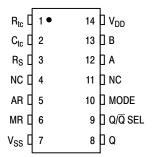
Programmable Timer

The MC14541B programmable timer consists of a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors, an automatic power-on reset circuit, and output control logic.

Timing is initialized by turning on power, whereupon the power–on reset is enabled and initializes the counter, within the specified V_{DD} range. With the power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16–stage counter divides the oscillator frequency (f_{osc}) with the n^{th} stage frequency being $f_{osc}/2^n$.


Features

- Available Outputs 28, 210, 213 or 216
- Increments on Positive Edge Clock Transitions
- Built-in Low Power RC Oscillator (\pm 2% accuracy over temperature range and \pm 20% supply and \pm 3% over processing at < 10 kHz)
- Oscillator May Be Bypassed if External Clock Is Available (Apply external clock to Pin 3)
- External Master Reset Totally Independent of Automatic Reset Operation
- Operates as 2ⁿ Frequency Divider or Single Transition Timer
- Q/\overline{Q} Select Provides Output Logic Level Flexibility
- Reset (auto or master) Disables Oscillator During Resetting to Provide No Active Power Dissipation
- Clock Conditioning Circuit Permits Operation with Very Slow Clock Rise and Fall Times
- Automatic Reset Initializes All Counters On Power Up
- Supply Voltage Range = 3.0 Vdc to 18 Vdc with Auto Reset
 Disabled (Pin 5 = V_{DD})
 = 8 5 Vdc to 18 Vdc with Auto Reset

= 8.5 Vdc to 18 Vdc with Auto Reset Enabled (Pin 5 = V_{SS})

- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

PIN ASSIGNMENT

NC = NO CONNECTION

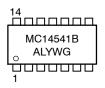
ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

PDIP-14 P SUFFIX CASE 646

SOIC-14 D SUFFIX CASE 751A



TSSOP-14 DT SUFFIX CASE 948G

SOEIAJ-14 F SUFFIX CASE 965

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

$\textbf{MAXIMUM RATINGS} \ (Voltages \ Referenced \ to \ V_{SS})$

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range, (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in}	Input Current (DC or Transient)	±10 (per Pin)	mA
I _{out}	Output Current (DC or Transient)	±45 (per Pin)	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range -55 to +125		°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, (8-Second Soldering)	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

ORDERING INFORMATION

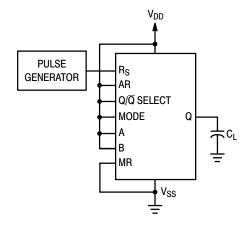
Device	Package	Shipping [†]
MC14541BCPG	PDIP-14 (Pb-Free)	500 Units / Rail
MC14541BDG	SOIC-14	5511 11 11 11 11
NLV14541BDG*	(Pb-Free)	55 Units / Rail
MC14541BDR2G	SOIC-14	
NLV14541BDR2G*	(Pb-Free)	2500 / Tape & Reel
MC14541BDTR2G	TSSOP-14	0500 / T
NLV14541BDTR2G*	(Pb-Free)	2500 / Tape & Reel
MC14541BFELG	SOEIAJ-14 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{1.} Temperature Derating:

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

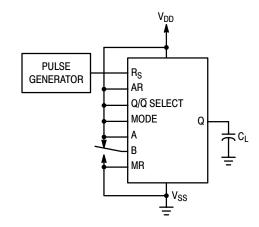
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})


			V	- 5	5°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0" $V_{in} = V_{DD} \text{ or } 0$	" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
(V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	Іон	5.0 10 15	- 4.19 - 7.96 - 16.3	- - -	- 3.38 - 6.42 - 13.2	- 6.75 - 12.83 - 26.33	- - -	- 2.37 - 4.49 - 9.24	- - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	l _{OL}	5.0 10 15	1.93 4.96 19.3	- - -	1.56 4.0 15.6	3.12 8.0 31.2	- - -	1.09 2.8 10.9	- - -	mAdc
Input Current		l _{in}	15	-	± 0.1	-	±0.00001	± 0.1	_	± 1.0	μ Ad c
Input Capacitance (V _{in} = 0)		C _{in}	-	_	-	_	5.0	7.5	-	-	pF
Quiescent Current (Pin 5 is High) Auto Reset Disabled		I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Auto Reset Quiescent Curren (Pin 5 is low)	nt	I _{DDR}	10 15	- -	250 500	- -	30 82	250 500	- -	1500 2000	μAdc
Supply Current (Notes 3 & 4) (Dynamic plus Quiescent)		I _D	5.0 10 15			$I_D = (0)$	D.4 μA/kHz) f D.8 μA/kHz) f 1.2 μA/kHz) f	+ I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 When using the on chip oscillator the total supply current (in μAdc) becomes: I_T = I_D + 2 C_{tc} V_{DD} f x 10⁻³ where I_D is in μA, C_{tc} is in pF, V_{DD} in Volts DC, and f in kHz. (see Fig. 3) Dissipation during power–on with automatic reset enabled is typically 50 μA @ V_{DD} = 10 Vdc.

SWITCHING CHARACTERISTICS (Note 5) (C_L = 50 pF, T_A = 25°C)

Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay, Clock to Q (2^8 Output) t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 3415 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 1217 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 875 ns	t _{PLH} t _{PHL}	5.0 10 15	- - -	3.5 1.25 0.9	10.5 3.8 2.9	μs
Propagation Delay, Clock to Q (2^{16} Output) t_{PHL} , t_{PLH} = (1.7 ns/pF) C_L + 5915 ns t_{PHL} , t_{PLH} = (0.66 ns/pF) C_L + 3467 ns t_{PHL} , t_{PLH} = (0.5 ns/pF) C_L + 2475 ns	t _{PHL} t _{PLH}	5.0 10 15	- - -	6.0 3.5 2.5	18 10 7.5	μs
Clock Pulse Width	t _{WH(cl)}	5.0 10 15	900 300 225	300 100 85	- - -	ns
Clock Pulse Frequency (50% Duty Cycle)	f _{cl}	5.0 10 15	- - -	1.5 4.0 6.0	0.75 2.0 3.0	MHz
MR Pulse Width	t _{WH(R)}	5.0 10 15	900 300 225	300 100 85	- - -	ns
Master Reset Removal Time	t _{rem}	5.0 10 15	420 200 200	210 100 100	- - -	ns


- 5. The formulas given are for the typical characteristics only at 25°C.
 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

(R_{tc} and C_{tc} outputs are left open)

Figure 1. Power Dissipation Test Circuit and Waveform

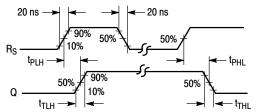
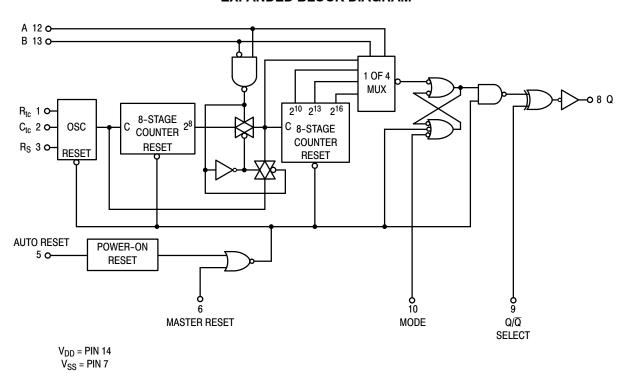



Figure 2. Switching Time Test Circuit and Waveforms

EXPANDED BLOCK DIAGRAM

FREQUENCY SELECTION TABLE

А	В	Number of Counter Stages n	Count 2 ⁿ
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

TRUTH TABLE

		State				
Pin		0	1			
Auto Reset,	5	Auto Reset Operating	Auto Reset Disabled			
Master Reset,	6	Timer Operational	Master Reset On			
Q/\overline{Q} ,	9	Output Initially Low After Reset	Output Initially High After Reset			
Mode, 1	0	Single Cycle Mode	Recycle Mode			

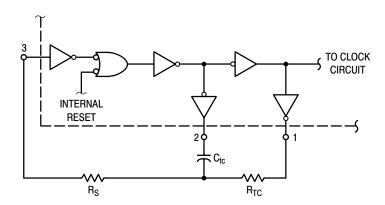
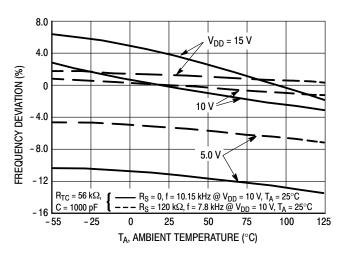



Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

100 V_{DD} = 10 V 50 f AS A FUNCTION f, OSCILLATOR FREQUENCY (KHz) 20 OF R_{TC} 10 (C = 1000 pF) $(R_S \approx 2R_{TC})$ 5.0 f AS A FUNCTION 2.0 OF C $(R_{TC} = 56 \text{ k}\Omega)$ 1.0 $(R_S = 120 \text{ k}\Omega)$ 0.5 0.2 1.0 k 100 k 1.0 m R_{TC}, RESISTANCE (OHMS) 0.0001 0.001 0.01 0.1 C, CAPACITANCE (µF)

Figure 4. RC Oscillator Stability

Figure 5. RC Oscillator Frequency as a Function of Rtc and Ctc

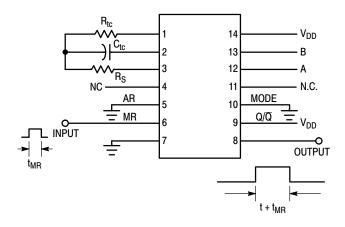
OPERATING CHARACTERISTICS

With Auto Reset pin set to a "0" the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master Reset pin is set to a "1". Both types of reset will result in synchronously resetting all counter stages independent of counter state. Auto Reset pin when set to a "1" provides a low power operation.

The RC oscillator as shown in Figure 3 will oscillate with a frequency determined by the external RC network i.e.,

$$f = \frac{1}{2.3 \; R_{tc} C_{tc}} \qquad \text{if (1 kHz} \leq f \leq 100 \; \text{kHz)}$$

$$R_S \approx 2 \; R_{tc} \qquad \text{where } R_S \geq 10 \; \text{k}\Omega$$

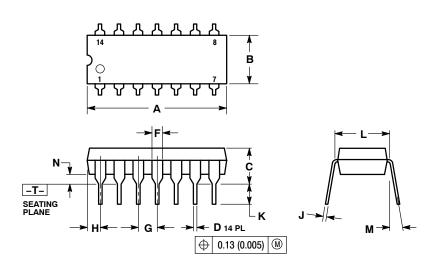

and $R_S \approx 2 R_{tc}$

The time select inputs (A and B) provide a two-bit address to output any one of four counter stages (28, 210, 213 and 2¹⁶). The 2ⁿ counts as shown in the Frequency Selection Table represents the Q output of the Nth stage of the counter. When A is "1", 2¹⁶ is selected for both states of B. However, when B is "0", normal counting is interrupted and the 9th counter stage receives its clock directly from the oscillator (i.e., effectively outputting 2^8).

The Q/\overline{Q} select output control pin provides for a choice of output level. When the counter is in a reset condition and Q/\overline{Q} select pin is set to a "0" the Q output is a "0", correspondingly when Q/\overline{Q} select pin is set to a "1" the Q output is a "1".

When the mode control pin is set to a "1", the selected count is continually transmitted to the output. But, with mode pin "0" and after a reset condition the R_S flip-flop (see Expanded Block Diagram) resets, counting commences, and after 2ⁿ⁻¹ counts the R_S flip-flop sets which causes the output to change state. Hence, after another 2^{n-1} counts the output will not change. Thus, a Master Reset pulse must be applied or a change in the mode pin level is required to reset the single cycle operation.

DIGITAL TIMER APPLICATION

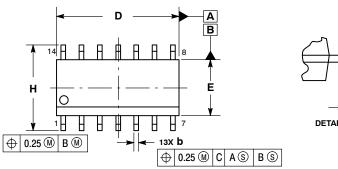

When Master Reset (MR) receives a positive pulse, the internal counters and latch are reset. The Q output goes high and remains high until the selected (via A and B) number of clock pulses are counted, the Q output then goes low and remains low until another input pulse is received.

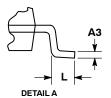
This "one shot" is fully retriggerable and as accurate as the input frequency. An external clock can be used (pin 3 is the clock input, pins 1 and 2 are outputs) if additional accuracy is needed.

Notice that a setup time equal to the desired pulse width output is required immediately following initial power up, during which time Q output will be high.

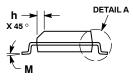
PACKAGE DIMENSIONS

PDIP-14 CASE 646-06 **ISSUE P**




- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.715	0.770	18.16	19.56
В	0.240	0.260	6.10	6.60
С	0.145	0.185	3.69	4.69
D	0.015	0.021	0.38	0.53
F	0.040	0.070	1.02	1.78
G	0.100	BSC	2.54	BSC
Н	0.052	0.095	1.32	2.41
J	0.008	0.015	0.20	0.38
K	0.115	0.135	2.92	3.43
L	0.290	0.310	7.37	7.87
М		10 °		10 °
N	0.015	0.039	0.38	1.01

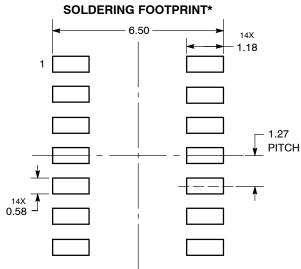

PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 ISSUE K

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

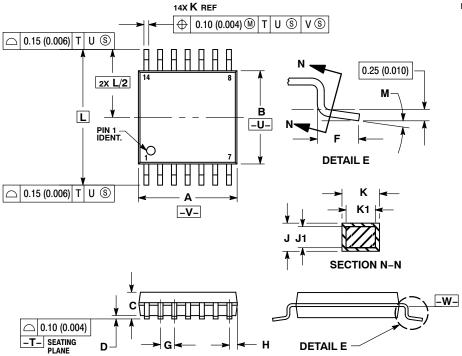

 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27 BSC		0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
1	0.40	1 25	0.016	0.049

0°



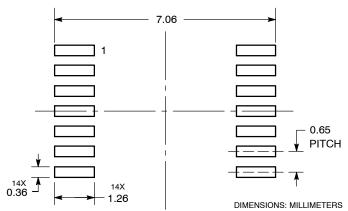
DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G ISSUE B

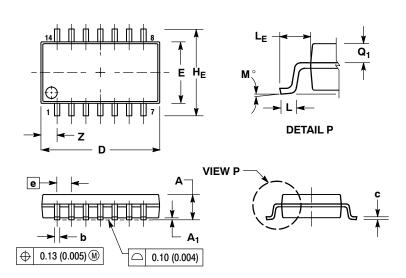
- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 - NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
 - DIMENSION AT MAXIMUM MATERIAL
 CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE
 DETERMINED AT DATUM PLANE –W-.

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
Κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0 °	8 °	0 °	8 °


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-14 CASE 965 ISSUE B

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE
 MEASURED AT THE PARTING LINE. MOLD FLASH
 OR PROTRUSIONS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR
- 4. ILEMINIAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

(/					
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
b	0.35	0.50	0.014	0.020	
C	0.10	0.20	0.004	0.008	
D	9.90	10.50	0.390	0.413	
Е	5.10	5.45	0.201	0.215	
е	1.27	BSC	0.050) BSC	
HE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
M	0 °	10°	0°	10°	
Q ₁	0.70	0.90	0.028	0.035	
Z		1.42		0.056	

ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportun

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free LI

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC14541BCP MC14541BCPG MC14541BD MC14541BDR2 MC14541BDTR2 MC14541BF MC14541BFG