

Midas Components Limited Electra House 32 Southtown Road Great Yarmouth Norfolk NR31 0DU England Telephone Fax Email Website +44 (0)1493 602602 +44 (0)1493 665111 sales@midasdisplays.com www.midasdisplays.com

Specification									
Part MCT022A12W240320PML									
Number:	IVICIOZZAIZ VVZ 4 03Z01 IVIL								
Version:									
Date:									
	Revision								
No. Dat	e Description Item Page								

design • manufacture • supply

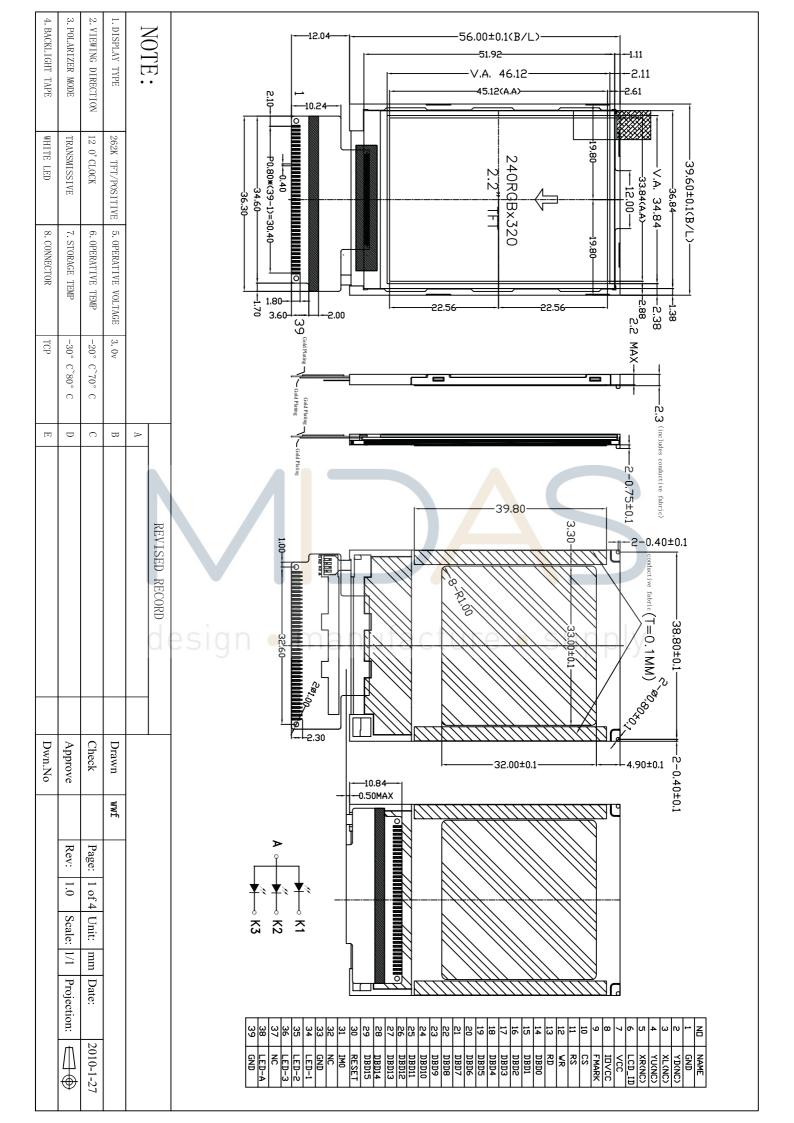
TABLE OF CONTENTS

1.	GE	NERAL DESCRIPTION	3
2.	FE	ATURES	3
3.	ME	CHANICAL SPECIFICATION	3
4.	ME	CHANICAL DIMENSION	3
		XIMUM RATINGS	
6.	EL	ECTRICAL CHARACTERISTICS	4
7.	MC	DDULE FUNCTION DESCRIPTION	5
	7.1.	PIN DESCRIPTION	5
8.	LC	D OPTICAL SPECIFICATION	6
9.	INS	SPECTION CRITERIA	7
	9.1.	Inspection Conditions	7
	9.2.	LIGHT METHOD	7
	9.3.	CLASSIFICATION OF DEFECTS	8
10	. RE	LIABILITY	9
	10.1.	MTBF	9
	10.2.	TESTS	9

11. PR	ECAUTIONS FOR USING LCD MODULES	. 10
11.1.	HANDING PRECAUTIONS	. 10
11.2.	STORAGE PRECAUTIONS	. 11
11.3.	OTHERS	. 11
12. US	ING LCD MODULES	. 12
12.1.	LIQUID CRYSTAL DISPLAY MODULES	. 12
12.2.	INSTALLING LCD MODULE	. 13
12.3.	ELECTRO-STATIC DISCHARGE CONTROL	. 13
12.4.	PRECAUTION FOR SOLDERING TO THE LCM	. 13
	PRECAUTIONS FOR OPERATION	
	STORAGE	
12.7.	SAFETY	. 15
	LIMITED WARRANTY	
12.9.	RETURN LCM UNDER WARRANTY	. 15

1. GENERAL DESCRIPTION

The MCT022A12W240320PML is a 240RGB320 dot-matrix TFT LCD module. It has an TFT panel composed of 240RGB segments and 320 commons. The LCM can be easily accessed by micro controller via parallel interface.


2. FEATURES

Display Mode	TFT/262K COLOR					
Display Format	Graphic 240RGB320 Dot-matrix					
Input Data	Parallel data input from MPU					
Screen size(inch)	2.2'(diagonal)					
Viewing Direction	12 O'clock					
Interface	8080 8&16bits data bus					
Driver	ILI9340					
Backlight type	White LED					

3. MECHANICAL SPECIFICATION

Item	Specifications	Unit
Dimensional outline	39.6(W)x56(H)x2.2(T) (FPC not include)	mm
Resolution	240RGB320 DOT	dots
Active Area	33. 84 (W) x 45.12 (H)	mm
Dots pitch	0.141 (W) x 0.141(H)	mm

4. MECHANICAL DIMENSION

5. MAXIMUM RATINGS

ltem	Symbol	Unit	Value	Note
Power supply voltage (1)	VCC, IOVCC	٧	-0.3 ~ + 4.6	1, 2
Power supply voltage (1)	VCI - AGND	٧	-0.3 ~ + 4.6	1, 4
Power supply voltage (1)	DDVDH - AGND	٧	-0.3 ~ + 6.0	1, 4
Power supply voltage (1)	AGND -VCL	٧	-0.3 ~ + 4.6	1
Power supply voltage (1)	DDVDH - VCL	٧	-0.3 ~ + 9.0	1, 5
Power supply voltage (1)	VGH - AGND	٧	-0.3 ~ + 18.5	1, 5
Power supply voltage (1)	AGND - VGL	٧	-0.3 ~ + 18.5	1, 6
Input voltage	Vt	٧	-0.3 ~ VCC+ 0.3	1
Operating temperature	Topr	°C	-40 ~ + 85	8, 9
Storage temperature	Tstg	°C	-55 ~ + 110	8, 9

Notes:

1, VCC DGNO must be maintained

1. VCC,DGNO must be maintained

3. Make sure (High) VCI ≥ DEND (Low):

2. (Migds) (VCC = VCC) ≥ DGND (Lone), (Highl) (CVCC ≥ DGND (Lone), 2. (Migds) (VCC = VCC) ≥ DGND (Lone), (Highl) (CVCC ≥ DGND (Lone), 3. Make sure (High) VCI > DGAID (Low).

4. Make sure (High) COVOH 2 ASSO (Lew).

4. Make sure (High) DOVOH ≥ ASSO (Low).

5. Hale sure (High) DOVCH≥VCL (Lov).

5. Make sure (High) DOVOH ≥ VCL (Lev).

6. Nake sure (High) VGH ≥ ASSD (Lov).

6. Make sure (High) VGH ≥ ASSO (Lov).

7. Make sure (Moh) ASSD ≥ VGL (Low).

7. Make sure (High) ASSI) ≥ VGL (Low).

8. For dis and water products, specified up to 85°C. 9. This temperature specifications apply to the TCP package.

8. For the and water products, specified up to 85°C. 9. This temperature specifications apply to the TCP package

6. ELECTRICAL CHARACTERISTICS Upply

Item		Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	Logic	$ m V_{\scriptscriptstyle DD}$	-	2.5	3.0	3.3	V
	H level	$ m V_{IH}$		1.65	_	3.3	* *
Input Voltage	L level	$V_{\scriptscriptstyle \rm IL}$	-	V_{ss}	-	0.2iovcc	V
Current Consu	nption	I_{DD}	-	_	5	-	mA

BACKLIGHT

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	$ m V_{\scriptscriptstyle DD}$	_	3.0		3.4	V
Current Consumption	I_{DD}	_		54		mA
Operating temperature	T_{opr}		-30	_	+70	$^{\circ}$
Storage temperature	T_{stg}		-35	_	80	$^{\circ}$

7. MODULE FUNCTION DESCRIPTION

7.1. PIN DESCRIPTION

,,,,,	IN DESCR	11 1101			
Pin No.	Symbol	I/O	Functional		
1	GND	P	System ground		
2	YC(NC)	P	TP YC(No connect.)		
3	XL(NC)	P	TP XL(No connect.)		
4	YU(NC)	P	TP YU(No connect.)		
5	XR(NC)	P	TP XR(No connect.)		
6	LCD_ID	О	LCM ID 0.5VCC		
7	VCC	P	Power supply for internal logic:2.5~3.3V.		
8	IOVCC	P	A supply voltage to the interface :1.65~3.3V		
9	FMARK	0	Output a fr <mark>am</mark> e head pulse signal.		
10	CS	I	Chip select signal. Low ACTIVE		
11	RS	I	Display data/command selection pin in MCU interface		
			RS='1': display data RS='0': command data		
12	/WR	I	Write signal Low ACTIVE		
13	/RD	I	READ signal Low ACTIVE		
14~29	DB0~DB15	I/O	DB0~DB15		
30	RESET	ma	RESET signal. Low ACTIVE		
			IM0="0" 8080-16-bit interface DB[15:0]		
31	IM0	IOVCC	IM0="1" 8080-bit interface DB[15:8] Unused pins		
			must be fixed to GND level.		
32	NC	-	NOT USER		
33	GND	P	System ground		
34	LED-K1	P	LED POWER supply 1-		
35	LED-K2	P	LED POWER supply 2-		
36	LED-K3	P	LED POWER supply 3-		
37	NC	ı	NOT USER		
38	LED_A	P	LED POWER supply +		
39	GND	P	System ground		

8. LCD Optical SPECIFICATION

Para	imeter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	Para	imeter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
er i ilok		Vsat					V				Vsat				V	C. 9	
Threshold	Voltage	Vih					V	Fig.3	Threshold	vanage	Vth					¥	Fig.3
	Heriografial	63			45					Horizontal	63			45			
Viewing	Horizontal	69	CR>10		45			Note 1	Viewing	HUNGARA	69	CR>10		45			Note 1
Angle	Marting	012	CKSTO		50			une 1	Angle	Vertical	0 12	rus III		50			MARC T
	Vertical	96			20					VCT URAI	96			20			
Cont	lrast: ratio	CIR	0 = 00	300	400			Note 2	Cont	rast: ratio	CR	0 = 0°	300	400			Note 2
Tran	smittance	T(%)	0a () =		5.3			Note 3	Transmittance		T(%)	0a =		5.3			Note 3
	n. d	Rx			TBD			Note 4		Red	Rx			TIBO			
Downsland	Red	Ry]		TBD				Domoeludi		Ry			TBD			Note 4
Reproduct Of colo		Ge	0 = 0°		TBD			*Color	Reproduct Of color		Git	0=0°		TIBO			*Color
OF URD	(IIII	Gy	0-0		TBD			Filter	CH CORCI	Blue	Gy	0-0		TIBO			Filter
	Blue	Bx			TBD			Glass			Bx			TBD			Glass
	Diuk	Ву			TBD					LAURE	Ву			TBO			
Resp	onse Time	Tr+ Tf	θ = 0°		30		ms		Respo	onse Time	Tr+ Tf	6) = 0°		30		ms	

Note:

Westing angle is the angle at which the contrast ratio is greater than 10. The
viewing are determined for the horizontal or 3, 9 o'dock direction and the vertical or
6, 12 o'dock direction with respect to the optical axis which is normal to the LCD
surface (see FIGURE 4 shown in Appendix).

2. Contrast measurements shall be made at viewing angle of 3= 6° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See FISURE 4 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

Transmittance is the value with Polarizer:

- 3. The color chromaticity coordinates specified in Table 2 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the C/F. Measurement condition is C-light source & Halogen Lamp.
- 4. The electro-optical response time measurements shall be made as FigureS shown in Appendix by switching the "data" input signal ON and OFF.

 The times needed for the luminance to change from 10% to 90% is Tr, and 90% to 10% is Td.

Note:

Viewing angle is the angle at which the contrast ratio is greater than 10. The
viewing are determined for the horizontal or 3, 9 o'dock direction and the vertical or
6, 12 o'dock direction with respect to the optical axis which is normal to the LCD
surface (see FIGURE 4 shown in Appendix).

2. Contrast measurements shall be made at viewing angle of 8= 0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See FISURE 4 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

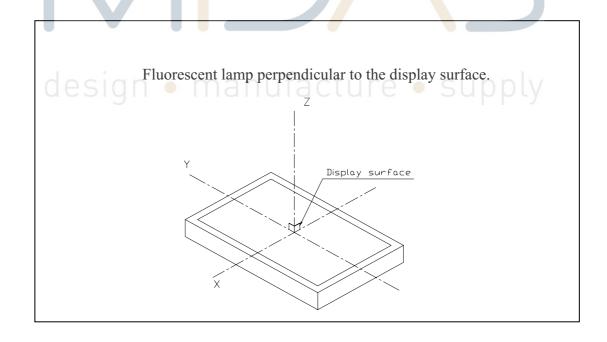
Transmittance is the value with Polarizer.

- 3. The color chromaticity coordinates specified in Table 2 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the C/F. Measurement condition is C light source & Halogen Lamp.
- 4. The electro-optical response time measurements shall be made as Figure 5 shown in Appendix by switching the "data" input signal ON and OFF.
 The times needed for the luminance to change from 10% to 90% is Tr, and 90% to 10% is Td.

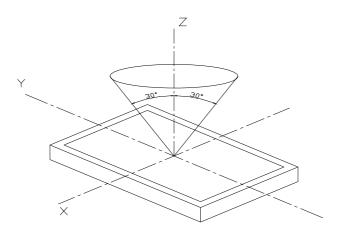
9. INSPECTION CRITERIA

9.1. INSPECTION CONDITIONS

9.1.1. Environmental conditions


The environmental conditions for inspection shall be as follows

Room temperature: 20+/-3°C Humidity: 65+/-20%RH


9.1.2. The external visual inspection

With a single 20-watt fluorescent lamp as the light source, the inspection was in the distance of 30cm or more from the LCD to the inspector's eyes .

9.2. LIGHT METHOD

Inspection distance and angle

Inspection should be performed within angle φ (φ is usually 30°) from Z axis to each X and Y. Inspection distance in any direction within φ must be kept 30±5cm from the display surface.

9.3. CLASSIFICATION OF DEFECTS

9.3.1. Major defect

A major defect refers to a defect that may substantially degrade usability for product applications.

9.3.2. Minor defect

A minor defect refers to a defect which is not considered to be able substantially degrade the product application or a defect that deviates from existing standards almost unrelated to the effective use of the product or its operation.

10.RELIABILITY

10.1. MTBF

The LCD module shall be designed to meet a minimum MTBF value of 50000 hours with normal. (25 $^\circ\!\!C$ in the room without sunlight)

10.2. TESTS

NO.	ITEM	CONDITION	CRITERION
1	HIGH TEMPERATURE	55°C	NO DEFECT IN
1	OPERATING	240Hrs	COSMETIC AND
2	LOW TEMPERATURE OPERATING	0°C 240Hrs	OPERATIONAL FUNCTION ARE ALLOWABLE.
3	HIGH HUMIDIT <mark>Y</mark> NON-OPERATIN <mark>G</mark>	70°C ,90%RH ,96Hrs	TOTAL CURRENT CONSUMPTION
4	HIGH TEMPERATURE NON-OPERATING	70°C 240Hrs	SHOULD BELOW DOUBLE OF INITIAL VALUE.
5	LOW TEMPERATURE NON-OPERATING	-10°C 240Hrs	
6	TEMPERATURE CYCLING NON-OPERATING	-20°C ↔25°C ↔70°C 30Min 5Min 30Min 50 CYCLES	
7	VIBRATION NON-OPERATING	RANDOM WAVE 40~500HZ ACCELERATION:5g 50Sec/EACH DIRECTION (X,Y,Z)	

11. PRECAUTIONS FOR USING LCD MODULES

11.1. HANDING PRECAUTIONS

- (1) The display panel is made of glass. Do not subject it to a mechanical shock or impact by dropping it.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten a cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above mentioned may damage the polarizer.

Especially, do not use the following:

- de Water n manufacture supply
 - Ketone
 - Aromatic solvents
- (7) Extra care to minimize corrosion of the electrode. Water droplets, moisture condensation or a current flow in a high-humidity environment accelerates corrosion of the electrode.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD Module, make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD Module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- Be sure to ground the body when handling he LCD Module.
- Tools required for assembling, such as soldering irons, must be properly grounded.
- -To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- -The LCD Module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

11.2. STORAGE PRECAUTIONS

When storing The LCD Module, avoid exposure to direct sunlight of fluorescent lamps. Keep the modules in bags (avoid high temperature/ high humidity and low temperatures below 0° C). Whenever possible, the LCD Module should be stored in the same conditions in which they were shipped from our company.

11.3. OTHERS

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD Module have been operating for a long time showing the same display patterns the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be recovered by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD Module resulting from destruction caused by static electricity etc. exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.

12. USING LCD MODULES

12.1. LIQUID CRYSTAL DISPLAY MODULES

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than a HB pencil lead (glass, tweezers, etc).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances, which will be damaged by chemicals such as acetone, toluene, toluene, ethanol and isopropyl alcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum ether. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
- (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degrade insulation between terminals (some cosmetics are determinate to the polarizers).
- (10) As glass is fragile, it tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

12.2. INSTALLING LCD MODULE

Attend to the following items when installing the LCM.

- (1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.
- (2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

12.3. ELECTRO-STATIC DISCHARGE CONTROL

Since this module uses a CMOS LSI, the same careful attention should be paid for electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before removing LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible, make the electric potential of your work clothes and that of the workbenches to the ground potential.
- (6) To reduce the generation of static electricity, be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

12.4. PRECAUTION FOR SOLDERING TO THE LCM

- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
 - -Soldering iron temperature: 280 +/-10°C.
 - -Soldering time: 3-4 sec.
 - -Solder: eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering the

prevent any damage due to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When removing the electroluminescent panel from the PC board, be sure the solder has completely melted, otherwise the soldered pad on the PC board could be damaged.

12.5. PRECAUTIONS FOR OPERATION

- (1) Viewing angle varies with the change of liquid crystal driving voltage (Vo). Adjust Vo to show the best contrast.
- (2) Driving the LCD in the voltage above the limit will shorten its lifetime.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40°C, 50% RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

12.6. STORAGE

When storing LCDS as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly scaled, there is no need for desiccant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0° C and 35° C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)
- (4) Environmental conditions:
 - -Do not leave them for more than 168hrs. at 60° C.
 - -Should not be left for more than 48hrs. at -20° C.

12.7. SAFETY

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

12.8. LIMITED WARRANTY

Unless agreed between Midas Components and customer, Midas Components will replace or repair any of its LCD and modules which are found to be functionally defective when inspected in accordance with Midas Components LCD acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to Midas Components within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of Midas Components is limited to repair and/or replacement on the terms set forth above. Midas Components will not be responsible for any subsequent or consequential events.

12.9. RETURN LCM UNDER WARRANTY

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are:

- -Broken LCD glass.
- -PCB eyelet's damaged or modified.
- -PCB conductors damaged.
- -Circuit modified in any way, including addition of components.
- -PCB tampered with by grinding, engraving or painting varnish.
- -Soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's conductors and terminals.