
The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

8-bit Microcontrollers

CMOS

F²MC-8FX MB95390H Series

MB95F394H/F396K/F398H/F394K/F396H/F398K

■ DESCRIPTION

MB95390H is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources.

Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.

- Clock

- Selectable main clock source

Main OSC clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz)

External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz)

Main CR clock (1/8/10/12.5 MHz $\pm 2\%$ or $\pm 2.5\%$ *, maximum machine clock frequency: 12.5 MHz)

*: The main CR clock oscillation accuracy of a product in LQFP package (FPT-48P-M49 or FPT-52P-M02) is $\pm 2\%$ and that of a product in QFN package (LCC-48P-M11) is $\pm 2.5\%$.

- Selectable subclock source

Sub-OSC clock (32.768 kHz)

External clock (32.768 kHz)

Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)

- Timer

- 8/16-bit composite timer \times 2 channels
- 8/16-bit PPG \times 3 channels
- 16-bit PPG \times 1 channel (can work independently or together with the multi-pulse generator)
- 16-bit reload timer \times 1 channel (can work independently or together with the multi-pulse generator)
- Time-base timer \times 1 channel
- Watch prescaler \times 1 channel

(Continued)

For the information for microcontroller supports, see the following website.

<http://edevice.fujitsu.com/micom/en-support/>

(Continued)

- UART/SIO × 1 channel
 - Full duplex double buffer
 - Capable of clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer
- I²C × 1 channel
 - Built-in wake-up function
- Multi-pulse generator (MPG) (for DC motor control) × 1 channel
 - 16-bit reload timer × 1 channel
 - 16-bit PPG timer × 1 channel
 - Waveform sequencer (including a 16-bit timer equipped with a buffer and a compare clear function)
- LIN-UART
 - Full duplex double buffer
 - Capable of clock-synchronous serial data transfer and clock-asynchronous serial data transfer
- External interrupt × 8 channels
 - Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
 - Can be used to wake up the device from different low power consumption (standby) modes
- 8/10-bit A/D converter × 12 channels
 - 8-bit and 10-bit resolution can be chosen.
- Low power consumption (standby) modes
 - Stop mode
 - Sleep mode
 - Watch mode
 - Time-base timer mode
- I/O port
 - MB95F394H/F396H/F398H (maximum no. of I/O ports: 44)

General-purpose I/O ports (N-ch open drain)	: 3
General-purpose I/O ports (CMOS I/O)	: 41
 - MB95F394K/F396K/F398K (maximum no. of I/O ports: 45)

General-purpose I/O ports (N-ch open drain)	: 4
General-purpose I/O ports (CMOS I/O)	: 41
- On-chip debug
 - 1-wire serial control
 - Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
 - Built-in hardware watchdog timer
 - Built-in software watchdog timer
- Low-voltage detection reset circuit
 - Built-in low-voltage detector
- Clock supervisor counter
 - Built-in clock supervisor counter function
- Programmable port input voltage level
 - CMOS input level / hysteresis input level
- Dual operation Flash memory
 - The erase/write operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.
- Flash memory security function
 - Protects the content of the Flash memory

■ PRODUCT LINE-UP

Parameter	MB95F394H	MB95F396H	MB95F398H	MB95F394K	MB95F396K	MB95F398K			
Type	Flash memory product								
Clock supervisor counter	It supervises the main clock oscillation.								
Program ROM capacity	20 Kbyte	36 Kbyte	60 Kbyte	20 Kbyte	36 Kbyte	60 Kbyte			
RAM capacity	496 bytes	1008 bytes	2032 bytes	496 bytes	1008 bytes	2032 bytes			
Low-voltage detection reset	No			Yes					
Reset input	Dedicated			Selected through software					
CPU functions	<ul style="list-style-type: none"> Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes Data bit length : 1, 8 and 16 bits Minimum instruction execution time : 61.5 ns (with machine clock frequency = 16.25 MHz) Interrupt processing time : 0.6 μs (with machine clock frequency = 16.25 MHz) 								
General-purpose I/O	<ul style="list-style-type: none"> I/O ports (Max) : 44 CMOS I/O : 41 N-ch open drain: 3 			<ul style="list-style-type: none"> I/O ports (Max) : 45 CMOS I/O : 41 N-ch open drain: 4 					
Time-base timer	Interval time: 0.256 ms to 8.3 s (with external clock frequency = 4 MHz)								
Hardware/software watchdog timer	<ul style="list-style-type: none"> Reset generation cycle <ul style="list-style-type: none"> Main oscillation clock at 10 MHz: 105 ms (Min) The sub-CR clock can be used as the source clock of the hardware watchdog timer. 								
Wild register	It can be used to replace three bytes of data.								
LIN-UART	<ul style="list-style-type: none"> A wide range of communication speeds can be selected by a dedicated reload timer. Clock-synchronous serial data transfer and clock-asynchronous serial data transfer is enabled. The LIN function can be used as a LIN master or a LIN slave. 								
8/10-bit A/D converter	12 channels 8-bit resolution and 10-bit resolution can be chosen.								
8/16-bit composite timer	2 channels <ul style="list-style-type: none"> The timer can be configured as an "8-bit timer \times 2 channels" or a "16-bit timer \times 1 channel". It has the following functions: timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave. 								
External interrupt	8 channels <ul style="list-style-type: none"> Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected.) It can be used to wake up the device from different standby modes. 								
On-chip debug	<ul style="list-style-type: none"> 1-wire serial control It supports serial writing. (asynchronous mode) 								

(Continued)

MB95390H Series

(Continued)

Part number	MB95F394H	MB95F396H	MB95F398H	MB95F394K	MB95F396K	MB95F398K
Parameter						
UART/SIO	1 channel					
	<ul style="list-style-type: none"> • Data transfer with UART/SIO is enabled. • It has a full duplex double buffer, variable data length (5/6/7/8 bits), a built-in baud rate generator and an error detection function. • It uses the NRZ type transfer format. • LSB-first data transfer and MSB-first data transfer are available to use. • Clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer is enabled. 					
I ² C	1 channel					
	<ul style="list-style-type: none"> • Master/slave transmission and receiving • It has the following functions: bus error function, arbitration function, transmission direction detection function, wake-up function, and functions of generating and detecting repeated START conditions. 					
8/16-bit PPG	3 channels					
	<ul style="list-style-type: none"> • Each channel of PPG can be used as two 8-bit PPG channels or a single 16-bit PPG channel. • The counter operating clock can be selected from eight clock sources. 					
16-bit PPG						
	<ul style="list-style-type: none"> • PWM mode and one-shot mode are available to use. • The counter operating clock can be selected from eight clock sources. • It supports external trigger start. • It can work independently or together with the multi-pulse generator. 					
16-bit reload timer						
	<ul style="list-style-type: none"> • Two clock modes and two counter operating modes are available to use. • It can output square waveform. • Count clock: it can be selected from internal clocks (seven types) and external clocks. • Two counter operating modes: reload mode and one-shot mode • It can work independently or together with the multi-pulse generator. 					
Multi-pulse generator (for DC motor control)						
	<ul style="list-style-type: none"> • 16-bit PPG timer: 1 channel • 16-bit reload timer operations: toggle output, one-shot output • Event counter: 1 channel • Waveform sequencer (including a 16-bit timer equipped with a buffer and a compare clear function) 					
Watch prescaler	Eight different time intervals can be selected.					
Flash memory						
	<ul style="list-style-type: none"> • It supports automatic programming, Embedded Algorithm, and write/erase/erase-suspend/erase-resume commands. • It has a flag indicating the completion of the operation of Embedded Algorithm. • Number of write/erase cycles: 100000 • Data retention time: 20 years • Flash security feature for protecting the content of the Flash memory 					
Standby mode	Sleep mode, stop mode, watch mode, time-base timer mode					
Package				FPT-48P-M49 FPT-52P-M02 LCC-48P-M11		

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95F394H	MB95F396H	MB95F398H	MB95F394K	MB95F396K	MB95F398K
FPT-48P-M49	○	○	○	○	○	○
FPT-52P-M02	○	○	○	○	○	○
LCC-48P-M11	○	○	○	○	○	○

○: Available

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

- Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/write.

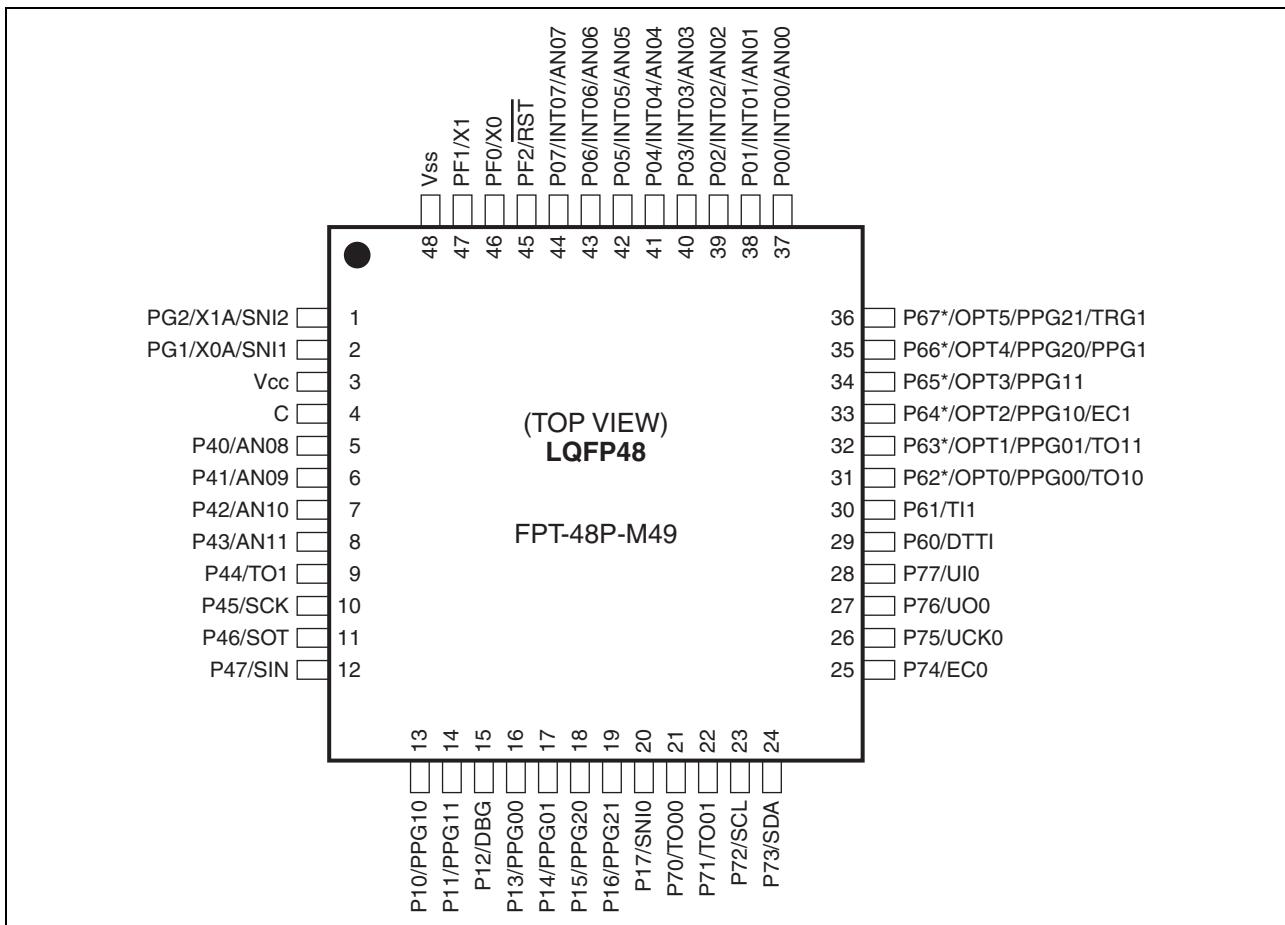
For details of current consumption, see “■ ELECTRICAL CHARACTERISTICS”.

- Package

For details of information on each package, see “■ PACKAGES AND CORRESPONDING PRODUCTS” and “■ PACKAGE DIMENSIONS”.

- Operating voltage

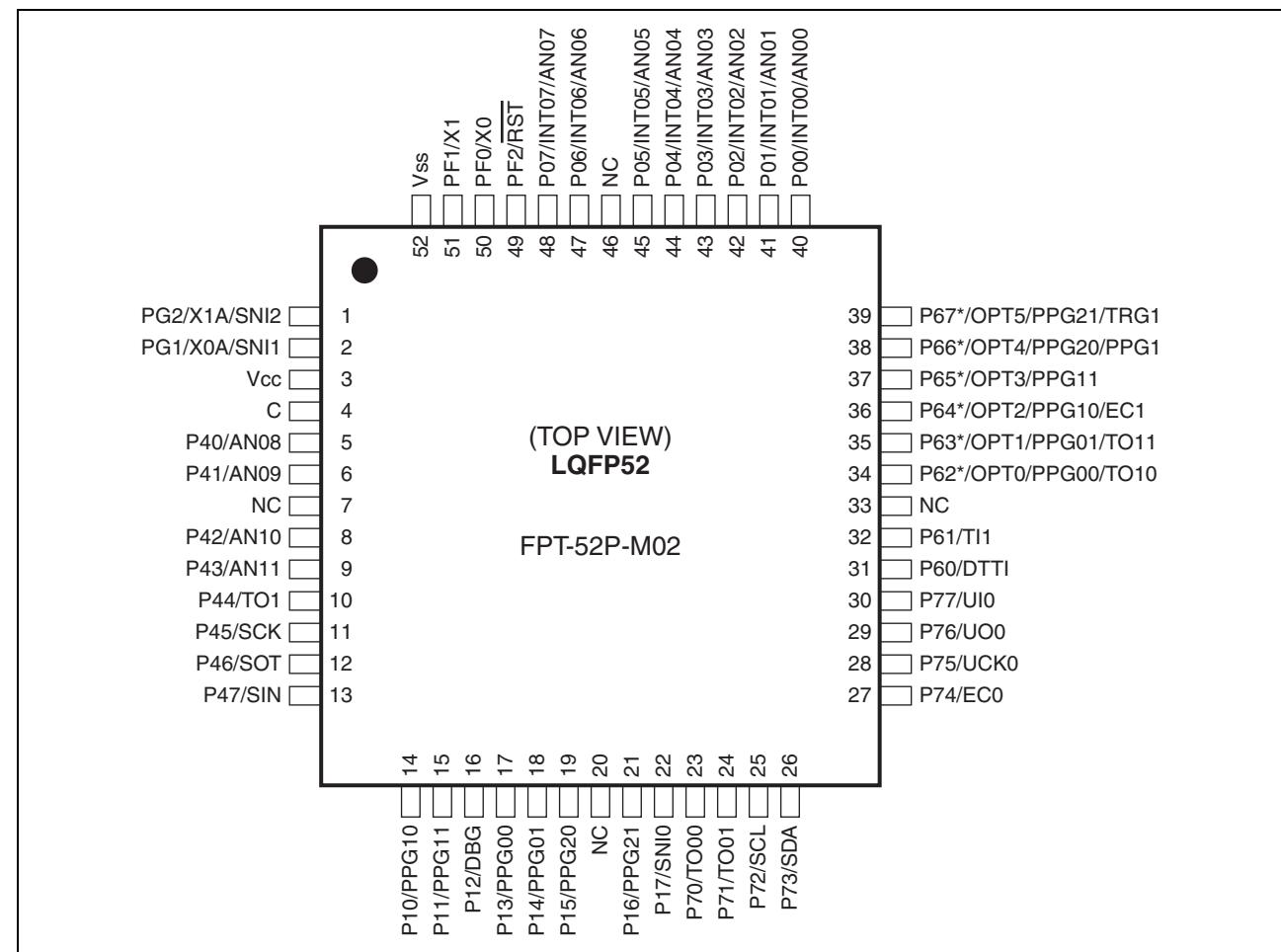
The operating voltage varies, depending on whether the on-chip debug function is used or not.


For details of the operating voltage, see “■ ELECTRICAL CHARACTERISTICS”.

- On-chip debug function

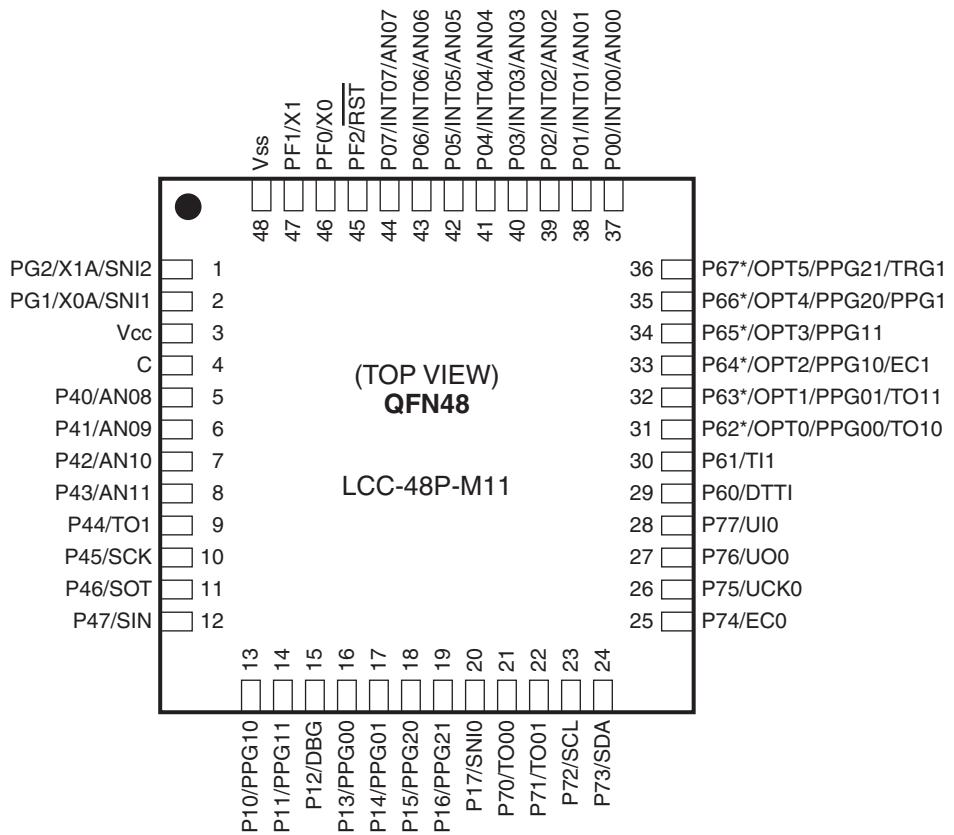
The on-chip debug function requires that Vcc, Vss and one serial wire be connected to an evaluation tool.

For details of the connection method, refer to “CHAPTER 29 EXAMPLE OF SERIAL PROGRAMMING CONNECTION” in the hardware manual of the MB95390H Series.


■ PIN ASSIGNMENT

*: High-current pin (8 mA/12 mA)

(Continued)


MB95390H Series

*: High-current pin (8 mA/12 mA)

(Continued)

(Continued)

*: High-current pin (8 mA/12 mA)

MB95390H Series

■ PIN FUNCTIONS

Pin no.			Pin name	I/O circuit type* ⁴	Function
LQFP48* ¹	QFN48* ²	LQFP52* ³			
1	1	1	PG2	C	General-purpose I/O port
			X1A		Subclock I/O oscillation pin
			SNI2		Trigger input pin for the position detection function of the MPG waveform sequencer
2	2	2	PG1	C	General-purpose I/O port
			X0A		Subclock input oscillation pin
			SNI1		Trigger input pin for the position detection function of the MPG waveform sequencer
3	3	3	V _{cc}	—	Power supply pin
4	4	4	C	—	Capacitor connection pin
5	5	5	P40	K	General-purpose I/O port
			AN08		A/D converter analog input pin
6	6	6	P41	K	General-purpose I/O port
			AN09		A/D converter analog input pin
—	—	7	NC	—	It is an internally connected pin. Always leave it unconnected.
7	7	8	P42	K	General-purpose I/O port
			AN10		A/D converter analog input pin
8	8	9	P43	K	General-purpose I/O port
			AN11		A/D converter analog input pin
9	9	10	P44	G	General-purpose I/O port
			TO1		16-bit reload timer ch. 0 output pin
10	10	11	P45	G	General-purpose I/O port
			SCK		LIN-UART clock I/O pin
11	11	12	P46	G	General-purpose I/O port
			SOT		LIN-UART data output pin
12	12	13	P47	J	General-purpose I/O port
			SIN		LIN-UART data input pin
13	13	14	P10	G	General-purpose I/O port
			PPG10		8/16-bit PPG ch. 1 output pin
14	14	15	P11	G	General-purpose I/O port
			PPG11		8/16-bit PPG ch. 1 output pin
15	15	16	P12	H	General-purpose I/O port
			DBG		DBG input pin
16	16	17	P13	G	General-purpose I/O port
			PPG00		8/16-bit PPG ch. 0 output pin

(Continued)

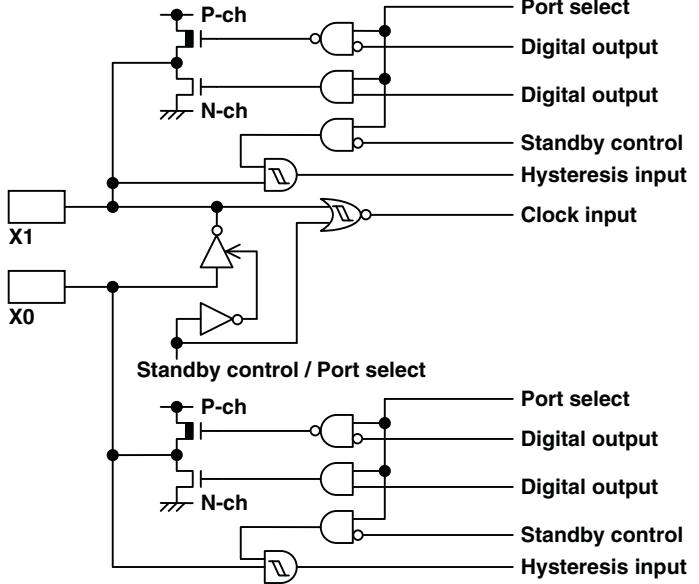
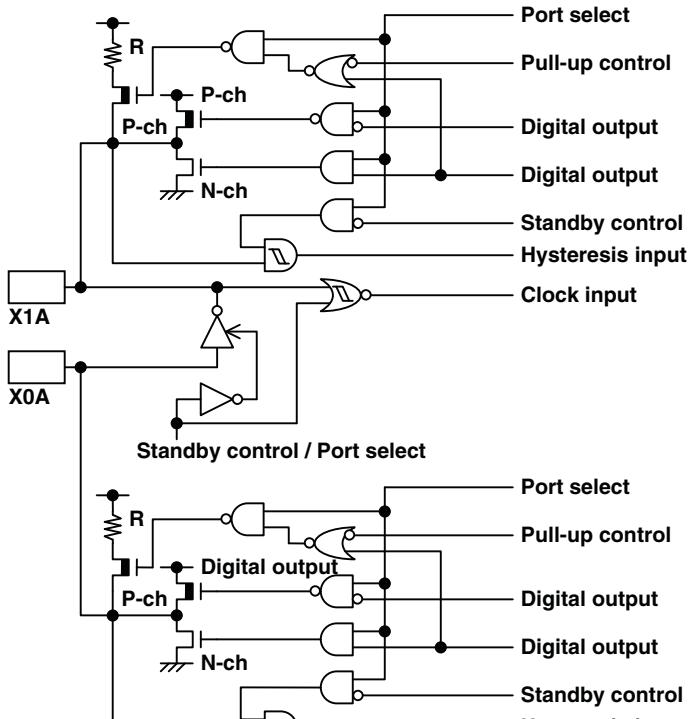
Pin no.			Pin name	I/O circuit type ^{*4}	Function
LQFP48 ^{*1}	QFN48 ^{*2}	LQFP52 ^{*3}			
17	17	18	P14	G	General-purpose I/O port
			PPG01		8/16-bit PPG ch. 0 output pin
18	18	19	P15	G	General-purpose I/O port
			PPG20		8/16-bit PPG ch. 2 output pin
—	—	20	NC	—	It is an internally connected pin. Always leave it unconnected.
19	19	21	P16	G	General-purpose I/O port
			PPG21		8/16-bit PPG ch. 2 output pin
20	20	22	P17	G	General-purpose I/O port
			SNI0		Trigger input pin for the position detection function of the MPG waveform sequencer
21	21	23	P70	G	General-purpose I/O port
			TO00		8/16-bit composite timer ch. 0 output pin
22	22	24	P71	G	General-purpose I/O port
			TO01		8/16-bit composite timer ch. 0 output pin
23	23	25	P72	I	General-purpose I/O port
			SCL		I ² C clock I/O pin
24	24	26	P73	I	General-purpose I/O port
			SDA		I ² C data I/O pin
25	25	27	P74	G	General-purpose I/O port
			EC0		8/16-bit composite timer ch. 0 clock input pin
26	26	28	P75	G	General-purpose I/O port
			UCK0		UART/SIO ch. 0 clock I/O pin
27	27	29	P76	G	General-purpose I/O port
			UO0		UART/SIO ch. 0 data output pin
28	28	30	P77	J	General-purpose I/O port
			UI0		UART/SIO ch. 0 data input pin
29	29	31	P60	G	General-purpose I/O port
			DTTI		MPG waveform sequencer input pin
30	30	32	P61	G	General-purpose I/O port
			TI1		16-bit reload timer ch. 0 input pin
—	—	33	NC	—	It is an internally connected pin. Always leave it unconnected.
31	31	34	P62	D	General-purpose I/O port High-current pin
			OPT0		MPG waveform sequencer output pin
			PPG00		8/16-bit PPG ch. 0 output pin
			TO10		8/16-bit composite timer ch. 1 output pin

(Continued)

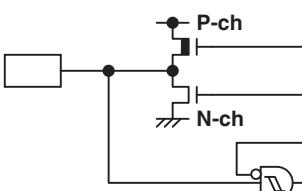
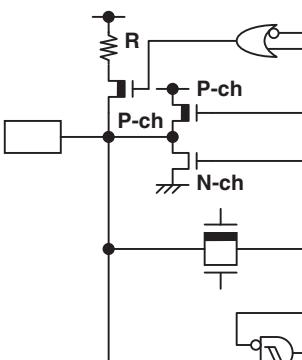
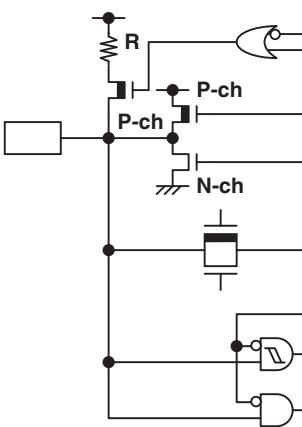
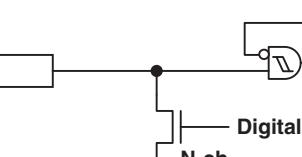
MB95390H Series

Pin no.			Pin name	I/O circuit type ^{*4}	Function
LQFP48 ^{*1}	QFN48 ^{*2}	LQFP52 ^{*3}			
32	32	35	P63	D	General-purpose I/O port High-current pin
			OPT1		MPG waveform sequencer output pin
			PPG01		8/16-bit PPG ch. 0 output pin
			TO11		8/16-bit composite timer ch. 1 output pin
33	33	36	P64	D	General-purpose I/O port High-current pin
			OPT2		MPG waveform sequencer output pin
			PPG10		8/16-bit PPG ch. 1 output pin
			EC1		8/16-bit composite timer ch. 1 clock input pin
34	34	37	P65	D	General-purpose I/O port High-current pin
			OPT3		MPG waveform sequencer output pin
			PPG11		8/16-bit PPG ch. 1 output pin
35	35	38	P66	D	General-purpose I/O port High-current pin
			OPT4		MPG waveform sequencer output pin
			PPG20		8/16-bit PPG ch. 2 output pin
			PPG1		16-bit PPG ch. 1 output pin
36	36	39	P67	D	General-purpose I/O port High-current pin
			OPT5		MPG waveform sequencer output pin
			PPG21		8/16-bit PPG ch. 2 output pin
			TRG1		16-bit PPG ch. 1 trigger input pin
37	37	40	P00	E	General-purpose I/O port
			INT00		External interrupt input pin
			AN00		A/D converter analog input pin
38	38	41	P01	E	General-purpose I/O port
			INT01		External interrupt input pin
			AN01		A/D converter analog input pin
39	39	42	P02	E	General-purpose I/O port
			INT02		External interrupt input pin
			AN02		A/D converter analog input pin
40	40	43	P03	E	General-purpose I/O port
			INT03		External interrupt input pin
			AN03		A/D converter analog input pin

(Continued)



(Continued)

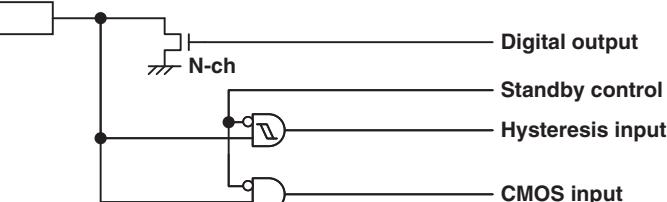
Pin no.			Pin name	I/O circuit type ^{*4}	Function
LQFP48 ^{*1}	QFN48 ^{*2}	LQFP52 ^{*3}			
41	41	44	P04	E	General-purpose I/O port
			INT04		External interrupt input pin
			AN04		A/D converter analog input pin
42	42	45	P05	E	General-purpose I/O port
			INT05		External interrupt input pin
			AN05		A/D converter analog input pin
—	—	46	NC	—	It is an internally connected pin. Always leave it unconnected.
43	43	47	P06	E	General-purpose I/O port
			INT06		External interrupt input pin
			AN06		A/D converter analog input pin
44	44	48	P07	E	General-purpose I/O port
			INT07		External interrupt input pin
			AN07		A/D converter analog input pin
45	45	49	PF2	A	General-purpose I/O port
			<u>RST</u>		Reset pin Dedicated reset pin in MB95F394H/F396H/F398H
46	46	50	PF0	B	General-purpose I/O port
			X0		Main clock I/O oscillation pin
47	47	51	PF1	B	General-purpose I/O port
			X1		Main clock I/O oscillation pin
48	48	52	V _{ss}	—	Power supply pin (GND)

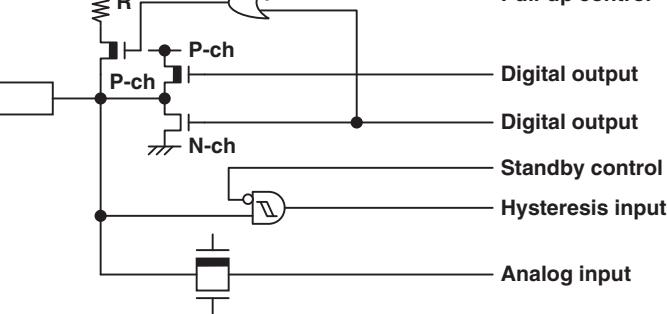




^{*1}: Package code: FPT-48P-M49^{*2}: Package code: LCC-48P-M11^{*3}: Package code: FPT-52P-M02^{*4}: For the I/O circuit types, see “■ I/O CIRCUIT TYPE”.

MB95390H Series

■ I/O CIRCUIT TYPE

Type	Circuit	Remarks
A	<p>Reset input / Hysteresis input</p> <p>Reset output / Digital output</p> <p>N-ch</p>	<ul style="list-style-type: none"> • N-ch open drain output • Hysteresis input • Reset output
B	<p>P-ch</p> <p>N-ch</p> <p>Port select</p> <p>Digital output</p> <p>Digital output</p> <p>Standby control</p> <p>Hysteresis input</p> <p>Clock input</p> <p>X1</p> <p>X0</p> <p>Standby control / Port select</p> <p>P-ch</p> <p>N-ch</p> <p>Port select</p> <p>Digital output</p> <p>Digital output</p> <p>Standby control</p> <p>Hysteresis input</p>	<ul style="list-style-type: none"> • Oscillation circuit • High-speed side Feedback resistance: approx. 1 MΩ • CMOS output • Hysteresis input
C	<p>R</p> <p>P-ch</p> <p>Port select</p> <p>Pull-up control</p> <p>Digital output</p> <p>Digital output</p> <p>Standby control</p> <p>Hysteresis input</p> <p>Clock input</p> <p>X1A</p> <p>X0A</p> <p>Standby control / Port select</p> <p>P-ch</p> <p>N-ch</p> <p>Port select</p> <p>Pull-up control</p> <p>Digital output</p> <p>Digital output</p> <p>Standby control</p> <p>Hysteresis input</p>	<ul style="list-style-type: none"> • Oscillation circuit • Low-speed side Feedback resistance: approx. 10 MΩ • CMOS output • Hysteresis input • Pull-up control available




(Continued)

Type	Circuit	Remarks
D	<p> P-ch Digital output Digital output N-ch Standby control Hysteresis input </p>	<ul style="list-style-type: none"> CMOS output Hysteresis input High-current output
E	<p> Pull-up control R P-ch Digital output Digital output N-ch Analog input A/D control Standby control Hysteresis input </p>	<ul style="list-style-type: none"> CMOS output Hysteresis input Pull-up control available Analog input
F	<p> Pull-up control R P-ch Digital output Digital output N-ch Analog input A/D control Standby control Hysteresis input CMOS input </p>	<ul style="list-style-type: none"> CMOS output Hysteresis input CMOS input Pull-up control available Analog input
G	<p> Pull-up control R P-ch Digital output Digital output N-ch Standby control Hysteresis input </p>	<ul style="list-style-type: none"> CMOS output Hysteresis input Pull-up control available
H	<p> Standby control Hysteresis input Digital output N-ch </p>	<ul style="list-style-type: none"> N-ch open drain output Hysteresis input

(Continued)

MB95390H Series

(Continued)

Type	Circuit	Remarks
I	<p>Digital output Standby control Hysteresis input CMOS input</p>	<ul style="list-style-type: none"> • N-ch open drain output • Hysteresis input • CMOS input
J	<p>Pull-up control Digital output Digital output Standby control Hysteresis input CMOS input</p>	<ul style="list-style-type: none"> • CMOS output • Hysteresis input • CMOS input • Pull-up control available
K	<p>Pull-up control Digital output Digital output Standby control Hysteresis input Analog input</p>	<ul style="list-style-type: none"> • Hysteresis input • CMOS output • Pull-up control available • Analog input

■ NOTES ON DEVICE HANDLING

- Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.

In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of "■ ELECTRICAL CHARACTERISTICS" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

- Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the V_{CC} power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{CC} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{CC} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

- Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

■ PIN CONNECTION

- Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

- Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{CC} pin and the V_{SS} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{CC} pin and the V_{SS} pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between the V_{CC} pin and the V_{SS} pin at a location close to this device.

- DBG pin

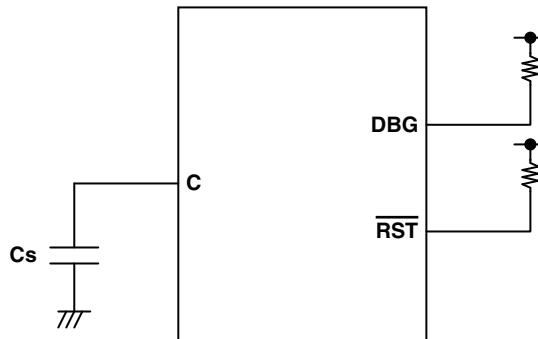
Connect the DBG pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board.

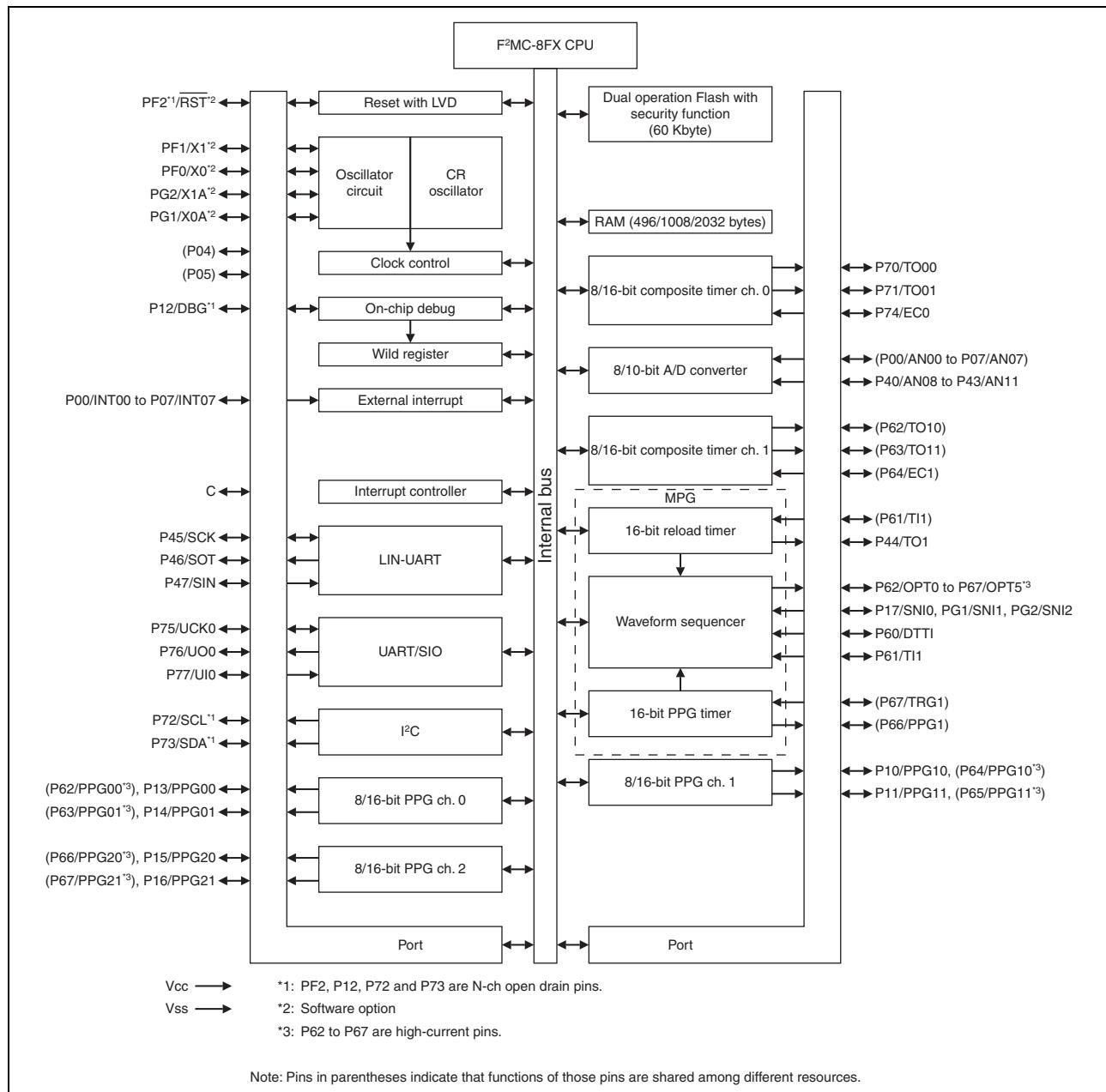
The DBG pin should not stay at "L" level after power-on until the reset output is released.

- \overline{RST} pin

Connect the \overline{RST} pin directly to an external pull-up resistor.


To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the \overline{RST} pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board.

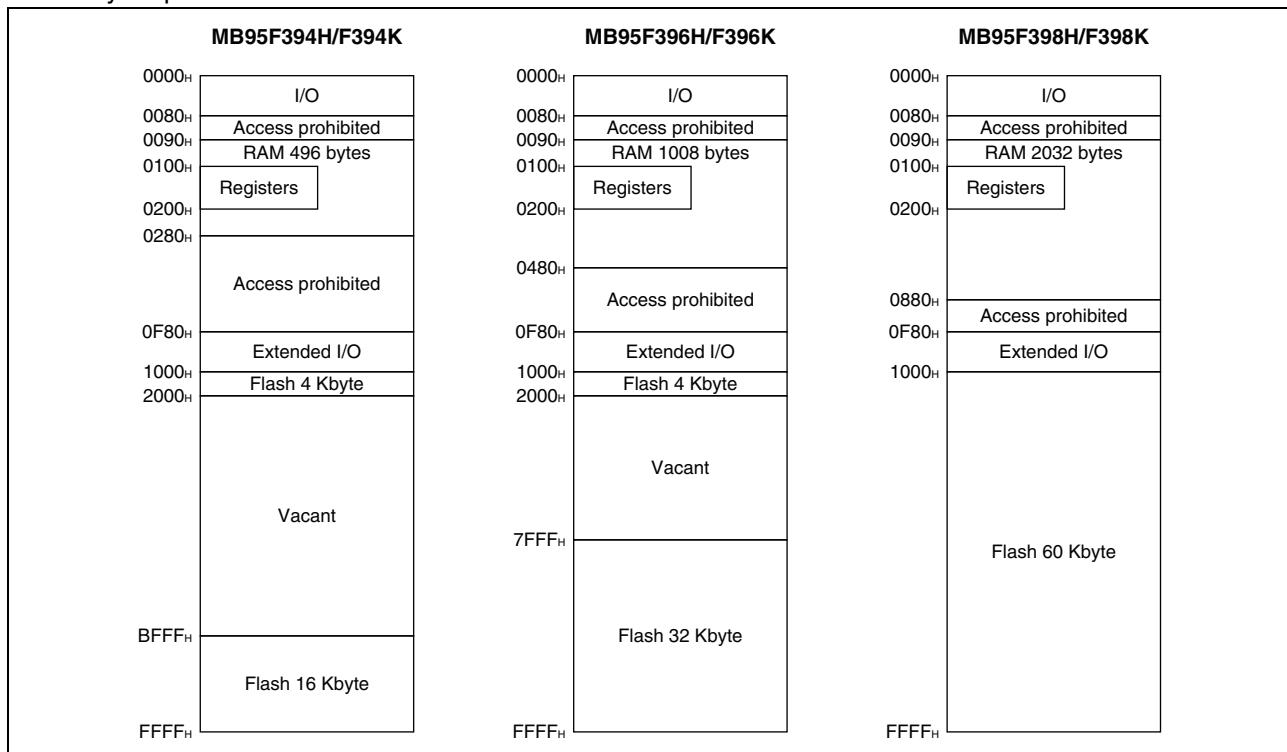
The $\overline{RST}/PF2$ pin functions as the reset input/output pin after power-on. In addition, the reset output of the $\overline{RST}/PF2$ pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register.


- C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_s . For the connection to a smoothing capacitor C_s , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_s and the distance between C_s and the V_{SS} pin when designing the layout of a printed circuit board.

- $DBG/\overline{RST}/C$ pins connection diagram

■ BLOCK DIAGRAM


MB95390H Series

■ CPU CORE

• Memory Space

The memory space of the MB95390H Series is 64 Kbyte in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95390H Series are shown below.

• Memory Maps

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000 _H	PDR0	Port 0 data register	R/W	00000000 _B
0001 _H	DDR0	Port 0 direction register	R/W	00000000 _B
0002 _H	PDR1	Port 1 data register	R/W	00000000 _B
0003 _H	DDR1	Port 1 direction register	R/W	00000000 _B
0004 _H	—	(Disabled)	—	—
0005 _H	WATR	Oscillation stabilization wait time setting register	R/W	11111111 _B
0006 _H	—	(Disabled)	—	—
0007 _H	SYCC	System clock control register	R/W	0000X011 _B
0008 _H	STBC	Standby control register	R/W	00000XXX _B
0009 _H	RSRR	Reset source register	R/W	XXXXXXXX _B
000A _H	TBTC	Time-base timer control register	R/W	00000000 _B
000B _H	WPCR	Watch prescaler control register	R/W	00000000 _B
000C _H	WDTC	Watchdog timer control register	R/W	00XX0000 _B
000D _H	SYCC2	System clock control register 2	R/W	XX100011 _B
000E _H to 0011 _H	—	(Disabled)	—	—
0012 _H	PDR4	Port 4 data register	R/W	00000000 _B
0013 _H	PDR4	Port 4 direction register	R/W	00000000 _B
0014 _H , 0015 _H	—	(Disabled)	—	—
0016 _H	PDR6	Port 6 data register	R/W	00000000 _B
0017 _H	DDR6	Port 6 direction register	R/W	00000000 _B
0018 _H	DDR7	Port 7 data register	R/W	00000000 _B
0019 _H	DDR7	Port 7 direction register	R/W	00000000 _B
001A _H to 0027 _H	—	(Disabled)	—	—
0028 _H	PDRF	Port F data register	R/W	00000000 _B
0029 _H	DDRF	Port F direction register	R/W	00000000 _B
002A _H	PDRG	Port G data register	R/W	00000000 _B
002B _H	DDRG	Port G direction register	R/W	00000000 _B
002C _H	PUL0	Port 0 pull-up register	R/W	00000000 _B
002D _H	PUL1	Port 1 pull-up register	R/W	00000000 _B
002E _H , 002F _H	—	(Disabled)	—	—
0030 _H	PUL4	Port 4 pull-up register	R/W	00000000 _B
0031 _H	PUL6	Port 6 pull-up register	R/W	00000000 _B
0032 _H	PUL7	Port 7 pull-up register	R/W	00000000 _B
0033 _H , 0034 _H	—	(Disabled)	—	—
0035 _H	PULG	Port G pull-up register	R/W	00000000 _B

(Continued)

MB95390H Series

Address	Register abbreviation	Register name	R/W	Initial value
0036 _H	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	00000000 _B
0037 _H	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	00000000 _B
0038 _H	T11CR1	8/16-bit composite timer 11 status control register 1	R/W	00000000 _B
0039 _H	T10CR1	8/16-bit composite timer 10 status control register 1	R/W	00000000 _B
003A _H	PC01	8/16-bit PPG timer 01 control register	R/W	00000000 _B
003B _H	PC00	8/16-bit PPG timer 00 control register	R/W	00000000 _B
003C _H	PC11	8/16-bit PPG timer 11 control register	R/W	00000000 _B
003D _H	PC10	8/16-bit PPG timer 10 control register	R/W	00000000 _B
003E _H	PC21	8/16-bit PPG timer 21 control register	R/W	00000000 _B
003F _H	PC20	8/16-bit PPG timer 20 control register	R/W	00000000 _B
0040 _H	TMCSR1H	16-bit reload timer control status register upper	R/W	00000000 _B
0041 _H	TMCSR1L	16-bit reload timer control status register lower	R/W	00000000 _B
0042 _H , 0043 _H	—	(Disabled)	—	—
0044 _H	PCNTH1	16-bit PPG status control register upper	R/W	00000000 _B
0045 _H	PCNTL1	16-bit PPG status control register lower	R/W	00000000 _B
0046 _H , 0047 _H	—	(Disabled)	—	—
0048 _H	EIC00	External interrupt circuit control register ch. 0/ch. 1	R/W	00000000 _B
0049 _H	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	00000000 _B
004A _H	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	00000000 _B
004B _H	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000 _B
004C _H to 004F _H	—	(Disabled)	—	—
0050 _H	SCR	LIN-UART serial control register	R/W	00000000 _B
0051 _H	SMR	LIN-UART serial mode register	R/W	00000000 _B
0052 _H	SSR	LIN-UART serial status register	R/W	00001000 _B
0053 _H	RDR/TDR	LIN-UART receive/transmit data register	R/W	00000000 _B
0054 _H	ESCR	LIN-UART extended status control register	R/W	00000100 _B
0055 _H	ECCR	LIN-UART extended communication control register	R/W	000000XX _B
0056 _H	SMC10	UART/SIO serial mode control register 1	R/W	00000000 _B
0057 _H	SMC20	UART/SIO serial mode control register 2	R/W	00100000 _B
0058 _H	SSR0	UART/SIO serial status and data register	R/W	00000001 _B
0059 _H	TDR0	UART/SIO serial output data register	R/W	00000000 _B
005A _H	RDR0	UART/SIO serial input data register	R	00000000 _B
005B _H to 005F _H	—	(Disabled)	—	—

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0060 _H	IBCR00	I ² C bus control register 0	R/W	00000000 _B
0061 _H	IBCR10	I ² C bus control register 1	R/W	00000000 _B
0062 _H	IBCR0	I ² C bus status register	R/W	00000000 _B
0063 _H	IDDR0	I ² C data register	R/W	00000000 _B
0064 _H	IAAR0	I ² C address register	R/W	00000000 _B
0065 _H	ICCR0	I ² C clock control register	R/W	00000000 _B
0066 _H	OPCUR	Output control register (upper)	R/W	00000000 _B
0067 _H	OPCLR	Output control register (lower)	R/W	00000000 _B
0068 _H	IPCUR	Input control register (upper)	R/W	00000000 _B
0069 _H	IPCLR	Input control register (lower)	R/W	00000000 _B
006A _H	NCCR	Noise cancellation control register	R/W	00000000 _B
006B _H	TCSR	Timer control status register	R/W	00000000 _B
006C _H	ADC1	8/10-bit A/D converter control register 1	R/W	00000000 _B
006D _H	ADC2	8/10-bit A/D converter control register 2	R/W	00000000 _B
006E _H	ADDH	8/10-bit A/D converter data register (upper)	R/W	00000000 _B
006F _H	ADDL	8/10-bit A/D converter data register (lower)	R/W	00000000 _B
0070 _H	—	(Disabled)	—	—
0071 _H	FSR2	Flash memory status register 2	R/W	00000000 _B
0072 _H	FSR	Flash memory status register	R/W	000X0000 _B
0073 _H	SWRE0	Flash memory sector write control register 0	R/W	00000000 _B
0074 _H	FSR3	Flash memory status register 3	R	00000000 _B
0075 _H	—	(Disabled)	—	—
0076 _H	WREN	Wild register address compare enable register	R/W	00000000 _B
0077 _H	WROR	Wild register data test setting register	R/W	00000000 _B
0078 _H	—	Mirror of register bank pointer (RP) and mirror of direct bank pointer (DP)	—	—
0079 _H	ILR0	Interrupt level setting register 0	R/W	11111111 _B
007A _H	ILR1	Interrupt level setting register 1	R/W	11111111 _B
007B _H	ILR2	Interrupt level setting register 2	R/W	11111111 _B
007C _H	ILR3	Interrupt level setting register 3	R/W	11111111 _B
007D _H	ILR4	Interrupt level setting register 4	R/W	11111111 _B
007E _H	ILR5	Interrupt level setting register 5	R/W	11111111 _B
007F _H	—	(Disabled)	—	—
0F80 _H	WRARH0	Wild register address setting register (upper) ch. 0	R/W	00000000 _B
0F81 _H	WRARL0	Wild register address setting register (lower) ch. 0	R/W	00000000 _B
0F82 _H	WRDR0	Wild register data setting register ch. 0	R/W	00000000 _B

(Continued)

MB95390H Series

Address	Register abbreviation	Register name	R/W	Initial value
0F83 _H	WRARH1	Wild register address setting register (upper) ch. 1	R/W	00000000 _B
0F84 _H	WRARL1	Wild register address setting register (lower) ch. 1	R/W	00000000 _B
0F85 _H	WRDR1	Wild register data setting register ch. 1	R/W	00000000 _B
0F86 _H	WRARH2	Wild register address setting register (upper) ch. 2	R/W	00000000 _B
0F87 _H	WRARL2	Wild register address setting register (lower) ch. 2	R/W	00000000 _B
0F88 _H	WRDR2	Wild register data setting register ch. 2	R/W	00000000 _B
0F89 _H to 0F91 _H	—	(Disabled)	—	—
0F92 _H	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	00000000 _B
0F93 _H	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	00000000 _B
0F94 _H	T01DR	8/16-bit composite timer 01 data register	R/W	00000000 _B
0F95 _H	T00DR	8/16-bit composite timer 00 data register	R/W	00000000 _B
0F96 _H	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	00000000 _B
0F97 _H	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	00000000 _B
0F98 _H	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	00000000 _B
0F99 _H	T11DR	8/16-bit composite timer 11 data register	R/W	00000000 _B
0F9A _H	T10DR	8/16-bit composite timer 10 data register	R/W	00000000 _B
0F9B _H	TMCR1	8/16-bit composite timer 10/11 timer mode control register	R/W	00000000 _B
0F9C _H	PPS01	8/16-bit PPG01 cycle setting buffer register	R/W	11111111 _B
0F9D _H	PPS00	8/16-bit PPG00 cycle setting buffer register	R/W	11111111 _B
0F9E _H	PDS01	8/16-bit PPG01 duty setting buffer register	R/W	11111111 _B
0F9F _H	PDS00	8/16-bit PPG00 duty setting buffer register	R/W	11111111 _B
0FA0 _H	PPS11	8/16-bit PPG11 cycle setting buffer register	R/W	11111111 _B
0FA1 _H	PPS10	8/16-bit PPG10 cycle setting buffer register	R/W	11111111 _B
0FA2 _H	PDS11	8/16-bit PPG11 duty setting buffer register	R/W	11111111 _B
0FA3 _H	PDS10	8/16-bit PPG10 duty setting buffer register	R/W	11111111 _B
0FA4 _H	PPGS	8/16-bit PPG startup register	R/W	00000000 _B
0FA5 _H	REVC	8/16-bit PPG output reverse register	R/W	00000000 _B
0FA6 _H	PPS21	8/16-bit PPG21 cycle setting buffer register	R/W	11111111 _B
0FA7 _H	PPS20	8/16-bit PPG20 cycle setting buffer register	R/W	11111111 _B
0FA8 _H	TMRH1	16-bit reload timer timer register (upper)	R/W	00000000 _B
	TMRLRH1	16-bit reload timer reload register (upper)		
0FA9 _H	TMRL1	16-bit reload timer timer register (lower)	R/W	00000000 _B
	TMRLRL1	16-bit reload timer reload register (lower)		
0FAA _H	PDS21	8/16-bit PPG21 duty setting buffer register	R/W	11111111 _B
0FAB _H	PDS20	8/16-bit PPG20 duty setting buffer register	R/W	11111111 _B

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FAC _H to 0FAF _H	—	(Disabled)	—	—
0FB0 _H	PDCRH1	16-bit PPG down counter register (upper)	R	00000000 _B
0FB1 _H	PDCRL1	16-bit PPG down counter register (lower)	R	00000000 _B
0FB2 _H	PCSRH1	16-bit PPG cycle setting buffer register (upper)	R/W	11111111 _B
0FB3 _H	PCSRL1	16-bit PPG cycle setting buffer register (lower)	R/W	11111111 _B
0FB4 _H	PDUTH1	16-bit PPG duty setting buffer register (upper)	R/W	11111111 _B
0FB5 _H	PDUTL1	16-bit PPG duty setting buffer register (lower)	R/W	11111111 _B
0FB6 _H to 0FBF _H	—	(Disabled)	—	—
0FBC _H	BGR1	LIN-UART baud rate generator register 1	R/W	00000000 _B
0FBD _H	BGR0	LIN-UART baud rate generator register 0	R/W	00000000 _B
0FBE _H	PSSR0	UART/SIO prescaler select register	R/W	00000000 _B
0FBF _H	BRSR0	UART/SIO baud rate setting register	R/W	00000000 _B
0FC0 _H , 0FC1 _H	—	(Disabled)	—	—
0FC2 _H	AIDRH	A/D input disable register (upper)	R/W	00000000 _B
0FC3 _H	AIDRL	A/D input disable register (lower)	R/W	00000000 _B
0FC4 _H	OPDBRH0	Output data buffer register (upper) ch. 0	R/W	00000000 _B
0FC5 _H	OPDBRL0	Output data buffer register (lower) ch. 0	R/W	00000000 _B
0FC6 _H	OPDBRH1	Output data buffer register (upper) ch. 1	R/W	00000000 _B
0FC7 _H	OPDBRL1	Output data buffer register (lower) ch. 1	R/W	00000000 _B
0FC8 _H	OPDBRH2	Output data buffer register (upper) ch. 2	R/W	00000000 _B
0FC9 _H	OPDBRL2	Output data buffer register (lower) ch. 2	R/W	00000000 _B
0FCA _H	OPDBRH3	Output data buffer register (upper) ch. 3	R/W	00000000 _B
0FCB _H	OPDBRL3	Output data buffer register (lower) ch. 3	R/W	00000000 _B
0FCC _H	OPDBRH4	Output data buffer register (upper) ch. 4	R/W	00000000 _B
0FCD _H	OPDBRL4	Output data buffer register (lower) ch. 4	R/W	00000000 _B
0FCE _H	OPDBRH5	Output data buffer register (upper) ch. 5	R/W	00000000 _B
0FCF _H	OPDBRL5	Output data buffer register (lower) ch. 5	R/W	00000000 _B
0FD0 _H	OPDBRH6	Output data buffer register (upper) ch. 6	R/W	00000000 _B
0FD1 _H	OPDBRL6	Output data buffer register (lower) ch. 6	R/W	00000000 _B
0FD2 _H	OPDBRH7	Output data buffer register (upper) ch. 7	R/W	00000000 _B
0FD3 _H	OPDBRL7	Output data buffer register (lower) ch. 7	R/W	00000000 _B
0FD4 _H	OPDBRH8	Output data buffer register (upper) ch. 8	R/W	00000000 _B
0FD5 _H	OPDBRL8	Output data buffer register (lower) ch. 8	R/W	00000000 _B
0FD6 _H	OPDBRH9	Output data buffer register (upper) ch. 9	R/W	00000000 _B
0FD7 _H	OPDBRL9	Output data buffer register (lower) ch. 9	R/W	00000000 _B
0FD8 _H	OPDBRHA	Output data buffer register (upper) ch. A	R/W	00000000 _B
0FD9 _H	OPDBRLA	Output data buffer register (lower) ch. A	R/W	00000000 _B

(Continued)

MB95390H Series

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FDA _H	OPDBRHB	Output data buffer register (upper) ch. B	R/W	00000000 _B
0FDB _H	OPDBRLB	Output data buffer register (lower) ch. B	R/W	00000000 _B
0FDC _H	OPDUR	Output data register (upper)	R	0000XXXX _B
0FDD _H	OPDLR	Output data register (lower)	R	XXXXXXXX _B
0FDE _H	CPCUR	Compare clear register (upper)	R/W	XXXXXXXX _B
0FDF _H	CPCLR	Compare clear register (lower)	R/W	XXXXXXXX _B
0FE0 _H , 0FE1 _H	—	(Disabled)	—	—
0FE2 _H	TMBUR	Timer buffer register (upper)	R	XXXXXXXX _B
0FE3 _H	TMBLR	Timer buffer register (lower)	R	XXXXXXXX _B
0FE4 _H	CRTH	Main CR clock trimming register (upper)	R/W	0XXXXXXXX _B
0FE5 _H	CRTL	Main CR clock trimming register (lower)	R/W	00XXXXXXXX _B
0FE6 _H , 0FE7 _H	—	(Disabled)	—	—
0FE8 _H	SYSC	System configuration register	R/W	11000011 _B
0FE9 _H	CMCR	Clock monitoring control register	R/W	00000000 _B
0FEA _H	CMDR	Clock monitoring data register	R	00000000 _B
0FEB _H	WDTH	Watchdog timer selection ID register (upper)	R	XXXXXXXX _B
0FEC _H	WDTL	Watchdog timer selection ID register (lower)	R	XXXXXXXX _B
0FED _H	—	(Disabled)	—	—
0FEE _H	ILSR	Input level select register	R/W	00000000 _B
0FEF _H	WICR	Interrupt pin control register	R/W	01000000 _B
0FF0 _H to 0FFF _H	—	(Disabled)	—	—

- R/W access symbols

R/W : Readable / Writable

R : Read only

W : Write only

- Initial value symbols

0 : The initial value of this bit is “0”.

1 : The initial value of this bit is “1”.

X : The initial value of this bit is indeterminate.

Note: Do not write to an address that is “(Disabled)”. If a “(Disabled)” address is read, an indeterminate value is returned.

■ INTERRUPT SOURCE TABLE

Interrupt source	Interrupt request number	Vector table address		Bit name of interrupt level setting register	Priority order of interrupt sources of the same level (occurring simultaneously)
		Upper	Lower		
External interrupt ch. 0, ch. 4	IRQ00	FFF4H	FFF5H	L00 [1:0]	High ↑
External interrupt ch. 1, ch. 5	IRQ01	FFF8H	FFF9H	L01 [1:0]	
External interrupt ch. 2, ch. 6	IRQ02	FFF6H	FFF7H	L02 [1:0]	
External interrupt ch. 3, ch. 7	IRQ03	FFF4H	FFF5H	L03 [1:0]	
UART/SIO ch. 0, MPG (DTTI)	IRQ04	FFF2H	FFF3H	L04 [1:0]	
8/16-bit composite timer ch. 0 (lower)	IRQ05	FFF0H	FFF1H	L05 [1:0]	
8/16-bit composite timer ch. 0 (upper)	IRQ06	FFEEH	FFEFH	L06 [1:0]	
LIN-UART (reception)	IRQ07	FFEC _H	FFED _H	L07 [1:0]	
LIN-UART (transmission)	IRQ08	FFEA _H	FFEB _H	L08 [1:0]	
8/16-bit PPG ch. 1 (lower)	IRQ09	FFE8H	FFE9H	L09 [1:0]	
8/16-bit PPG ch. 1 (upper)	IRQ10	FFE6H	FFE7H	L10 [1:0]	
8/16-bit PPG ch. 2 (upper)	IRQ11	FFE4H	FFE5H	L11 [1:0]	
8/16-bit PPG ch. 0 (upper)	IRQ12	FFE2H	FFE3H	L12 [1:0]	
8/16-bit PPG ch. 0 (lower)	IRQ13	FFE0H	FFE1H	L13 [1:0]	
8/16-bit composite timer ch. 1 (upper)	IRQ14	FFDEH	FFDFH	L14 [1:0]	
8/16-bit PPG ch. 2 (lower)	IRQ15	FFDC _H	FFDD _H	L15 [1:0]	
16-bit reload timer ch. 1, MPG (write timing/compare clear), I ² C	IRQ16	FFDA _H	FFDB _H	L16 [1:0]	
16-bit PPG timer ch. 1, MPG (position detection/compare match)	IRQ17	FFD8H	FFD9H	L17 [1:0]	
8/10-bit A/D converter	IRQ18	FFD6H	FFD7H	L18 [1:0]	
Time-base timer	IRQ19	FFD4H	FFD5H	L19 [1:0]	
Watch prescaler	IRQ20	FFD2H	FFD3H	L20 [1:0]	
—	IRQ21	FFD0H	FFD1H	L21 [1:0]	
8/16-bit composite timer ch. 1 (lower)	IRQ22	FFCEH	FFCFH	L22 [1:0]	
Flash memory	IRQ23	FFCC _H	FFCD _H	L23 [1:0]	

MB95390H Series

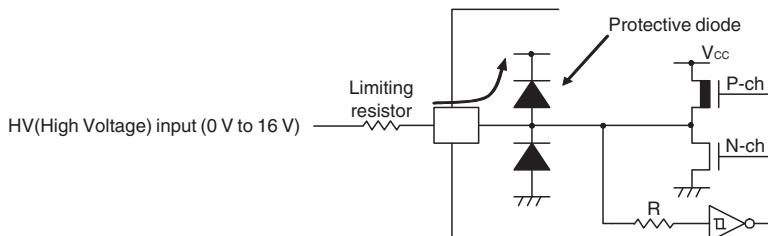
■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage ^{*1}	V _{CC}	V _{SS} - 0.3	V _{SS} + 6	V	
Input voltage ^{*1}	V _I	V _{SS} - 0.3	V _{SS} + 6	V	^{*2}
Output voltage ^{*1}	V _O	V _{SS} - 0.3	V _{SS} + 6	V	^{*2}
Maximum clamp current	I _{CLAMP}	-2	+2	mA	Applicable to specific pins ^{*3}
Total maximum clamp current	$\Sigma I_{CLAMP} $	—	20	mA	Applicable to specific pins ^{*3}
"L" level maximum output current	I _{OL1}	—	15	mA	Other than P62 to P67
	I _{OL2}	—	15		P62 to P67
"L" level average current	I _{OLAV1}	—	4	mA	Other than P62 to P67 Average output current = operating current × operating ratio (1 pin)
	I _{OLAV2}	—	12		P62 to P67 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣI_{OL}	—	100	mA	
"L" level total average output current	ΣI_{OLAV}	—	50	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output current	I _{OH1}	—	-15	mA	Other than P12, P62 to P67, P72, P73 and PF2
	I _{OH2}	—	-15		P12, P62 to P67, P72, P73 and PF2
"H" level average current	I _{OHAV1}	—	-4	mA	Other than P12, P62 to P67, P72, P73 and PF2 Average output current = operating current × operating ratio (1 pin)
	I _{OHAV2}	—	-8		P12, P62 to P67, P72, P73 and PF2 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣI_{OH}	—	-100	mA	
"H" level total average output current	ΣI_{OHAV}	—	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	P _d	—	320	mW	
Operating temperature	T _A	-40	+85	°C	
Storage temperature	T _{STG}	-55	+150	°C	

(Continued)

(Continued)


*1: The parameter is based on $V_{SS} = 0.0$ V.

*2: V_I and V_O must not exceed $V_{CC} + 0.3$ V. V_I must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_I rating.

*3: Applicable to the following pins: P00 to P07, P10, P11, P13 to P17, P40 to P47, P60 to P67, P70, P71, P74 to P77, PF0, PF1, PG1 and PG2

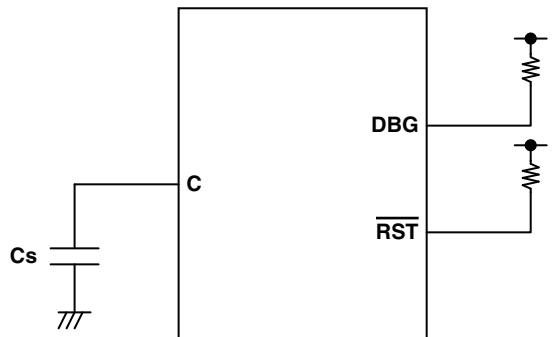
- Use under recommended operating conditions.
- Use with DC voltage (current).
- The HV (High Voltage) signal is an input signal exceeding the V_{CC} voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the V_{CC} pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- Example of a recommended circuit

- Input/Output equivalent circuit

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

($V_{SS} = 0.0$ V)


Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	V_{CC}	2.4 ^{*1} ^{*2}	5.5 ^{*1}	V	In normal operation
		2.3	5.5		Hold condition in stop mode
		2.9	5.5		In normal operation
		2.3	5.5		Hold condition in stop mode
Smoothing capacitor	C_S	0.022	1	μF	*3
Operating temperature	T_A	-40	+85	$^{\circ}C$	Other than on-chip debug mode
		+5	+35		On-chip debug mode

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.

*2: This value becomes 2.88 V when the low-voltage detection reset is used.

*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S . For the connection to a smoothing capacitor C_S , see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

- DBG / \overline{RST} / C pins connection diagram

*: Since the DBG pin becomes a communication pin in on-chip debug mode, set a pull-up resistor value suiting the input/output specifications of P12/DBG.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ ^{*3}	Max		
"H" level input voltage	V _{IHI}	P47, P72, P73, P77	*1	0.7 V _{CC}	—	V _{CC} + 0.3	V	When CMOS input level (hysteresis input) is selected
	V _{IHS}	P00 to P07, P10 to P17, P40 to P47, P60 to P67, P70 to P77, PF0, PF1, PG1, PG2	*1	0.8 V _{CC}	—	V _{CC} + 0.3	V	Hysteresis input
	V _{IHM}	PF2	—	0.7 V _{CC}	—	V _{CC} + 0.3	V	Hysteresis input
"L" level input voltage	V _{IL}	P47, P72, P73, P77	*1	V _{SS} - 0.3	—	0.3 V _{CC}	V	When CMOS input level (hysteresis input) is selected
	V _{ILS}	P00 to P07, P10 to P17, P40 to P47, P60 to P67, P70 to P77, PF0, PF1, PG1, PG2	*1	V _{SS} - 0.3	—	0.2 V _{CC}	V	Hysteresis input
	V _{ILM}	PF2	—	V _{SS} - 0.3	—	0.3 V _{CC}	V	Hysteresis input
Open-drain output application voltage	V _D	P12, P72, P73, PF2	—	V _{SS} - 0.3	—	V _{SS} + 5.5	V	
"H" level output voltage	V _{OH1}	Output pins other than P12, P62 to P67, P72, P73, PF2	I _{OH} = -4 mA	V _{CC} - 0.5	—	—	V	
	V _{OH2}	P62 to P67	I _{OH} = -8 mA	V _{CC} - 0.5	—	—	V	
"L" level output voltage	V _{OL1}	Output pins other than P62 to P67	I _{OL} = 4 mA	—	—	0.4	V	
	V _{OL2}	P62 to P67	I _{OL} = 12 mA	—	—	0.4	V	
Input leak current (Hi-Z output leak current)	I _{LI}	All input pins	0.0 V < V _I < V _{CC}	-5	—	+5	μA	When pull-up resistance is disabled
Pull-up resistance	R _{PULL}	P00 to P07, P10, P11, P13 to P17, P40 to P47, P60, P61, P70, P71, P74 to P76, PG1, PG2	V _I = 0 V	25	50	100	kΩ	When pull-up resistance is enabled

(Continued)

MB95390H Series

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ ^{*3}	Max		
Input capacitance	C_{IN}	Other than V_{CC} and V_{SS}	$f = 1 \text{ MHz}$	—	5	15	pF	
Power supply current ^{*2}	I_{CC}	V_{CC} (External clock operation)	$V_{CC} = 5.5 \text{ V}$ $F_{CH} = 32 \text{ MHz}$ $F_{MP} = 16 \text{ MHz}$ Main clock mode (divided by 2)	—	14.8	17	mA	Except during Flash memory writing and erasing
			—	33.5	39.5	mA	mA	During Flash memory writing and erasing
			—	16.6	21	mA	mA	At A/D conversion
	I_{CCS}		$V_{CC} = 5.5 \text{ V}$ $F_{CH} = 32 \text{ MHz}$ $F_{MP} = 16 \text{ MHz}$ Main sleep mode (divided by 2)	—	7	9	mA	
	I_{CCCL}		$V_{CC} = 5.5 \text{ V}$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subclock mode (divided by 2) $T_A = +25^\circ\text{C}$	—	60	153	μA	
	I_{CCCLS}		$V_{CC} = 5.5 \text{ V}$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subsleep mode (divided by 2) $T_A = +25^\circ\text{C}$	—	9.4	84	μA	
	I_{CCCT}		$V_{CC} = 5.5 \text{ V}$ $F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25^\circ\text{C}$	—	4.3	30	μA	
	I_{CCMCR}		$V_{CC} = 5.5 \text{ V}$ $F_{CRH} = 12.5 \text{ MHz}$ $F_{MP} = 12.5 \text{ MHz}$ Main CR clock mode	—	11.8	13.2	mA	
	I_{CCSCR}		$V_{CC} = 5.5 \text{ V}$ Sub-CR clock mode (divided by 2) $T_A = +25^\circ\text{C}$	—	113	410	μA	

(Continued)

(Continued)

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ ^{*3}	Max		
Power supply current ^{*2}	I _{CCTS}	V _{CC} (External clock operation)	V _{CC} = 5.5 V F _{CH} = 32 MHz Time-base timer mode T _A = +25°C	—	0.9	3	mA	
	I _{CCH}		V _{CC} = 5.5 V Substop mode T _A = +25°C	—	3.4	22.5	μA	
	I _{LVD}	V _{CC}	Current consumption for low-voltage detection circuit only	—	31	54	μA	
	I _{CRH}		Current consumption for the main CR oscillator	—	0.5	0.6	mA	
	I _{CRl}		Current consumption for the sub-CR oscillator oscillating at 100 kHz	—	20	72	μA	

*1: The input levels of P47, P72, P73 and P77 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

*2: • The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (I_{LVD}) to one of the value from I_{CC} to I_{CCH}. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (I_{CRH}, I_{CRl}) and a specified value. In on-chip debug mode, the CR oscillator (I_{CRH}) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

- See "4. AC Characteristics: (1) Clock Timing" for F_{CH} and F_{CL}.
- See "4. AC Characteristics: (2) Source Clock/Machine Clock" for F_{MP} and F_{MPL}.

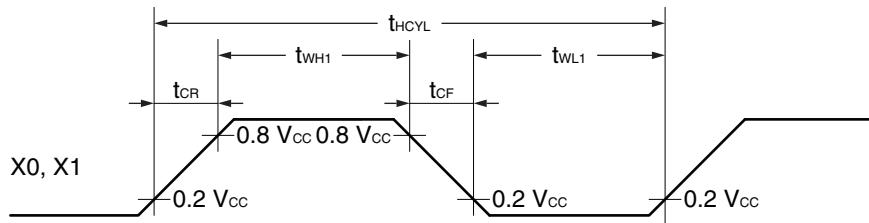
*3: V_{CC} = 5.0 V, T_A = 25°C

MB95390H Series

4. AC Characteristics

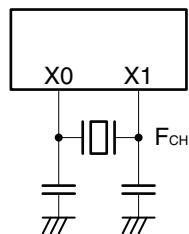
(1) Clock Timing

($V_{CC} = 2.4$ V to 5.5 V, $V_{SS} = 0.0$ V, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

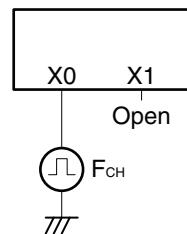

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	F_{CH}	X0, X1	—	1	—	16.25	MHz	When the main oscillation circuit is used
		X0	X1: open	1	—	12	MHz	When the main external clock is used
		X0, X1	*1	1	—	32.5	MHz	
	F_{CRH}	—	—	12.25	12.5	12.75	MHz	When the main CR clock is used ^{*2}
				9.80	10	10.20	MHz	
				7.84	8	8.16	MHz	
				0.98	1	1.02	MHz	
				12.18	12.5	12.82	MHz	When the main CR clock is used ^{*3}
				9.75	10	10.25	MHz	
				7.80	8	8.20	MHz	
				0.97	1	1.03	MHz	
	F_{CL}	X0A, X1A	—	—	32.768	—	kHz	When the sub-oscillation circuit is used
				—	32.768	—	kHz	When the sub-external clock is used
	F_{CRL}	—	—	50	100	200	kHz	When the sub-CR clock is used
Clock cycle time	t_{HCYL}	X0, X1	—	61.5	—	1000	ns	When the main oscillation circuit is used
		X0	X1: open	83.4	—	1000	ns	When the external clock is used
		X0, X1	*1	30.8	—	1000	ns	
	t_{LCYL}	X0A, X1A	—	—	30.5	—	μs	When the subclock is used
Input clock pulse width	t_{WH1} t_{WL1}	X0	X1: open	33.4	—	—	ns	When the external clock is used, the duty ratio should range between 40% and 60%.
		X0, X1	*1	12.4	—	—	ns	
	t_{WH2} t_{WL2}	X0A	—	—	15.2	—	μs	
Input clock rise time and fall time	t_{CR} t_{CF}	X0	X1: open	—	—	5	ns	When the external clock is used
		X0, X1	*1	—	—	5	ns	
CR oscillation start time	t_{CRHWK}	—	—	—	—	80	μs	When the main CR clock is used
	t_{CRLWK}	—	—	—	—	10	μs	When the sub-CR clock is used

*1: The external clock signal is input to X0 and the inverted external clock signal to X1.

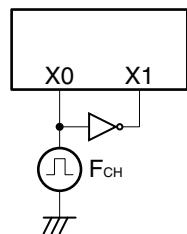
*2: These specifications are only applicable to a product in LQFP package (FPT-48P-M49 or FPT-52P-M02).

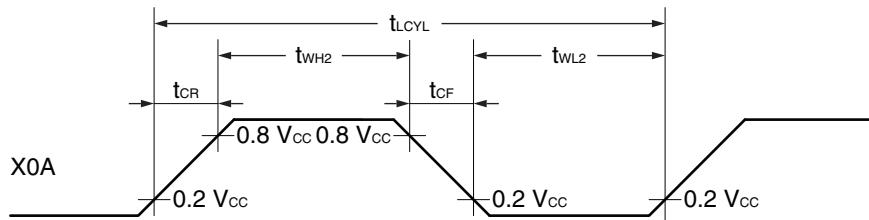

*3: These specifications are only applicable to a product in QFN package (LCC-48P-M11).

- Input waveform generated when an external clock (main clock) is used

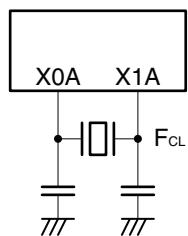


- Figure of main clock input port external connection

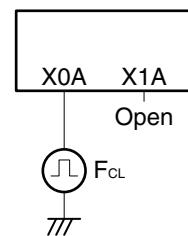

When a crystal oscillator or a ceramic oscillator is used


When the external clock is used (X1 is open)

When the external clock is used



- Input waveform generated when an external clock (subclock) is used



- Figure of subclock input port external connection

When a crystal oscillator or a ceramic oscillator is used

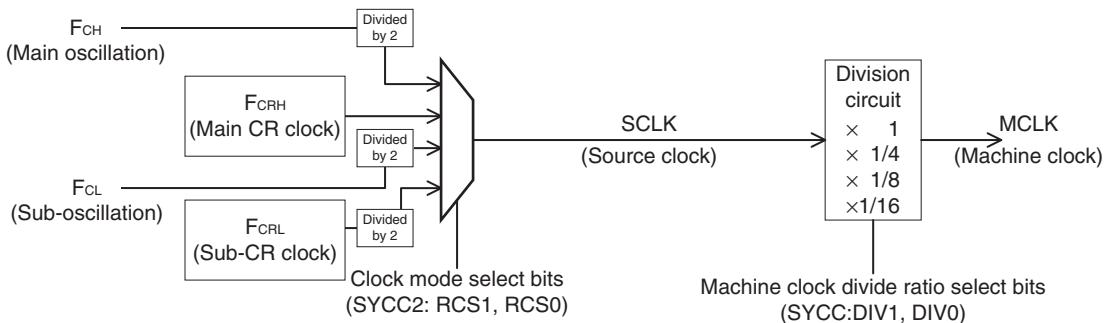
When the external clock is used

MB95390H Series

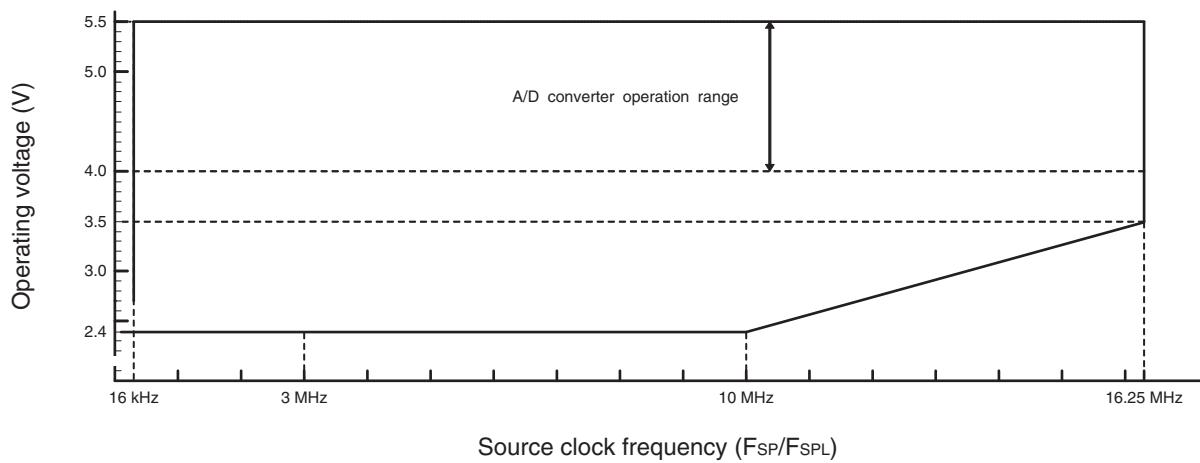
(2) Source Clock/Machine Clock

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

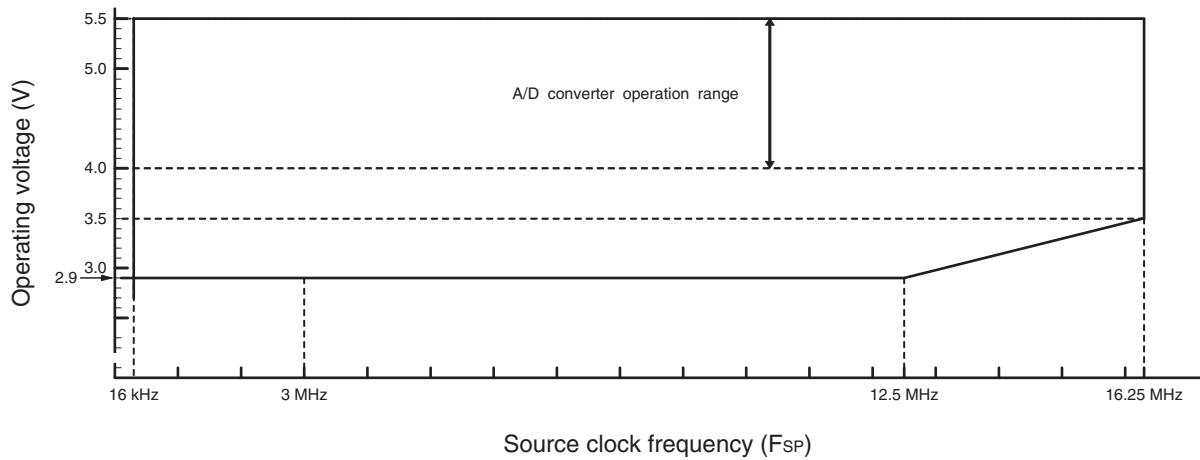
Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Source clock cycle time* ¹	t _{SCLK}	—	61.5	—	2000	ns	When the main external clock is used Min: $F_{CH} = 32.5 \text{ MHz}$, divided by 2 Max: $F_{CH} = 1 \text{ MHz}$, divided by 2
			80	—	1000	ns	When the main CR clock is used Min: $F_{CRH} = 12.5 \text{ MHz}$ Max: $F_{CRH} = 1 \text{ MHz}$
			—	61	—	μs	When the sub-oscillation clock is used $F_{CL} = 32.768 \text{ kHz}$, divided by 2
			—	20	—	μs	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$, divided by 2
Source clock frequency	F _{SP}	—	0.5	—	16.25	MHz	When the main oscillation clock is used
			1	—	12.5	MHz	When the main CR clock is used
	F _{SPL}	—	—	16.384	—	kHz	When the sub-oscillation clock is used
			—	50	—	kHz	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$, divided by 2
Machine clock cycle time* ² (minimum instruction execution time)	t _{MCLK}	—	61.5	—	32000	ns	When the main oscillation clock is used Min: $F_{SP} = 16.25 \text{ MHz}$, no division Max: $F_{SP} = 0.5 \text{ MHz}$, divided by 16
			80	—	16000	ns	When the main CR clock is used Min: $F_{SP} = 12.5 \text{ MHz}$ Max: $F_{SP} = 1 \text{ MHz}$, divided by 16
			61	—	976.5	μs	When the sub-oscillation clock is used Min: $F_{SPL} = 16.384 \text{ kHz}$, no division Max: $F_{SPL} = 16.384 \text{ kHz}$, divided by 16
			20	—	320	μs	When the sub-CR clock is used Min: $F_{SPL} = 50 \text{ kHz}$, no division Max: $F_{SPL} = 50 \text{ kHz}$, divided by 16
Machine clock frequency	F _{MP}	—	0.031	—	16.25	MHz	When the main oscillation clock is used
			0.0625	—	12.5	MHz	When the main CR clock is used
	F _{MPL}	—	1.024	—	16.384	kHz	When the sub-oscillation clock is used
			3.125	—	50	kHz	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$


*1: This is the clock before it is divided according to the division ratio set by the machine clock divide ratio select bits (SYCC:DIV1, DIV0). This source clock is divided to become a machine clock according to the divide ratio set by the machine clock divide ratio select bits (SYCC:DIV1, DIV0). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2


*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.

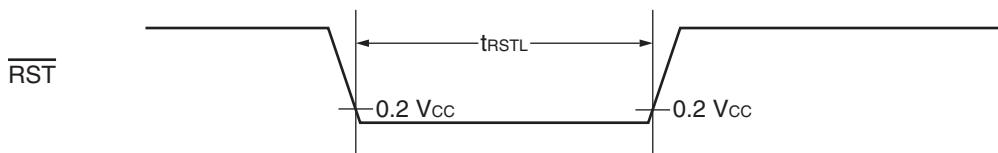
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16


- Schematic diagram of the clock generation block

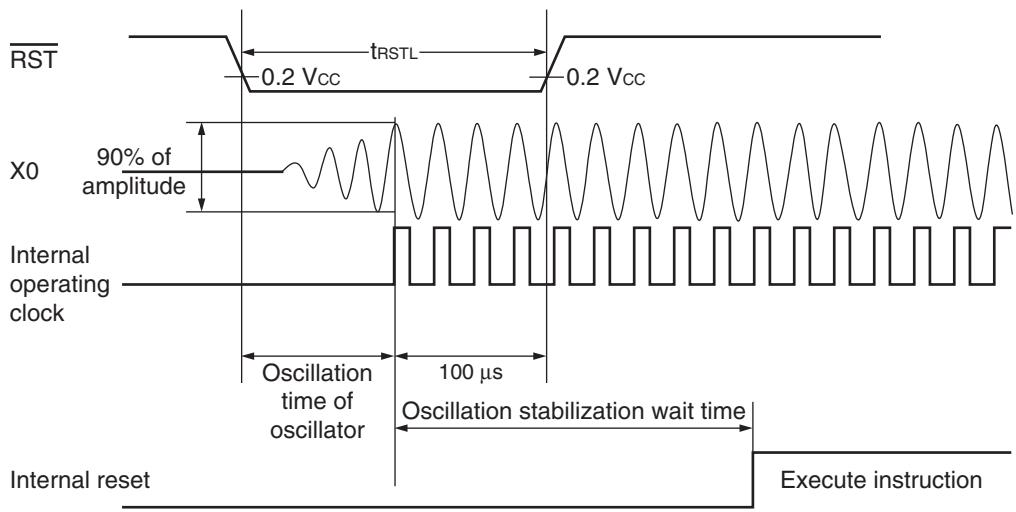
- Operating voltage - Operating frequency (When $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)
MB95390H (without the on-chip debug function)

- Operating voltage - Operating frequency (When $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)
MB95390H (with the on-chip debug function)

(3) External Reset

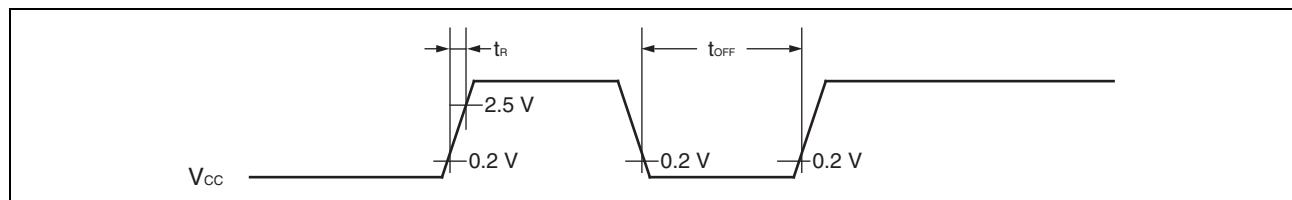

($V_{CC} = 5.0\text{ V} \pm 10\%$, $V_{SS} = 0.0\text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

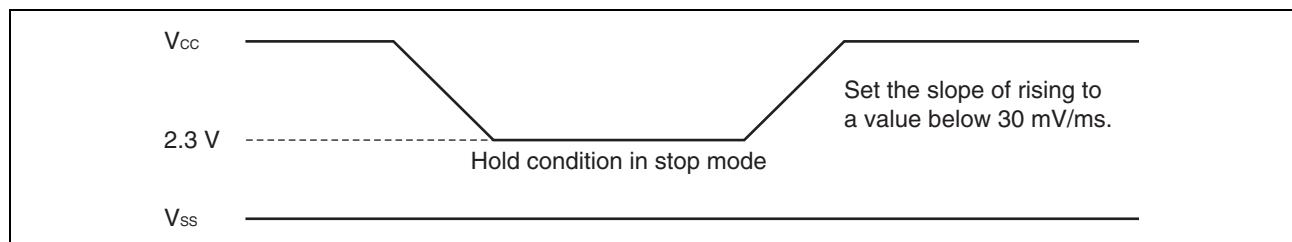
Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
$\overline{\text{RST}}$ "L" level pulse width	t_{RSTL}	$2 t_{MCLK}^{*1}$	—	ns	In normal operation
		Oscillation time of the oscillator $^{*2} + 100$	—	μs	In stop mode, subclock mode, subsleep mode, watch mode, and power-on
		100	—	μs	In time-base timer mode


*1: See "(2) Source Clock/Machine Clock" for t_{MCLK} .

*2: The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of μs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several μs and several ms.

- In normal operation

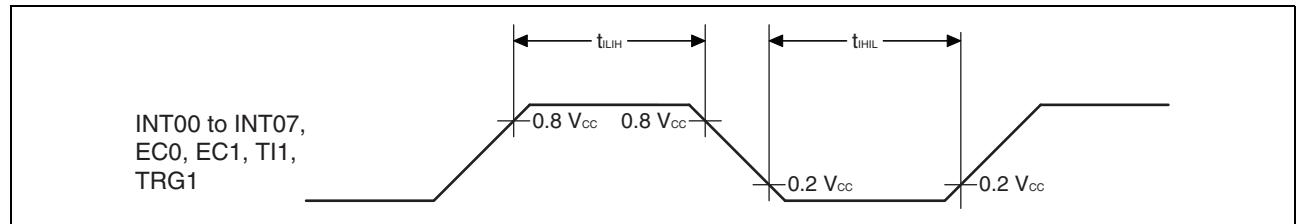

- In stop mode, subclock mode, subsleep mode, watch mode and power-on


(4) Power-on Reset

(V_{SS} = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	t _R	—	—	50	ms	
Power supply cutoff time	t _{OFF}	—	1	—	ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.



(5) Peripheral Input Timing

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Value		Unit
			Min	Max	
Peripheral input "H" pulse width	t_{ILIH}	INT00 to INT07, EC0, EC1, TI1,	2 t_{MCLK}^*	—	ns
Peripheral input "L" pulse width	t_{IHIL}	TRG1	2 t_{MCLK}^*	—	ns

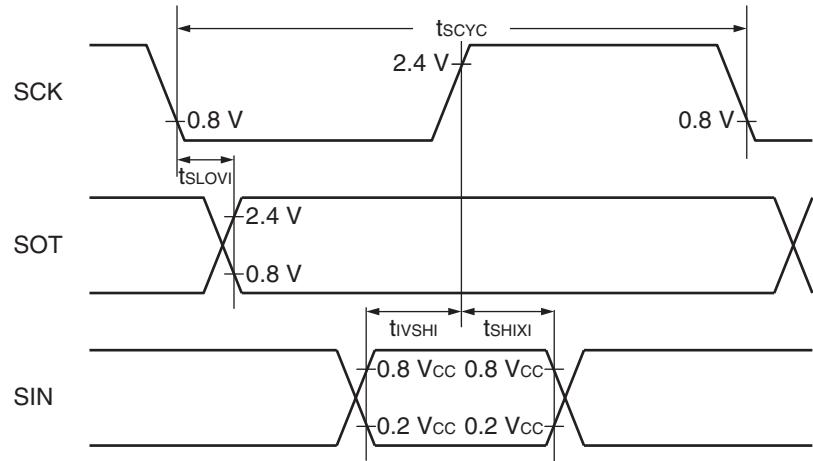
*: See "(2) Source Clock/Machine Clock" for t_{MCLK} .

(6) LIN-UART Timing

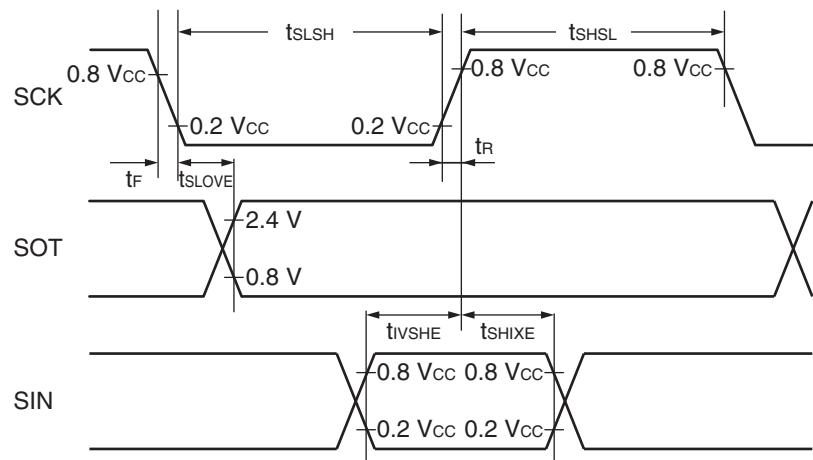
Sampling is executed at the rising edge of the sampling clock^{*1}, and serial clock delay is disabled^{*2}.
(ESCR register: SCES bit = 0, ECCR register: SCDE bit = 0)

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin: $C_L = 80 \text{ pF} + 1 \text{ TTL}$	5 t_{MCLK}^{*3}	—	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN		$t_{MCLK}^{*3} + 190$	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SCK, SIN		0	—	ns
Serial clock "L" pulse width	tslsh	SCK	External clock operation output pin: $C_L = 80 \text{ pF} + 1 \text{ TTL}$	$3 t_{MCLK}^{*3} - t_R$	—	ns
Serial clock "H" pulse width	tshsl	SCK		$t_{MCLK}^{*3} + 95$	—	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT		—	$2 t_{MCLK}^{*3} + 95$	ns
Valid SIN \rightarrow SCK \uparrow	tivshe	SCK, SIN		190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixe	SCK, SIN		$t_{MCLK}^{*3} + 95$	—	ns
SCK fall time	t _F	SCK		—	10	ns
SCK rise time	t _R	SCK		—	10	ns


*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.


*3: See "(2) Source Clock/Machine Clock" for t_{MCLK} .

MB95390H Series

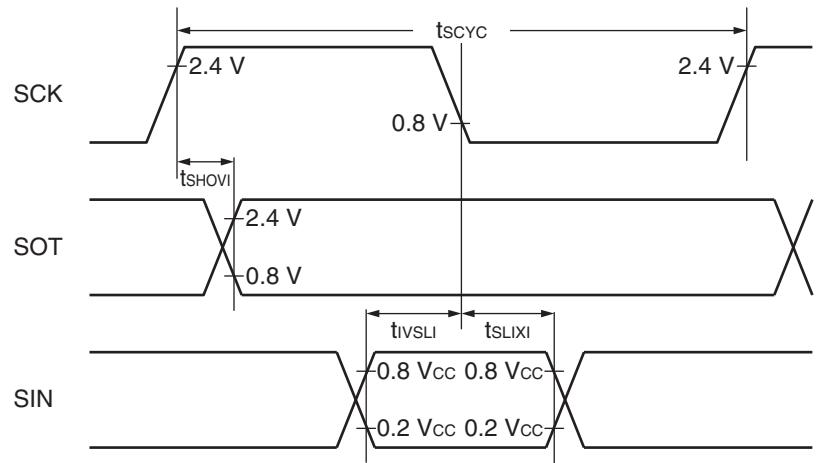
- Internal shift clock mode

- External shift clock mode

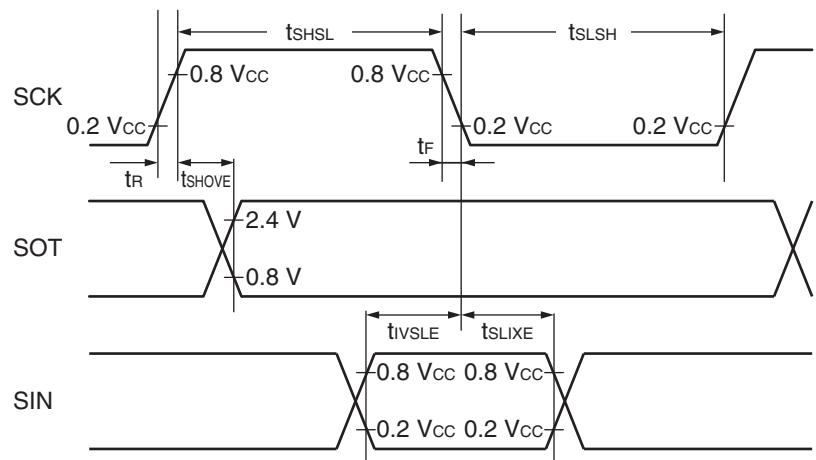
Sampling is executed at the falling edge of the sampling clock^{*1}, and serial clock delay is disabled^{*2}.
(ESCR register: SCES bit = 1, ECCR register: SCDE bit = 0)

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	t _{SCYC}	SCK	Internal clock operation output pin: $C_L = 80 \text{ pF} + 1 \text{ TTL}$	5 t _{MCLK} ^{*3}	—	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	t _{IVSLI}	SCK, SIN		t _{MCLK} ^{*3} + 190	—	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXI}	SCK, SIN		0	—	ns
Serial clock "H" pulse width	t _{SHSL}	SCK	External clock operation output pin: $C_L = 80 \text{ pF} + 1 \text{ TTL}$	3 t _{MCLK} ^{*3} - t _R	—	ns
Serial clock "L" pulse width	t _{SLSH}	SCK		t _{MCLK} ^{*3} + 95	—	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVE}	SCK, SOT		—	2 t _{MCLK} ^{*3} + 95	ns
Valid SIN \rightarrow SCK \downarrow	t _{IVSLE}	SCK, SIN		190	—	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXE}	SCK, SIN		t _{MCLK} ^{*3} + 95	—	ns
SCK fall time	t _F	SCK		—	10	ns
SCK rise time	t _R	SCK		—	10	ns


*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

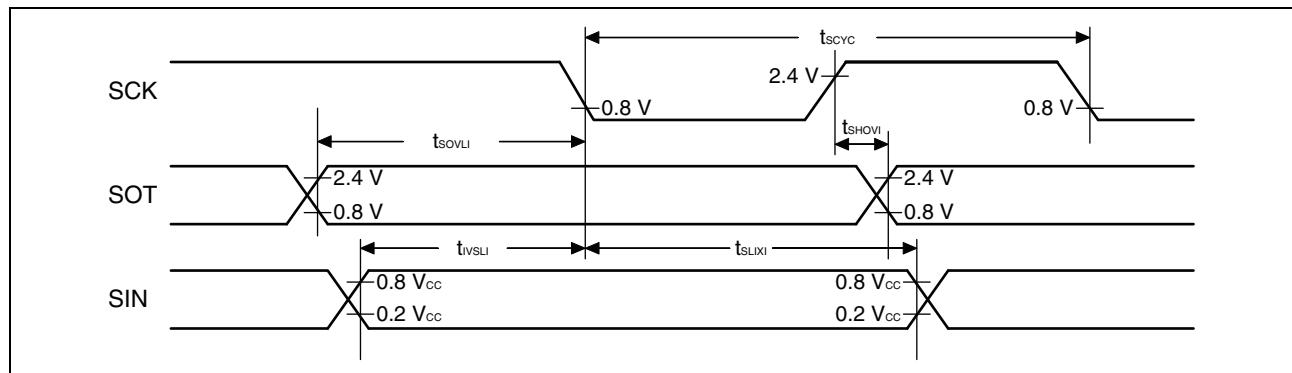

*3: See "(2) Source Clock/Machine Clock" for t_{MCLK}.

MB95390H Series

- Internal shift clock mode

- External shift clock mode

Sampling is executed at the rising edge of the sampling clock^{*1}, and serial clock delay is enabled^{*2}.
(ESCR register: SCES bit = 0, ECCR register: SCDE bit = 1)


($V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	t _{SCYC}	SCK	Internal clock operation output pin: $C_L = 80 \text{ pF} + 1 \text{ TTL}$	5 t _{MCLK} ^{*3}	—	ns
SCK $\uparrow \rightarrow$ SOT delay time	t _{SHOVI}	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	t _{IVSLI}	SCK, SIN		t _{MCLK} ^{*3} + 190	—	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	t _{SLIXI}	SCK, SIN		0	—	ns
SOT \rightarrow SCK \downarrow delay time	t _{SOVLI}	SCK, SOT		—	4 t _{MCLK} ^{*3}	ns

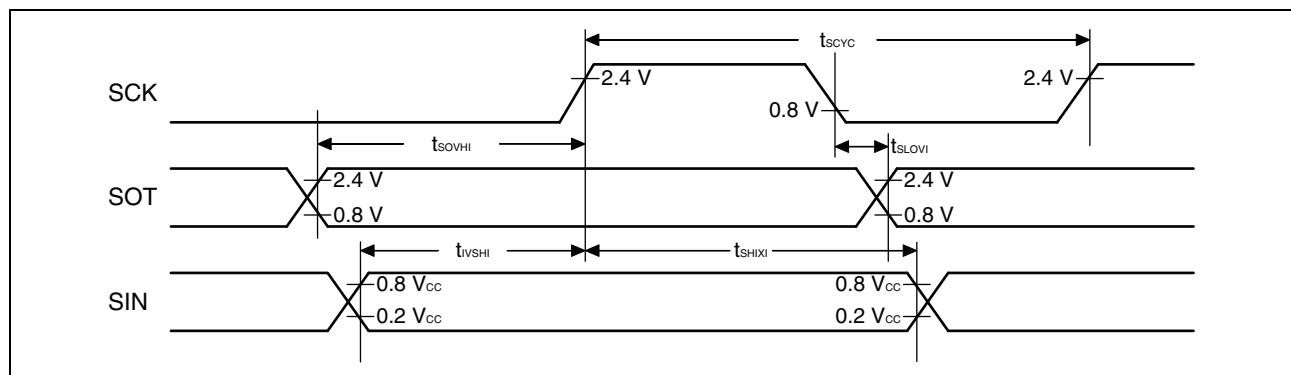
*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See "(2) Source Clock/Machine Clock" for t_{MCLK}.

MB95390H Series

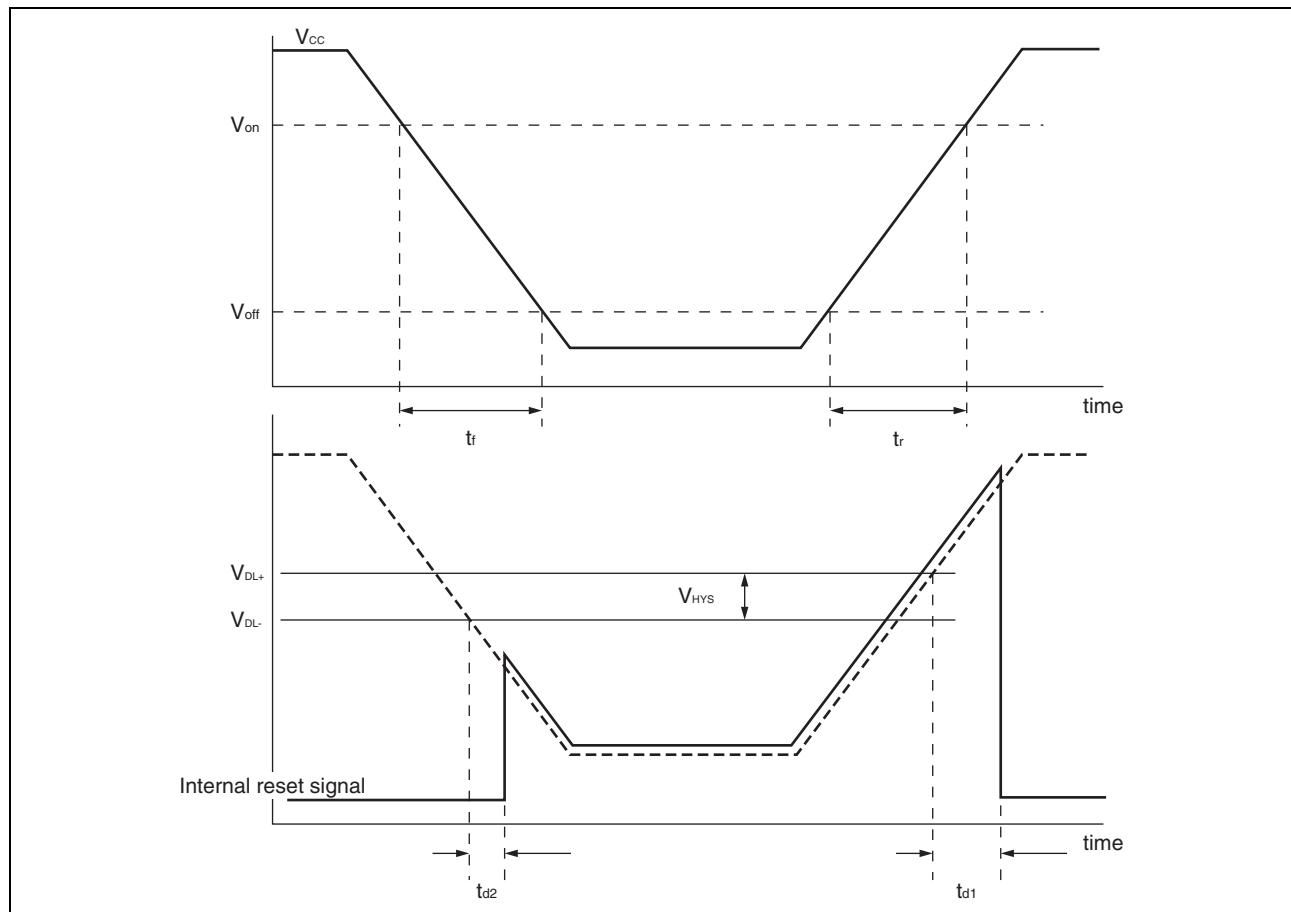
Sampling is executed at the falling edge of the sampling clock^{*1}, and serial clock delay is enabled^{*2}.
(ESCR register: SCES bit = 1, ECCR register: SCDE bit = 1)


($V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	t_{SCYC}	SCK	Internal clock operation output pin: $C_L = 80 \text{ pF} + 1 \text{ TTL}$	5 t_{MCLK}^{*3}	—	ns
$\text{SCK} \downarrow \rightarrow \text{SOT}$ delay time	t_{SLOVI}	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	t_{IVSHI}	SCK, SIN		$t_{MCLK}^{*3} + 190$	—	ns
$\text{SCK} \uparrow \rightarrow$ valid SIN hold time	t_{SHIXI}	SCK, SIN		0	—	ns
SOT \rightarrow SCK \uparrow delay time	t_{SOVHI}	SCK, SOT		—	$4 t_{MCLK}^{*3}$	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

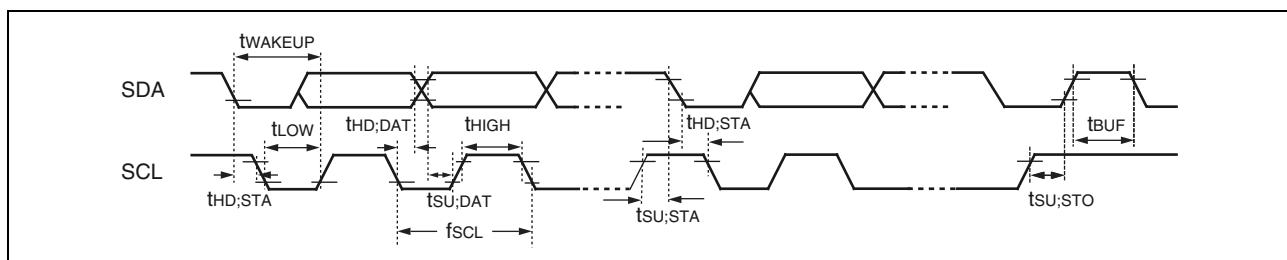

*3: See "(2) Source Clock/Machine Clock" for t_{MCLK} .

(7) Low-voltage Detection

(V_{SS} = 0.0 V, T_A = -40°C to +85°C)

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Release voltage	V _{DL+}	2.52	2.7	2.88	V	At power supply rise
Detection voltage	V _{DL-}	2.42	2.6	2.78	V	At power supply fall
Hysteresis width	V _{HYS}	70	100	—	mV	
Power supply start voltage	V _{off}	—	—	2.3	V	
Power supply end voltage	V _{on}	4.9	—	—	V	
Power supply voltage change time (at power supply rise)	t _r	3000	—	—	μs	Slope of power supply that the reset release signal generates within the rating (V _{DL+})
Power supply voltage change time (at power supply fall)	t _f	300	—	—	μs	Slope of power supply that the reset detection signal generates within the rating (V _{DL-})
Reset release delay time	t _{d1}	—	—	300	μs	
Reset detection delay time	t _{d2}	—	—	20	μs	

(8) I²C Timing


($V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value				Unit	
				Standard-mode		Fast-mode			
				Min	Max	Min	Max		
SCL clock frequency	f_{SCL}	SCL	$R = 1.7 \text{ k}\Omega, C = 50 \text{ pF}^{*1}$	0	100	0	400	kHz	
(Repeated) START condition hold time $SDA \downarrow \rightarrow SCL \downarrow$	$t_{HD;STA}$	SCL, SDA		4.0	—	0.6	—	μs	
SCL clock "L" width	t_{LOW}	SCL		4.7	—	1.3	—	μs	
SCL clock "H" width	t_{HIGH}	SCL		4.0	—	0.6	—	μs	
(Repeated) START condition setup time $SCL \uparrow \rightarrow SDA \downarrow$	$t_{SU;STA}$	SCL, SDA		4.7	—	0.6	—	μs	
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	$t_{HD;DAT}$	SCL, SDA		0	3.45^{*2}	0	0.9^{*3}	μs	
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	$t_{SU;DAT}$	SCL, SDA		0.25	—	0.1	—	μs	
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	$t_{SU;STO}$	SCL, SDA		4	—	0.6	—	μs	
Bus free time between STOP condition and START condition	t_{BUF}	SCL, SDA		4.7	—	1.3	—	μs	

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: The maximum $t_{HD;DAT}$ in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (t_{LOW}) does not extend.

*3: A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of $t_{SU;DAT} \geq 250 \text{ ns}$ is fulfilled.

(Continued)

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value ^{*2}		Unit	Remarks
				Min	Max		
SCL clock "L" width	t_{LOW}	SCL	$R = 1.7 \text{ k}\Omega$, $C = 50 \text{ pF}^{*1}$	$(2 + nm/2)t_{MCLK} - 20$	—	ns	Master mode
SCL clock "H" width	t_{HIGH}	SCL		$(nm/2)t_{MCLK} - 20$	$(nm/2)t_{MCLK} + 20$	ns	Master mode
START condition hold time	$t_{HD;STA}$	SCL, SDA		$(-1 + nm/2)t_{MCLK} - 20$	$(-1 + nm)t_{MCLK} + 20$	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.
STOP condition setup time	$t_{SU;STO}$	SCL, SDA		$(1 + nm/2)t_{MCLK} - 20$	$(1 + nm/2)t_{MCLK} + 20$	ns	Master mode
START condition setup time	$t_{SU;STA}$	SCL, SDA		$(1 + nm/2)t_{MCLK} - 20$	$(1 + nm/2)t_{MCLK} + 20$	ns	Master mode
Bus free time between STOP condition and START condition	t_{BUF}	SCL, SDA		$(2 nm + 4)t_{MCLK} - 20$	—	ns	
Data hold time	$t_{HD;DAT}$	SCL, SDA		$3 t_{MCLK} - 20$	—	ns	Master mode
Data setup time	$t_{SU;DAT}$	SCL, SDA		$(-2 + nm/2)t_{MCLK} - 20$	$(-1 + nm/2)t_{MCLK} + 20$	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing interrupt and SCL rising	$t_{SU;INT}$	SCL		$(nm/2)t_{MCLK} - 20$	$(1 + nm/2)t_{MCLK} + 20$	ns	Minimum value is applied to interrupt at 9th SCL↓. Maximum value is applied to the interrupt at the 8th SCL↓.

(Continued)

MB95390H Series

(Continued)

($V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value ^{*2}		Unit	Remarks
				Min	Max		
SCL clock "L" width	t_{LOW}	SCL	$R = 1.7 \text{ k}\Omega$, $C = 50 \text{ pF}^{*1}$	4 $t_{MCLK} - 20$	—	ns	At reception
SCL clock "H" width	t_{HIGH}	SCL		4 $t_{MCLK} - 20$	—	ns	At reception
START condition detection	$t_{HD,STA}$	SCL, SDA		2 $t_{MCLK} - 20$	—	ns	Not detected when 1 t_{MCLK} is used at reception
STOP condition detection	$t_{SU,STO}$	SCL, SDA		2 $t_{MCLK} - 20$	—	ns	Not detected when 1 t_{MCLK} is used at reception
RESTART condition detection condition	$t_{SU,STA}$	SCL, SDA		2 $t_{MCLK} - 20$	—	ns	Not detected when 1 t_{MCLK} is used at reception
Bus free time	t_{BUF}	SCL, SDA		2 $t_{MCLK} - 20$	—	ns	At reception
Data hold time	$t_{HD,DAT}$	SCL, SDA		2 $t_{MCLK} - 20$	—	ns	At slave transmission mode
Data setup time	$t_{SU,DAT}$	SCL, SDA		$t_{LOW} - 3 t_{MCLK} - 20$	—	ns	At slave transmission mode
Data hold time	$t_{HD,DAT}$	SCL, SDA		0	—	ns	At reception
Data setup time	$t_{SU,DAT}$	SCL, SDA		$t_{MCLK} - 20$	—	ns	At reception
SDA \downarrow \rightarrow SCL \uparrow (at wakeup function)	t_{WAKEUP}	SCL, SDA		Oscillation stabilization wait time $+2 t_{MCLK} - 20$	—	ns	

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: • See "(2) Source Clock/Machine Clock" for t_{MCLK} .

- m represents the CS4 bit and CS3 bit (bit4 and bit3) in the I²C clock control register (ICCR0).
- n represents the CS2 bit to CS0 bit (bit2 to bit0) in the I²C clock control register (ICCR0).
- The actual timing of I²C is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS4 to CS0 bits in the ICCR0 register.

• Standard-mode:

m and n can be set to values in the following range: $0.9 \text{ MHz} < t_{MCLK}$ (machine clock) $< 10 \text{ MHz}$.

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

(m, n) = (1, 8) : $0.9 \text{ MHz} < t_{MCLK} \leq 1 \text{ MHz}$

(m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4) : $0.9 \text{ MHz} < t_{MCLK} \leq 2 \text{ MHz}$

(m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8) : $0.9 \text{ MHz} < t_{MCLK} \leq 4 \text{ MHz}$

(m, n) = (1, 98) : $0.9 \text{ MHz} < t_{MCLK} \leq 10 \text{ MHz}$

• Fast-mode:

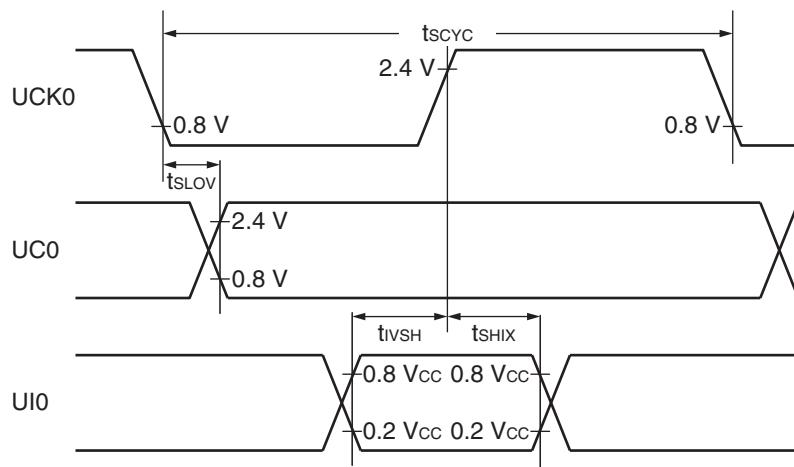
m and n can be set to values in the following range: $3.3 \text{ MHz} < t_{MCLK}$ (machine clock) $< 10 \text{ MHz}$.

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

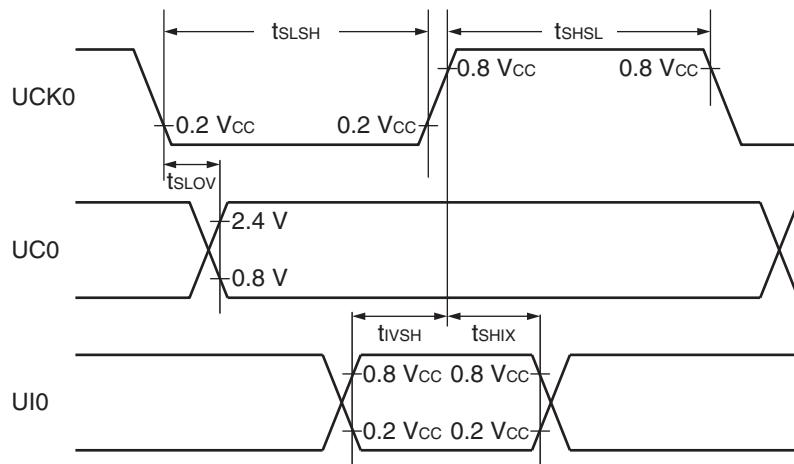
(m, n) = (1, 8) : $3.3 \text{ MHz} < t_{MCLK} \leq 4 \text{ MHz}$

(m, n) = (1, 22), (5, 4) : $3.3 \text{ MHz} < t_{MCLK} \leq 8 \text{ MHz}$

(m, n) = (6, 4) : $3.3 \text{ MHz} < t_{MCLK} \leq 10 \text{ MHz}$


(9) UART/SIO, Serial I/O Timing

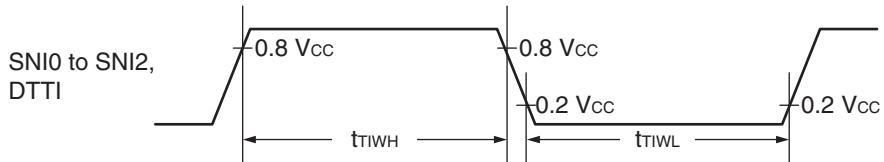
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_A = -40^\circ\text{C} \text{ to } +85^\circ\text{C})$


Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	t_{SCYC}	UCK0	Internal clock operation	4 t_{MCLK}^*	—	ns
UCK \downarrow \rightarrow UO time	t_{SLOV}	UCK0, UO0		-190	+190	ns
Valid UI \rightarrow UCK \uparrow	t_{IVSH}	UCK0, UI0		2 t_{MCLK}^*	—	ns
UCK \uparrow \rightarrow valid UI hold time	t_{SHIX}	UCK, UI0		2 t_{MCLK}^*	—	ns
Serial clock "H" pulse width	t_{SHSL}	UCK0	External clock operation	4 t_{MCLK}^*	—	ns
Serial clock "L" pulse width	t_{SLSH}	UCK0		4 t_{MCLK}^*	—	ns
UCK \downarrow \rightarrow UO time	t_{SLOV}	UCK0, UO0		—	190	ns
Valid UI \rightarrow UCK \uparrow	t_{IVSH}	UCK0, UI0		2 t_{MCLK}^*	—	ns
UCK \uparrow \rightarrow valid UI hold time	t_{SHIX}	UCK0, UI0		2 t_{MCLK}^*	—	ns

*: See "(2) Source Clock/Machine Clock" for t_{MCLK} .

• Internal shift clock mode

• External shift clock mode



MB95390H Series

(10) MPG Input Timing

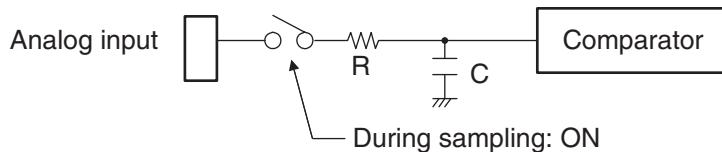
($V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{SS} = V_{SS} = 0.0 \text{ V}$, $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Input pulse width	t_{TIWH} t_{TIWL}	SNI0 to SNI2, DTTI	—	4 t_{MCLK}	—	ns	

5. A/D Converter

(1) A/D Converter Electrical Characteristics

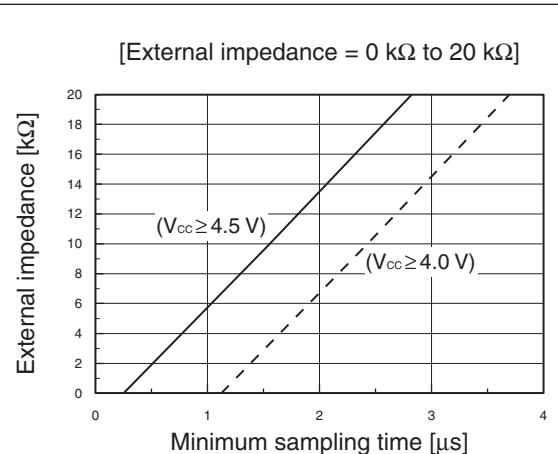
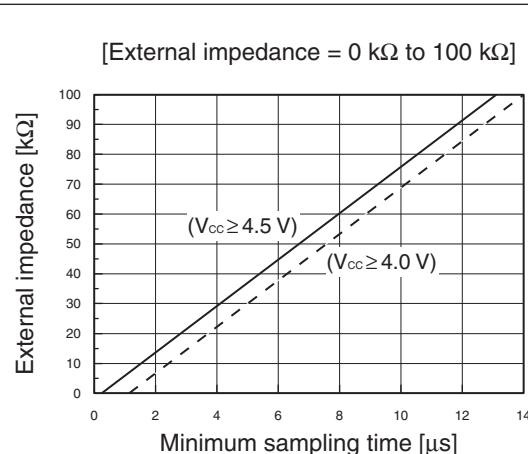
(V_{CC} = 4.0 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40°C to +85°C)


Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Resolution	—	—	—	10	bit	
Total error		-3	—	+3	LSB	
Linearity error		-2.5	—	+2.5	LSB	
Differential linear error		-1.9	—	+1.9	LSB	
Zero transition voltage	V _{OT}	V _{SS} - 1.5 LSB	V _{SS} + 0.5 LSB	V _{SS} + 2.5 LSB	V	
Full-scale transition voltage	V _{FST}	V _{CC} - 4.5 LSB	V _{CC} - 2 LSB	V _{CC} + 0.5 LSB	V	
Compare time	—	0.9	—	16500	μs	4.5 V ≤ V _{CC} ≤ 5.5 V
		1.8	—	16500	μs	4.0 V ≤ V _{CC} < 4.5 V
Sampling time	—	0.6	—	∞	μs	4.5 V ≤ V _{CC} ≤ 5.5 V, with external impedance < 5.4 kΩ
		1.2	—	∞	μs	4.0 V ≤ V _{CC} < 4.5 V, with external impedance < 2.4 kΩ
Analog input current	I _{A_{IN}}	-0.3	—	+0.3	μA	
Analog input voltage	V _{A_{IN}}	V _{SS}	—	V _{CC}	V	

(2) Notes on Using the A/D Converter

• External impedance of analog input and its sampling time

- The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 μ F to the analog input pin.



• Analog input equivalent circuit

V_{CC}	R	C
$4.5 \text{ V} \leq V_{CC} \leq 5.5 \text{ V}$	1.95 k Ω (Max)	17 pF (Max)
$4.0 \text{ V} \leq V_{CC} < 4.5 \text{ V}$	8.98 k Ω (Max)	17 pF (Max)

Note: The values are reference values.

• Relationship between external impedance and minimum sampling time

• A/D conversion error

As $|V_{CC} - V_{SS}|$ decreases, the A/D conversion error increases proportionately.

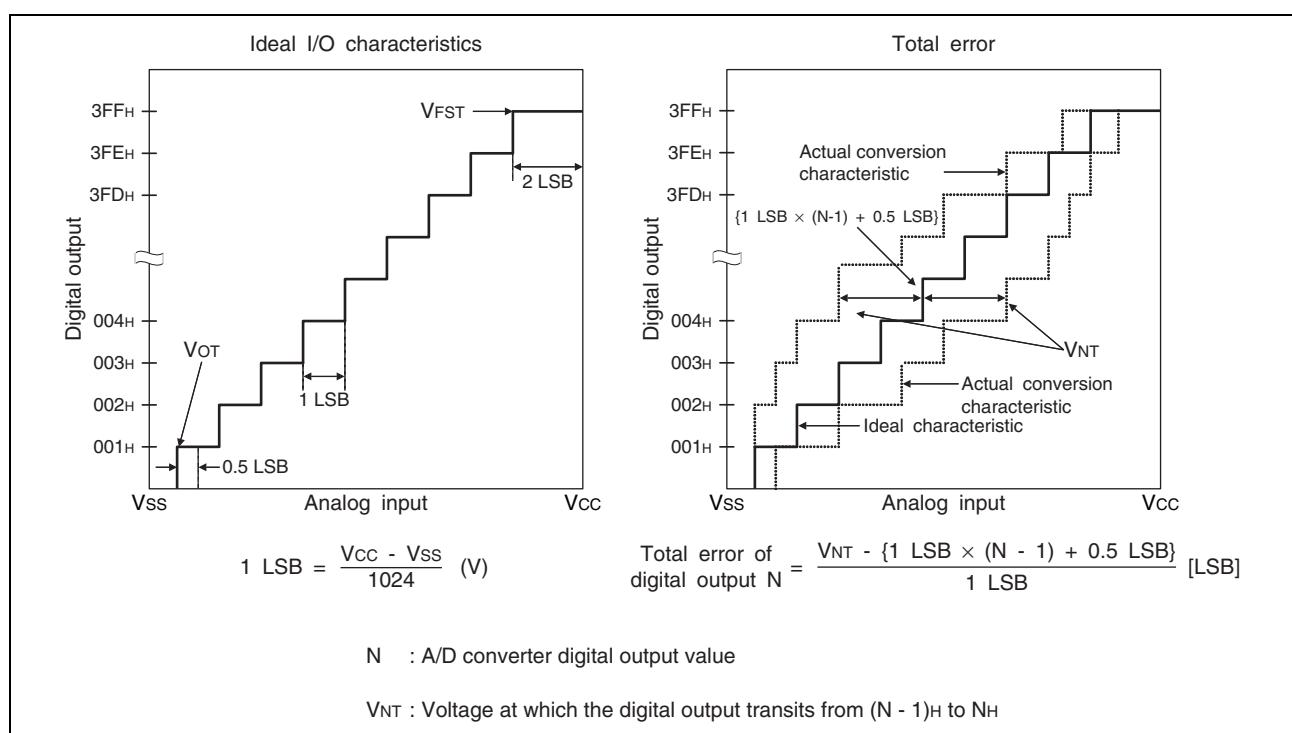
(3) Definitions of A/D Converter Terms

- Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter.

When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

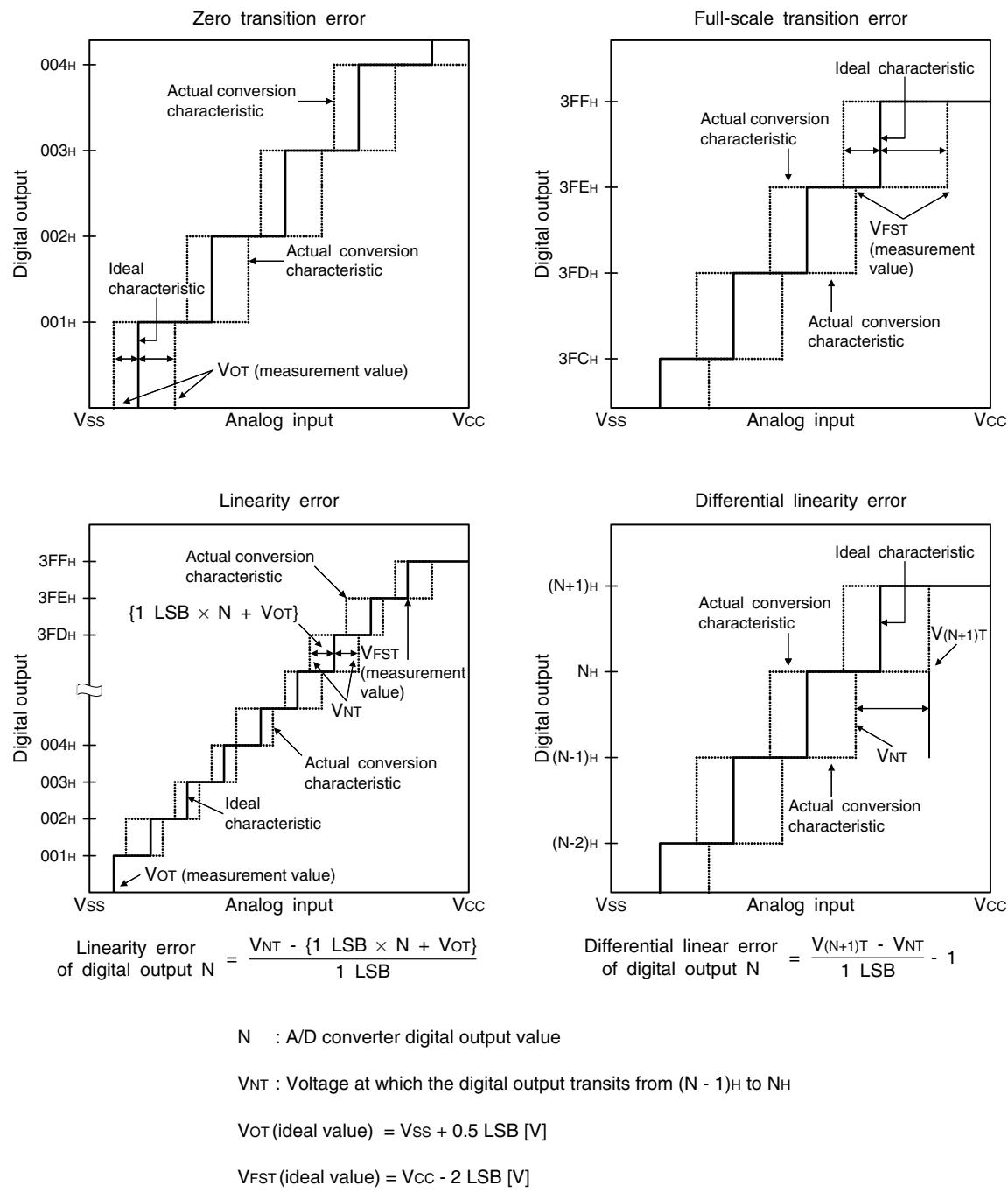
- Linearity error (unit: LSB)


It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111" \leftrightarrow "11 1111 1110") of the same device.

- Differential linear error (unit: LSB)

It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

- Total error (unit: LSB)


It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

(Continued)

MB95390H Series

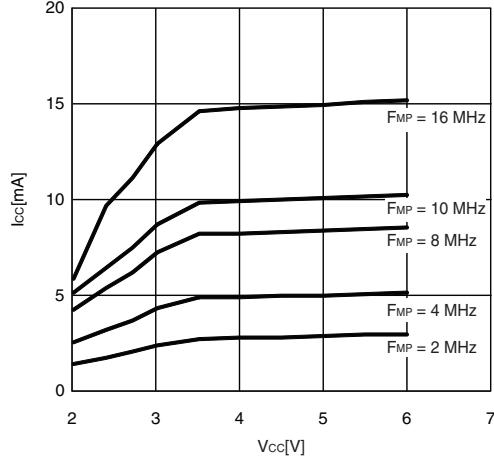
(Continued)

6. Flash Memory Write/Erase Characteristics

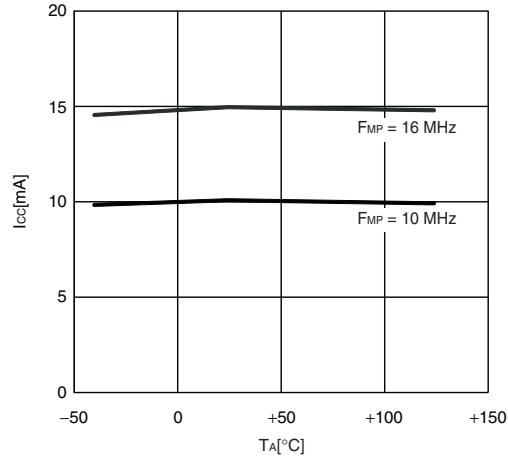
Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Sector erase time (2 Kbyte sector)	—	0.2 ^{*1}	0.5 ^{*2}	s	The time of writing 00H prior to erasure is excluded.
Sector erase time (16 Kbyte sector)	—	0.5 ^{*1}	7.5 ^{*2}	s	The time of writing 00H prior to erasure is excluded.
Byte writing time	—	21	6100 ^{*2}	μs	System-level overhead is excluded.
Erase/write cycle	100000	—	—	cycle	
Power supply voltage at erase/ write	3.0	—	5.5	V	
Flash memory data retention time	20 ^{*3}	—	—	year	Average TA = +85°C

*1: TA = +25°C, VCC = 5.0 V, 100000 cycles

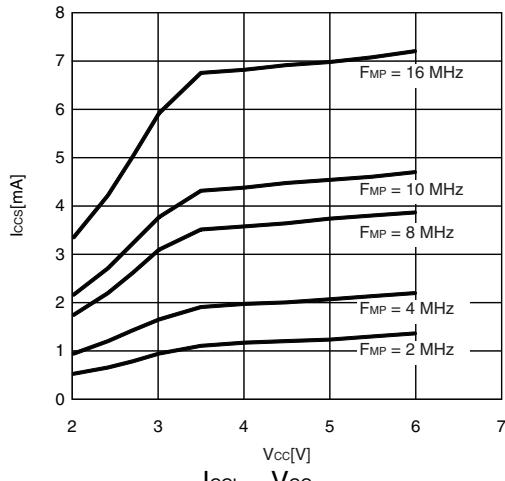
*2: TA = +85°C, VCC = 3.0 V, 100000 cycles

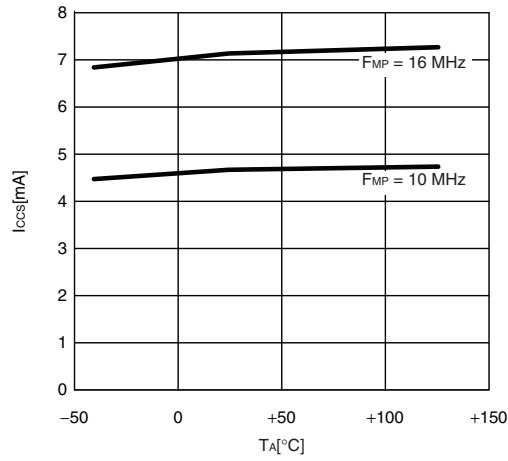

*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being +85°C).

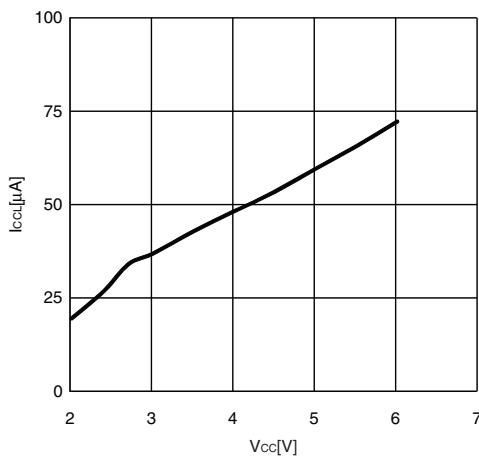
MB95390H Series

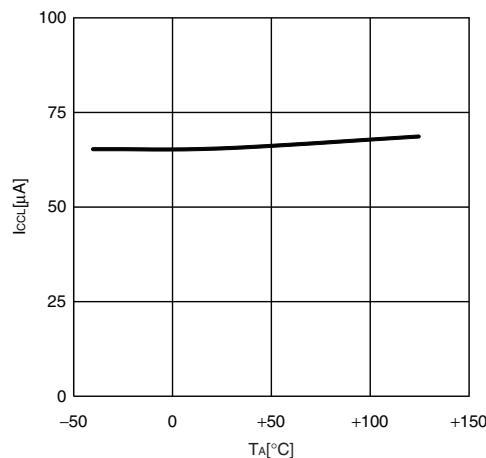

■ SAMPLE CHARACTERISTICS

- Power supply current temperature characteristics

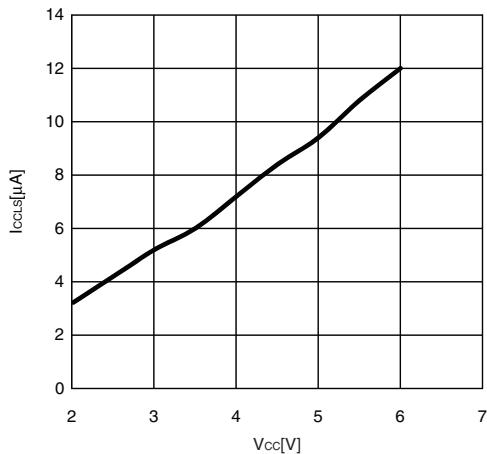

$I_{CC} - V_{CC}$
 $T_A = +25^\circ C$, $F_{MP} = 2, 4, 8, 10, 16$ MHz (divided by 2)
 Main clock mode with the external clock operating


$I_{CC} - T_A$
 $V_{CC} = 5.5$ V, $F_{MP} = 10, 16$ MHz (divided by 2)
 Main clock mode with the external clock operating

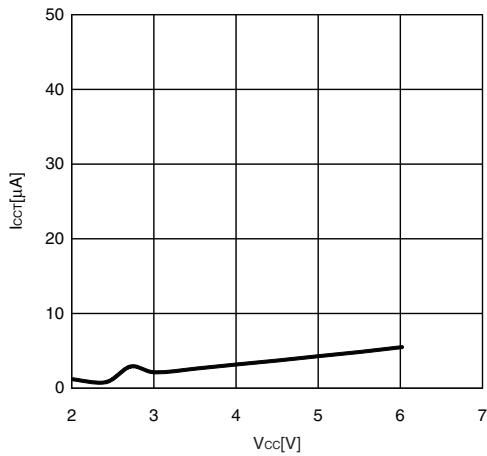

$I_{CCS} - V_{CC}$
 $T_A = +25^\circ C$, $F_{MP} = 2, 4, 8, 10, 16$ MHz (divided by 2)
 Main sleep mode with the external clock operating


$I_{CCS} - T_A$
 $V_{CC} = 5.5$ V, $F_{MP} = 10, 16$ MHz (divided by 2)
 Main sleep mode with the external clock operating

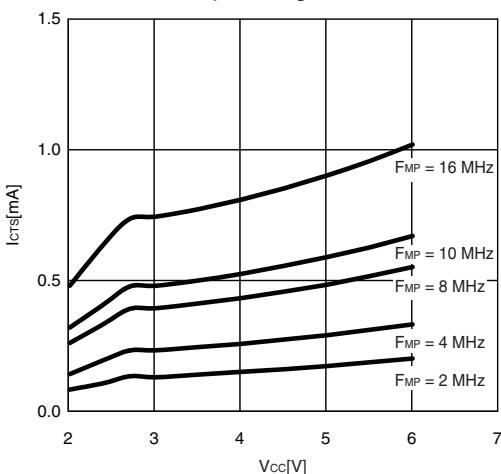
$I_{CCL} - V_{CC}$
 $T_A = +25^\circ C$, $F_{MPL} = 16$ kHz (divided by 2)
 Subclock mode with the external clock operating

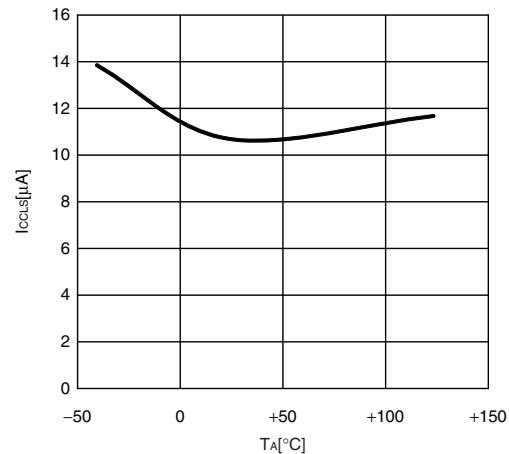


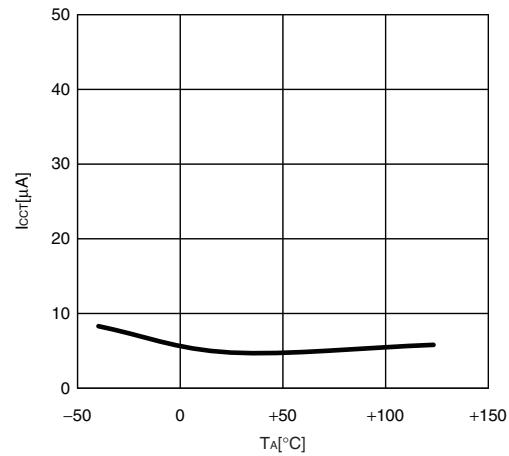
$I_{CCL} - T_A$
 $V_{CC} = 5.5$ V, $F_{MPL} = 16$ kHz (divided by 2)
 Subclock mode with the external clock operating

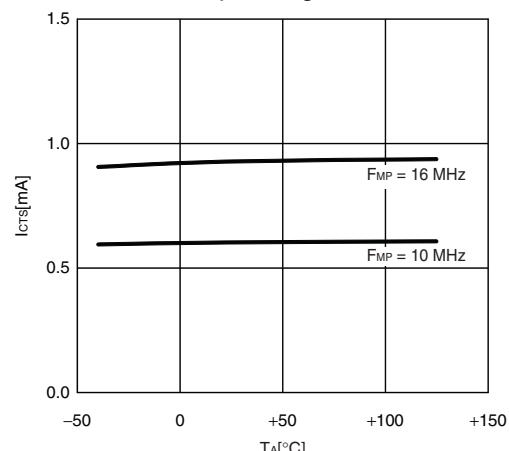


(Continued)


$I_{CCLS} - V_{CC}$
 $T_A = +25^\circ C, F_{MPL} = 16 \text{ kHz (divided by 2)}$
 Subsleep mode with the external clock operating

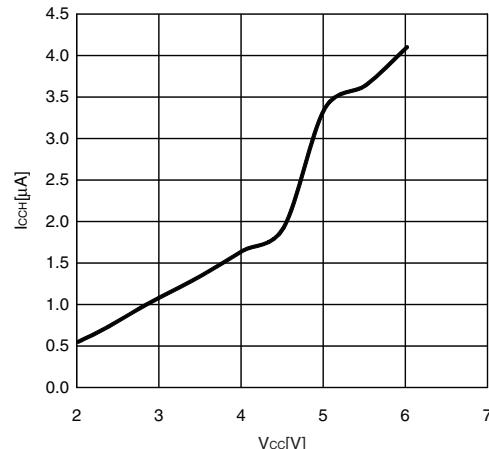

$I_{CCT} - V_{CC}$
 $T_A = +25^\circ C, F_{MPL} = 16 \text{ kHz (divided by 2)}$
 Watch mode with the external clock operating


$I_{CTS} - V_{CC}$
 $T_A = +25^\circ C, F_{MP} = 2, 4, 8, 10, 16 \text{ MHz (divided by 2)}$
 Time-base timer mode with the external clock operating


$I_{CCLS} - T_A$
 $V_{CC} = 5.5 \text{ V}, F_{MPL} = 16 \text{ kHz (divided by 2)}$
 Subsleep mode with the external clock operating

$I_{CCT} - T_A$
 $V_{CC} = 5.5 \text{ V}, F_{MPL} = 16 \text{ kHz (divided by 2)}$
 Watch mode with the external clock operating

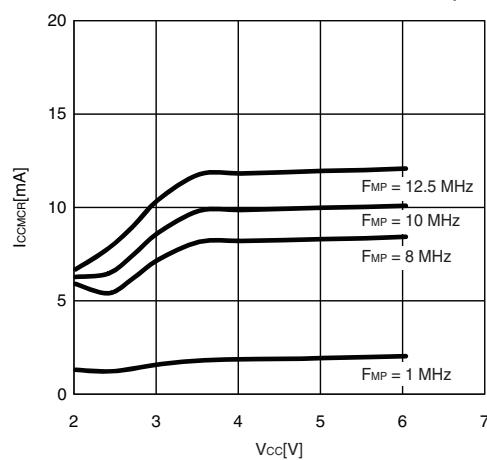
$I_{CTS} - T_A$
 $V_{CC} = 5.5 \text{ V}, F_{MPL} = 10, 16 \text{ kHz (divided by 2)}$
 Time-base timer mode with the external clock operating

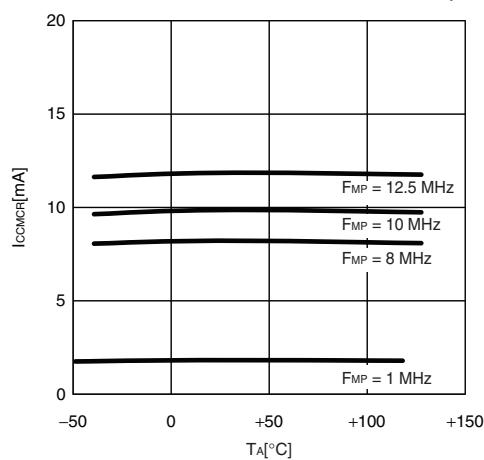


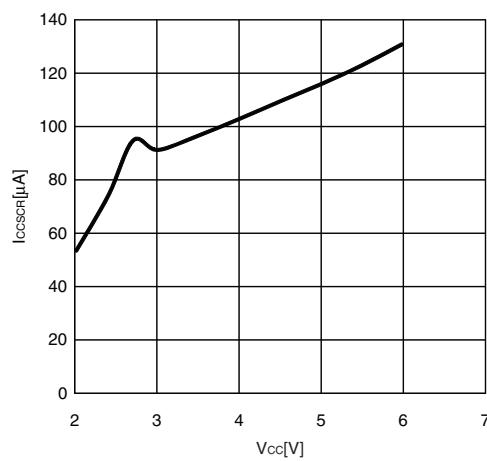
(Continued)

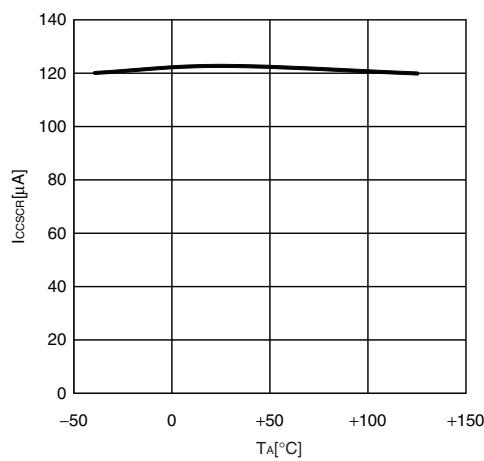

MB95390H Series

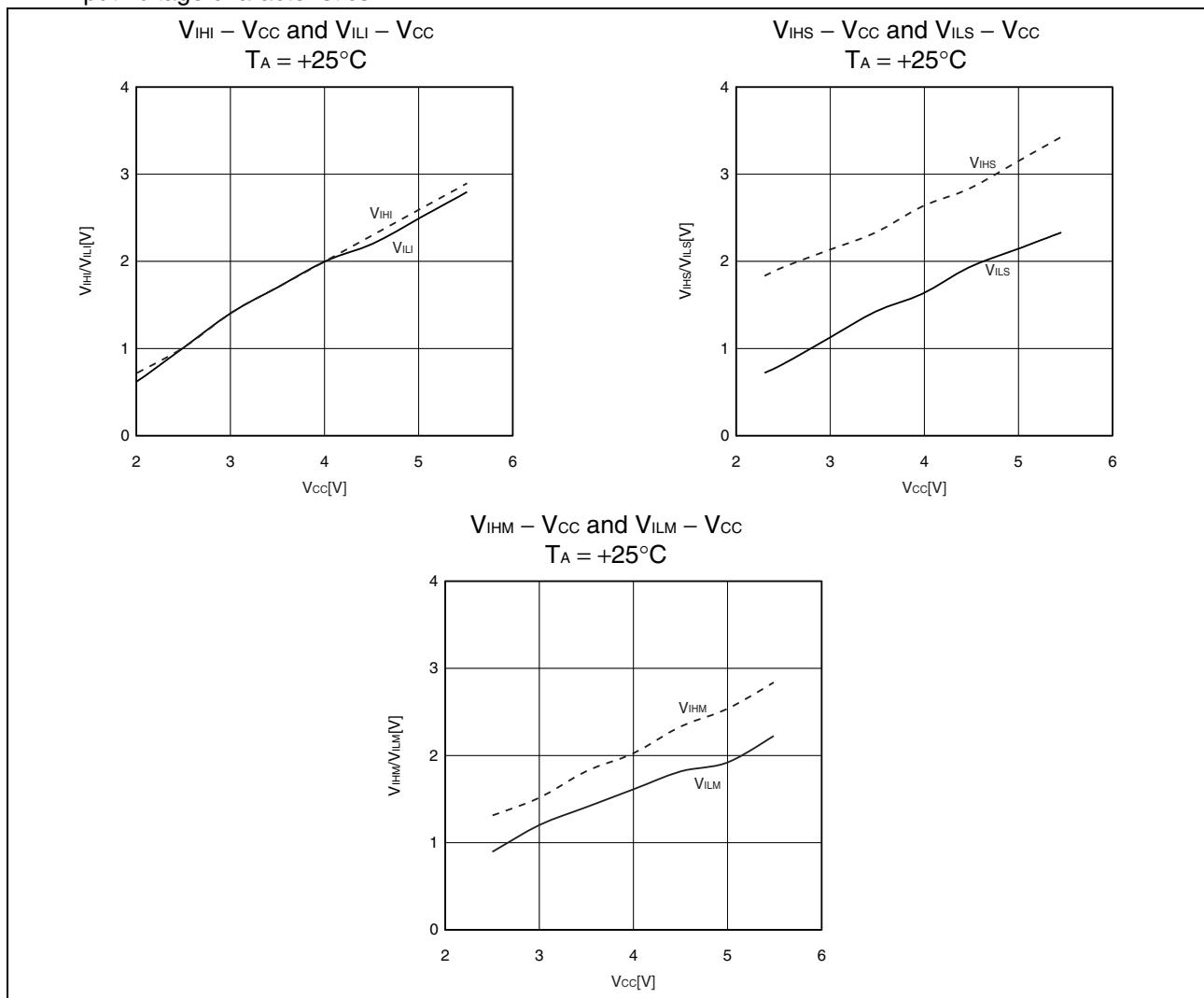
(Continued)


$I_{CCCH} - V_{CC}$
 $T_A = +25^\circ C$, $F_{MPL} = (\text{stop})$
 Substop mode with the external clock stopping

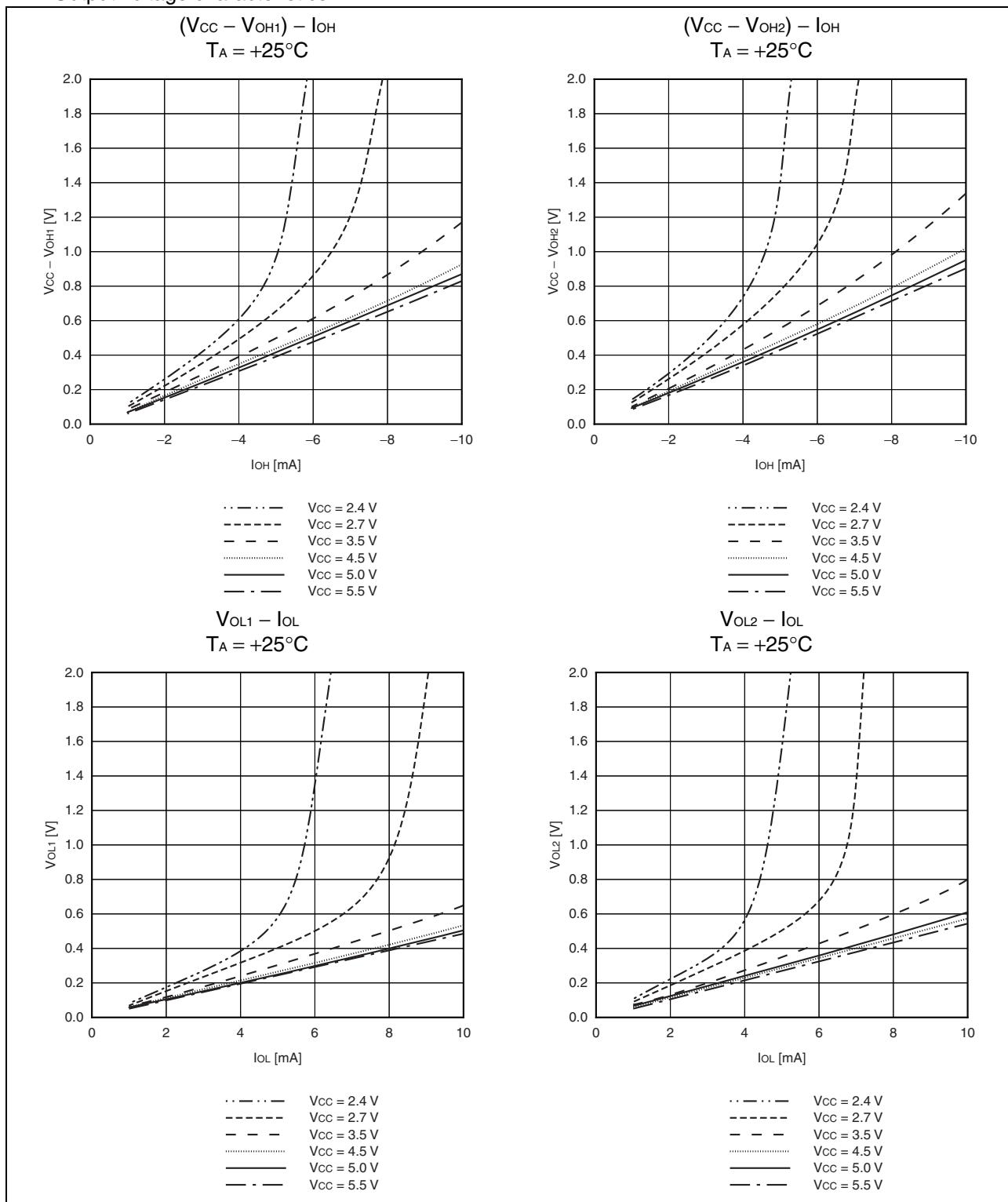

$I_{CCCH} - T_A$
 $V_{CC} = 5.5 V$, $F_{MPL} = (\text{stop})$
 Substop mode with the external clock stopping


$I_{CCMCR} - V_{CC}$
 $T_A = +25^\circ C$, $F_{MP} = 1, 8, 10, 12.5$ MHz (no division)
 Main clock mode with the main CR clock operating

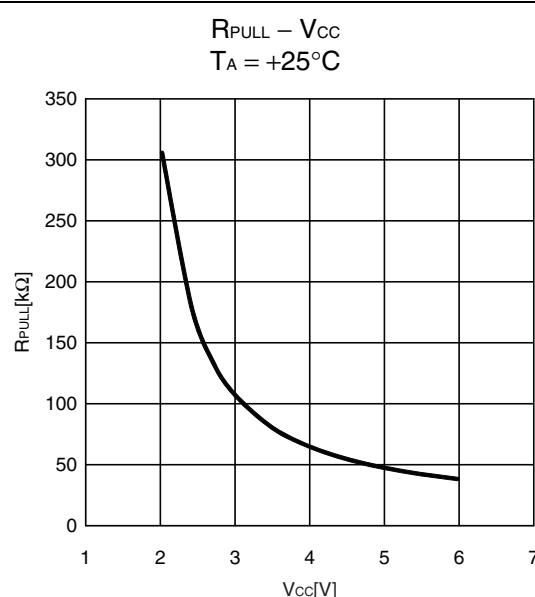

$I_{CCMCR} - T_A$
 $V_{CC} = 5.5 V$, $F_{MP} = 1, 8, 10, 12.5$ MHz (no division)
 Main clock mode with the main CR clock operating


$I_{CCSCR} - V_{CC}$
 $T_A = +25^\circ C$, $F_{MPL} = 50$ kHz (divided by 2)
 Subclock mode with the sub-CR clock operating

$I_{CCSCR} - T_A$
 $V_{CC} = 5.5 V$, $F_{MPL} = 50$ kHz (divided by 2)
 Subclock mode with the sub-CR clock operating



- Input voltage characteristics



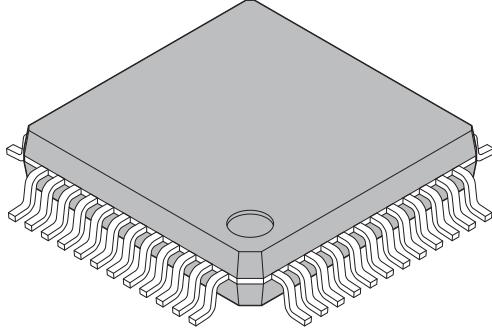
MB95390H Series

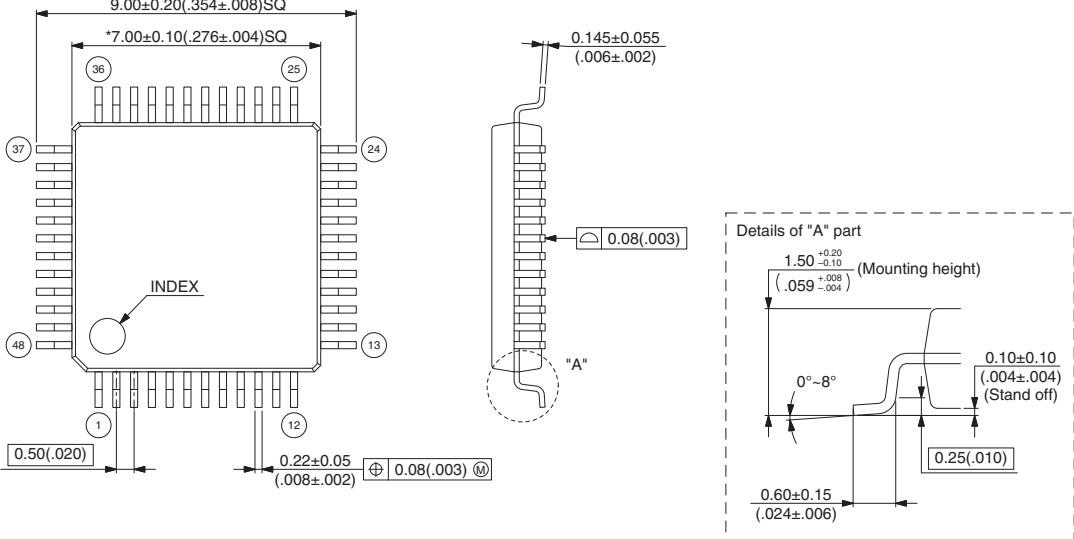
- Output voltage characteristics

- Pull-up characteristics

MB95390H Series

■ MASK OPTIONS

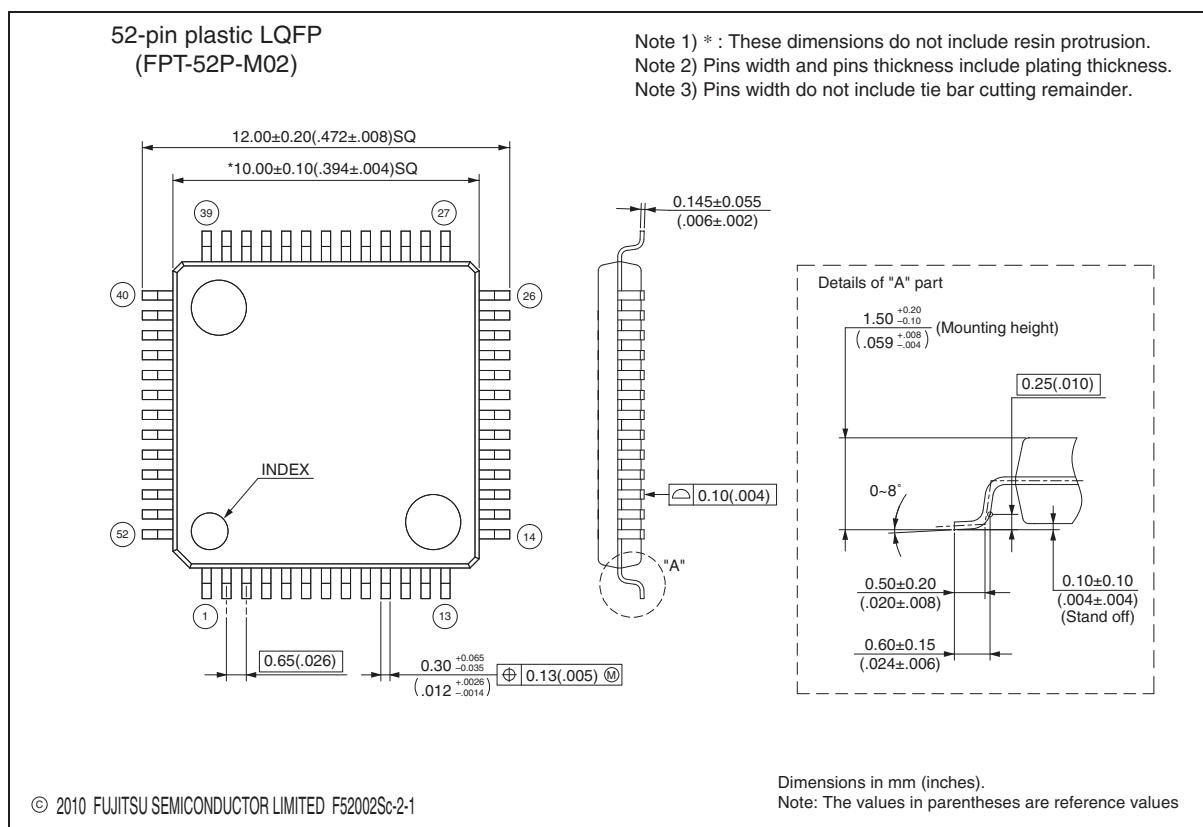

No.	Part Number	MB95F394H MB95F396H MB95F398H	MB95F394K MB95F396K MB95F398K
	Selectable/Fixed	Fixed	
1	Low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset
2	Reset	With dedicated reset input	Without dedicated reset input


■ ORDERING INFORMATION

Part Number	Package
MB95F394HPMC-G-SNE2 MB95F394KPMC-G-SNE2 MB95F396HPMC-G-SNE2 MB95F396KPMC-G-SNE2 MB95F398HPMC-G-SNE2 MB95F398KPMC-G-SNE2	48-pin plastic LQFP (FPT-48P-M49)
MB95F394HPMC1-G-SNE2 MB95F394KPMC1-G-SNE2 MB95F396HPMC1-G-SNE2 MB95F396KPMC1-G-SNE2 MB95F398HPMC1-G-SNE2 MB95F398KPMC1-G-SNE2	52-pin plastic LQFP (FPT-52P-M02)
MB95F394HWQN-G-SNE1 MB95F394HWQN-G-SNERE1 MB95F394KWQN-G-SNE1 MB95F394KWQN-G-SNERE1 MB95F396HWQN-G-SNE1 MB95F396HWQN-G-SNERE1 MB95F396KWQN-G-SNE1 MB95F396KWQN-G-SNERE1 MB95F398HWQN-G-SNE1 MB95F398HWQN-G-SNERE1 MB95F398KWQN-G-SNE1 MB95F398KWQN-G-SNERE1	48-pin plastic QFN (LCC-48P-M11)

MB95390H Series

■ PACKAGE DIMENSION

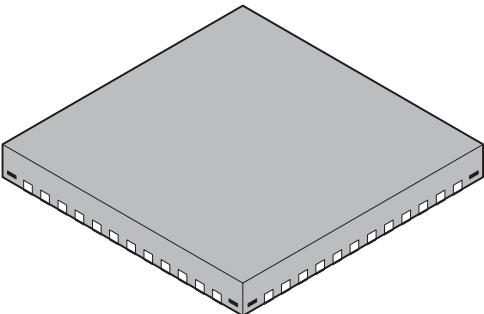

 48-pin plastic LQFP (FPT-48P-M49)	Lead pitch 0.50 mm
Package width × package length	7.00 mm × 7.00 mm
Lead shape	Gullwing
Lead bend direction	Normal bend
Sealing method	Plastic mold
Mounting height	1.70 mm MAX
Weight	0.17 g

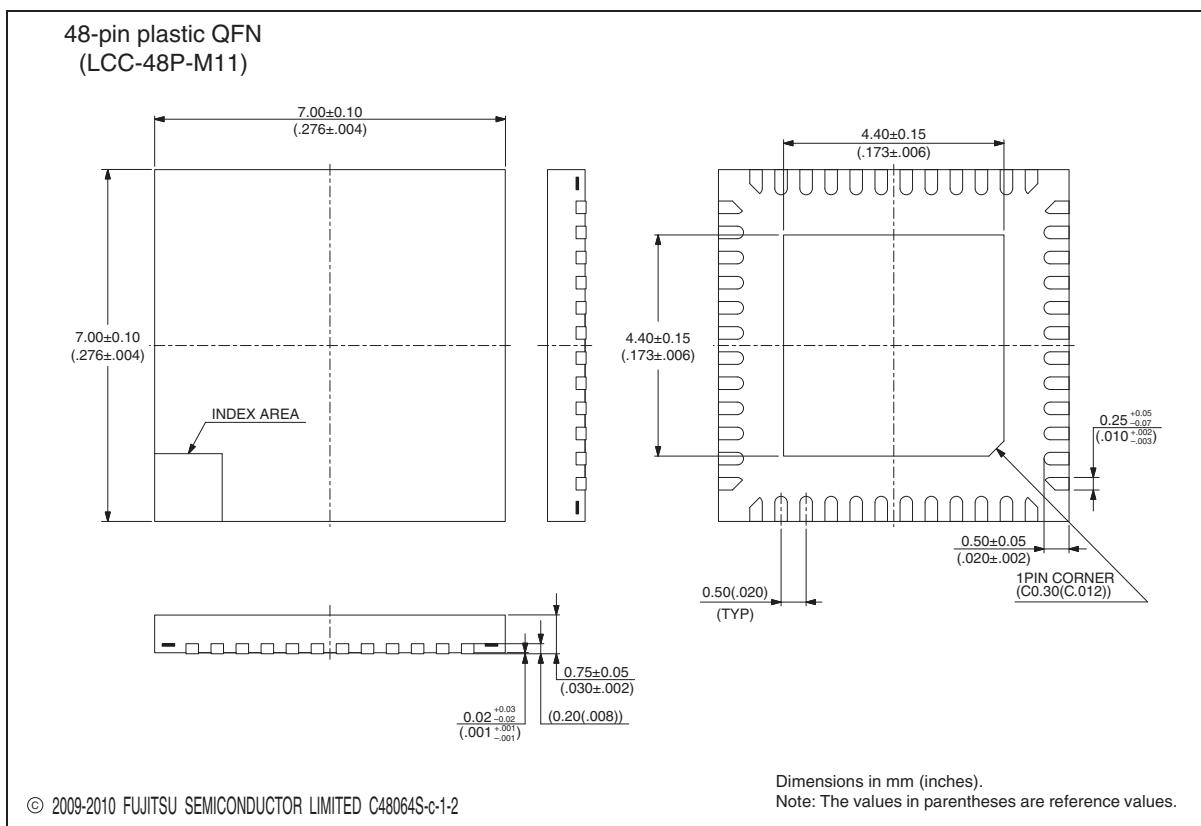
48-pin plastic LQFP (FPT-48P-M49)	<p>Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder.</p> <p>The top view diagram shows the package with pin numbers 1 through 48. Dimensions include: total width 9.00±0.20 (.354±.008) SQ, total length 7.00±0.10 (.276±.004) SQ, lead pitch 0.50 (0.020), lead width 0.22±0.05 (.008±.002), lead thickness 0.08 (.003), and lead height 0.145±0.055 (.006±.002). An 'INDEX' mark is indicated on the left side. A detailed view on the right shows the lead profile with a stand-off height of 0.10±0.10 (.004±.004) and a mounting height of 1.50±0.10 (.059±.004). The lead angle is 0°~8°.</p>
<p>© 2010 FUJITSU SEMICONDUCTOR LIMITED HMB48-49Sc-1-2</p>	<p>Dimensions in mm (inches). Note: The values in parentheses are reference values.</p>

Please check the latest package dimension at the following URL.
<http://edevice.fujitsu.com/package/en-search/>

(Continued)

52-pin plastic LQFP (FPT-52P-M02)	Lead pitch	0.65 mm
	Package width × package length	10.00 × 10.00 mm
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	1.70 mm MAX
	Weight	0.32 g
	Code (Reference)	P-LFQFP52-10×10-0.65




Please check the latest package dimension at the following URL.
<http://edevice.fujitsu.com/package/en-search/>

(Continued)

MB95390H Series

(Continued)

 48-pin plastic QFN (LCC-48P-M11)	Lead pitch 0.50 mm
Package width × package length	7.00 mm × 7.00 mm
Sealing method	Plastic mold
Mounting height	0.80 mm MAX
Weight	0.12 g

Please check the latest package dimension at the following URL.
<http://edevice.fujitsu.com/package/en-search/>

■ MAJOR CHANGES IN THIS EDITION

Page	Section	Details
1	■ FEATURES	Changed the main CR clock oscillation accuracy. $\pm 2\%$ → $\pm 2\%$ or $\pm 2.5\%$ Added a remark about the main CR clock accuracy.
4	■ PRODUCT LINE-UP	Added FPT-52P-M02.
5	■ PACKAGES AND CORRESPONDING PRODUCTS	Added FPT-52P-M02.
6	■ DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION	Added a reference for the connection method in “• On-chip debug function”.
8	■ PIN ASSIGNMENT	Added the pin assignment diagram of FPT-52P-M02.
10 to 13	■ PIN FUNCTIONS	Added the pin numbers of FPT-52P-M02.
34	■ ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1) Clock Timing	Changed the values of clock frequency (F_{CRH}). Added conditions related to the LQFP package and the QFN package for the values of clock frequency (F_{CRH}). Added footnotes *2 and *3.
58 to 63	■ SAMPLE CHARACTERISTICS	Added “■ SAMPLE CHARACTERISTICS”.
65	■ ORDERING INFORMATION	Added the part numbers of FPT-52P-M02.
67	■ PACKAGE DIMENSION	Added the package diagram of FPT-52P-M02.

The vertical lines marked on the left side of the page indicate the changes.

MEMO

MEMO

MB95390H Series

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,

Kohoku-ku Yokohama Kanagawa 222-0033, Japan

Tel: +81-45-415-5858

<http://jp.fujitsu.com/fsl/en/>

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC.

1250 E. Arques Avenue, M/S 333

Sunnyvale, CA 94085-5401, U.S.A.

Tel: +1-408-737-5600 Fax: +1-408-737-5999

<http://us.fujitsu.com/micro/>

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD.

151 Lorong Chuan,

#05-08 New Tech Park 556741 Singapore

Tel : +65-6281-0770 Fax : +65-6281-0220

<http://www.fujitsu.com/sg/services/micro/semiconductor/>

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH

Pittlerstrasse 47, 63225 Langen, Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122

<http://emea.fujitsu.com/semiconductor/>

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.

Rm. 3102, Bund Center, No.222 Yan An Road (E),

Shanghai 200002, China

Tel : +86-21-6146-3688 Fax : +86-21-6335-1605

<http://cn.fujitsu.com/fss/>

Korea

FUJITSU SEMICONDUCTOR KOREA LTD.

206 Kosmo Tower Building, 1002 Daechi-Dong,

Gangnam-Gu, Seoul 135-280, Republic of Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

<http://kr.fujitsu.com/fmk/>

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.

10/F., World Commerce Centre, 11 Canton Road,

Tsimshatsui, Kowloon, Hong Kong

Tel : +852-2377-0226 Fax : +852-2376-3269

<http://cn.fujitsu.com/fsp/>

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department