3.3 V / 5 V ECL 1:2 Differential Fanout Buffer

Description

The MC10/100EP11 is a differential 1:2 fanout buffer. The device is pin and functionally equivalent to the LVEL11 device. With AC performance much faster than the LVEL11 device, the EP11 is ideal for applications requiring the fastest AC performance available.

The 100 Series contains temperature compensation.

Features

- 220 ps Typical Propagation Delay
- Maximum Clock Frequency > 3 GHz Typical
- PECL Mode Operating Range:
 - $V_{CC} = 3.0 \text{ V}$ to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0 \text{ V}$ with $V_{EE} = -3.0 \text{ V}$ to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs
- Q Outputs Will Default LOW with Inputs Open or at VEE
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

TSSOP-8 DT SUFFIX CASE 948R-02

DFN-8 MN SUFFIX CASE 506AA

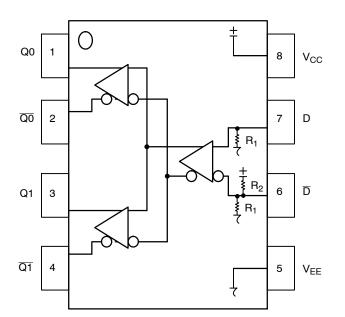
MARKING DIAGRAMS*

1

H = MC10 A = Assembly Location
C = MC100 L = Wafer Lot

5K = MC10 Y = Year 2Z = MC100 W = Work Week

= Date Code


■ = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D*, D **	ECL Data Inputs
Q0, Q0, Q1, Q1	ECL Data Outputs
V _{CC}	Positive Supply
V_{EE}	Negative Supply
EP	(DFN-8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

- * Pins will default LOW when left open.
- ** Pins will default to high when left open.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	37.5 kΩ
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC-8 NB TSSOP-8 DFN-8	Level 1 Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	73 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$ \begin{array}{l} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array} $	6 -6	٧
I _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN-8	129 84	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN-8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. 10EP DC CHARACTERISTICS, PECL ($V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 1))

		–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	20	29	37	20	30	39	22	31	40	mA
V _{OH}	Output HIGH Voltage (Note 2)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 2)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1365		1690	1430		1755	1490		1815	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		3.3	2.0		3.3	2.0		3.3	٧
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.
- 2. All loading with 50 Ω to V_{CC} 2.0 V.

 3. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential

^{1.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 5. 10EP DC CHARACTERISTICS, PECL (V_{CC} = 5.0 V, V_{EE} = 0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	20	29	37	20	30	39	22	31	40	mA
V _{OH}	Output HIGH Voltage (Note 2)	3865	3990	4115	3930	4055	4180	3990	4115	4240	mV
V _{OL}	Output LOW Voltage (Note 2)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3790		4115	3855		4180	3915		4240	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3065		3390	3130		3455	3190		3515	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} .
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. 10EP DC CHARACTERISTICS, NECL ($V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	20	29	37	20	30	39	22	31	40	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V_{OL}	Output LOW Voltage (Note 2)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	V _{EE}	+ 2.0	0.0	V _{EE} .	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC}.
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- 3. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. 100EP DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	26	35	44	26	35	44	26	35	46	mA
V _{OH}	Output HIGH Voltage (Note 2)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 2)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
V_{IL}	Input LOW Voltage (Single-Ended)	1355		1675	1355		1675	1355		1675	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration)(Note 3)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to -2.2 V.
- 2. All loading with 50 Ω to V_{CC} 2.0 V_{CC} and V_{CC} 2.0 V_{CC} and V_{CC} and V_{CC} are V_{CC} are V_{CC} and V_{CC} are V_{CC} are V_{CC} and V_{CC} are V_{CC} are V_{CC} and V_{CC} are V_{CC} are V_{CC} are V_{CC} and V_{CC} are V_{CC} are V_{CC} are V_{CC} and V_{CC} are V_{CC} and V_{CC} are V_{CC} are V_{CC} are V_{CC} and V_{CC} are V_{CC} are V_{CC} are V_{CC} and V_{CC} are V_{CC} are V_{CC} are V_{CC} are V_{CC} are V_{CC} and V_{CC} input signal.

Table 8. 100EP DC CHARACTERISTICS, PECL ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	26	35	44	26	35	44	26	35	46	mA
V _{OH}	Output HIGH Voltage (Note 2)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V_{OL}	Output LOW Voltage (Note 2)	3055	3180	3305	3055	3180	3305	3055	3180	3305	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
V_{IL}	Input LOW Voltage (Single-Ended)	3055		3375	3055		3375	3055		3375	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	2.0		5.0	2.0		5.0	2.0		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V.
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Table 9. 100EP DC CHARACTERISTICS, NECL ($V_{CC} = 0 \text{ V}$; $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 1))

			-40°C		25°C				85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	26	35	44	26	35	44	26	35	46	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V_{OL}	Output LOW Voltage (Note 2)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3)	V _{EE}	+ 2.0	0.0	V _{EE}	+ 2.0	0.0	V _{EE} ·	+ 2.0	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} .
- 2. All loading with 50 Ω to V_{CC} 2.0 V.
- V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 10. AC CHARACTERISTICS ($V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)		> 3			> 3			> 3		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential CLK to Q, Q	140	200	250	160	220	270	180	240	300	ps
t _{SKEW}	Within Device Skew Q0, Q1 (Note 2) Device-to-Device Skew		10	15 110		15	20 110		20	25 120	ps
t _{JITTER}	Random Clock Jitter (RMS) (Figure 2)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{INPP}	Input Voltage Swing Sensitivity (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q, Q (20% – 80%) @ 1.0 GHz	70	120	170	80	130	180	90	150	200	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} 2.0 V.
- 2. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

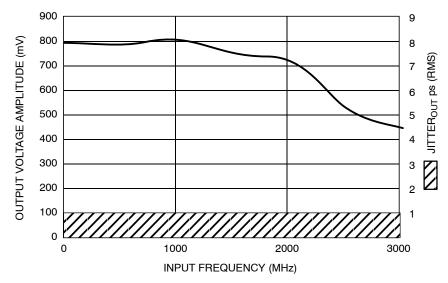


Figure 2. Output Voltage Amplitude (V_{OUTPP}) RMS Jitter vs. Input Clock Frequency at Ambient Temperature

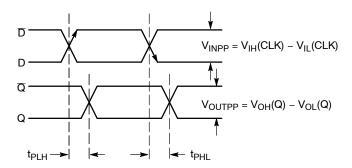


Figure 3. AC Reference Measurement

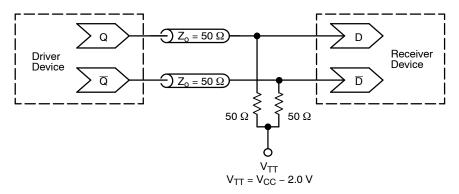


Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPICE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL

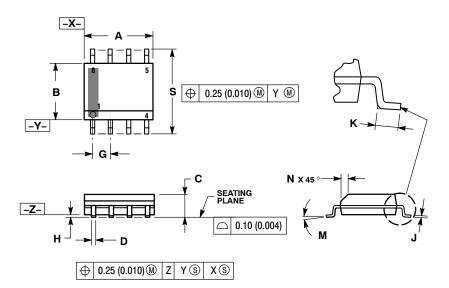
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

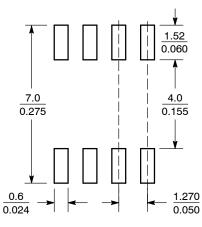
AND8090/D - AC Characteristics of ECL Devices


ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EP11DG	SOIC-8 NB (Pb-Free)	98 Units / Rail
MC10EP11DR2G	(Pb-Free)	
MC10EP11DTG TSSOP-8 (Pb-Free)		100 Units / Rail
MC10EP11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100EP11DG	SOIC-8 NB (Pb-Free)	98 Units / Rail
MC100EP11DR2G	SOIC-8 NB (Pb-Free)	2500 / Tape & Reel
MC100EP11DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100EP11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100EP11MNR4G	DFN-8 (Pb-Free)	1000 / Tape & Reel
MC100EP11MNTAG	DFN-8 (Pb-Free)	1000 / Tape & Reel

 $[\]dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

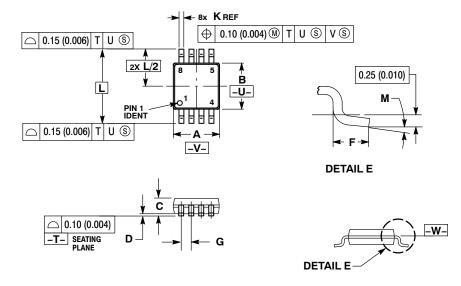
PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07 **ISSUE AK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
- 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

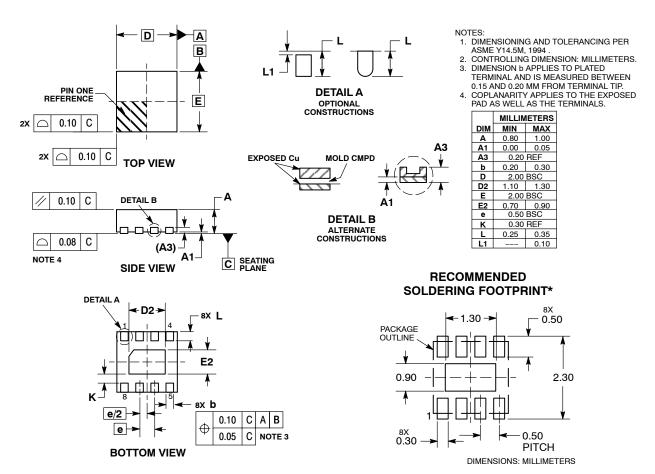


(mm inches) SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 CASE 948R-02 **ISSUE A**


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- PER SIDE.
 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026 BSC	
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193 BSC	
M	0°	6°	0°	6°

PACKAGE DIMENSIONS

DFN-8 2x2, 0.5P CASE 506AA ISSUE F

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessenses are any product or any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiarie

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC100EP11DG MC100EP11DR2G MC100EP11DTG MC100EP11DTR2G MC100EP11DTR2G MC10EP11DTG MC10EP11DTR2G MC100EP11DTR2G M