WRARH0                | Wild register address setting register (Upper) ch. 0              | R/W      | 0000000В      |

| Address              | Register abbreviation | Register name                                                    | R/W | Initial value |
|----------------------|-----------------------|------------------------------------------------------------------|-----|---------------|
| 0F81н                | WRARL0                | Wild register address setting register (Lower) ch. 0             | R/W | 0000000В      |
| 0F82н                | WRDR0                 | Wild register data setting register ch. 0                        | R/W | 0000000В      |
| 0F83н                | WRARH1                | Wild register address setting register (Upper) ch. 1             | R/W | 0000000В      |
| 0F84н                | WRARL1                | Wild register address setting register (Lower) ch. 1             | R/W | 0000000В      |
| 0F85н                | WRDR1                 | Wild register data setting register ch. 1                        | R/W | 0000000В      |
| 0F86н                | WRARH2                | Wild register address setting register (Upper) ch. 2             | R/W | 0000000В      |
| 0F87н                | WRARL2                | Wild register address setting register (Lower) ch. 2             | R/W | 0000000В      |
| 0F88н                | WRDR2                 | Wild register data setting register ch. 2                        | R/W | 0000000В      |
| 0F89н<br>to<br>0F91н | _                     | (Disabled)                                                       | _   | _             |
| 0F92н                | T01CR0                | 8/16-bit composite timer 01 status control register 0 ch. 0      | R/W | 0000000В      |
| 0F93н                | T00CR0                | 8/16-bit composite timer 00 status control register 0 ch. 0      | R/W | 0000000В      |
| 0F94н                | T01DR                 | 8/16-bit composite timer 01 data register ch. 0                  | R/W | 0000000В      |
| 0F95н                | T00DR                 | 8/16-bit composite timer 00 data register ch. 0                  | R/W | 0000000В      |
| 0F96н                | TMCR0                 | 8/16-bit composite timer 00/01 timer mode control register ch. 0 | R/W | 00000000в     |
| 0F97н                | _                     | (Disabled)                                                       | _   | _             |
| 0F98н                | _                     | (Disabled)                                                       | _   | _             |
| 0F99н                | _                     | (Disabled)                                                       | _   | _             |
| 0F9Ан                | _                     | (Disabled)                                                       | 1—  | _             |
| 0F9Вн                | _                     | (Disabled)                                                       | _   | _             |
| 0F9Сн<br>to<br>0FBВн | _                     | (Disabled)                                                       | _   | _             |
| 0FBCн                | BGR1                  | LIN-UART baud rate generator register 1                          | R/W | 0000000В      |
| 0FBDн                | BGR0                  | LIN-UART baud rate generator register 0                          | R/W | 0000000В      |
| 0FBEн<br>to<br>0FC2н | _                     | (Disabled)                                                       | _   | _             |
| 0FС3н                | AIDRL                 | A/D input disable register (Lower)                               | R/W | 0000000В      |
| 0FC4н<br>to<br>0FE3н | _                     | (Disabled)                                                       | _   | _             |
| 0FE4н                | CRTH                  | Main CR clock trimming register (Upper)                          | R/W | 1XXXXXXX      |
| 0FE5н                | CRTL                  | Main CR clock trimming register (Lower)                          | R/W | 000XXXXXB     |

### (Continued)

| Address              | Register abbreviation | Register name                                | R/W | Initial value |
|----------------------|-----------------------|----------------------------------------------|-----|---------------|
| 0FE6н,<br>0FE7н      | _                     | (Disabled)                                   | _   | _             |
| 0FE8н                | SYSC                  | System configuration register                | R/W | 11000011в     |
| 0FE9⊦                | CMCR                  | Clock monitoring control register            | R/W | 0000000В      |
| 0FEAн                | CMDR                  | Clock monitoring data register               | R/W | 0000000В      |
| 0FEB <sub>H</sub>    | WDTH                  | Watchdog timer selection ID register (Upper) | R/W | XXXXXXX       |
| 0FECн                | WDTL                  | Watchdog timer selection ID register (Lower) | R/W | XXXXXXXXB     |
| 0FEDн                | _                     | (Disabled)                                   | _   | _             |
| 0FEE <sub>H</sub>    | ILSR                  | Input level select register                  | R/W | 0000000В      |
| 0FEFн<br>to<br>0FFFн | _                     | (Disabled)                                   | _   | _             |

#### • R/W access symbols

R/W : Readable / Writable

R : Read only W : Write only

#### • Initial value symbols

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

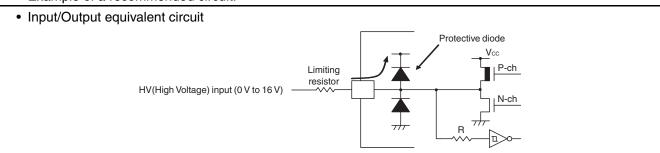
Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.

## ■ INTERRUPT SOURCE TABLE (MB95220H Series)

|                                        |                   | Vector tob        | le address        |                                  | Priority order of                                     |  |
|----------------------------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------------------------------------------|--|
|                                        | Interrupt         | vector tab        |                   | Bit name of                      | interrupt sourc-                                      |  |
| Interrupt source                       | request<br>number | Upper Lower       |                   | interrupt level setting register | es of the same<br>level (occurring<br>simultaneously) |  |
| External interrupt ch. 4               | IRQ0              | FFFA⊦             | FFFB <sub>H</sub> | L00 [1:0]                        | High                                                  |  |
| External interrupt ch. 5               | IRQ1              | FFF8 <sub>H</sub> | FFF9 <sub>H</sub> | L01 [1:0]                        | <b>A</b>                                              |  |
| External interrupt ch. 2               | IDOO              | ГГГС              |                   | 1.00 [1.0]                       | <b>1</b>                                              |  |
| External interrupt ch. 6               | IRQ2              | FFF6 <sub>H</sub> | FFF7 <sub>H</sub> | L02 [1:0]                        |                                                       |  |
| External interrupt ch. 3               | IDOO              | <i>-</i>          | FFFF              | 1.00.14.01                       |                                                       |  |
| External interrupt ch. 7               | IRQ3              | FFF4 <sub>H</sub> | FFF5 <sub>H</sub> | L03 [1:0]                        |                                                       |  |
| _                                      | IRQ4              | FFF2 <sub>H</sub> | FFF3⊦             | L04 [1:0]                        |                                                       |  |
| 8/16-bit composite timer ch. 0 (Lower) | IRQ5              | FFF0 <sub>H</sub> | FFF1 <sub>H</sub> | L05 [1:0]                        |                                                       |  |
| 8/16-bit composite timer ch. 0 (Upper) | IRQ6              | FFEEH             | FFEFH             | L06 [1:0]                        |                                                       |  |
| LIN-UART (reception)                   | IRQ7              | FFECH             | FFEDH             | L07 [1:0]                        |                                                       |  |
| LIN-UART (transmission)                | IRQ8              | FFEA <sub>H</sub> | FFEBH             | L08 [1:0]                        |                                                       |  |
| _                                      | IRQ9              | FFE8 <sub>H</sub> | FFE9 <sub>H</sub> | L09 [1:0]                        |                                                       |  |
| _                                      | IRQ10             | FFE6 <sub>H</sub> | FFE7 <sub>H</sub> | L10 [1:0]                        |                                                       |  |
| _                                      | IRQ11             | FFE4 <sub>H</sub> | FFE5 <sub>H</sub> | L11 [1:0]                        |                                                       |  |
| _                                      | IRQ12             | FFE2 <sub>H</sub> | FFE3 <sub>H</sub> | L12 [1:0]                        |                                                       |  |
| _                                      | IRQ13             | FFE0 <sub>H</sub> | FFE1 <sub>H</sub> | L13 [1:0]                        |                                                       |  |
| _                                      | IRQ14             | FFDEH             | FFDF <sub>H</sub> | L14 [1:0]                        |                                                       |  |
| _                                      | IRQ15             | FFDCH             | FFDD⊦             | L15 [1:0]                        |                                                       |  |
| _                                      | IRQ16             | FFDA <sub>H</sub> | FFDB⊦             | L16 [1:0]                        |                                                       |  |
| _                                      | IRQ17             | FFD8 <sub>H</sub> | FFD9 <sub>H</sub> | L17 [1:0]                        |                                                       |  |
| 8/10-bit A/D converter                 | IRQ18             | FFD6 <sub>H</sub> | FFD7 <sub>H</sub> | L18 [1:0]                        |                                                       |  |
| Timebase timer                         | IRQ19             | FFD4 <sub>H</sub> | FFD5 <sub>H</sub> | L19 [1:0]                        |                                                       |  |
| Watch prescaler                        | IRQ20             | FFD2 <sub>H</sub> | FFD3 <sub>H</sub> | L20 [1:0]                        |                                                       |  |
| _                                      | IRQ21             | FFD0 <sub>H</sub> | FFD1 <sub>H</sub> | L21 [1:0]                        |                                                       |  |
| _                                      | IRQ22             | FFCEH             | FFCFH             | L22 [1:0]                        |                                                       |  |
| Flash memory                           | IRQ23             | FFCCH             | FFCDH             | L23 [1:0]                        | Low                                                   |  |
|                                        |                   |                   |                   |                                  |                                                       |  |

### **■ ELECTRICAL CHARACTERISTICS**

### 1. Absolute Maximum Ratings


| Doromotor                              | Cumbal             | Rating  |           | Unit | Domonto.                                                                                  |  |
|----------------------------------------|--------------------|---------|-----------|------|-------------------------------------------------------------------------------------------|--|
| Parameter                              | Symbol             | Min     | Max       | Unit | Remarks                                                                                   |  |
| Power supply voltage*1                 | Vcc                | Vss-0.3 | Vss + 6   | V    |                                                                                           |  |
| Input voltage*1                        | V <sub>I1</sub>    | Vss-0.3 | Vcc + 0.3 | V    | Other than PF2*2                                                                          |  |
| input voitage                          | V <sub>I2</sub>    | Vss-0.3 | 10.5      | V    | PF2                                                                                       |  |
| Output voltage*1                       | Vo                 | Vss-0.3 | Vss + 6   | V    | *2                                                                                        |  |
| Maximum clamp current                  | <b>I</b> CLAMP     | -2      | + 2       | mA   | Applicable to specific pins <sup>*3</sup>                                                 |  |
| Total maximum clamp current            | $\Sigma  I_CLAMP $ | _       | 20        | mA   | Applicable to specific pins*3                                                             |  |
| "L" level maximum                      | lol1               |         | 15        | mA   | Other than P05, P06                                                                       |  |
| output current                         | lol2               | _       | 15        | IIIA | P05, P06                                                                                  |  |
| "L" level average current              | lolav1             |         | 4         | mA   | Other than P05, P06 Average output current = operating current × operating ratio (1 pin)  |  |
| L level average current                | lolav2             |         | 12        | IIIA | P05, P06 Average output current = operating current × operating ratio (1 pin)             |  |
| "L" level total maximum output current | $\Sigma$ lol       | _       | 100       | mA   |                                                                                           |  |
| "L" level total average output current | $\Sigma$ lolav     | _       | 50        | mA   | Total average output current = operating current × operating ratio (Total number of pins) |  |
| "H" level maximum                      | <b>І</b> он1       |         | -15       | Л    | Other than P05, P06                                                                       |  |
| output current                         | <b>І</b> он2       | _       | -15       | mA   | P05, P06                                                                                  |  |
| "H" level average                      | Iohav1             |         | -4        | mA   | Other than P05, P06 Average output current = operating current × operating ratio (1 pin)  |  |
| current                                | Iohav2             |         | -8        | IIIA | P05, P06 Average output current = operating current × operating ratio (1 pin)             |  |
| "H" level total maximum output current | ΣІон               | _       | -100      | mA   |                                                                                           |  |
| "H" level total average output current | ΣΙοнαν             | _       | -50       | mA   | Total average output current = operating current × operating ratio (Total number of pins) |  |
| Power consumption                      | Pd                 | _       | 320       | mW   |                                                                                           |  |
| Operating temperature                  | TA                 | -40     | + 85      | °C   |                                                                                           |  |
| Storage temperature                    | Tstg               | -55     | + 150     | °C   |                                                                                           |  |

(Continued)

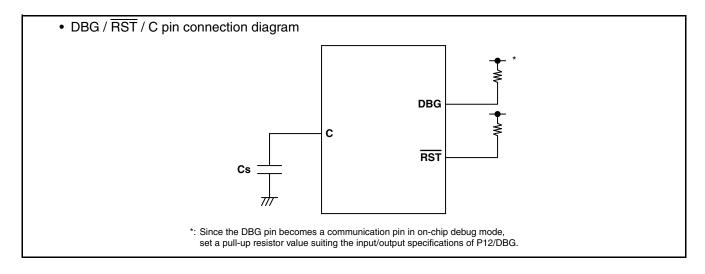
21

#### (Continued)

- \*1: The parameter is based on  $V_{SS} = 0.0 \text{ V}$ .
- \*2: V<sub>I</sub> and V<sub>O</sub> must not exceed V<sub>CC</sub>+0.3 V. V<sub>I</sub> must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I<sub>CLAMP</sub> rating is used instead of the V<sub>I</sub> rating.
- \*3: Applicable to the following pins: P01 to P07, PG1, PG2, PF0, PF1
  - Use under recommended operating conditions.
  - Use with DC voltage (current).
  - The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
  - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
  - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
  - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
  - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
  - Do not leave the HV (High Voltage) input pin unconnected.
  - Example of a recommended circuit:



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.


#### 2. Recommended Operating Conditions

(Vss = 0.0 V)

| Parameter                                                    | Symbol   | Symbol Valu                 |                   | Unit  | Remarks                     |                          |  |
|--------------------------------------------------------------|----------|-----------------------------|-------------------|-------|-----------------------------|--------------------------|--|
| Parameter                                                    | Syllibol | Min                         | Max               | Oilit | Tomano                      |                          |  |
|                                                              |          | 2.4*1*2                     | 5.5* <sup>1</sup> |       | In normal operation         | Other than on-chip debug |  |
| Power supply                                                 | Vcc      | 2.3                         | 5.5               | v     | Hold condition in stop mode | mode                     |  |
| voltage                                                      | V CC     | 2.9                         | 5.5               | ]     | In normal operation         | On-chip debug mode       |  |
|                                                              |          | 2.3                         | 5.5               |       | Hold condition in stop mode | On-chip debug mode       |  |
| Smoothing capacitor                                          | Cs       | 0.022                       | 1                 | μF    | *3                          |                          |  |
| Operating T <sub>A</sub> -40 +85 °C Other than on-chip debug |          | Other than on-chip debug mo | ode               |       |                             |                          |  |
| temperature                                                  | IA       | +5                          | +35               |       | On-chip debug mode          |                          |  |

<sup>\*1:</sup> The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.

<sup>\*3:</sup> Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the Vcc pin must have a capacitance larger than Cs. For the connection to a smoothing capacitor Cs, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the Vss pin when designing the layout of a printed circuit board.



# WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

<sup>\*2:</sup> The value is 2.88 V when the low-voltage detection reset is used.

### 3. DC Characteristics

(Vcc =  $5.0 \text{ V} \pm 10\%$ , Vss = 0.0 V, T<sub>A</sub> =  $-40^{\circ}\text{C}$  to  $+85^{\circ}\text{C}$ )

| Dawanatan                                              | Comple of        | Din nome                                        | O a madiki a m       | •       | Value |           |      | , IA = -40 C to +65 C                                      |
|--------------------------------------------------------|------------------|-------------------------------------------------|----------------------|---------|-------|-----------|------|------------------------------------------------------------|
| Parameter                                              | Symbol           | Pin name                                        | Condition            | Min 1   |       | Max       | Unit | Remarks                                                    |
|                                                        | Vіні             | P04                                             | *1                   | 0.7 Vcc | _     | Vcc+0.3   | V    | When CMOS input<br>level (hysteresis<br>input) is selected |
| "H" level<br>input voltage                             | V <sub>IHS</sub> | P01 to P07,<br>P12,<br>PF0, PF1,<br>PG1, PG2    | *1                   | 0.8 Vcc | _     | Vcc+0.3   | ٧    | Hysteresis input                                           |
|                                                        | VIHM             | PF2                                             | _                    | 0.7 Vcc | _     | 10.5      | V    | Hysteresis input*3                                         |
|                                                        | VıL              | P04                                             | *1                   | Vss-0.3 | _     | 0.3 Vcc   | V    | When CMOS input<br>level (hysteresis<br>input) is selected |
| "L" level input voltage                                | VILS             | P01 to P07,<br>P12,<br>PF0, PF1,<br>PG1, PG2    | *1                   | Vss-0.3 | _     | 0.2 Vcc   | V    | Hysteresis input                                           |
|                                                        | VILM             | PF2                                             | _                    | Vss-0.3 | _     | 0.3 Vcc   | V    | Hysteresis input                                           |
| Open-drain output application voltage                  | <b>V</b> D       | PF2, P12                                        | _                    | Vss-0.3 | _     | Vss + 5.5 | V    |                                                            |
| "H" level                                              | V <sub>OH1</sub> | Output pins<br>other than P05,<br>P06, P12, PF2 | Iон = -4 mA          | Vcc-0.5 | _     | _         | V    |                                                            |
| voltage                                                | V <sub>OH2</sub> | P05, P06                                        | Iон = -8 mA          | Vcc-0.5 | _     | _         | V    |                                                            |
| "L" level<br>output<br>voltage                         | V <sub>OL1</sub> | Output pins<br>other than P05,<br>P06           | IoL = 4 mA           | _       | _     | 0.4       | V    |                                                            |
| voitage                                                | V <sub>OL2</sub> | P05, P06                                        | IoL = 12 mA          | 1       | _     | 0.4       | V    |                                                            |
| Input leak<br>current (Hi-Z<br>output leak<br>current) | lu               | All input pins                                  | 0.0 V < Vı < Vcc     | -5      | _     | +5        | μΑ   | When pull-up resistance is disabled                        |
| Pull-up<br>resistance                                  | Rpull            | P01 to P07,<br>PG1, PG2                         | V <sub>I</sub> = 0 V | 25      | 50    | 100       | kΩ   | When pull-up resistance is enabled                         |
| Input capacitance                                      | Cin              | Other than Vcc and Vss                          | f = 1 MHz            | _       | 5     | 15        | pF   |                                                            |

(Vcc =  $5.0 \text{ V} \pm 10\%$ , Vss = 0.0 V, T<sub>A</sub> =  $-40^{\circ}\text{C}$  to  $+85^{\circ}\text{C}$ )

| Dawamatan           | Coursels at | Din                                  | 0                                                                                             |     | Value       |      | 11   | Domes also                                                 |
|---------------------|-------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-----|-------------|------|------|------------------------------------------------------------|
| Parameter           | Symbol      | Pin name                             | Condition                                                                                     | Min | Min Typ Max |      | Unit | Remarks                                                    |
|                     |             |                                      | Vcc = 5.5 V<br>Fcн = 32 MHz                                                                   | _   | 13          | 17   | mA   | Flash memory<br>product (except<br>writing and<br>erasing) |
|                     | Icc         |                                      | FMP = 16 MHz<br>Main clock mode<br>(divided by 2)                                             | _   | 33.5        | 39.5 | mA   | Flash memory product (at writing and erasing)              |
|                     |             |                                      |                                                                                               | _   | 15          | 21   | mA   | At A/D conversion                                          |
| Power               | Iccs        | Vcc<br>(External clock<br>operation) | Vcc = 5.5 V<br>FcH = 32 MHz<br>FMP = 16 MHz<br>Main sleep mode<br>(divided by 2)              | _   | 5.5         | 9    | mA   |                                                            |
|                     | IccL        |                                      | Vcc = 5.5 V<br>FcL = 32 kHz<br>FMPL = 16 kHz<br>Subclock mode<br>(divided by 2)<br>TA = +25°C | _   | 65          | 153  | μА   |                                                            |
| supply<br>current*2 | Iccls       |                                      | Vcc = 5.5 V<br>FcL = 32 kHz<br>FMPL = 16 kHz<br>Subsleep mode<br>(divided by 2)<br>TA = +25°C | _   | 10          | 84   | μА   |                                                            |
|                     | Ісст        |                                      | Vcc = 5.5 V<br>FcL = 32 kHz<br>Watch mode<br>Main stop mode<br>T <sub>A</sub> = +25°C         | _   | 5           | 30   | μΑ   |                                                            |
|                     | Іссмся      | Vcc                                  | Vcc = 5.5 V<br>Fcrh = 10 MHz<br>FMP = 10 MHz<br>Main CR clock<br>mode                         | _   | 8.6         | _    | mA   |                                                            |
|                     | Iccscr      | <b>V</b> 00                          | Vcc = 5.5 V<br>Sub-CR clock<br>mode<br>(divided by 2)<br>T <sub>A</sub> = +25°C               | _   | 110         | 410  | μА   |                                                            |

(Continued)

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$ 

|                              |        |                                      | <u> </u>                                                                                     | ( <b>v</b> 00 – <b>0</b> . | 0 1210/0 | ), <b>v</b> 00 – v | 0.0 V, | 1A = -40  C (0 + 65  C)                         |
|------------------------------|--------|--------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|----------|--------------------|--------|-------------------------------------------------|
| Parameter                    | Symbol | Pin name                             | Condition                                                                                    |                            | Value    |                    | Unit   | Remarks                                         |
| larameter                    | Cymbol | T iii iidiiic                        | Condition                                                                                    | Min                        | Тур      | Max                | Oiiii  | Tromaino                                        |
|                              | Ісстѕ  | Vcc<br>(External clock<br>operation) | Vcc = 5.5 V<br>Fch = 32 MHz<br>Timebase timer<br>mode<br>TA = +25°C                          | _                          | 1.1      | 3                  | mA     |                                                 |
|                              | Іссн   | ореганопу                            | Vcc = 5.5 V<br>Substop mode<br>T <sub>A</sub> = +25°C                                        | _                          | 3.5      | 22.5               | μA     | Main stop mode<br>for single clock<br>selection |
| Power<br>supply<br>current*2 | ILVD   |                                      | Current<br>consumption for<br>low-voltage<br>detection circuit<br>only                       | _                          | 37       | 54                 | μА     |                                                 |
|                              | Іспн   | Vcc                                  | Current<br>consumption for<br>the internal main<br>CR oscillator                             | _                          | 0.5      | 0.6                | mA     |                                                 |
|                              | ICRL   |                                      | Current<br>consumption for<br>the internal sub-CR<br>oscillator<br>oscillating at<br>100 kHz | _                          | 20       | 72                 | μА     |                                                 |

<sup>\*1:</sup> The input level of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

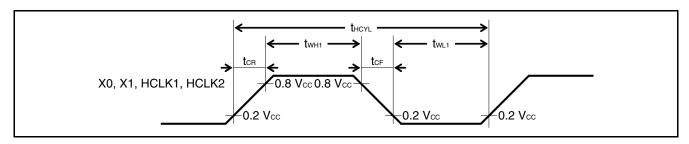
- See "4. AC Characteristics: (1) Clock Timing" for Fch and Fcl.
- See "4. AC Characteristics: (2) Source Clock/Machine Clock" for FMP and FMPL.

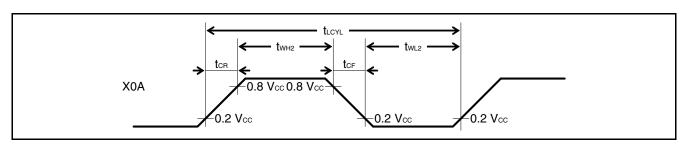
<sup>\*2: •</sup> The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (ILVD) to one of the value from Icc to Icch. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the Iow-voltage detection circuit, the current consumption of the CR oscillators (ICRH, ICRL) and a specified value. In on-chip debug mode, the CR oscillator (ICRH) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

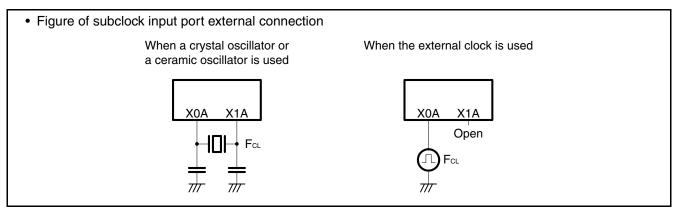
<sup>\*3:</sup> PF2 act as high voltage supply for the flash memory during program and erase. It can tolerate high voltage input. For details, see section "6. Flash Memory Program/Erase Characteristics".

### 4. AC Characteristics

### (1) Clock Timing


(Vcc = 2.4 V to 5.5 V, Vss = 0.0 V,  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ )


| Donomotor          | Cumbal | Din nome                   | Condition | ,    | Value  |       | Unit | Domayka                                                                                      |
|--------------------|--------|----------------------------|-----------|------|--------|-------|------|----------------------------------------------------------------------------------------------|
| Parameter          | Symbol | Pin name                   | Condition | Min  | Тур    | Max   | Unit | Remarks                                                                                      |
|                    |        | X0, X1                     | _         | 1    | _      | 16.25 | MHz  | When the main oscillation circuit is used                                                    |
|                    | Fсн    | X0,<br>HCLK1,<br>HCLK2     | X1 open   | 1    | _      | 12    | MHz  | When the main external                                                                       |
|                    |        | X0, X1,<br>HCLK1,<br>HCLK2 | _         | 1    | _      | 32.5  | MHz  | clock is used                                                                                |
|                    |        |                            |           | 9.7  | 10     | 10.3  | MHz  | When the main CR clock is                                                                    |
|                    |        |                            | _         | 7.76 | 8      | 8.24  | MHz  | used                                                                                         |
| Clock frequency Fo | Fcrн   | _                          |           | 0.97 | 1      | 1.03  | MHz  | 2.4 V ≤ Vcc < 5.5 V(0 °C ≤ T <sub>A</sub> ≤ 40 °C)                                           |
|                    |        |                            |           | 9.5  | 10     | 10.5  | MHz  | When the main CR clock is                                                                    |
|                    |        |                            |           | 7.6  | 8      | 8.4   | MHz  | used<br>2.4 V ≤ Vcc < 5.5 V                                                                  |
|                    |        |                            |           | 0.95 | 1      | 1.05  | MHz  | $(-40 \text{ °C} \le \text{Ta} < 0 \text{ °C}, 40 \text{ °C} < \text{Ta} \le 85 \text{ °C})$ |
|                    | FcL    | X0A, X1A                   | _         | 1    | 32.768 | _     | kHz  | When the sub oscillation circuit is used                                                     |
|                    |        |                            |           | 1    | 32.768 |       | kHz  | When the sub-external clock is used                                                          |
|                    | FCRL   | _                          | _         | 50   | 100    | 200   | kHz  | When the sub-CR clock is used                                                                |
|                    |        | X0, X1                     | _         | 61.5 | _      | 1000  | ns   | When the main oscillation circuit is used                                                    |
| Clock cycle time   | thcyl  | X0,<br>HCLK1,<br>HCLK2     | X1 open   | 83.4 | _      | 1000  | ns   | When the external clock is                                                                   |
|                    |        | X0, X1,<br>HCLK1,<br>HCLK2 | _         | 30.8 | _      | 1000  | ns   | used                                                                                         |
|                    | tLCYL  | X0A, X1A                   | _         | _    | 30.5   | _     | μs   | When the subclock is used                                                                    |


(Continued)

(Vcc = 2.4 V to 5.5 V, Vss = 0.0 V,  $T_A$  = -40°C to +85°C)

|                         | I                |                            |           | ,    | V-1   |     | 1                                                                                                                                                                   | <br>                                                   |
|-------------------------|------------------|----------------------------|-----------|------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Parameter               | Symbol           | Pin name                   | Condition |      | Value |     | Unit                                                                                                                                                                | Remarks                                                |
| T didilictor            | Cymbol           | i iii iidiiic              | Condition | Min  | Тур   | Max | 0                                                                                                                                                                   | ricinarko                                              |
| Input clock pulse width | tw <sub>H1</sub> | X0,<br>HCLK1,<br>HCLK2     | X1 open   | 33.4 | _     | _   | ns                                                                                                                                                                  | When the external clock is                             |
|                         | tw∟1             | X0, X1,<br>HCLK1,<br>HCLK2 | _         | 12.4 | _     | _   | ns                                                                                                                                                                  | used, the duty ratio should range between 40% and 60%. |
|                         | twH2<br>twL2     | X0A                        |           | _    | 15.2  | _   | μs                                                                                                                                                                  | 60%.                                                   |
| Input clock rise        | tcn              | X0,<br>HCLK1,<br>HCLK2     | X1 open   | _    | _     | 5   | ns                                                                                                                                                                  | When the external clock is                             |
| time and fall time      | tcf              | X0, X1,<br>HCLK1,<br>HCLK2 | _         | _    | _     | 5   | ns                                                                                                                                                                  | used                                                   |
| CR oscillation          | <b>t</b> crhwk   | _                          | _         | _    | _     | 80  | μs                                                                                                                                                                  | When the main CR clock is used                         |
| start time              | tcrlwk           | _                          | _         | _    | _     | 10  | used, the duty rational range between 40° 60%.  used, the duty rational range between 40° 60%.  when the external used used  when the main CR used  When the sub-CR | When the sub-CR clock is used                          |



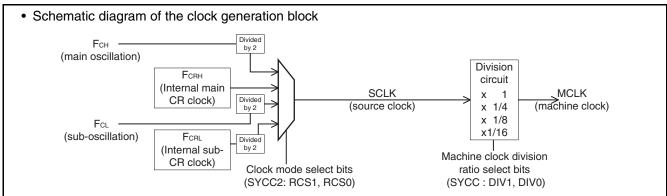


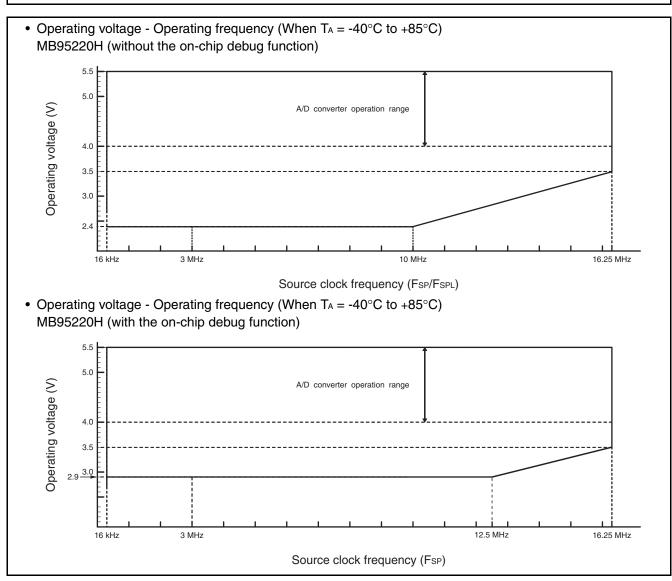



#### (2) Source Clock/Machine Clock

 $(Vcc = 5.0 V\pm 10\%, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$ 

| Parameter                                                       | Cumbal          | Pin  |        | Value  |        | Unit | Remarks                                                                                                                                  |
|-----------------------------------------------------------------|-----------------|------|--------|--------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                                       | Symbol          | name | Min    | Тур    | Max    | Unit | nemarks                                                                                                                                  |
|                                                                 |                 |      | 61.5   | _      | 2000   | ns   | When the main external clock is used<br>Min: FcH = 32.5 MHz, divided by 2<br>Max: FcH = 1 MHz, divided by 2                              |
| Source clock cycle time*1                                       | <b>t</b> sclk   | _    | 100    | _      | 1000   | ns   | When the main CR clock is used Min: Fcrh = 10 MHz Max: Fcrh = 1 MHz                                                                      |
|                                                                 |                 |      |        | 61     | _      | μs   | When the sub-CR clock is used FcL = 32.768 kHz, divided by 2                                                                             |
|                                                                 |                 |      |        | 20     | _      | μs   | When the sub-oscillation clock is used FCRL = 100 kHz, divided by 2                                                                      |
|                                                                 | Fsp             |      | 0.5    |        | 16.25  | MHz  | When the main oscillation clock is used                                                                                                  |
| Source clock                                                    | 1 54            |      | 1      |        | 10     | MHz  | When the main CR clock is used                                                                                                           |
| frequency                                                       | Fspl            | _    | 1      | 16.384 | _      | kHz  | When the sub-oscillation clock is used                                                                                                   |
| Trequency                                                       |                 |      |        | 50     | _      | kHz  | When the sub-CR clock is used FCRL = 100 kHz, divided by 2                                                                               |
|                                                                 |                 |      | 61.5   | _      | 32000  | ns   | When the main oscillation clock is used Min: $F_{SP} = 16.25$ MHz, no division Max: $F_{SP} = 0.5$ MHz, divided by 16                    |
| Machine clock<br>cycle time*2                                   |                 |      | 100    | _      | 16000  | ns   | When the main CR clock is used Min: F <sub>SP</sub> = 10 MHz Max: F <sub>SP</sub> = 1 MHz, divided by 16                                 |
| instruction execution time)                                     | tmclk           |      | 61     |        | 976.5  | μs   | When the sub-oscillation clock is used Min: F <sub>SPL</sub> = 16.384 kHz, no division Max: F <sub>SPL</sub> = 16.384 kHz, divided by 16 |
| Machine clock cycle time*2 (minimum instruction execution time) |                 |      | 20     |        | 320    | μs   | When the sub-CR clock is used Min: F <sub>SPL</sub> = 50 kHz, no division Max: F <sub>SPL</sub> = 50 kHz, divided by 16                  |
|                                                                 | F <sub>мР</sub> |      | 0.031  | _      | 16.25  | MHz  | When the main oscillation clock is used                                                                                                  |
| Machine clock                                                   | I IVIF          |      | 0.0625 | _      | 10     | MHz  | When the main CR clock is used                                                                                                           |
| frequency                                                       |                 | _    | 1.024  | _      | 16.384 | kHz  | When the sub-oscillation clock is used                                                                                                   |
|                                                                 | FMPL            |      | 3.125  | _      | 50     | kHz  | When the sub-CR clock is used FCRL = 100 kHz                                                                                             |


<sup>\*1:</sup> This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits (SYCC: DIV1 and DIV0). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC: DIV1 and DIV0). In addition, a source clock can be selected from the following.

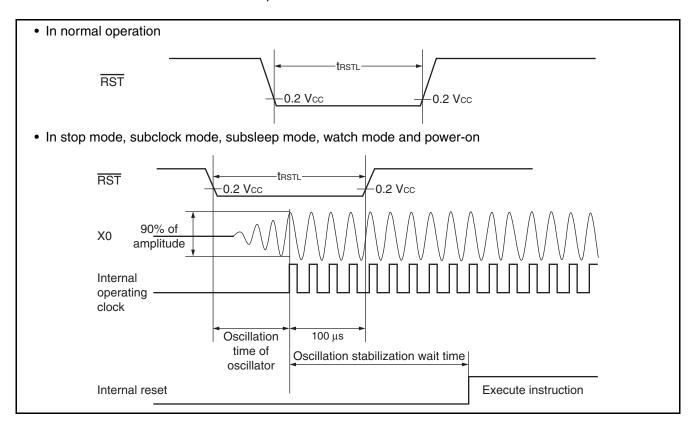

- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2



- \*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.
  - Source clock (no division)Source clock divided by 4

  - Source clock divided by 8
  - Source clock divided by 16

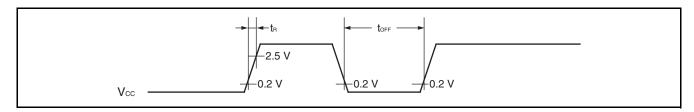




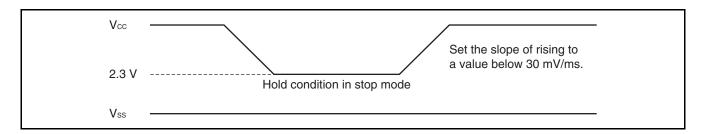

#### (3) External Reset

 $(Vcc = 5.0 V\pm 10\%, Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$ 

| Parameter                 | Symbol        | Value                                    | Unit | Remarks |                                                                       |
|---------------------------|---------------|------------------------------------------|------|---------|-----------------------------------------------------------------------|
| Parameter                 | Syllibol      | Min                                      | Max  | Oilit   | neiliaiks                                                             |
|                           |               | 2 tmcLK*1                                | _    | ns      | In normal operation                                                   |
| RST "L" level pulse width | <b>t</b> rstl | Oscillation time of the oscillator*2+100 | _    | μs      | In stop mode, subclock mode, sub-sleep mode, watch mode, and power on |
|                           |               | 100                                      | _    | μs      | In timebase timer mode                                                |


- \*1: See " (2) Source Clock/Machine Clock" for tmclk.
- \*2: The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of µs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several µs and several ms.



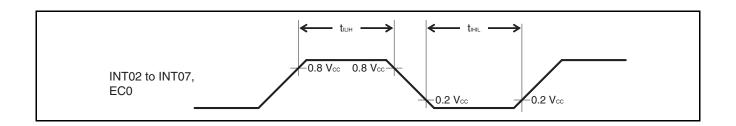

#### (4) Power-on Reset

 $(Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$ 

| Parameter                | Symbol Condition |           | Value |     | Unit  | Remarks                  |
|--------------------------|------------------|-----------|-------|-----|-------|--------------------------|
| raiametei                | Syllibol         | Condition | Min   | Max | Oilit | nemarks                  |
| Power supply rising time | t <sub>R</sub>   | _         | _     | 50  | ms    |                          |
| Power supply cutoff time | <b>t</b> off     | _         | 1     | _   | ms    | Wait time until power-on |



Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.




#### (5) Peripheral Input Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, TA = -40°C to +85°C)$ 

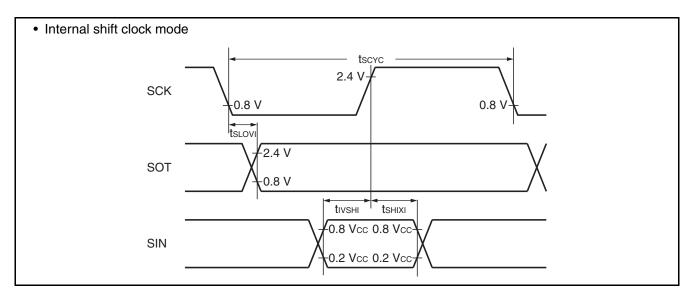
| Parameter                        | Symbol Pin name |                       | Val              | Unit |      |  |
|----------------------------------|-----------------|-----------------------|------------------|------|------|--|
| Farameter                        | Syllibol        | Fill flame            | Min              | Max  | Oill |  |
| Peripheral input "H" pulse width | tılıh           | INT02 to INT07, EC0   | 2 <b>t</b> mclk* | _    | ns   |  |
| Peripheral input "L" pulse width | tıнıL           | 111102 10 111107, EOU | 2 <b>t</b> mclk* |      | ns   |  |

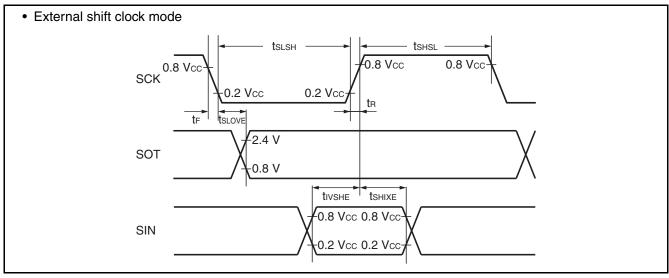
<sup>\*</sup> See "(2) Source Clock/Machine Clock" for tmclk.



#### (6) LIN-UART Timing (Available only in MB95F222H/F222K/F223H/F223K)

Sampling is executed at the rising edge of the sampling  $clock^{*1}$ , and serial clock delay is disabled\*2. (ESCR register:SCES bit = 0, ECCR register:SCDE bit = 0)


 $(Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$ 


| Dorometer                                      | Symbol Bin nom |          | Condition                                             | Va                            | Unit         |      |  |
|------------------------------------------------|----------------|----------|-------------------------------------------------------|-------------------------------|--------------|------|--|
| Parameter                                      | Symbol         | Pin name | Condition                                             | Min                           | Max          | Oill |  |
| Serial clock cycle time                        | tscyc          | SCK      |                                                       | <b>5 t</b> мськ* <sup>3</sup> | _            | ns   |  |
| $SCK \downarrow \to SOT$ delay time            | tslovi         | SCK, SOT | Internal clock                                        | -95                           | +95          | ns   |  |
| Valid SIN → SCK ↑                              | tıvsнı         | SCK, SIN | operation output pin:<br>C <sub>L</sub> = 80 pF+1 TTL | tмськ*3+190                   | _            | ns   |  |
| SCK $\uparrow \rightarrow$ valid SIN hold time | tshixi         | SCK, SIN |                                                       | 0                             | _            | ns   |  |
| Serial clock "L" pulse width                   | tslsh          | SCK      |                                                       | <b>3 t</b> мськ*3—tв          | _            | ns   |  |
| Serial clock "H" pulse width                   | <b>t</b> shsl  | SCK      |                                                       | tмськ*3+95                    | _            | ns   |  |
| $SCK \downarrow \to SOT$ delay time            | tslove         | SCK, SOT | External clock                                        | _                             | 2 tмськ*3+95 | ns   |  |
| Valid SIN → SCK ↑                              | tivshe         | SCK, SIN | operation output pin:                                 | 190                           | _            | ns   |  |
| SCK $\uparrow \rightarrow$ valid SIN hold time | tshixe         | SCK, SIN | C∟ = 80 pF+1 TTL                                      | tмськ*3+95                    | _            | ns   |  |
| SCK fall time                                  | t⊧             | SCK      |                                                       | _                             | 10           | ns   |  |
| SCK rise time                                  | t⊓             | SCK      |                                                       | _                             | 10           | ns   |  |

<sup>\*1:</sup> There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

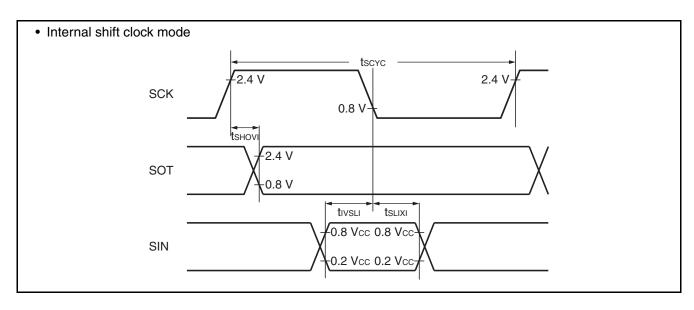
<sup>\*2:</sup> The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

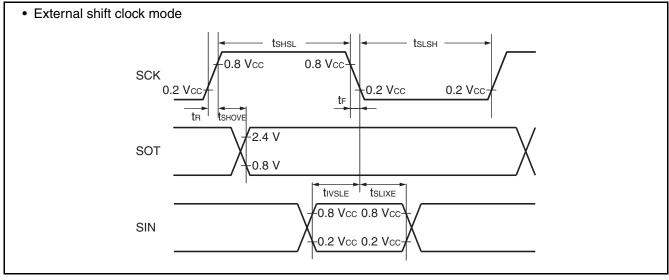
<sup>\*3:</sup> See "(2) Source Clock/Machine Clock" for tmclk.





Sampling is executed at the falling edge of the sampling clock $^{*1}$ , and serial clock delay is disabled $^{*2}$ . (ESCR register:SCES bit = 1, ECCR register:SCDE bit = 0)


 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, TA = -40^{\circ}C to +85^{\circ}C)$ 


| Parameter                                        | Symbol Pin name |              | Condition                            | Va               | Unit         |       |
|--------------------------------------------------|-----------------|--------------|--------------------------------------|------------------|--------------|-------|
| raiailletei                                      | Symbol          | Fili lialile | Condition                            | Min              | Max          | Oilit |
| Serial clock cycle time                          | tscyc           | SCK          |                                      | <b>5</b> tmclk*3 | _            | ns    |
| SCK ↑→ SOT delay time                            | tshovi          | SCK, SOT     | Internal clock operation output pin: | -95              | +95          | ns    |
| Valid SIN $ ightarrow$ SCK $\downarrow$          | tıvslı          | SCK, SIN     | $C_L = 80 \text{ pF+1 TTL}$          | tмськ*3+190      | _            | ns    |
| $SCK \downarrow \rightarrow valid SIN hold time$ | tslixi          | SCK, SIN     |                                      | 0                | _            | ns    |
| Serial clock "H" pulse width                     | tshsl           | SCK          |                                      | 3 tmclk*3-tr     | _            | ns    |
| Serial clock "L" pulse width                     | tslsh           | SCK          |                                      | tмськ*3+95       | _            | ns    |
| SCK ↑→ SOT delay time                            | <b>t</b> shove  | SCK, SOT     | External clock                       | _                | 2 tмськ*3+95 | ns    |
| Valid SIN $ ightarrow$ SCK $\downarrow$          | tivsle          | SCK, SIN     | operation output pin:                | 190              | _            | ns    |
| $SCK \downarrow \rightarrow valid SIN hold time$ | tslixe          | SCK, SIN     | C <sub>L</sub> = 80 pF+1 TTL         | tмськ*3+95       | _            | ns    |
| SCK fall time                                    | t⊧              | SCK          |                                      | _                | 10           | ns    |
| SCK rise time                                    | t⊓              | SCK          |                                      | _                | 10           | ns    |

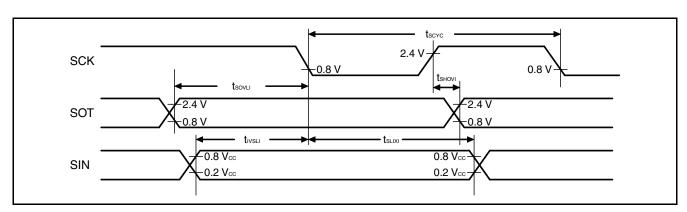
<sup>\*1:</sup> There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

<sup>\*2:</sup> The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

<sup>\*3:</sup> See "(2) Source Clock/Machine Clock" for tmclk.






Sampling is executed at the rising edge of the sampling  $clock^{*1}$ , and serial clock delay is enabled\*2. (ESCR register:SCES bit = 0, ECCR register:SCDE bit = 1)

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, TA = -40^{\circ}C to +85^{\circ}C)$ 

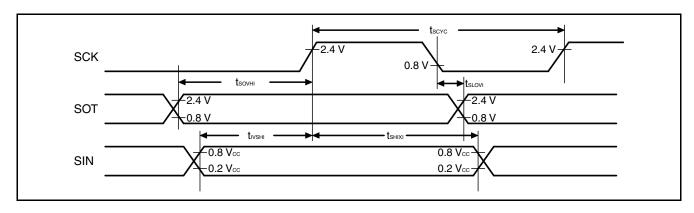
| Parameter                                        | Symbol | Pin name     | Condition                    | Va                           | Unit      |       |
|--------------------------------------------------|--------|--------------|------------------------------|------------------------------|-----------|-------|
| Farameter                                        | Symbol | Fili lialile | Condition                    | Min                          | Max       | Oilit |
| Serial clock cycle time                          | tscyc  | SCK          |                              | <b>5</b> tмськ* <sup>3</sup> | _         | ns    |
| SCK $\uparrow \rightarrow$ SOT delay time        | tsноvі | SCK, SOT     | Internal clock               | -95                          | +95       | ns    |
| Valid SIN $\rightarrow$ SCK $\downarrow$         | tıvsıı | SCK, SIN     | operation output pin:        | tмськ*3+190                  | _         | ns    |
| SCK $\downarrow \rightarrow$ valid SIN hold time | tslixi | SCK, SIN     | C <sub>L</sub> = 80 pF+1 TTL | 0                            | _         | ns    |
| $SOT \to SCK \downarrow delay\ time$             | tsovli | SCK, SOT     |                              | _                            | 4 tмськ*3 | ns    |

<sup>\*1:</sup> There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

<sup>\*3:</sup> See "(2) Source Clock/Machine Clock" for tmclk.



<sup>\*2:</sup> The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

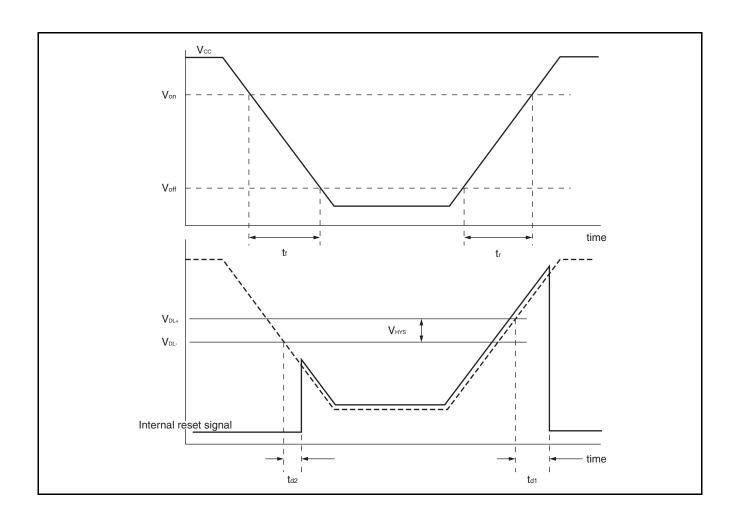

Sampling is executed at the falling edge of the sampling  $clock^{*1}$ , and serial clock delay is enabled\*2. (ESCR register:SCES bit = 1, ECCR register:SCDE bit = 1)

 $(Vcc = 5.0 V \pm 10\%, Vss = 0.0 V, TA = -40^{\circ}C to +85^{\circ}C)$ 

| Parameter                                      | Symbol         | Pin name     | Condition                    | Va               | Unit                   |       |
|------------------------------------------------|----------------|--------------|------------------------------|------------------|------------------------|-------|
| Parameter                                      | Symbol         | Fili lialile | Condition                    | Min              | Max                    | Oilit |
| Serial clock cycle time                        | tscyc          | SCK          |                              | <b>5</b> tmclk*3 | _                      | ns    |
| $SCK \downarrow \to SOT$ delay time            | <b>t</b> sLovi | SCK, SOT     | Internal clock               | -95              | +95                    | ns    |
| Valid SIN → SCK ↑                              | tıvsнı         | SCK, SIN     | operation output pin:        | tмськ*3+190      | _                      | ns    |
| SCK $\uparrow \rightarrow$ valid SIN hold time | tshixi         | SCK, SIN     | C <sub>L</sub> = 80 pF+1 TTL | 0                | _                      | ns    |
| $SOT \to SCK \uparrow delay time$              | tsovні         | SCK, SOT     |                              | _                | 4 t <sub>MCLK</sub> *3 | ns    |

<sup>\*1:</sup>There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

<sup>\*3:</sup> See "(2) Source Clock/Machine Clock" for tmclk.




<sup>\*2:</sup> The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

### (7) Low-voltage Detection

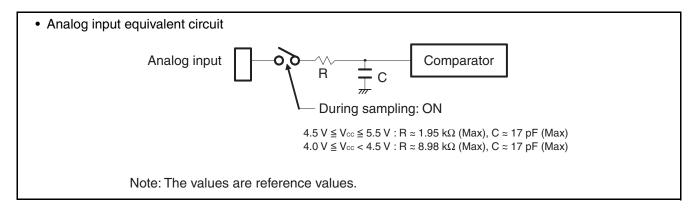
 $(Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$ 

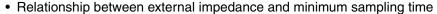
| Devementer                            | Cumbal           |      | Value |      | I I mil | Domoniko                                                                                              |
|---------------------------------------|------------------|------|-------|------|---------|-------------------------------------------------------------------------------------------------------|
| Parameter                             | Symbol           | Min  | Тур   | Max  | Unit    | Remarks                                                                                               |
| Release voltage                       | $V_{DL+}$        | 2.52 | 2.7   | 2.88 | V       | At power supply rise                                                                                  |
| Detection voltage                     | V <sub>DL</sub>  | 2.42 | 2.6   | 2.78 | V       | At power supply fall                                                                                  |
| Hysteresis width                      | V <sub>HYS</sub> | 70   | 100   | _    | mV      |                                                                                                       |
| Power supply start voltage            | Voff             | _    | _     | 2.3  | V       |                                                                                                       |
| Power supply end voltage              | Von              | 4.9  | _     | _    | V       |                                                                                                       |
| Power supply voltage                  | tr               | 1    | _     | _    | μs      | Slope of power supply that the reset release signal generates                                         |
| change time<br>(at power supply rise) |                  | _    | 3000  | _    | μs      | Slope of power supply that the reset release signal generates within the rating (V <sub>DL+</sub> )   |
| Power supply voltage                  |                  | 300  | _     | _    | μs      | Slope of power supply that the reset detection signal generates                                       |
| change time<br>(at power supply fall) | tr               | _    | 300   | _    | μs      | Slope of power supply that the reset detection signal generates within the rating (V <sub>DL</sub> -) |
| Reset release delay time              | <b>t</b> d1      | _    | _     | 300  | μs      |                                                                                                       |
| Reset detection delay time            | t <sub>d2</sub>  | _    | _     | 20   | μs      |                                                                                                       |

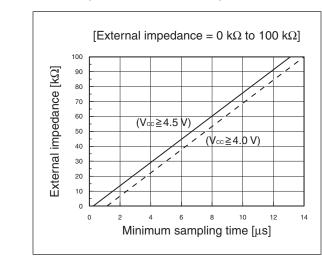


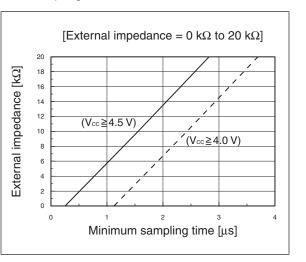
#### 5. A/D Converter

### (1) A/D Converter Electrical Characteristics


 $(Vcc = 4.0 \text{ V to } 5.5 \text{ V}, Vss = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 


|                               |                  |             | Value       |             | 0 V, 1A = -40 0 10 +00 0 |                                                                                                               |
|-------------------------------|------------------|-------------|-------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------|
| Parameter                     | Symbol           |             |             | Unit        | Remarks                  |                                                                                                               |
|                               |                  | Min         | Тур         | Max         |                          |                                                                                                               |
| Resolution                    |                  | _           | _           | 10          | bit                      |                                                                                                               |
| Total error                   |                  | -3          | _           | +3          | LSB                      |                                                                                                               |
| Linearity error               | _                | -2.5        | _           | +2.5        | LSB                      |                                                                                                               |
| Differential linear error     |                  | -1.9        | _           | +1.9        | LSB                      |                                                                                                               |
| Zero transition voltage       | Vот              | Vss-1.5 LSB | Vss+0.5 LSB | Vss+2.5 LSB | ٧                        |                                                                                                               |
| Full-scale transition voltage | V <sub>FST</sub> | Vcc-4.5 LSB | Vcc-2 LSB   | Vcc+0.5 LSB | V                        |                                                                                                               |
| Compare time                  |                  | 0.9         | _           | 16500       | μs                       | 4.5 V ≤ Vcc ≤ 5.5 V                                                                                           |
| Compare time                  | _                | 1.8         | _           | 16500       | μs                       | 4.0 V ≤ Vcc < 4.5 V                                                                                           |
| Sampling time                 |                  | 0.6         | _           | ∞           | μs                       | $4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{ V},$ with external impedance < $5.4 \text{ k}\Omega$ |
| Sampling lime                 | _                | 1.2         | _           | ∞           | μs                       | $4.0~V \le V_{CC} \le 4.5~V,$ with external impedance < $2.4~k\Omega$                                         |
| Analog input current          | lain             | -0.3        | _           | +0.3        | μΑ                       |                                                                                                               |
| Analog input voltage          | Vain             | Vss         | _           | Vcc         | V                        |                                                                                                               |


#### (2) Notes on Using the A/D Converter


#### • External impedance of analog input and its sampling time

• The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.

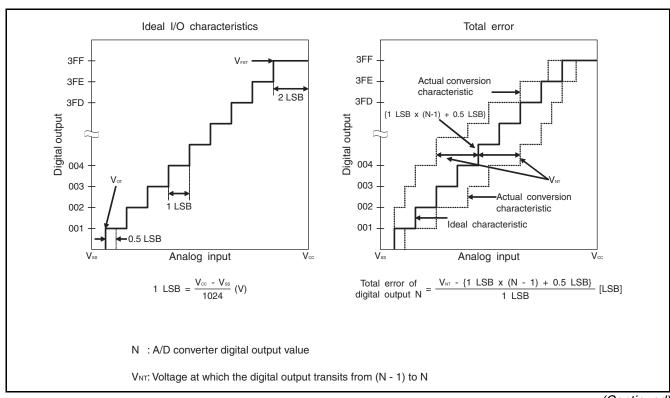






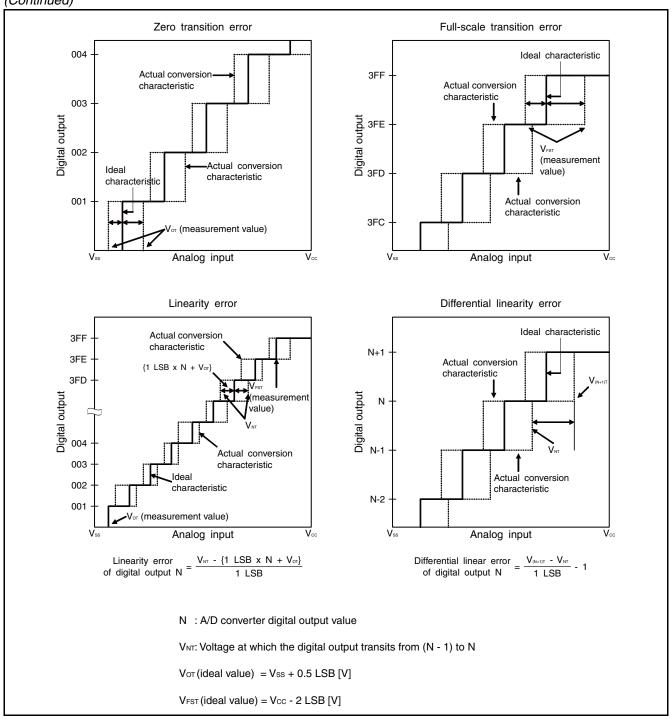


#### • A/D conversion error


As |Vcc-Vss| decreases, the A/D conversion error increases proportionately.

#### (3) Definitions of A/D Converter Terms

Resolution


It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into  $2^{10} = 1024$ .

- Linearity error (unit: LSB)
  - It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000"  $\leftarrow$   $\rightarrow$  "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111"  $\leftarrow$   $\rightarrow$  "11 1111 1110") of the same device.
- Differential linear error (unit: LSB)
   It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.
- Total error (unit: LSB)
   It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.



(Continued)

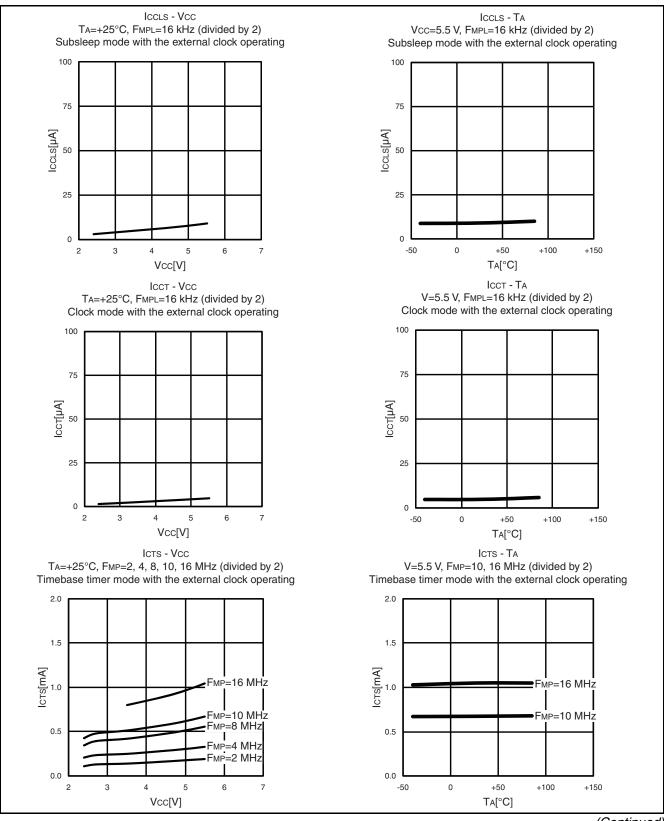
#### (Continued)



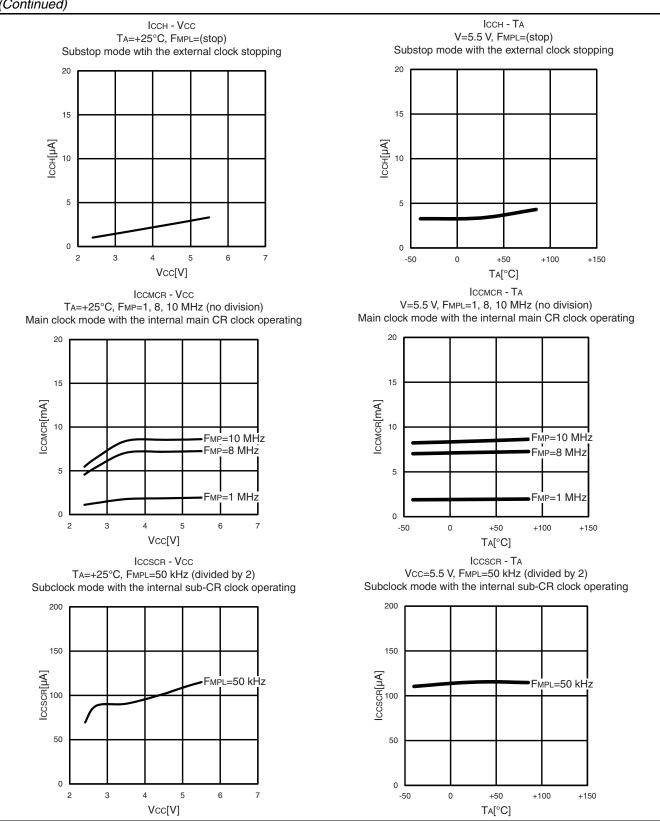
#### 6. Flash Memory Program/Erase Characteristics

| Parameter                                 | Value |        |                  | Unit  | Remarks                                                                    |  |
|-------------------------------------------|-------|--------|------------------|-------|----------------------------------------------------------------------------|--|
| raiailletei                               | Min   | Тур    | Max              | Oille | nemarks                                                                    |  |
| Chip erase time                           | _     | 1*1    | 15* <sup>2</sup> | s     | 00н programming time prior to erasure is excluded.                         |  |
| Byte programming time                     | _     | 32     | 3600             | μs    | System-level overhead is excluded.                                         |  |
| Erase/program voltage                     | 9.5   | 10     | 10.5             | V     | The erase/program voltage must be applied to the PF2 pin in erase/program. |  |
| Current drawn on PF2                      | _     | _      | 5.0              | mA    | Current consumption of PF2 pin during flash memory program/erase           |  |
| Erase/program cycle                       | _     | 100000 | _                | cycle |                                                                            |  |
| Power supply voltage at erase/<br>program | 3.0   | _      | 5.5              | V     |                                                                            |  |
| Flash memory data retention time          | 20*3  | _      | _                | year  | Average T <sub>A</sub> = +85°C                                             |  |

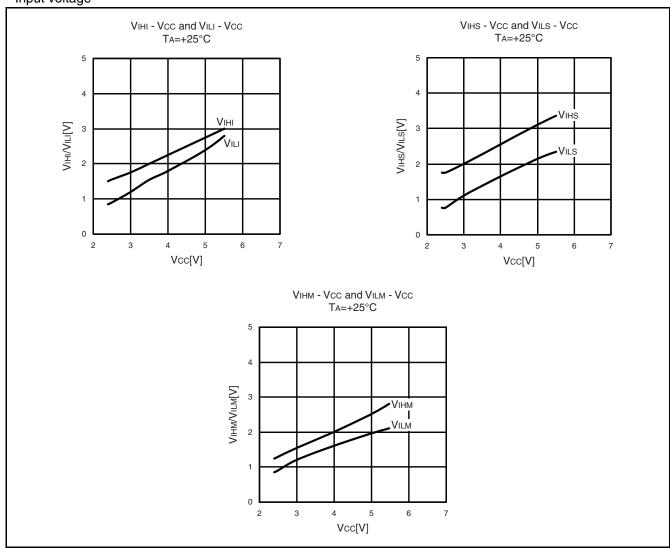
<sup>\*1:</sup>  $T_A = +25$ °C,  $V_{CC} = 5.0 \text{ V}$ , 100000 cycles


<sup>\*2:</sup>  $T_A = +85$ °C,  $V_{CC} = 4.5$  V, 100000 cycles

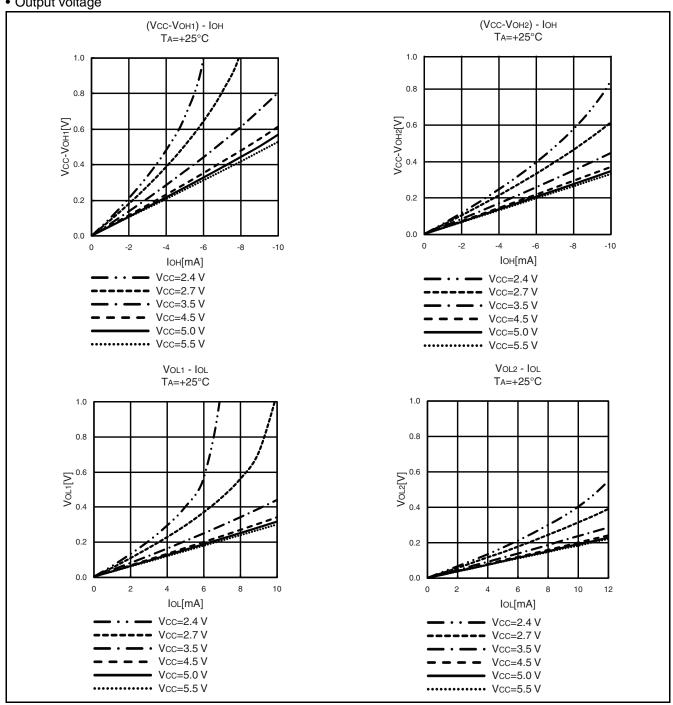
<sup>\*3:</sup> This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test by using the Arrhenius equation with the average temperature being  $+85^{\circ}$ C).


### ■ SAMPLE ELECTRICAL CHARACTERISTICS

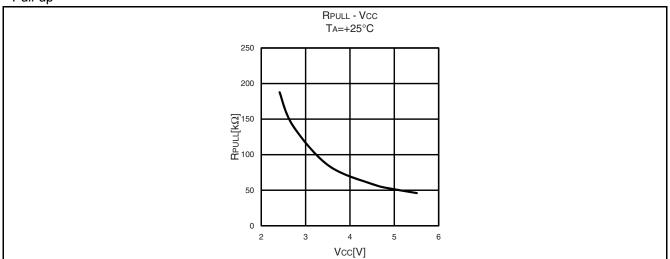
• Power supply current • temperature







#### (Continued)




### • Input voltage

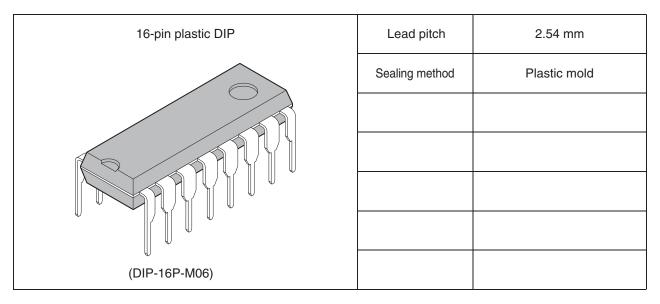


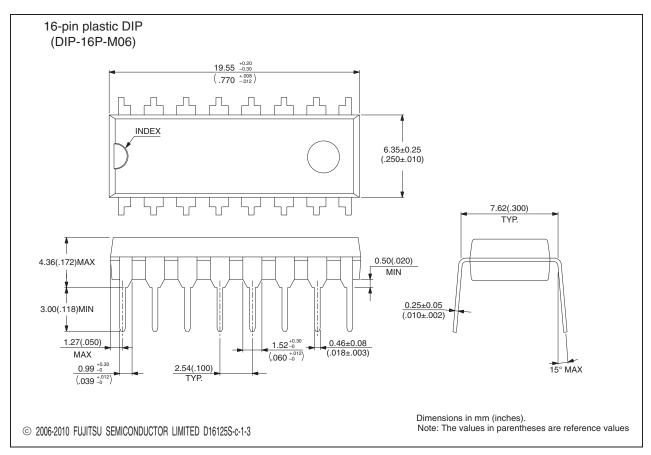
#### Output voltage







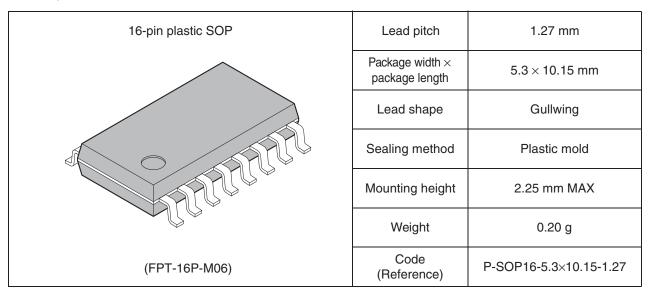

### **■ MASK OPTIONS**

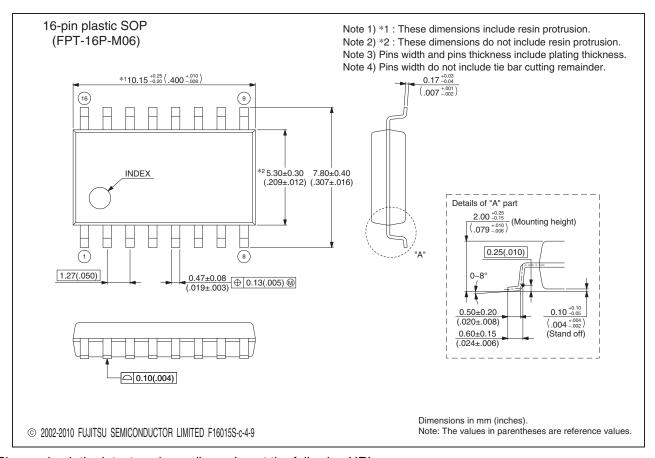

| No. | Part Number                                                              | Part Number MB95F222H MB95F223H     |                                  |  |  |
|-----|--------------------------------------------------------------------------|-------------------------------------|----------------------------------|--|--|
|     | Selectable/Fixed                                                         | Fixed                               | Fixed                            |  |  |
| 1   | With low-voltage detection reset     Without low-voltage detection reset | Without low-voltage detection reset | With low-voltage detection reset |  |  |
| 2   | Reset     With dedicated reset input     Without dedicated reset input   | With dedicated reset input          | Without dedicated reset input    |  |  |

### **■ ORDERING INFORMATION**

| Part Number                                                                          | Package                             |
|--------------------------------------------------------------------------------------|-------------------------------------|
| MB95F222HPH-G-SNE2<br>MB95F222KPH-G-SNE2<br>MB95F223HPH-G-SNE2<br>MB95F223KPH-G-SNE2 | 16-pin plastic DIP (DIP-16P-M06)    |
| MB95F222HPF-G-SNE1<br>MB95F222KPF-G-SNE1<br>MB95F223HPF-G-SNE1<br>MB95F223KPF-G-SNE1 | 16-pin plastic SOP<br>(FPT-16P-M06) |

#### **■ PACKAGE DIMENSIONS**



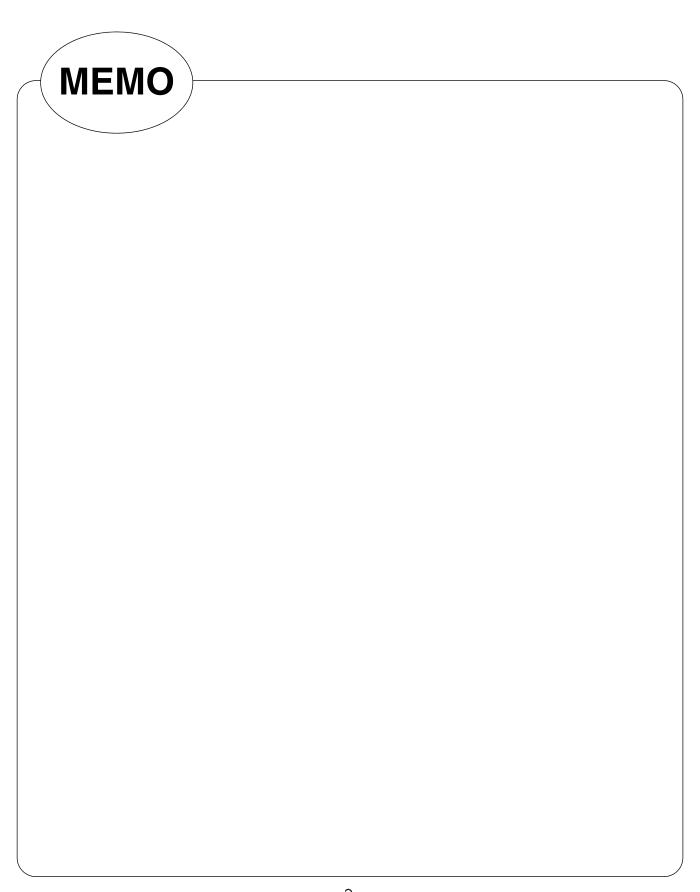




Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

#### (Continued)






Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

### ■ MAIN CHANGES IN THIS EDITION

| Page | Section                                                   | Change Results                                                                                                          |
|------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 21   | ■ ELECTRICAL CHARACTERISTICS  1. Absolute Maximum Ratings | Changed the characteristics of Input voltage.                                                                           |
| 24   | 3. DC Characteristics                                     | Corrected the maximum value of "H" level input voltage for PF2 pin. $\mbox{Vcc} + 0.3 \rightarrow 10.5$                 |
| 24   |                                                           | Corrected the maximum value of Open-drain output application voltage.<br>$0.2 \text{Vcc} \rightarrow \text{Vss} + 5.5$  |
| 26   |                                                           | Added the footnote *3.                                                                                                  |
| 29   | AC Characteristics     (1) Clock Timing                   | Added a figure of HCLK1/HCLK2.                                                                                          |
| 32   | (2) Source Clock/Machine Clock                            | Corrected the graph of Operating voltage - Operating frequency (with the on-chip debug function). (Corrected the pitch) |
| 33   | (3) External Reset                                        | Added and power on to the remarks column.                                                                               |
|      | 6. Flash Memory Program/                                  | Added the row of Current drawn on PF2.                                                                                  |
| 48   | Erase Characteristics                                     | Corrected the minimum value of Power supply voltage at erase/program.<br>$4.5 \rightarrow 3.0$                          |

The vertical lines marked in the left side of the page show the changes.



### **FUJITSU SEMICONDUCTOR LIMITED**

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan

Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

#### **North and South America**

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

#### **Europe**

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

#### Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

#### **Asia Pacific**

FUJITSU SEMICONDUCTOR ASIA PTE. LTD.
151 Lorong Chuan,
#05-08 New Tech Park 556741 Singapore
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China
Tel: +86-21-6146-3688 Fax: +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

#### All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department