

Getting Started
Create Applications with MDK Version 5

for ARM® Cortex®-M Microcontrollers

2 Preface

Information in this document is subject to change without notice and does not

represent a commitment on the part of the manufacturer. The software described

in this document is furnished under license agreement or nondisclosure

agreement and may be used or copied only in accordance with the terms of the

agreement. It is against the law to copy the software on any medium except as

specifically allowed in the license or nondisclosure agreement. The purchaser

may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than for the purchaser’s personal use,

without written permission.

Copyright © 1997-2015 ARM Germany GmbH

All rights reserved.

Keil
®
, µVision

®
, Cortex

®
, CoreSight™ and ULINK™ are trademarks or

registered trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft
®
 and Windows™ are trademarks or registered trademarks of Microsoft

Corporation.

PC
®
 is a registered trademark of International Business Machines Corporation.

NOTE

We assume you are familiar with Microsoft Windows, the hardware, and the

instruction set of the Cortex
®
-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate

credit to persons, companies, and trademarks referenced herein.

Getting Started: Create Applications with MDK Version 5 3

Preface
Thank you for using the MDK Version 5 Microcontroller Development Kit

available from ARM
®
 Keil

®
. To provide you with the very best software tools

for developing Cortex-M processor based embedded applications we design our

tools to make software engineering easy and productive. ARM also offers

therefore complementary products such as the ULINK™ debug and trace

adapters and a range of evaluation boards. MDK is expandable with various third

party tools, starter kits, and debug adapters.

Chapter Overview

The book starts with the installation of MDK and describes the software

components along with complete workflow from starting a project up to

debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Core, the Software

Packs, and describes the product installation along with the use of example

projects.

CMSIS is a software framework for embedded applications that run on Cortex-M

based microcontrollers. It provides consistent software interfaces and hardware

abstraction layers that simplify software reuse.

Software Component Compiler describes the retargeting of I/O functions for

various standard I/O channels.

Create Applications guides you towards creating and modifying projects using

CMSIS and device-related software components. A hands-on tutorial shows the

main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real

hardware and explains how to connect

Middleware gives further details on the middleware that is available for users of

the MDK-Professional edition.

Using Middleware explains how to create applications that use the middleware

available with MDK-Professional and contains essential tips and tricks to get you

started quickly.

4 Contents

Contents

Preface .. 3

Contents ... 4

MDK Introduction .. 7
MDK Core .. 7
Software Packs ... 7
MDK Editions ... 8
Installation .. 9

Software and Hardware Requirements ... 9
Install MDK Core ... 9
Install Software Packs ... 10
MDK-Professional Trial License .. 11
Verify Installation using Example Projects .. 12
Use Software Packs .. 16

Access Documentation ... 20
Request Assistance ... 20
Learning Platform ... 21

CMSIS .. 22
CMSIS-CORE .. 23

Using CMSIS-CORE .. 23
CMSIS-RTOS RTX .. 26

Software Concepts .. 26
Using CMSIS-RTOS RTX ... 27
CMSIS-RTOS RTX API Functions .. 32
CMSIS-RTOS User Code Templates ... 33

CMSIS-DSP .. 43

Software Component Compiler ... 45

Create Applications ... 47
Blinky with CMSIS-RTOS RTX .. 47
Blinky with Infinite Loop Design ... 56
Device Startup Variations ... 58

Example: Infineon XMC1000 using DAVE ... 58
Example: STM32Cube ... 61

Debug Applications ... 64
Debugger Connection ... 64

Getting Started: Create Applications with MDK Version 5 5

Using the Debugger .. 65
Debug Toolbar .. 66
Command Window ... 67
Disassembly Window ... 67
Breakpoints ... 68
Watch Window ... 69
Call Stack and Locals Window ... 69
Register Window .. 70
Memory Window .. 70
Peripheral Registers .. 71

Trace ... 72
Trace with Serial Wire Output .. 73

Trace Exceptions .. 75
Event Viewer .. 76
Logic Analyzer ... 77
Debug (printf) Viewer .. 78
Event Counters.. 79

Trace with 4-Pin Output ... 80
Trace with On-Chip Trace Buffer ... 80

Middleware .. 81
Network Component ... 83
File System Component .. 85
USB Device Component... 86
USB Host Component .. 87
Graphics Component .. 88
Driver Components ... 89
FTP Server Example ... 90

Using Middleware ... 92
USB HID Example ... 94
Add Software Components ... 95
Configure Middleware .. 97
Configure Drivers ... 99
Adjust System Resources ... 100
Implement Application Features ... 101
Build and Download ... 104
Verify and Debug ... 104

Index ... 106

6 Contents

Getting Started: Create Applications with MDK Version 5 7

MDK Introduction
The Keil Microcontroller Development Kit (MDK) helps you to create embedded

applications for ARM Cortex-M processor-based devices. MDK is a powerful,

yet easy to learn and use development system. MDK Version 5 consists of the

MDK Core plus device-specific Software Packs, which can be downloaded and

installed based on the requirements of your application.

MDK Version 5 is capable of using MDK Version 4 projects after installation of

the Legacy Support from www.keil.com/mdk5/legacy. This adds support for

ARM7, ARM9, and Cortex-R processor-based devices.

MDK Core
MDK Core includes all the components that you need to create, build, and debug

an embedded application for Cortex-M processor based microcontroller devices.

The Pack Installer manages Software Packs that can be added any time to MDK

Core. This makes new device support and middleware updates independent from

the toolchain.

Software Packs
Software Packs contain device support, CMSIS libraries, middleware, board

support, code templates, and example projects.

http://www.keil.com/mdk5/legacy

8 MDK Introduction

MDK Editions
MDK provides the tools and the environment to create and debug applications

using C/C++ or assembly language and is available in various editions. Each

edition includes the µVision
®
 IDE, debugger, compiler, assembler, linker,

middleware libraries, and the CMSIS-RTOS RTX.

 MDK-Professional contains extensive middleware libraries for sophisticated

embedded applications and all features of MDK-Standard.

 MDK-Standard supports Cortex-M, selected Cortex-R, ARM7 and ARM9

processor-based microcontrollers.

 MDK-Cortex-M supports Cortex-M processor-based microcontrollers.

 MDK-Lite is code size restricted to 32 KB and intended for product

evaluation, small projects, and the educational market.

The product selector, available at http://www.keil.com/mdk5/selector, gives an

overview of the features enabled in each edition.

License Types

With the exception of MDK-Lite, the MDK editions require activation using a

license code. The following licenses types are available:

 Single-User License (Node-Locked) grants the right to use the product by one

developer on two computers at the same time.

 Floating-User License or FlexLM License grants the right to use the product

on several computers by a number of developers at the same time.

 7-Day MDK-Professional Trial License to test the comprehensive

middleware without code size limits.

For further details, refer to the Licensing User’s Guide at

www.keil.com/support/man/docs/license.

http://www.keil.com/mdk5/selector
http://www.keil.com/support/man/docs/license

Getting Started: Create Applications with MDK Version 5 9

Installation

Software and Hardware Requirements

MDK has the following minimum hardware and software requirements:

 A PC running Microsoft Windows (32-bit or 64-bit) operating system

 4 GB RAM and 8 GB hard-disk space

 1280 x 800 or higher screen resolution; a mouse or other pointing device

Install MDK Core

Download MDK-ARM v5 from www.keil.com/download - Product Downloads

and run the installer.

Follow the instructions to install the MDK Core on your local computer. The

installation also adds the Software Packs for ARM CMSIS and MDK-

Professional Middleware.

After the MDK Core installation is complete, the Pack Installer is started

automatically, which allows you to add supplementary Software Packs. As a

minimum, you need to install a Software Pack that supports your target

microcontroller device.

http://www.keil.com/download

10 MDK Introduction

Install Software Packs

The Pack Installer is a utility for managing Software Packs on the local

computer.

NOTE

To obtain information of published Software Packs the Pack Installer connects to

www.keil.com/pack.

The status bar, located at the bottom of the Pack Installer, shows information

about the Internet connection and the installation progress.

TIP: The device database at www.keil.com/dd2 lists all available devices and

provides download access to the related Software Packs. If the Pack

Installer cannot access www.keil.com/pack you can manually install

Software Packs using the menu command File – Import or by double-

clicking *.PACK files.

The Pack Installer runs automatically during the installation but also can be

run from µVision using the menu item Project – Manage – Pack Installer.

To get access to devices and example projects you should install the

Software Pack related to your target device or evaluation board.

http://www.keil.com/pack
http://www.keil.com/dd2
http://www.keil.com/pack

Getting Started: Create Applications with MDK Version 5 11

MDK-Professional Trial License

MDK has a built-in free seven-day trial license for MDK-Professional. This

removes the code size limits and you can explore and test the comprehensive

middleware.

Start µVision with administration rights.

1. In µVision, go to File – License Management... and click Evaluate

MDK Professional

2. On the next screen, click Start MDK Professional Evaluation for 7

Days. After the installation, the screen displays information about the

expiration date and time.

NOTE

Activation of the 7-day MDK Professional trial version enables the option Use

Flex Server in the tab FlexLM License as this license is based on FlexLM.

12 MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a Software Pack for your

device, you can verify your installation using one of the examples provided in the

Software Pack. To verify the Software Pack installation, we recommend using a

Blinky example, which typically flashes LEDs on a target board.

TIP: Review the getting started video on http://www.keil.com/mdk5 that

explains how to connect and work with an evaluation kit.

Copy an Example Project

Click Copy and enter the Destination Folder name of your working directory.

NOTE

You must copy the example projects to a working directory of your choice.

In the Pack Installer, select the tab Examples. Use filters in the toolbar to

narrow the list of examples.

http://www.keil.com/mdk5

Getting Started: Create Applications with MDK Version 5 13

 Enable Launch µVision to open the example project directly in the IDE.

 Enable Use Pack Folder Structure to copy example projects into a common

folder. This avoids overwriting files from other example projects. Disable

Use Pack Folder Structure to reduce the complexity of the example path.

 Click OK to start the copy process.

Use an Example Application with µVision

Now µVision starts and loads the example project where you can:

The step-by-step instructions show you how to execute these tasks. After

copying the example, µVision starts and looks similar to the picture below.

TIP: Most example projects contain an Abstract.txt file with essential

information about the operation and hardware configuration.

Build the application, which compiles and links the related source files.

Download the application, typically to on-chip Flash ROM of a device.

Run the application on the target hardware using a debugger.

14 MDK Introduction

Build the Application

The Build Output window shows information about the build process. An error-

free build shows information about the program size.

Download the Application

Connect the target hardware to

your computer using a debug

adapter that typically connects

via USB. Several evaluation

boards provide an on-board

debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are

pre-configured for evaluation kits; thus, you do not need to modify these settings.

Build the application using the toolbar button Rebuild.

Click Options for Target on the toolbar and select the Debug tab. Verify

that the correct debug adapter of the evaluation board you are using is

selected and enabled. For example, CMSIS-DAP Debugger is a debug

adapter that is part of several starter kits.

Getting Started: Create Applications with MDK Version 5 15

TIP: Click the button Settings to verify communication settings and diagnose

problems with your target hardware. For further details, click the button

Help in the dialogs. If you have any problems, refer to the user guide of

the starter kit.

The Build Output window shows information about the download progress.

Run the Application

Click the Utilities tab to verify Flash programming. Enable Use Debug

Driver to perform flash download via the debug adapter you selected on the

Debug tab.

Click Download on the toolbar to load the application to your target

hardware.

Click Start/Stop Debug Session on the toolbar to start debugging the

application on hardware.

Click Run on the debug toolbar to start executing the application. LEDs

should flash on the target hardware.

16 MDK Introduction

Use Software Packs

Software Packs contain information about microcontroller devices and software

components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only

the options that are relevant for the selected device.

TIP: Only devices that are part of the installed Software Packs are shown. If you

are missing a device, use the Pack Installer to add the related Software

Pack. The search box helps you to narrow down the list of devices.

Start µVision and use the menu Project - New µVision Project. After you

have selected a project directory and specified the project name, select a

target device.

Getting Started: Create Applications with MDK Version 5 17

TIP: The links in the column Description provide access to the documentation of

each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to

components. For example, ::CMSIS:CORE refers to the component CMSIS-

CORE selected in the dialog above.

After selecting the device, the Manage Run-Time Environment window

shows the related software components for this device.

18 MDK Introduction

Software Component Overview

The following table shows the software components for a typical installation.

Depending on your selected device, some of these software components might

not be visible in the Manage Run-Time Environment window. In case you have

installed additional Software Packs, more software components will be available.

Software Component Description Page

Board Support Interfaces for example projects to the peripherals of
evaluation boards.

n.a.

CMSIS CMSIS interface components, such as CORE, DSP,
and CMSIS-RTOS.

22

CMSIS Driver Unified device drivers for middleware and user
applications.

89

Compiler ARM Compiler specific software components to retarget
I/O operations for example for printf style debugging.

45

Device System startup and low-level device drivers. 48

File System Middleware component for file access on various
storage device types.

85

Graphics Middleware component for creating graphical user
interfaces.

88

Graphics Display Display interface including configuration for emWIN. n.a.

Network Middleware component for TCP/IP networking using
Ethernet or serial protocols.

83

USB Middleware component for USB Host and USB Device
supporting standard USB Device classes.

86

Product Lifecycle Management with Software Packs

MDK allows you to install multiple versions of a Software Pack. This enables

Product Lifecycle Management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

 Concept: Definition of major project requirements and exploration with a

functional prototype.

 Design: Prototype testing and implementation of the product based on the

final technical features and requirements.

 Release: The product is manufactured and brought to market.

 Service: Maintenance of the products including support for customers; finally

phase-out or end-of-life.

Getting Started: Create Applications with MDK Version 5 19

In the concept and design phase, you normally want to use the latest Software

Packs to be able to incorporate new features and bug fixes quickly. Before

product release, you will freeze the Software Components to a known tested state.

In the product service phase, use the fixed versions of the Software Components

to support customers in the field.

When the project is completed, disable the option Use latest version of all

installed Software Packs and specify the Software Packs with the settings under

Selection:

 latest: use the latest version of a Software Pack. Software Components are

updated when a newer Software Pack version is installed.

 fixed: specify an installed version of the Software Pack. Software

Components in the project target will use these versions.

 excluded: no Software Components from this Software Pack are used.

The colors indicate the usage of Software Components in the current project

target:

The dialog Select Software Packs helps you to manage the versions of each

Software Pack in your project:

Some Software Components from this Pack are used. Some Software Components from this Pack are used.

Some Software Components from this Pack are used, but the Pack is

excluded.

No Software Component from this Pack is used.

20 MDK Introduction

Access Documentation
MDK provides online manuals and context-sensitive help. The µVision Help

menu opens the main help system that includes the µVision User’s Guide, getting

started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation

and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS

functions, compiler directives, or library routines. Use F1 in the command line of

the Output window for help on debug commands, and some error and warning

messages.

The Books window may include device reference guides, data sheets, or board

manuals. You can even add your own documentation and enable it in the Books

window using the menu Project – Manage – Components, Environment,

Books – Books.

The Manage Run-Time Environment dialog offers access to documentation via

links in the Description column.

In the Project window, you can right-click a software component group and open

the documentation of the corresponding element.

You can access the latest information in the on-line µVision User’s Guide.

Request Assistance
If you have suggestions or you have discovered an issue with the software, please

report them to us. Support and information channels are accessible at

www.keil.com/support.

When reporting an issue, include your license code (if you have one) and product

version, available from the µVision menu Help – About.

http://www.keil.com/support/man/docs/uv4/
http://www.keil.com/support

Getting Started: Create Applications with MDK Version 5 21

Learning Platform
We offer a website that helps you to learn more about the programming of ARM

Cortex-based microcontrollers. It contains tutorials, videos, further

documentation, as well as useful links to other websites and is available at

www.keil.com/learn.

http://www.keil.com/learn

22 CMSIS

CMSIS
The Cortex Microcontroller Software Interface Standard (CMSIS) provides a

ground-up software framework for embedded applications that run on Cortex-M

based microcontrollers. CMSIS enables consistent and simple software interfaces

to the processor and the peripherals, simplifying software reuse, reducing the

learning curve for microcontroller developers.

NOTE

This chapter is intended as reference section. The chapter Create Applications on

page 47 shows you how to use CMSIS for creating application code.

The CMSIS, defined in close cooperation with various silicon and software

vendors, provides a common approach to interface peripherals, real-time

operating systems, and middleware components.

The CMSIS application software components are:

 CMSIS-CORE: Defines the API for the Cortex-M processor core and

peripherals and includes a consistent system startup code. The software

components ::CMSIS:CORE and ::Device:Startup are all you need to create

and run applications on the native processor that uses exceptions, interrupts,

and device peripherals.

 CMSIS-RTOS: Provides a standardized real-time operating system API and

enables software templates, middleware, libraries, and other components that

can work across supported RTOS systems. This manual explains the usage of

the CMSIS-RTOS RTX implementation.

 CMSIS-DSP: Is a library collection for digital signal processing (DSP) with

over 60 Functions for various data types: fix-point (fractional q7, q15, q31)

and single precision floating-point (32-bit).

Getting Started: Create Applications with MDK Version 5 23

CMSIS-CORE
This section explains the usage of CMSIS-CORE in applications that run natively

on a Cortex-M processor. This type of operation is known as bare-metal, because

it uses no real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component

::CMSIS:CORE, which should be used together with the software component

::Device:Startup. These components provide the following central files:

NOTE

In actual file names, <device> is the name of the microcontroller device.

 The startup_<device>.s

file with reset handler

and exception vectors.

 The system_<device>.c

configuration file for

basic device setup (clock

and memory BUS).

 The <device>.h include

file for user code access

to the microcontroller

device.

The <device>.h header file is included in C source files and defines:

 Peripheral access with standardized register layout.

 Access to interrupts and exceptions, and the Nested Interrupt Vector

Controller (NVIC).

 Intrinsic functions to generate special instructions, for example to activate

sleep mode.

 Systick timer (SYSTICK) functions to configure and start a periodic timer

interrupt.

 Debug access for printf-style I/O and ITM communication via on-chip

CoreSight™.

24 CMSIS

Adding Software Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added

to a project using the µVision dialog Manage Run-Time Environment. Just

select the software components as shown below:

The µVision environment adds the related files.

Source Code Example

The following source code lines show the usage of the CMSIS-CORE layer.

Example of using the CMSIS-CORE layer

#include "stm32f4xx.h" // File name depends on device used

uint32_t volatile msTicks; // Counter for millisecond Interval

uint32_t volatile frequency; // Frequency for timer

void SysTick_Handler (void) { // SysTick Interrupt Handler

 msTicks++; // Increment Counter

}

void WaitForTick (void) {

 uint32_t curTicks;

 curTicks = msTicks; // Save Current SysTick Value

 while (msTicks == curTicks) { // Wait for next SysTick Interrupt

 __WFE (); // Power-Down until next Event

 }

}

void TIM1_UP_IRQHandler (void) { // Timer Interrupt Handler

 ; // Add user code here

}

void timer1_init(int frequency) { // Set up Timer (device specific)

 NVIC_SetPriority (TIM1_UP_IRQn, 1); // Set Timer priority

 NVIC_EnableIRQ (TIM1_UP_IRQn); // Enable Timer Interrupt

}

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga5bb7f43ad92937c039dee3d36c3c2798
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga530ad9fda2ed1c8b70e439ecfe80591f

Getting Started: Create Applications with MDK Version 5 25

// Configure & Initialize the MCU

void Device_Initialization (void) {

 if (SysTick_Config (SystemCoreClock / 1000)) { // SysTick 1ms

 : // Handle Error

 }

 timer1_init (frequency); // Setup device-specific timer

}

// The processor clock is initialized by CMSIS startup + system file

int main (void) { // User application starts here

 Device_Initialization (); // Configure & Initialize MCU

 while (1) { // Endless Loop (the Super-Loop)

 __disable_irq (); // Disable all interrupts

 // Get_InputValues ();

 __enable_irq (); // Enable all interrupts

 // Process_Values ();

 WaitForTick (); // Synchronize to SysTick Timer

 }

}

For more information, right-click the group CMSIS in the Project window, and

choose Open Documentation, or refer to the CMSIS-CORE documentation

http://www.keil.com/cmsis/core.

http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27
http://www.keil.com/cmsis/core

26 CMSIS

CMSIS-RTOS RTX
This section introduces the CMSIS-RTOS RTX Real-Time Operating System,

describes the advantages, and explains configuration settings and features of this

RTOS.

NOTE

MDK is compatible with many third-party RTOS solutions. However, CMSIS-

RTOS RTX is well integrated into MDK, is feature-rich and tailored towards the

requirements of deeply embedded systems.

Software Concepts

There are two basic design concepts for embedded applications:

 Infinite Loop Design: involves running the program as an endless loop.

Program functions (threads) are called from within the loop, while interrupt

service routines (ISRs) perform time-critical jobs including some data

processing.

 RTOS Design: involves running several threads with a Real-Time Operating

System (RTOS). The RTOS provides inter-thread communication and time

management functions. A preemptive RTOS reduces the complexity of

interrupt functions, because high-priority threads can perform time-critical

data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for

simple embedded applications. Time-critical functions, typically triggered by

hardware interrupts, execute in an ISR that also performs any required data

processing. The main loop contains only basic operations that are not time-

critical and run in the background.

Getting Started: Create Applications with MDK Version 5 27

Advantages of an RTOS Kernel

RTOS kernels, like the CMSIS-RTOS RTX, are based on the idea of parallel

execution threads (tasks). As in the real world, your application will have to

fulfill multiple different tasks. An RTOS-based application recreates this model

in your software with various benefits:

 Thread priority and run-time scheduling is handled by the RTOS Kernel, using

a proven code base.

 The RTOS provides a well-defined interface for communication between

threads.

 A pre-emptive multi-tasking concept simplifies the progressive enhancement

of an application even across a larger development team. New functionality

can be added without risking the response time of more critical threads.

 Infinite loop software concepts often poll for occurred interrupts. In contrast,

RTOS kernels themselves are interrupt driven and can largely eliminate

polling. This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is

mandatory for systems with hard real-time requirements. Communication

facilities can be used for IRQ-to-task communication and allow top-half/bottom-

half handling of your interrupts.

Using CMSIS-RTOS RTX

CMSIS-RTOS RTX is implemented as a library and exposes the functionality

through the header file cmsis_os.h.

Execution of the CMSIS-RTOS RTX starts with the function main() as the first

thread. This has the benefit that developers can initialize other middleware

libraries that create threads internally, but the remaining part of the user

application uses just the main thread. Consequently, the usage of the RTOS can

be invisible to the application programmer, but libraries can use CMSIS-RTOS

RTX features.

The software component ::CMSIS:RTOS:Keil RTX must be used together with

the components ::CMSIS:CORE and ::Device:Startup. Selecting these

components provides the following central CMSIS-RTOS RTX files:

NOTE

In the actual file names, <device> is the name of the microcontroller device;

<device core> represents the device processor family.

28 CMSIS

 The file RTX_<core>.lib

is the library with RTOS

functions.

 The configuration file

RTX_Conf_CM.c for

defining thread options,

timer configurations, and

RTX kernel settings.

 The header file

cmsis_os.h exposes the

RTX functionality to the

user application.

 The function main() is

executed as a thread.

Once these files are part of

the project, developers can

start using the CMSIS-RTOS RTX functions. The code example shows the use

of CMSIS-RTOS RTX functions:

Example of using CMSIS-RTOS RTX functions

#include "cmsis_os.h" // CMSIS RTOS header file

void job1 (void const *argument) { // Function 'job1'

 // execute some code

 osDelay (10); // Delay execution for 10ms

}

osThreadDef(job1, osPriorityLow, 1, 0); // Define job1 as thread

int main (void) {

 osKernelInitialize (); // Initialize RTOS kernel

 // setup and initialize peripherals

 osThreadCreate (osThread(job1), NULL); // Create the thread

 osKernelStart (); // Start kernel & job1 thread

}

http://www.keil.com/pack/doc/cmsis/RTOS/html/cmsis__os_8h.html
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___wait.html#ga02e19d5e723bfb06ba9324d625162255
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gaee93d929beb350f16e5cc7fa602e229f
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#ga7f2b42f1983b9107775ec2a1c69a849aa17b36cd9cd38652c2bc6d4803990674b
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html#ga53d078a801022e202e8115c083ece68e
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gac59b5713cb083702dce759c73fd90dff
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gaf0c7c6b5e09f8be198312144b5c9e453
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html#gaab668ffd2ea76bb0a77ab0ab385eaef2

Getting Started: Create Applications with MDK Version 5 29

Header File cmsis_os.h

The file cmsis_os.h is a template header file for the CMSIS-RTOS RTX and

contains:

 CMSIS-RTOS API function definitions.

 Definitions for parameters and return types.

 Status and priority values used by CMSIS-RTOS API functions.

 Macros for defining threads and other kernel objects such as mutex,

semaphores, or memory pools.

All definitions are prefixed with os to give a unique name space for the CMSIS-

RTOS functions. Definitions that are prefixed os_ are not be used in the

application code but are local to this header file. All definitions and functions

that belong to a module are grouped and have a common prefix, for example,

osThread for threads.

Define and Reference Object Definitions

With the #define osObjectsExternal, objects are defined as external symbols.

This allows creating a consistent header file for the entire project as shown

below:

Example of a header file: osObjects.h

#include "cmsis_os.h" // CMSIS RTOS header

extern void thread_1 (void const *argument); // Function prototype

osThreadDef (thread_1, osPriorityLow, 1, 100); // Thread definition

osPoolDef (MyPool, 10, long); // Pool definition

This header file, called osObjects.h, defines all objects when included in a C/C++

source file. When #define osObjectsExternal is present before the header file

inclusion, the objects are defined as external symbols. Thus, a single consistent

header file can be used throughout the entire project.

Consistent header file usage in a C file

#define osObjectExternal // Objects defined as external symbols

#include "osObjects.h" // Reference to the CMSIS-RTOS objects

For details, refer to the online documentation www.keil.com/cmsis/rtos, section

Header File Template: cmsis_os.h.

file:///C:/Users/bruneu01/AppData/MDK5/ARM/PACK/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/cmsis__os_8h.html
file:///C:/Users/bruneu01/AppData/MDK5/ARM/PACK/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23ga7f2b42f1983b9107775ec2a1c69a849aa193b650117c209b4a203954542bcc3e6
http://www.keil.com/cmsis/rtos

30 CMSIS

CMSIS-RTOS RTX Configuration

The file RTX_Conf_CM.c contains the configuration parameters of the CMSIS-

RTOS RTX. A copy of this file is part of every project using the RTX

component.

You can set parameters for the thread stack, configure the Tick Timer, set Round-

Robin time slice, and define user timer behaviour for threads.

For more information about configuration options, open the RTX documentation

from the Manage Run-Time Environment window. The section Configuration

of CMSIS-RTOS RTX describes all available settings. The following highlights

the most important settings that need adaptation in your application.

Thread Stack Configuration

Threads are defined in the code with the function osThreadDef(). The parameter

stacksz specifies the stack requirement of a thread and has an impact on the

method for allocating stack. CMSIS-RTOS RTX offer two methods for

allocating stack requirements in the file RTX_Conf_CM.c:

 Using a fixed memory pool: if the parameter stacksz is 0, then the value

specified for Default Thread stack size [bytes] sets the stack size for the

thread function.

Getting Started: Create Applications with MDK Version 5 31

 Using a user space: if stacksz is not 0, then the thread stack is allocated from a

user space. The total size of this user space is specified by Total stack size

[bytes] for threads with user-provided stack size.

Number of concurrent running threads specifies the maximum number of

threads that allocate the stack from the fixed size memory pool.

Default Thread stack size [bytes] specifies the stack size (in words) for threads

defined without a user-provided stack.

Main Thread stack size [bytes] is the stack requirement for the main() function.

Number of threads with user-provided stack size specifies the number of

threads defined with a specific stack size.

Total stack size [bytes] for threads with user-provided stack size is the

combined requirement (in words) of all threads defined with a specific stack size.

Stack overflow checking enables stack overflow check at a thread switch.

Enabling this option slightly increases the execution time of a thread switch.

Stack usage watermark initializes the thread stack with a watermark pattern at

the time of the thread creation. This enables monitoring of the stack usage for

each thread (not only at the time of a thread switch) and helps to find stack

overflow problems within a thread. Enabling this option increases significantly

the execution time of osThreadCreate().

NOTE

Consider these settings carefully. If you do not allocate enough memory or you

do not specify enough threads, your application will not work.

32 CMSIS

RTX Kernel Timer Tick Configuration

CMSIS-RTOS RTX functions provide delays in units of milliseconds derived

from the Timer tick value. We recommend configuring the Timer Tick to

generate 1-millisecond intervals. Configuring a longer interval may reduce

energy consumption, but has an impact on the granularity of the timeouts.

It is good practise to enable Use Cortex-M Systick timer as RTX Kernel

Timer. This selects the built-in SysTick timer with the processor clock as the

clock source. In this case, the RTOS Kernel Timer input clock frequency

should be identical to the CMSIS variable SystemCoreClock of the startup file

system_<device>.c.

For details, refer to the online documentation section Configuration of CMSIS-

RTOS RTX – Tick Timer Configuration.

CMSIS-RTOS RTX API Functions

The table below lists the various API function categories that are available with

the CMSIS-RTOS RTX.

API Category Description Page

Thread Management Define, create, and control thread functions. 34

Timer Management Create and control timer and callback functions. 36

Signal Management Control or wait for signal flags. 37

Mutex Management Synchronize thread execution with a Mutex. 38

Semaphore Management Control access to shared resources. 38

Memory Pool Management Define and manage fixed-size memory pools 40

Message Queue Management Control, send, receive, or wait for messages. 40

Mail Queue Management Control, send, receive, or wait for mail. 41

TIP: The usage of the API functions is explained in the CMSIS-RTOS RTX

tutorial available at www.keil.com/cmsis/rtos.

http://www.keil.com/cmsis/rtos

Getting Started: Create Applications with MDK Version 5 33

CMSIS-RTOS User Code Templates

MDK provides user code templates you can use to create C source code for the

application.

In the Project window, right click a group, select Add New Item to Group,

choose User Code Template, select CMSIS-RTOS Thread, and click

Add.

34 CMSIS

Thread Management

The Thread management functions allow you to define, create, and control your

own thread functions in the system. The function main() is a special thread

function that is started at system initialization and has the initial priority

osPriorityNormal.

The CMSIS-RTOS RTX assumes

threads are scheduled as shown in

the figure Thread State and State

Transitions. Thread states change

as described below:

 A thread is created using the

function osThreadCreate(). This

puts the thread into the READY

or RUNNING state (depending

on the thread priority).

 CMSIS-RTOS is pre-emptive.

The active thread with the

highest priority becomes the

RUNNING thread provided it is not waiting for any event. The initial priority

of a thread is defined with the osThreadDef() but may be changed during

execution using the function osThreadSetPriority().

 The RUNNING thread transfers into the WAITING state when it is waiting

for an event.

 Active threads can be terminated any time using the function

osThreadTerminate(). Threads can also terminate by exit from the usual

forever loop and just a return from the thread function. Threads that are

terminated are in the INACTIVE state and typically do not consume any

dynamic memory resources.

Getting Started: Create Applications with MDK Version 5 35

Single Thread Program

A standard C program starts execution with the function main(). For an

embedded application, this function is usually an endless loop and can be thought

of as a single thread that is executed continuously. For example:

Main function as endless loop; Single thread design, no RTOS used

int main (void) {

 int counter = 0;

 while (1) { // Loop forever

 counter++; // Increment counter

 }

}

Simple RTX Program using Round-Robin Task Switching

#include "cmsis_os.h"

int counter1;

int counter2;

void job1 (void const *arg) {

 while (1) { // Loop forever

 counter1++; // Increment counter1

 }

}

void job2 (void const *arg) {

 while (1) { // Loop forever

 counter2++; // Increment counter2

 }

}

osThreadDef (job1, osPriorityNormal, 1, 0); // Define thread for job1

osThreadDef (job2, osPriorityNormal, 1, 0); // Define thread for job2

int main (void) { // main() runs as thread

 osKernelInitialize (); // Initialize RTX

 osThreadCreate (osThread (job1), NULL); // Create and start job1

 osThreadCreate (osThread (job2), NULL); // Create and start job2

 osKernelStart (); // Start RTX kernel

 while (1) {

 osThreadYield (); // Next thread

 }

}

36 CMSIS

Preemptive Thread Switching

Threads with the same priority need a round robin timeout or an explicit call of

the osDelay() function to execute other threads. In the example above, if job2 has

a higher priority than job1, execution of job2 starts instantly. Job2 preempts

execution of job1 (this is a very fast task switch requiring a few ms only).

Start job2 with Higher Thread Priority

 :

 osThreadDef (osThread (job2), osPriorityAboveNormal, 1, 0);

 :

Timer Management

Timer management functions allow you to create and control timers and callback

functions in the system. A callback function is called when a period expires

whereby both one-shot and periodic timers are possible. A timer can be started,

restarted, or stopped.

Timers are handled in the thread osTimerThread(). Callback functions run under

control of this thread and can use other CMSIS-RTOS API calls.

The figure below shows the behaviour of a periodic timer. One-shot timers stop

the timer after execution of the callback function.

With RTX, you can create one-shot timers and timers that execute periodically.

Getting Started: Create Applications with MDK Version 5 37

One-Shot and Periodic Timers

#include "cmsis_os.h"

void Timer1_Callback (void const *arg); // Timer callback

void Timer2_Callback (void const *arg); // Prototype functions

osTimerDef (Timer1, Timer1_Callback); // Define timers

osTimerDef (Timer2, Timer2_Callback);

uint32_t exec1; // Callback function arguments

uint32_t exec2;

void TimerCreate_example (void) {

 osTimerId id1; // Timer identifiers

 osTimerId id2;

 // Create one-shoot timer

 exec1 = 1;

 id1 = osTimerCreate (osTimer(Timer1), osTimerOnce, &exec1);

 if (id1 != NULL) {

 // One-shoot timer created

 }

 // Create periodic timer

 exec2 = 2;

 id2 = osTimerCreate (osTimer(Timer2), osTimerPeriodic, &exec2);

 if (id2 != NULL) {

 // Periodic timer created

 }

}

Signal Management

Signal management functions allow you to control or wait for signal flags. Each

thread has assigned signal flags.

38 CMSIS

Mutex Management

Mutex management functions synchronize the execution of threads and protect

accesses to a shared resource, for

example, a shared memory image.

The CMSIS-RTOS mutex

template provides function bodies

to which you can add your code.

Semaphore Management

Semaphore management functions manage and protect access to shared

resources. For example, a semaphore can manage the access to a group of

identical peripherals. Although they have a simple set of calls to the operating

system, they are the classic solution in preventing race conditions. However, they

do not resolve resource deadlocks. RTX ensures that atomic operations used with

semaphores are not interrupted.

The number of available

resources is specified as a

parameter of the

osSemaphoreCreate() function.

Each time a semaphore token is

obtained with

osSemaphoreWait(), the

semaphore count is decremented.

When the semaphore count is 0,

no Semaphore token can be

obtained. Semaphores are

released with osSemaphoreRelease(); this function increments the semaphore

count.

In the Project window, right click a group, select Add New Item to Group,

choose User Code Template, and select CMSIS-RTOS Mutex.

Getting Started: Create Applications with MDK Version 5 39

The example creates and initializes a semaphore object to manage access to

shared resources. The parameter count specifies the number of available

resources. The count value 1 creates a binary semaphore.

Thread management using a single semaphore

#include "cmsis_os.h" // CMSIS-RTOS RTX header file

osThreadId tid_thread1; // ID for thread 1

osThreadId tid_thread2; // ID for thread 2

osSemaphoreId semID; // Semaphore ID

osSemaphoreDef (semaphore); // Semaphore definition

// Thread 1 - High Priority - Active every 3ms

void thread1 (void const *argument) {

 int32_t val;

 while (1) {

 osDelay(3); // Pass control for 3ms

 val = osSemaphoreWait (semID, 1); // Wait 1ms for free token

 if (val > 0) { // If free token acquired

 : // do your job

 osSemaphoreRelease (semID); // Return token to semaphore

 }

 }

}

// Thread 2 - Normal Priority –

// Looks for a free semaphore and uses resources whenever available

void thread2 (void const *argument) {

 while (1) {

 osSemaphoreWait (semID, osWaitForever); // Wait for free semaphore

 osSemaphoreRelease (semID); // Return token to semaphore

 }

}

// Thread definitions

osThreadDef (thread1, osPriorityHigh, 1, 0);

osThreadDef (thread2, osPriorityNormal, 1, 0);

void StartApplication (void) {

 semID = osSemaphoreCreate (osSemaphore(semaphore), 1);

 tid_thread1 = osThreadCreate (osThread(thread1), NULL);

 tid_thread2 = osThreadCreate (osThread(thread2), NULL);

}

The CMSIS-RTOS semaphore template provides function bodies to which you

can add your code.

In the Project window, right click a group, select Add New Item to Group,

choose User Code Template, and select CMSIS-RTOS Semaphore.

file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html%23ga9e66fe361749071e5ab87826c43c2f1b
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html%23gacc15b0fc8ce1167fe43da33042e62098
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23ga7f2b42f1983b9107775ec2a1c69a849aa45a2895ad30c79fb97de18cac7cc19f1
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html%23ga03761ee8d2c3cd4544e18364ab301dac
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23gaf0c7c6b5e09f8be198312144b5c9e453
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23gaf0c7c6b5e09f8be198312144b5c9e453

40 CMSIS

Memory Pool Management

Memory pool management provides thread-safe and fully reentrant allocation

functions for fixed sized memory pools. These functions have a deterministic

execution time that is independent of the pool usage. Built-in memory allocation

routines enable you to use the system memory dynamically by creating memory

pools and use fixed sized blocks from the memory pool. The memory pool needs

a proper initialization to the size of the object.

The CMSIS-RTOS memory pool template provides function bodies to which you

can add your code.

Message Queue Management

Message queue management functions allow you to control, send, receive, or wait

for messages. A message can be an integer or pointer value that is sent to a

thread or interrupt service

routine.

The CMSIS-RTOS

message queue template

provides function bodies to

which you can add your

code.

In the Project window, right click a group, select Add New Item to Group,

choose User Code Template, and select CMSIS-RTOS Memory Pool.

In the Project window, right-click a group, select Add New Item to Group,

choose User Code Template, and select CMSIS-RTOS Message Queue.

Getting Started: Create Applications with MDK Version 5 41

Mail Queue Management

Mail queue management

functions allow you to

control, send, receive, or wait

for mail. A mail is a memory

block that is sent to a thread

or to an interrupt service

routine.

The CMSIS-RTOS mail

queue template provides

function bodies to which you

can add your code.

In the Project window, right click a group, select Add New Item to Group,

choose User Code Template, and select CMSIS-RTOS Mail Queue.

42 CMSIS

CMSIS-RTOS System and Thread Viewer

The CMSIS-RTOS RTX Kernel has built-in support for RTOS aware debugging.

During debugging, open Debug – OS Support and select System and Thread

Viewer. This window shows system state information and the running threads.

The System property shows general information about the RTOS configuration in

the application. Thread Usage shows the number of available and threads and

the used threads that are currently active.

The Threads property shows details about thread execution of the application. It

shows for each thread information about priority, execution state and stack usage.

When the option Stack usage watermark is enabled for Thread Configuration

in the file RTX_Conf_CM.c, the field Stack Usage shows cur: and max: stack

load. The value cur: is the current stack usage at the actual program location.

The value max: is the maximum stack load that occurred during thread execution,

based on overwrites of the stack usage watermark pattern. This allows you:

 to identify a stack overflow during thread execution

 or to optimize and reduce the stack space for a thread.

NOTE

When you are using Trace, the debugger provides also a view with detailed

timing information. Refer to Event Viewer on page 76 for more information.

Getting Started: Create Applications with MDK Version 5 43

CMSIS-DSP
The CMSIS-DSP library is a suite of common digital signal processing (DSP)

functions. The library is available in several variants optimized for different

Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the dialog Manage

Run-Time Environment, the optimum library for the selected device is

automatically included into the project.

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions

#include "arm_math.h" // ARM::CMSIS:DSP

const float32_t buf_A[9] = { // Matrix A buffer and values

 1.0, 32.0, 4.0,

 1.0, 32.0, 64.0,

 1.0, 16.0, 4.0,

};

float32_t buf_AT[9]; // Buffer for A Transpose (AT)

float32_t buf_ATmA[9] ; // Buffer for (AT * A)

arm_matrix_instance_f32 A; // Matrix A

arm_matrix_instance_f32 AT; // Matrix AT(A transpose)

arm_matrix_instance_f32 ATmA; // Matrix ATmA(AT multiplied by A)

uint32_t rows = 3; // Matrix rows

uint32_t cols = 3; // Matrix columns

int main(void) {

 // Initialize all matrixes with rows, columns, and data array

 arm_mat_init_f32 (&A, rows, cols, (float32_t *)buf_A); // Matrix A

 arm_mat_init_f32 (&AT, rows, cols, buf_AT); // Matrix AT

 arm_mat_init_f32 (&ATmA, rows, cols, buf_ATmA); // Matrix ATmA

 arm_mat_trans_f32 (&A, &AT); // Calculate A Transpose (AT)

 arm_mat_mult_f32 (&AT, &A, &ATmA); // Multiply AT with A

 while (1);

}

44 CMSIS

For more information, refer to the CMSIS-DSP documentation on

www.keil.com/cmsis/dsp.

http://www.keil.com/cmsis/dsp

Getting Started: Create Applications with MDK Version 5 45

Software Component Compiler
The software component Compiler allows you to retarget I/O functions of the

standard C run-time library. Application code uses frequently standard I/O

library functions, such as printf(), scanf(), or fgetc() to perform input/output

operations.

The structure of these functions in the standard ARM Compiler C run-time

library is:

The high-level and low-level functions are not target-dependent and use the

system I/O functions to interface with hardware.

The MicroLib of the ARM Compiler C run-time library interfaces with the

hardware via low-level functions. The MicroLib implements a reduced set of

high-level functions and therefore does not implement system I/O functions.

The software component Compiler retargets the I/O functions for the various

standard I/O channels: File, STDERR, STDIN, STDOUT, and TTY:

46 Software Component Compiler

I/O Channel Description

File Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)

STDERR Standard error stream of the application to output diagnostic messages.

STDIN Standard input stream going into the application (scanf etc.).

STDOUT Standard output stream of the application (printf etc.).

TTY Teletypewriter which is the last resort for error output.

The variant selection allows you to change the hardware interface of the I/O

channel.

Variant Description

File System Use the File System component as the interface for File related operations

Breakpoint When the I/O channel is used, the application stops with BKPT instruction.

ITM Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.

User Retarget I/O functions to a user defined routines (such as USART, keyboard).

The software component Compiler adds the file retarget_io.c that will be

configured acording to the variant settings. For the User variant, user code

templates are available that help you to implement your own functionality. Refer

to the documentation for more information.

ITM in the Cortex-M3/M4/M7 supports printf style

debugging. If you choose the variant ITM, the I/O

library functions perform I/O operations via the

Debug (printf) Viewer window.

Getting Started: Create Applications with MDK Version 5 47

Create Applications
This chapter guides you through the steps required to create and modify projects

using CMSIS described in the previous chapter.

NOTE
The example code in this section works for the MCB1800 evaluation board

(populated with LPC1857). Adapt the code and port pin configurations when

using another starter kit or board.

The tutorial creates the project Blinky in the two basic design concepts:

 RTOS design using CMSIS-RTOS RTX.

 Infinite loop design for bare-metal systems without RTOS Kernel.

Blinky with CMSIS-RTOS RTX
The section explains the creation of the project using the following steps:

 Setup the Project: create a project file and select the microcontroller device

along with the relevant CMSIS components.

 Configure the Device Clock Frequency: configure the system clock

frequency for the device and the CMSIS-RTOS RTX kernel.

 Create the Source Code Files: add and create the application files.

 Build the Application Image: compile and link the application for

downloading it to an on-chip Flash memory of a microcontroller device.

Using the Debugger on page 65 guides you through the steps to connect your

evaluation board to the PC and to download the application to the target.

For the project Blinky, you will create the following application files:

main.c This file contains the main() function that initializes the RTOS

kernel, the peripherals, and starts thread execution.

LED.c The file contains functions to initialize and control the GPIO port

and the thread function blink_LED(). The LED_Initialize() function

initializes the GPIO port pin. The functions LED_On() and

LED_Off() control the port pin that interfaces to the LED.

LED.h The header file contains the function prototypes for the functions in

LED.c and is included into the file main.c.

In addition, you will configure the system clock and the CMSIS-RTOS RTX.

48 Create Applications

Setup the Project

From the µVision menu bar, choose Project – New µVision Project.

Next, the dialog Select Device for Target opens.

The device selection defines essential tool settings such as compiler controls, the

memory layout for the linker, and the Flash programming algorithms.

The dialog Manage Run-Time Environment opens and shows the software

components that are installed and available for the selected device.

Select an empty folder and enter the project name, for example, Blinky.

Click Save, which creates an empty project file with the specified name

(Blinky.uvproj).

Select the LPC1857 and click OK.

Expand ::CMSIS:RTOS(API) and enable :Keil RTX.

Expand ::Device and enable :GPIO and :SCU.

Getting Started: Create Applications with MDK Version 5 49

The Validation Output field shows dependencies to other software components.

In this case, the component ::Device:Startup is required.

TIP: A click on a message highlights the related software component.

This resolves all dependencies and enables other required software components

(here, ::CMSIS:Core and ::Device:Startup).

The selected software components are included into

the project together with the startup file, the RTX

configuration file, and the CMSIS system files. The

Project window displays the selected software

components along with the related files. Double-

click on a file to open it in the editor.

Click Resolve.

Click OK.

50 Create Applications

Configure the Device Clock Frequency

The system or core clock is defined in the system_<device>.c file. The core

clock also is the input clock frequency for the RTOS Kernel Timer and, therefore,

the RTX configuration file needs to match this setting.

NOTE

Some devices perform the system setup as part of the main function and/or use a

software framework that is configured with external utilities.

Refer to Device Startup Variations on page 58 for more information.

The clock configuration for an application depends on various factors such as the

clock source (XTAL or on-chip oscillator), and the requirements for memory and

peripherals. Silicon vendors provide the device-specific file system_<device>.c

and therefore it is required to read the related documentation.

TIP: Open the reference manual from the Books window for detailed

information about the microcontroller clock system.

The MCB1800 development kit runs with an external 12 MHz XTAL. The PLL

generates a core clock frequency of 180 MHz. As this is the default, no

modifications are necessary. However, you can change the settings for your

custom development board in the file system_LPC18xx.c.

Set PLL Parameters in system_LPC18xx.c

:

/* PLL1 output clock: 180MHz, Fcco: 180MHz, N = 1, M = 15, P = x */

#define PLL1_NSEL 0 /* Range [0 - 3]: Pre-divider ratio N */

#define PLL1_MSEL 14 /* Range [0 - 255]: Feedback-div ratio M */

#define PLL1_PSEL 0 /* Range [0 - 3]: Post-divider ratio P */

#define PLL1_BYPASS 0 /* 0: Use PLL, 1: PLL is bypassed */

#define PLL1_DIRECT 1 /* 0: Use PSEL, 1: Don't use PSEL */

#define PLL1_FBSEL 0 /* 0: FCCO is used as PLL feedback */

 /* 1: FCLKOUT is used as PLL feedback */

:

To edit the file system_LPC18xx.c, expand the group Device in the Project

window, double-click on the file name, and modify the code as shown

below.

Getting Started: Create Applications with MDK Version 5 51

Customize the CMSIS-RTOS RTX Kernel

TIP: You may copy the compiler define settings and system_<device>.c from

example projects. Right click on the filename in the editor and use Open

Containing Folder to locate the file.

In the Project window, expand the group CMSIS, open the file

RTX_Conf_CM.c, and click the tab Configuration Wizard at the bottom of

the editor.

Expand RTX Kernel Timer Tick Configuration and set the Timer clock

value to match the core clock.

52 Create Applications

Create the Source Code Files

Add your application code using pre-configured User Code Templates

containing routines that resemble the functionality of the software component.

This adds the file main.c to the project group Source Group 1. Now you can add

user code to this file.

In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group.

Click on User Code Template to list available code templates for the

software components included in the project. Select CMSIS-RTOS ‘main’

function and click Add.

Getting Started: Create Applications with MDK Version 5 53

Code for main.c

/*--

 * CMSIS-RTOS 'main' function template

 --/

#define osObjectsPublic // Define objects in main module

#include "osObjects.h" // RTOS object definitions

#include "LPC18xx.h" // Device header

#include "LED.h" // Initialize and set GPIO Port

/*

 * main: initialize and start the system

 */

int main (void) {

 osKernelInitialize (); // Initialize CMSIS-RTOS

 // initialize peripherals here

 LED_Initialize (); // Initialize LEDs

 // create 'thread' functions that start executing,

 // example: tid_name = osThreadCreate (osThread(name), NULL);

 Init_BlinkyThread (); // Start Blinky thread

 osKernelStart (); // Start thread execution

 while (1);

}

Right-click on a blank line in the file main.c and select Insert ‘#include

files’. Include the header file LPC18xx.h for the selected device.

Then, add the code below to create a function blink_LED() that blinks LEDs

on the evaluation kit. Define blink_LED() as an RTOS thread using

osThreadDef() and start it with osThreadCreate().

54 Create Applications

Code for LED.c

/*--

 * File LED.c

 --/

#include "SCU_LPC18xx.h"

#include "GPIO_LPC18xx.h"

#include "cmsis_os.h" // ARM::CMSIS:RTOS:Keil RTX

void blink_LED (void const *argument); // Prototype function

osThreadDef (blink_LED, osPriorityNormal, 1, 0); // Define blinky thread

void LED_Initialize (void) {

 GPIO_PortClock (1); // Enable GPIO clock

 /* Configure pin: Output Mode with Pull-down resistors */

 SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4|SCU_PIN_CFG_PULLDOWN_EN));

 GPIO_SetDir (6, 24, GPIO_DIR_OUTPUT);

 GPIO_PinWrite (6, 24, 0);

}

void LED_On (void) {

 GPIO_PinWrite (6, 24, 1); // LED on: set port

}

void LED_Off (void) {

 GPIO_PinWrite (6, 24, 0); // LED off: clear port

}

// Blink LED function

void blink_LED(void const *argument) {

 for (;;) {

 LED_On (); // Switch LED on

 osDelay (500); // Delay 500 ms

 LED_Off (); // Switch off

 osDelay (500); // Delay 500 ms

 }

}

void Init_BlinkyThread (void) {

 osThreadCreate (osThread(blink_LED), NULL); // Create thread

}

 Create an empty C-file named LED.c using the dialog Add New Item to

Group and add the code to initialize and access the GPIO port pins that

control the LEDs.

Getting Started: Create Applications with MDK Version 5 55

Code for LED.h

/*--

 * File LED.h

 --/

void LED_Initialize (void); // Initialize GPIO

void LED_On (void); // Switch Pin on

void LED_Off (void); // Switch Pin off

void blink_LED (void const *argument); // Blink LEDs in a thread

void Init_BlinkyThread (void); // Initialize thread

Build the Application Image

The section Using the Debugger on page 65 guides you through the steps to

connect your evaluation board to the workstation and to download the application

to the target hardware.

TIP: You can verify the correct clock and RTOS configuration of the target

hardware by checking the one-second interval of the LED.

 Create an empty header file named LED.h using the dialog Add New Item

to Group and define the function prototypes of LED.c.

Build the application, which compiles and links all related source files.

Build Output shows information about the build process. An error-free

build displays program size information, zero errors, and zero warnings.

56 Create Applications

Blinky with Infinite Loop Design
Based on the previous example, we create a Blinky application with the infinite

loop design and without using CMSIS-RTOS RTX functions. The project

contains the user code files:

main.c This file contains the main() function, the function Systick_Init() to

initialize the System Tick Timer and its handler function

SysTick_Handler(). The function Delay() waits for a certain time.

LED.c The file contains functions to initialize the GPIO port pin and to set

the port pin on or off. The function LED_Initialize() initializes the

GPIO port pin. The functions LED_On() and LED_Off() enable or

disable the port pin.

LED.h The header file contains the function prototypes created in LED.c

and must be included into the file main.c.

Open the Manage Run-Time Environment and deselect the software

component ::CMSIS:RTOS:Keil RTX.

/*--

 * file main.c

 --/

#include "LPC18xx.h" // Device header

#include "LED.h" // Initialize and set GPIO Port

int32_t volatile msTicks = 0; // Interval counter in ms

// Set the SysTick interrupt interval to 1ms

void SysTick_Init (void) {

 if (SysTick_Config (SystemCoreClock / 1000)) {

 // handle error

 }

}

// SysTick Interrupt Handler function called automatically

void SysTick_Handler (void) {

 msTicks++; // Increment counter

}

// Wait until msTick reaches 0

void Delay (void) {

 while (msTicks < 499); // Wait 500ms

 msTicks = 0; // Reset counter

}

Open the file main.c and add the code to initialize the System Tick Timer,

write the System Tick Timer Interrupt Handler, and the delay function.

Getting Started: Create Applications with MDK Version 5 57

int main (void) {

 // initialize peripherals here

 LED_Initialize (); // Initialize LEDs

 SystemCoreClockUpdate(); // Update SystemCoreClock to 180 MHz

 SysTick_Init (); // Initialize SysTick Timer

 while (1) {

 LED_On (); // Switch on

 Delay (); // Delay

 LED_Off (); // Switch off

 Delay (); // Delay

 }

}

/*--

 * File LED.c

 --/

#include "SCU_LPC18xx.h"

#include "GPIO_LPC18xx.h"

void LED_Initialize (void) {

GPIO_PortClock (1); // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */

SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4 | SCU_PIN_CFG_PULLDOWN_EN));

GPIO_SetDir (6, 24, GPIO_DIR_OUTPUT);

GPIO_PinWrite (6, 24, 0);

}

void LED_On (void) {

GPIO_PinWrite (6, 24, 1); // LED on: set port

}

void LED_Off (void) {

GPIO_PinWrite (6, 24, 0); // LED off: clear port

}

/*--

 * file: LED.h

 --/

void LED_Initialize (void); // Initialize LED Port Pins

void LED_On (void); // Set LED on

void LED_Off (void); // Set LED off

Open the file LED.c and remove unnecessary functions. The code should

look like this.

 Open the file LED.h and modify the code.

58 Create Applications

Build the Application Image

The section Using the Debugger on page 65 guides you through the steps to

connect your evaluation board to the PC and to download the application to the

target hardware.

TIP: You can verify the correct clock configuration of the target hardware by

checking the one-second interval of the LED.

Device Startup Variations
Some devices perform a significant part of the system setup as part of the device

hardware abstraction layer (HAL) and therefore the device initialization is done

from within the main function. Such devices frequently use a software

framework that is configured with external utilities.

The ::Device software component may contain therefore additional components

that are required to startup the device. Refer to the online help system for further

information. In the following section, device startup variations are exemplified.

Example: Infineon XMC1000 using DAVE

Using Infineon’s DAVE™, you can automatically generate code based on so-

called DAVE Apps. Within the Eclipse-based IDE, you can add, configure, and

connect the apps to suit your application. During this process, you will configure

the clock settings using the CLK002 app (in case of the XMC1100). This app

sets the correct registers within the core to reach the desired frequency. At the

end of the generated code, it calls the CMSIS function

SystemCoreClockUpdate().

All steps to import a DAVE project into µVision are explained in the application

note 258 available at http://www.keil.com/appnotes/docs/apnt_258.asp.

Build the application, which compiles and links all related source files.

http://www.keil.com/appnotes/docs/apnt_258.asp

Getting Started: Create Applications with MDK Version 5 59

After µVision imported the project, the Manage Run-Time Environment

window shows the group ::DAVE3 with the generated apps as components.

Inside µVision, the component ::DAVE3 is locked. Use the start button to

open DAVE for changing the configuration of the apps.

The CLK002.c file contains the #defines for setting the clock registers. The

following is an example that shows how DAVE sets the values according to the

configuration from within the tool:

Code for CLK002.c

:

/**

** 0 Private Macro Definitions **

**/

/* Master Clock setup parameters */

#define CLK002_CLKCR_PCLKSEL (0U)

#define CLK002_CLKCR_IDIV (1U)

#define CLK002_CLKCR_FDIV (153U)

#define CLK002_DIRECT_ACCESS_ALLOW (0xC0U)

#define CLK002_DIRECT_ACCESS_DISALLOW (0xC3U)

:

60 Create Applications

Change the Clock Setup using DAVE

If you need to change these clock values, open the Manage Run-Time

Environment window and press the start button to open DAVE. Use the

UIEditor of the CLK002 App to change the clock settings:

Re-run the code generation in DAVE.

This will change the CLK002.c file, which will be recognized by µVision

automatically:

Click on Yes to reload the changed file. Now, it will have the following values:

:

/**

** 0 Private Macro Definitions **

**/

/* Master Clock setup parameters */

#define CLK002_CLKCR_PCLKSEL (0U)

#define CLK002_CLKCR_IDIV (1U)

#define CLK002_CLKCR_FDIV (26U)

#define CLK002_DIRECT_ACCESS_ALLOW (0xC0U)

#define CLK002_DIRECT_ACCESS_DISALLOW (0xC3U)

:

Getting Started: Create Applications with MDK Version 5 61

Example: STM32Cube

Many STM32 devices are using the STM32Cube Framework that is configured,

for example, with a classic method that uses the RTE_Device.h configuration file.

The STM32Cube Framework provides a specific user code template that

implements the system setup. Below is an example that shows the setup for the

STM32F407 Discovery Kit.

Refer to the online documentation for the STM32Cube Framework for details

of the software setup.

Setup the Project for STM32F407 Discovery Kit

In the Manage Run-Time Environment window, select the following:

Expand ::Device:STM32Cube Framework (API) and enable :Classic.

Expand ::Device and enable :Startup.

Click Resolve to enable other required software components and then OK.

62 Create Applications

In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group.

Click on User Code Template to list available code templates for the

software components included in the project. Select ‘main’ module for

STM32Cube and click Add.

Getting Started: Create Applications with MDK Version 5 63

The main.c file contains the function SystemClock_Config(). Here, you need to

make the settings for the clock setup:

Code for main.c

:

static void SystemClock_Config(void)

{

 RCC_ClkInitTypeDef RCC_ClkInitStruct;

 RCC_OscInitTypeDef RCC_OscInitStruct;

 /* Enable Power Control clock */

 __PWR_CLK_ENABLE();

 /* The voltage scaling allows optimizing the power consumption when the

 device is clocked below the maximum system frequency, to update the

 voltage scaling value regarding system frequency refer to product

 datasheet. */

 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

 /* Enable HSE Oscillator and activate PLL with HSE as source */

 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;

 RCC_OscInitStruct.HSEState = RCC_HSE_ON;

 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

 RCC_OscInitStruct.PLL.PLLM = 8;

 RCC_OscInitStruct.PLL.PLLN = 336;

 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

 RCC_OscInitStruct.PLL.PLLQ = 7;

 if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

 {

 /* Initialization Error */

 Error_Handler();

 }

 /* Select PLL as system clock source and configure the HCLK, PCLK1 and

 PCLK2 clocks dividers */

 RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK

 | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);

 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

 if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)

 {

 /* Initialization Error */

 Error_Handler();

 }

}

:

For example, the MCB32F400 development board uses a 25 MHz crystal

oscillator. Set the RCC_OscInitStruct.PLL.PLLM to 25 to match this value.

64 Debug Applications

Debug Applications
The ARM CoreSight technology integrated into the ARM Cortex-M processor-

based devices provides powerful debug and trace capabilities. It enables run-

control to start and stop programs, breakpoints, memory access, and Flash

programming. Features like sampling, data trace, exceptions including program

counter (PC) interrupts, and instrumentation trace are available in most devices.

Devices integrate instruction trace using ETM, ETB, or MTB to enable analysis

of the program execution. Refer to www.keil.com/coresight for a complete

overview of the debug and trace capabilities.

Debugger Connection
MDK contains the µVision Debugger that connects to various Debug/Trace

adapters, and allows you to program the Flash memory. It supports traditional

features like simple and complex breakpoints, watch windows, and execution

control. Using trace, additional features like event/exception viewers, logic

analyzer, execution profiler, and code coverage are supported.

 The ULINK2 and ULINK-ME Debug

adapters interface to JTAG/SWD debug

connectors and support trace with the

Serial Wire Output (SWO). The

ULINKpro Debug/Trace adapter also interfaces to ETM trace connectors and

uses streaming trace technology to capture the complete instruction trace for

code coverage and execution profiling. Refer to www.keil.com/ulink for

more information.

 CMSIS-DAP based USB JTAG/SWD

debug interfaces are typically part of an

evaluation board or starter kit and offer

integrated debug features. In addition,

several proprietary interfaces that offer a similar technology are supported.

 MDK supports third-party debug solutions such as Segger J-Link or J-Trace.

Some starter kit boards provide the J-Link Lite technology as an on-board

solution.

http://www.keil.com/coresight
http://www.keil.com/ulink

Getting Started: Create Applications with MDK Version 5 65

Using the Debugger
Next, you will debug the Blinky application created in the previous chapter on

hardware. You need to configure the debug connection and Flash programming

utility.

Select the debug adapter and configure debug options.

Configure Flash programming options.

The device selection already configures the Flash programming algorithm for on-

chip memory. Verify the configuration using the Settings button.

Program the application into Flash memory.

From the toolbar, choose Options for Target, click the Debug tab, enable

Use, and select the applicable debug driver.

Switch to the dialog Utilities and enable Use Debug Driver.

From the toolbar, choose Download. The Build Output window shows

messages about the download progress.

66 Debug Applications

During the start of a debugging session, µVision loads the application, executes

the startup code, and stops at the main C function.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such as:

Start debugging on hardware. From the toolbar, select Start/Stop Debug

Session.

 Click Run on the toolbar. The LED flashes with a frequency of one second.

 Step steps through the program and into function calls.

 Step Over steps through the program and over function calls.

 Step Out steps out of the current function.

 Stop halts program execution.

 Reset performs a CPU reset.

 Show to the statement that executes next (current PC location).

Getting Started: Create Applications with MDK Version 5 67

Command Window

You may also enter debug commands in the Command window.

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Window

The Disassembly

window shows the

program execution in

assembly code

intermixed with the

source code (when

available). When this is

the active window, then

all debug stepping

commands work at the

assembly level.

The window margin

shows markers for

breakpoints, bookmarks, and for the next execution statement.

68 Debug Applications

Breakpoints

You can set breakpoints

 While creating or editing your program source code. Click in the grey margin

of the editor or Disassembly window to set a breakpoint.

 Using the breakpoint buttons in the toolbar.

 Using the menu Debug – Breakpoints.

 Entering commands in the Command window.

 Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define

sophisticated breakpoints

using the Breakpoints

window.

Open the Breakpoints

window from the menu

Debug.

Enable or disable

breakpoints using the

checkbox in the field

Current Breakpoints.

Double-click on an

existing breakpoint to

modify the definition.

Enter an Expression to add a new breakpoint. Depending on the expression, one

of the following breakpoint types is defined:

 Execution Breakpoint (E): is created when the expression specifies a code

address and triggers when the code address is reached.

 Access Breakpoint (A): is created when the expression specifies a memory

access (read, write, or both) and triggers on the access to this memory address.

A compare (==) operator may be used to compare for a specified value.

If a Command is specified for a breakpoint, µVision executes the command and

resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true

before the breakpoint halts program execution.

Getting Started: Create Applications with MDK Version 5 69

Watch Window

The Watch window allows you to observe

program symbols, registers, memory areas,

and expressions.

Add variables to the Watch window with:

 Click on the field <Enter expression> and double-click or press F2.

 In the Editor when the cursor is located on a variable, use the context menu

select Add <item name> to…

 Drag and drop a variable into a Watch window.

 In the Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during

program execution when View – Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window

shows the function nesting and

variables of the current program

location.

When program execution stops, the Call Stack + Locals window automatically

shows the current function nesting along with local variables. Threads are shown

for applications that use the CMSIS-RTOS RTX.

 Open a Watch window from the

toolbar or the menu using

View – Watch Windows.

 Open the Call Stack + Locals

window from the toolbar or

the menu using View – Call

Stack Window.

70 Debug Applications

Register Window

The Register window shows the content of the

microcontroller registers.

You can modify the content of a register by double-

clicking on the value of a register, or pressing F2 to

edit the selected value. Currently modified registers

are highlighted in blue. The window updates the

values when program execution halts.

Memory Window

Monitor memory areas using

Memory Windows.

 Enter an expression in the

Address field to monitor the

memory area.

 To modify memory content, use the Modify Memory at … command from

context menu of the Memory window double-click on the value.

 The Context Menu allows you to select the output format.

 To update the Memory Window periodically, enable View – Periodic

Window Update. Use Update Windows in the Toolbox to refresh the

windows manually.

 Open the Registers window

from the toolbar or the menu

View – Registers Window.

 Open a Memory window

from the toolbar or the

menu using View –

Memory Windows.

Stop refreshing the Memory window by clicking the Lock button. You can

use the Lock feature to compare values of the same address space by

viewing the same section in a second Memory window.

Getting Started: Create Applications with MDK Version 5 71

Peripheral Registers

Peripheral registers are memory mapped registers to which a processor can write

to and read from to control a peripheral. The menu Peripherals provides access

to Core Peripherals, such as the Nested Vector Interrupt Controller or the

System Tick Timer. You can access device peripheral registers using the System

Viewer.

NOTE

The content of the menu Peripherals changes with the selected microcontroller.

System Viewer

System Viewer windows display information

about device peripheral registers.

 With the System Viewer, you can:

 View peripheral register properties and

values. Values are updated periodically

when View — Periodic Window Update is

enabled.

 Change property values while debugging.

 Search for specific properties using TR1 Regular Expressions in the search

field. The appendix of the µVision User’s Guide describes the syntax of

regular expressions.

For details about accessing and using peripheral registers, refer to the online

documentation.

Open a peripheral register from the toolbar

or the menu Peripherals – System

Viewer.

http://www.keil.com/support/man/docs/uv4/uv4_f_search_expr.htm

72 Debug Applications

Trace
Run-Stop Debugging, as described previously, has some limitations that become

apparent when testing time-critical programs, such as motor control or

communication applications. As an example, breakpoints and single stepping

commands change the dynamic behavior of the system. As an alternative, use the

trace features explained in this section to

analyze running systems.

Cortex-M processors integrate CoreSight

logic that is able to generate the following

trace information using:

 Data Watchpoints record memory

accesses with data value and program

address and, optionally, stop program

execution.

 Exception Trace outputs details about

interrupts and exceptions.

 Instrumented Trace communicates

program events and enables printf-style

debug messages and the RTOS Event

Viewer.

 Instruction Trace streams the complete program execution for recording and

analysis.

The Trace Port Interface Unit (TPIU) is available on most Cortex-M3, Cortex-

M4, and Cortex-M7 processor-based microcontrollers and outputs above trace

information via:

 Serial Wire Trace Output (SWO) works only in combination with the Serial

Wire Debug mode (not with JTAG) and does not support Instruction Trace.

 4-Pin Trace Output is available on high-end microcontrollers and has the

high bandwidth required for Instruction Trace.

On some microcontrollers, the trace information can be stored in an on-chip

Trace Buffer that can be read using the standard debug interface.

 Cortex-M3, Cortex-M4, and Cortex-M7 has an optional Embedded Trace

Buffer (ETB) that stores all trace data described above.

 Cortex-M0+ has an optional Micro Trace Buffer (MTB) that supports

Instruction Trace only.

Getting Started: Create Applications with MDK Version 5 73

The required trace interface needs to be supported by both the microcontroller

and the debug adapter. The following table shows supported trace methods of

various debug adapters.

Feature ULINKpro ULINKpro-D ULINK2 ST-Link v2

Serial Wire Output (SWO)    

Maximum SWO clock frequency 200 MHz 200 MHz 3.75 MHz 2 MHz

4-Pin Trace Output for Streaming    

Embedded Trace Buffer (ETB)    

Micro Trace Buffer (MTB)    

Trace with Serial Wire Output
To use the Serial Wire Trace Output (SWO), use the following steps:

Click Options for Target on the toolbar and select the Debug tab. Verify

that you have selected and enabled the correct debug adapter.

Click the Settings button. In the Debug dialog, select the debug Port: SW

and set the Max Clock frequency for communicating with the debug unit of

the device.

74 Debug Applications

NOTE

When many trace features are enabled, the Serial Wire Output communication

can overflow. The µVision Status Bar displays such connection errors.

The ULINKpro debug/trace adapter has high trace bandwidth and such

communication overflows are rare. Enable only the trace features that are

currently required to avoid overflows in the trace communication.

Click the Trace tab. Ensure the Core Clock has the right setting. Set

Trace Enable and select the Trace Events you want to monitor.

Enable ITM Stimulus Port 0 for printf-style debugging.

Enable ITM Stimulus Port 31 to view RTOS Events.

Getting Started: Create Applications with MDK Version 5 75

Trace Exceptions

The Exception Trace window displays statistical data about exceptions and

interrupts.

To retrieve data in the Trace Exceptions window:

 Set Trace Enable in the Debug Settings Trace dialog as described above.

 Enable EXCTRC: Exception Tracing.

 Set Timestamps Enable.

NOTE

The variable accesses configured in the Logic Analyzer are also shown in the

Trace Data Window.

Click on Trace Windows and select Trace Exceptions from the toolbar or

use the menu View – Trace – Trace Exceptions to open the window.

76 Debug Applications

Event Viewer

The Event Viewer shows RTOS thread as well as interrupt and exception timing

information. Open this window with the menu Debug – OS Support – Event

Viewer.

To retrieve data in the Event Viewer window:

 Set Trace Enable in the Debug Settings Trace dialog as described above.

 Enable ITM Stimulus Port 31 for CMSIS-RTOS thread timing information.

 Enable EXCTRC: Exception Tracing for interrupt and exception timing

information.

 Set Timestamps Enable.

NOTE

The debugger provides also detailed RTOS and Thread status information that is

available without Trace. Refer to CMSIS-RTOS System and Thread Viewer on

page 42 for more information.

Getting Started: Create Applications with MDK Version 5 77

Logic Analyzer

The Logic Analyzer window displays changes of variable values over time. Up

to four variables can be monitored. To add a variable to the Logic Analyzer, right

click it in while in debug mode and select Add <variable> to… - Logic

Analyzer. Open the Logic Analyzer window by choosing View - Analysis

Windows - Logic Analyzer.

To retrieve data in the Logic Analyzer window:

 Set Trace Enable in the Debug Settings Trace dialog as described above.

 Set Timestamps Enable.

NOTE

The variable accesses monitored in the Logic Analyzer are also shown in the

Trace Data Window. Refer to the µVision User’s Guide – Debugging for more

information.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

78 Debug Applications

Debug (printf) Viewer

The Debug (printf) Viewer window displays data streams that are transmitted

sequentially through the ITM Stimulus Port 0. To use the Debug (printf)

Viewer, add the following fputc() function that uses the CMSIS function

ITM_SendChar to your source code.

#include <stdio.h>

#include "stm32f4xx.h" // Device header

struct __FILE { int handle; };

FILE __stdout;

FILE __stdin;

int fputc(int c, FILE *f) {

 ITM_SendChar(c);

 return (c);

}

This fputc() function redirects any printf() messages (as shown below) to the

Debug (printf) Viewer.

 int seconds; // Second counter

 :

 while (1) {

 LED_On (); // Switch on

 delay (); // Delay

 LED_Off (); // Switch off

 delay (); // Delay

 printf ("Seconds=%d\n", seconds++); // Debug output

 }

Click on Serial Windows and select Debug (printf)

Viewer from the toolbar or use the menu View – Serial

Windows – Debug (printf) Viewer to open the

window.

To retrieve data in the Debug (printf) Viewer window:

 Set Trace Enable in the Debug Settings Trace dialog as described above.

 Set Timestamps Enable.

 Enable ITM Stimulus Port 0.

ms-its:C:/MDK5/ARM/HLP/ulinkpro.chm::/ulinkpro_tr_stimulusports.htm

Getting Started: Create Applications with MDK Version 5 79

Event Counters

Event Counters displays cumulative

numbers, which show how often an event is

triggered.

From toolbar use Trace Windows –

Event Counters

From menu View – Trace – Event

Counters

To retrieve data in this window:

 Set Trace Enable in the Debug Settings Trace dialog as described above.

 Enable Event Counters as needed in the dialog.

Event counters are performance indicators:

 CPICNT: Exception overhead cycle: indicates Flash wait states.

 EXCCNT: Extra Cycle per Instruction: indicates exception frequency.

 SLEEPCNT: Sleep Cycle: indicates the time spend in sleep mode.

 LSUCNT: Load Store Unit Cycle: indicates additional cycles required to

execute a multi-cycle load-store instruction.

 FOLDCNT: Folded Instructions: indicates instructions that execute in zero

cycles.

80 Debug Applications

Trace with 4-Pin Output
Using the 4-pin trace output provides all the features described in the section

Trace with Serial Wire Output, but has a higher trace communication

bandwidth. Instruction trace is also possible.

The ULINKpro debug/trace adapter supports this parallel 4-pin trace output

(also called ETM Trace) which gives detailed insight into program execution.

NOTE

Refer to the µVision User’s Guide – Debugging for more information about the

features described below.

When used with ULINKpro, MDK can stream the instruction trace data for the

following advanced analysis features:

 Code Coverage marks code that has been executed and gives statistics on

code execution. This helps to identify sporadic execution errors and is

frequently a requirement for software certification.

 The Performance Analyzer records and displays execution times for

functions and program blocks. It shows the processor cycle usage and enables

you to find hotspots in algorithms for optimization.

 The Trace Data Window shows the history of executed instructions for

Cortex-M devices.

Trace with On-Chip Trace Buffer
 In some cases, trace output pins are no available on the microcontroller or

target hardware. As an alternative, an on-chip Trace Buffer can be used that

supports the Trace Data Window.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

Getting Started: Create Applications with MDK Version 5 81

Middleware
Today’s microcontroller devices offer a wide range of communication peripherals

to meet many embedded design requirements. Middleware is essential to make

efficient use of these complex on-chip peripherals.

NOTE

This chapter describes the middleware that is part of MDK-Professional. MDK

also works with middleware available from several other vendors.

Refer to http://www.keil.com/pack for a list of public Software Packs.

MDK-Professional provides a Software Pack that includes royalty-free

middleware with components for TCP/IP networking, USB Host and USB

Device communication, file system for data storage, and a graphical user

interface.

Refer to www.keil.com/mdk5/middleware for more information about the

middleware provided as part of MDK-Professional.

This web page provides an overview of the middleware and links to:

 MDK-Professional Middleware User’s Guide

 Device List along with information about device-specific drivers

 Information about Example Projects with usage instructions

The middleware interfaces to the device peripherals using device-specific

CMSIS-Drivers. Refer to Driver Components on page 89 for more information.

http://www.keil.com/pack
http://www.keil.com/mdk5/middleware

82 Middleware

Combining several components is common for a microcontroller application.

The Manage Run-Time Environment dialog makes it easy to select and

combine MDK-Professional Middleware. It is even possible to expand the

middleware component list with third-party components that are supplied as a

Software Pack.

Typical examples for the usage of MDK-Professional Middleware are:

 Web server with storage capabilities: Network and File System Component

 USB memory stick: USB Device and File System Component

 Industrial control unit with display and logging functionality: Graphics, USB

Host, and File System Component

Refer to the FTP Server Example on page 90 that exemplifies a combination of

several middleware components.

The following sections give an overview for each software component of the

MDK-Professional Middleware.

NOTE

A seven days evaluation license for MDK-Professional is delivered with each

installation. Refer to the Installation chapter on page 9 for more information.

Getting Started: Create Applications with MDK Version 5 83

Network Component
The Network Component uses TCP/IP communication protocols and contains

support for services, protocol sockets, and physical communication interfaces.

The various services provide program templates for common networking tasks.

 Compact Web Server stores web pages in ROM whereas the Full Web

Server uses the file system for page data storage. Both servers support

dynamic page content using CGI scripting, AJAX, and SOAP technologies.

 FTP or TFTP support file transfer. FTP provides full file manipulation

commands, whereas TFTP can boot load remote devices. Both are available

for the client and server.

 Telnet Server provides a Command Line Interface over an IP network.

 SNMP agent reports device information to a network manager using the

Simple Network Management Protocol.

 DNS client resolves domain names to the respective IP address. It makes use

of a freely configurable name server.

 SNTP client synchronizes clocks and enables a device to get an accurate time

signal over the data network.

 SMTP client sends status emails using the Simple Mail Transfer Protocol.

84 Middleware

All Services rely on a communication socket that can be either TCP (a

connection-oriented, reliable full-duplex protocol), UDP (transaction-oriented

protocol for data streaming), or BSD (Berkeley Sockets interface).

The physical interface can be either Ethernet (for LAN connections) or a serial

connection such as PPP (for a direct connection between two devices) or SLIP

(Internet Protocol over a serial connection).

Depending on the interface, the Network Component relies on certain Drivers to

be present for providing the device-specific hardware interface. Ethernet requires

an Ethernet MAC and PHY driver, whereas serial connections (PPP/SLIP)

require a UART or a Modem driver.

The Network Core is available in a Debug variant with extensive diagnostic

messages and a Release variant that omits these diagnostics.

Getting Started: Create Applications with MDK Version 5 85

File System Component
The File System Component allows your embedded applications to create, save,

read, and modify files in storage devices such as RAM, Flash memory, Memory

Cards, or USB sticks.

Each storage device is accessed and referenced as a Drive. The File System

Component supports multiple drives of the same type. For example, you might

have more than one memory card in your system.

The File System Core is thread-safe, supports simultaneous access to multiple

drives, and uses a FAT system available in two file name variants: short 8.3 file

names and long file names with up to 255 characters.

To access the physical media, for example NAND and NOR Flash chips, or

memory cards using MCI or SPI, Drivers have to be present.

86 Middleware

USB Device Component
The USB Device component implements a USB device interface and uses

standard device driver classes that are available on most computer systems,

avoiding host driver development.

 Human Interface Device Class (HID) implements a keyboard, joystick or

mouse. However, HID can be used for simple data exchange.

 Mass Storage Class (MSC) is used for file exchange (for example an USB

stick).

 Communication Device Class (CDC) implements a virtual serial port.

 Audio Device Class (ADC) performs audio streaming.

 Custom Class can be used for new or unsupported USB classes.

Composite USB devices implement multiple device classes.

This component requires a USB Device Driver to be present. Depending on the

application, it has to comply with the USB 1.1 (Full-Speed USB) and/or the USB

2.0 (High-Speed USB) specification.

Getting Started: Create Applications with MDK Version 5 87

USB Host Component
The USB Host Component implements a USB Host interface and supports Mass

Storage and Human Interface Device classes.

 HID connects to any HID class equipment.

 MSC connects any USB memory stick to your device.

 CDC connects any USB communication device.

 Custom Class can be used to connect new or unsupported USB devices.

This component requires a USB Host Driver to be present. Depending on the

application, it must comply with the USB 1.1 (Full-Speed USB) and/or the USB

2.0 (High-Speed USB) specification.

88 Middleware

Graphics Component
The Graphics Component is a comprehensive library that includes everything

you need to build graphical user interfaces.

Core functions include:

 A Window Manager to manipulate any number of windows or dialogs.

 Ready-to-use Fonts and window elements, called Widgets, and Dialogs.

 Bitmap Support including JPEG and other common formats.

 Anti-Aliasing for smooth display.

 Flexible, configurable Display and User Interface parameters.

 The user interface can be controlled using input devices like a Touch Screen

or a Joystick.

The Graphics Component interfaces to a wide range of display controllers using

preconfigured interfaces for popular displays or a flexible interface template

that may be adapted to new displays.

The VNC Server allows remote control of your graphical user interface via

TCP/IP using the Network Component.

Demo shows all main features and is a rich source of code snippets for the GUI.

Getting Started: Create Applications with MDK Version 5 89

Driver Components
Device-specific drivers provide the interface between the middleware and the

microcontroller peripherals. These drivers are not limited to the MDK-

Professional Middleware and are useful for various other middleware stacks to

utilize those peripherals.

The device-specific drivers are usually part of the Software Pack that supports the

microcontroller device and comply with the CMSIS-Driver standard. The Device

Database on www.keil.com/dd2 lists drivers included in the Software Pack for

the device.

The middleware components have various configuration files that connect to

these drivers. For most devices, the RTE_Device.h file configures the drivers to

the actual pin connection of the microcontroller device.

The middleware connects to a driver instance via a control struct. The name of

this control struct reflects the peripheral interface of the device. Drivers for most

of the communication peripherals are part of the Software Packs that provide

device support.

http://www.keil.com/dd2

90 Middleware

Use traditional C source code to implement missing drivers according the

CMSIS-Driver standard.

Refer to www.keil.com/cmsis/driver for detailed information about the API

interface of these CMSIS drivers.

NOTE

Application Note 250: Creating a Software Pack with a New Peripheral Driver

explains how to create a new peripheral driver that does not exist in a Software

Pack.

Refer to www.keil.com/appnotes.

FTP Server Example
FTP server examples are reference application samples that show a combination

of several middleware components. Refer to Verify Installation using Example

Projects on page 12 for more information the various example projects available.

When using an FTP Server, you can exchange and manipulate files over a TCP/IP

network. The middleware documentation has more details about the FTP Server

and the reference application:

http://www.keil.com/cmsis/driver
http://www.keil.com/appnotes

Getting Started: Create Applications with MDK Version 5 91

Several middleware components are the building blocks of this FTP server. A

File System is required to handle the file manipulation. Various parts of the

Network component build up the networking interface.

The following diagram represents the software components that are used from the

MDK-Professional Middleware to create the FTP Server example.

As explained before, Drivers provide the interface between the microcontroller

peripherals and the MDK-Professional Middleware.

An FTP example could select the components shown below in the Manage Run-

Time Environment dialog.

92 Using Middleware

Using Middleware
You can create applications using MDK-Professional Middleware components.

For more information, refer to the MDK-Professional Middleware User’s Guide

that has sections for every component describing:

 Example projects outline key product features of software components. The

examples are tested, implemented, and proven on several evaluation boards

and can be used as reference applications or starting point for your

development.

 Resource Requirements describe for every software component the thread

and stack resources for CMSIS-RTOS and memory footprint.

 Create an Application contains the required steps for using the components

in an embedded application.

 Reference documents the files of the component and each API function.

The learning platform www.keil.com/learn offers several tutorials and videos

that exemplify typical use cases of the middleware. Refer also to these

application notes:

 www.keil.com/appnotes/docs/apnt_268.asp - USB Host Application with

File System and Graphical User Interface.

 www.keil.com/appnotes/docs/apnt_271.asp - Web-Enabled MEMS Sensor

Platform.

 www.keil.com/appnotes/docs/apnt_272.asp - Web-Enabled Voice Recorder.

 www.keil.com/appnotes/docs/apnt_273.asp - Analog/Digital Data Logger

with USB Device Interface.

http://www.keil.com/learn
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/appnotes/docs/apnt_271.asp
http://www.keil.com/appnotes/docs/apnt_272.asp
http://www.keil.com/appnotes/docs/apnt_273.asp

Getting Started: Create Applications with MDK Version 5 93

The generic steps to use the various middleware components are:

 Add Software Components (page 95): Select in the Manage Run-Time

Environment dialog the software components that are required in your

application.

 Configure Middleware (page 97): Adjust the parameters of the software

components in the related configuration files.

 Configure Drivers (page 99): Identify and configure the peripheral interfaces

that connect the middleware components with physical I/O pins of the

microcontroller.

 Adjust System Resources (page 100): The middleware components use

RTOS, memory, and stack resources and this may imply configurations, for

example to CMSIS-RTOS RTX.

 Implement Application Features (page 101): Use the API functions of the

middleware components to implement the application specific behaviour.

Code templates help you to create the related source code.

 Build and Download (page 104): After compiling and linking of the

application use the steps described in the chapter Using the Debugger on

page 65 to download the image to target hardware.

 Verify and Debug (page 104): Test utilities along with debug and trace

features described in the chapter Create Applications (page 47).

94 Using Middleware

USB HID Example
While above steps are generic and apply to all components of the MDK-

Professional Middleware, the USB HID example described in the following

sections shows these steps in practice. This example creates an USB HID Device

application that connects a microcontroller to a host computer via USB. On the

PC the utility program HIDClient.exe is used to control the LEDs on the

development board.

The USB HID example described in the following sections uses the MCB1800

development board populated with a LPC1857 microcontroller. It is based on the

project Blinky with CMSIS-RTOS RTX on page 47 along with the source files

main.c, LED.c, LED.h, and the configuration files.

NOTE
You must adapt the code and pin configurations when using this example on other

starter kits or evaluation boards.

Getting Started: Create Applications with MDK Version 5 95

Add Software Components
To create the USB HID Device example, start with the project Blinky with

CMSIS-RTOS RTX described on page 47.

From USB Device Component (described on page 86):

 Select ::USB:CORE to include the basic functionality required for USB

communication.

 Set ::USB:Device to '1' to create one USB Device instance.

 Set ::USB:Device:HID to '1' to create a HID Device Class instance. If you

select multiple instances of the same class or include other device classes, you

will create a Composite USB Device.

From Driver Components (described on page 89):

 Select from ::Drivers:USB Device (API) an appropriate driver suitable for

your application. Some devices may have specific drivers for USB Full-Speed

and High-Speed whereas other microcontrollers may have a combined driver.

Here, select USB0.

TIP: Click on the hyperlinks in the Description column to view detailed

documentation for each software component.

Use the Manage Run-Time Environment dialog to add specific software

components.

96 Using Middleware

The picture below shows the Manage Run-Time Environment dialog after

adding these components.

Getting Started: Create Applications with MDK Version 5 97

Configure Middleware
Every MDK-Professional Middleware component has a set of configuration files

that adjusts application specific parameters and determines the driver interfaces.

These configuration files are accessed in the Project window in the component

class group and usually have names like <Component>_Config_0.c or

<Component>_Config_0.h.

Some of the settings in these files require corresponding settings in the driver and

device configuration file (RTE_Device.h) that is subject of the next section.

For the USB HID Device example, there are two configuration files available:

USBD_Config_0.c and USBD_Config_HID_0.h.

98 Using Middleware

The file USBD_Config_0.c contains a number of important settings for the

specific USB Device:

 The setting Connect to Hardware via Driver_USBD# specifies the control

struct that reflects the peripheral interface, in this case, the USB controller

used as device interface. For microcontrollers with only one USB controller

the number is ‘0’. Refer to Driver Components on page 89 for more

information.

 Select High-Speed if supported by the USB controller. Using this setting

requires a driver that supports USB High-Speed communication.

 Set the Vendor ID (VID) to a private VID. The USB Implementer’s Forum

http://www.usb.org/developers/vendor provides more information on how

to apply for a valid vendor ID.

 Every device needs a unique Product ID. Together with the VID, it is used by

the host computer's operating system to find a driver for your device.

 The Manufacturer and the Product String can be set to identify the USB

device in PC operating systems.

The file USBD_Config_HID_0.h contains device class specific Endpoint settings.

For this example, no changes are required.

http://www.usb.org/developers/vendor

Getting Started: Create Applications with MDK Version 5 99

Configure Drivers
Drivers have certain properties that define attributes such as I/O pin assignments,

clock configuration, or usage of DMA channels. For many devices, the

RTE_Device.h configuration file contains these driver properties. Typically, this

file RTE_Device.h requires configuration of the actual peripheral interfaces used

by the application. Depending on the microcontroller device, you can enable

different hardware peripherals, specify pin settings, or change the clock settings

for your implementation.

The USB HID Device example requires the following settings:

 Enable USB0 Controller and expand this section.

 You may disable Endpoints 2 to 5 to reduce the memory footprint, since the

HID device requires a single Endpoint only.

100 Using Middleware

Adjust System Resources
Every middleware component has certain memory and RTOS resource

requirements. The section “Resource Requirements” in the MDK-Professional

Middleware User’s Guide documents the requirements for each component.

Most middleware components use the CMSIS-RTOS. It is important that the

RTOS is configured to support the requirements.

For CMSIS-RTOS RTX, the RTX_Conf_CM.c file configures threads and stacks

settings. Refer to CMSIS-RTOS RTX Configuration on page 30 for more

information.

For the USB HID Device example, the following settings apply:

 The ::USB:Device component requires one thread (called

USBDn_CoreThread) and a user-provided stack of 512 bytes.

 The ::USB:Device:HID component also requires one thread (called

USBD_HIDn_Thread) and a user-provided stack of 512 bytes.

Getting Started: Create Applications with MDK Version 5 101

Reflect these requirements with the settings in the RTX_Conf_CM.c file:

 Number of concurrent running threads: 6 (default) is enough to run the two

threads of the USB Device component concurrently. Adjust this setting if the

user application executes additional threads.

 Default Thread stack size [bytes]: This setting is not important as the USB

component runs on user-provided stack.

 Main Thread stack size [bytes]: 512. Stack is required for the API calls that

initialize the USB Device component.

 Number of threads with user-provided stack size: 2. Specifies the two

threads (for ::USB:Device and ::USB:Device:HID) with a user-provided

stack.

 Total stack size [bytes] for threads with user-provided stack size: 1024.

Specifies the total stack size of the two threads.

 The Timer Clock value [Hz] needs to match the system clock (180000000).

Implement Application Features
Now, create the code that implements the application specific features. This

includes modifications to the files main.c, LED.c, and LED.h that were created

initially for the project Blinky with CMSIS-RTOS RTX on page 47.

The middleware provides User Code Templates as starting point for the

application software.

102 Using Middleware

To connect the PC USB application to the microcontroller device, modify the

function USBD_HID0_SetReport(), which handles data coming from the USB

Host. For this example, the data are created with the utility HIDClient.exe.

#include "LED.h" // access functions to LEDs

 :

bool USBD_HID0_SetReport (uint8_t rtype, uint8_t req, uint8_t rid,

 const uint8_t *buf, int32_t len) {

 uint8_t i;

 switch (rtype) {

 case HID_REPORT_OUTPUT:

 for (i = 0; i < 4; i++) {

 if (*buf & (1 << i)) LED_On (i);

 else LED_Off (i);

 }

 break;

 case HID_REPORT_FEATURE:

 break;

 }

 return true;

}

In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group. Select the user code template from

::USB:Device:HID - USB Device HID (Human Interface Device) and

click Add.

Open the file USBD_User_HID_0.c in the editor and modify the code as

shown below. This will control the LEDs on the evaluation board.

Getting Started: Create Applications with MDK Version 5 103

Expand the functions in the file LED.c to control several LEDs on the board and

remove the thread that blinks the LED, as it is no longer required.

/*--

 * File LED.c

 --/

#include "SCU_LPC18xx.h"

#include "GPIO_LPC18xx.h"

#include "cmsis_os.h" // ARM::CMSIS:RTOS:Keil RTX

const GPIO_ID LED_GPIO[] = { // LED GPIO definitions

 { 6, 24 },

 { 6, 25 },

 { 6, 26 },

 { 6, 27 }

};

void LED_Initialize (void) {

 GPIO_PortClock (1); // Enable GPIO clock

 /* Configure pin: Output Mode with Pull-down resistors */

 SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4|SCU_PIN_CFG_PULLDOWN_EN));

 GPIO_SetDir (6, 24, GPIO_DIR_OUTPUT);

 GPIO_PinWrite (6, 24, 0);

 SCU_PinConfigure (13, 11, (SCU_CFG_MODE_FUNC4|SCU_PIN_CFG_PULLDOWN_EN));

 GPIO_SetDir (6, 25, GPIO_DIR_OUTPUT);

 GPIO_PinWrite (6, 25, 0);

 SCU_PinConfigure (13, 12, (SCU_CFG_MODE_FUNC4|SCU_PIN_CFG_PULLDOWN_EN));

 GPIO_SetDir (6, 26, GPIO_DIR_OUTPUT);

 GPIO_PinWrite (6, 26, 0);

 SCU_PinConfigure (13, 13, (SCU_CFG_MODE_FUNC4|SCU_PIN_CFG_PULLDOWN_EN));

 GPIO_SetDir (6, 27, GPIO_DIR_OUTPUT);

 GPIO_PinWrite (6, 27, 0);

}

void LED_On (uint32_t num) {

 GPIO_PinWrite (LED_GPIO[num].port, LED_GPIO[num].num, 1);

}

void LED_Off (uint32_t num) {

 GPIO_PinWrite (LED_GPIO[num].port, LED_GPIO [num].num, 0);

}

/*--

 * File LED.h

 --/

void LED_Initialize (void);

void LED_On (uint_32 num);

void LED_Off (uint_32 num);

Open the file LED.c in the editor and modify the code as shown below.

Open the file LED.h in the editor and modify it to coincide with the changes

to LED.c. The functions LED_On() and LED_Off() now have a parameter.

104 Using Middleware

/*--

 * File main.c

 --/

#define osObjectsPublic // define objects in main module

#include "osObjects.h" // RTOS object definitions

#include "LPC18xx.h" // Device header

#include "LED.h" // Initialize and set GPIO Port

#include "rl_usb.h" // Keil.MDK-Pro::USB:CORE

/*

 * main: initialize and start the system

 */

int main (void) {

 osKernelInitialize (); // Initialize CMSIS-RTOS

 // initialize peripherals here

 LED_Initialize (); // Initialize LEDs

 USBD_Initialize (0); // USB Device 0 Initialization

 USBD_Connect (0); // USB Device 0 Connect

 osKernelStart (); // Start thread execution

 while (1);

}

Build and Download
Build the project and download it to the target as explained in chapters Create

Applications on page 47 and Using the Debugger on page 65.

Verify and Debug
Connect the development board to your PC using another USB cable. This

provides the connection to the USB device peripheral of the microcontroller.

Once the board is connected, a notification appears that indicates the installation

of the device driver for the USB HID Device.

The utility program HIDClient.exe that is part of

MDK enables testing of the connection between the

PC and the development board. This utility is

located the MDK installation folder

.\Keil\ARM\Utilities\HID_Client\Release.

Change the file main.c as shown below. Instead of starting the thread that

blinks the LED, add code to initialize and start the USB Device Component.

Refer to the Middleware User’s Guide for further details.

Getting Started: Create Applications with MDK Version 5 105

To test the functionality of the USB HID device run the HIDClient.exe utility

and follow these steps:

 Select the Device to establish the communication channel. In our example, it

is “Keil USB Device”.

 Test the application by changing the Outputs (LEDs) checkboxes. The

respective LEDs will switch accordingly on the development board.

If you are having problems connecting to the development board, you can use the

debugger to find the root cause.

Use debug windows to narrow down the problem. For example, use the Call

Stack + Locals window to examine the value of local variables in the

USBD_User_HID_0.c file. Breakpoints help you to stop at certain lines of code

so that you can examine the variable contents.

NOTE

Debugging of communication protocols can be difficult. When starting the

debugger or using breakpoints, communication protocol timeouts may exceed

making it hard to debug the application. Therefore, use breakpoints carefully.

In case that the USB communication fails, disconnect USB, reset your target

hardware, run the application, and reconnect it to the PC.

 From the toolbar, select Start/Stop Debug Session.

106 Index

Index
A
Add New Item to Group 102

Applications

Add Source Code 52

Blinky with CMSIS-RTOS RTX 47

Build ... 55

Configure Device Clock Frequency 50

Create ... 47

Customize RTX Timer 51

Debug ... 64

Manage Run-Time Environment 48

Setup the Project 48

User Code Templates 52

B
Breakpoints

Access .. 68

Command ... 68

Execution.. 68

Build Output 14, 15, 55, 65

C
CMSIS... 22

CORE ... 23

DSP .. 43

Software Components 22

User code template 33

cmsis_os.h ... 53

CMSIS-DAP ... 64

Code Coverage .. 80

Compare memory areas 70

CoreSight .. 72

D
DAVE ... 58

Debug

Breakpoints .. 68

Breakpoints Window 68

Command Window 67

Connection ... 64

Disassembly Window 67

Memory Window 70

Peripheral Registers 71

Register Window 70

Stack and Locals Window 69

Start Session ... 66

System Viewer Window 71

Toolbar ... 66

Using Debugger 65

Watch Window 69

Debug (printf) Viewer 46, 78

Debug tab .. 14, 65

Define and refrence object definitions 29

Device Database .. 10

Device Startup Variations

Change Clock Setup using DAVE 60

Setup the Project 61

STM32Cube ... 61

Using DAVE .. 58

Documentation .. 20

E
Example Code

Clock setup for STM32Cube 63

Example Code

CMSIS-CORE layer 24

CMSIS-DSP library functions 43

CMSIS-RTOS RTX functions 28

Blinky ... 56, 57

Macro Definitions for DAVE 59

osObjectsExternal 29

Timers .. 37

Blinky 53, 54, 55

Set PLL parameters 50

Thread with single semaphore 39

Example Projects 12, 81

F
File

cmsis_os.h 27, 28, 29

Consistent usage of header files 29

device.h .. 23

osObjects.h ... 29

RTE_Device.h 61, 89, 97, 99

RTX_<core>.lib 28

RTX_Conf_CM.c 28, 30, 42, 51, 101

startup_<device>.s 23

system_<device>.c 23, 32, 50, 51

File System

FAT .. 85

Flash ... 85

G
Graphics Component

Anti-Aliasing .. 88

Getting Started: Create Applications with MDK Version 5 107

Bitmap Support 88

Demo .. 88

Dialogs ... 88

Display ... 88

Fonts ... 88

Joystick ... 88

Touch Screen .. 88

User Interface 88

VNC Server .. 88

Widgets .. 88

Window Manager 88

H
HIDClient.exe ... 104

L
Legacy Support ... 7

M
MDK

Core .. 7

Core Install ... 9

Editions .. 8

Installation Requirements 9

Introduction .. 7

License Types ... 8

Trial license .. 11

Middleware ... 81

Add Software Components................... 95

Adding Software Components.............. 24

Adjust System Resources 93, 100

Configure.. 93, 97

Configure Drivers 93, 99

Create an Application 92

Debug ... 93, 104

Drivers .. 89

Example projects 92

File System Component 85

FTP Server Example 90

Graphics Component 88

Implement Application Features .. 93, 101

Network Component 83

Resource Requirements 92

USB Device Component 86

USB HID Example 94

USB Host Component 87

Using .. 92

Using Components 93

N
Network Component

BSD .. 84

DNS Client ... 83

Ethernet .. 84

FTP ... 83

Modem ... 84

PPP ... 84

SLIP ... 84

SMTP Client .. 83

SNMP Agent .. 83

SNTP Client ... 83

TCP .. 84

Telnet Server .. 83

TFTP .. 83

UART ... 84

UDP ... 84

Web Server ... 83

O
Options for Target 14, 65

P
Pack Installer ... 10

Performance Analyzer 80

R
Retargeting I/O output 45

RTOS

Mail Queue Management 41

Memory Pool Management 40

Message Queue Management 40

Mutex Management 38

Preemptive Thread Switching 36

Semaphore Management 38

Signal Management 37

Single Thread Program......................... 35

System and Thread Viewer 42

Thread Management 34

Timer Management 36

RTOS Debugging

Event Viewer .. 76

ITM Stimulus 76

RTX .. 26

API functions 32

Thread .. 39

Timers .. 37

Concepts ... 26

Configuration 30

RTOS Kernel advantages 27

Timer Tick configuration 32

Tread stack configuration 30

Using RTX ... 27

108 Index

RTX_Conf_CM.c 100

S
Selecting Software Packs 19

Software Component

Compiler ... 45

Software Components

Overview .. 18

Software Packs .. 7

Install .. 10

Install manually 10

Manage versions 19

Product Lifecycle 18

Select .. 19

Use ... 16

Verify Installation 12

Start/Stop Debug Session 15, 66, 105

Support .. 20

T
Trace ... 72

4-Pin Trace Output 72, 80

Data Watchpoints 72

Debug (printf) Viewer 78

ETB .. 72

Event Counters 79

Event Viewer .. 76

Exception Trace.................................... 72

fputc function 78

Instruction Trace 72

Instrumented Trace 72

ITM Stimulus 74, 78

ITM_SendChar 78

Logic Analyzer 77

MTB ... 72

SWO ... 72, 73

TPIU ... 72

Trace Buffer ... 72

Trace Buffer ... 80

Trace Data Window 80

Trace Exceptions 75

U
ULINK .. 64

ULINKpro ... 74, 80

USB Device

ADC ... 86

CDC ... 86

Composite Device 86

HID .. 86

MSC ... 86

USB Host

HID .. 87

MSC ... 87

User Code Templates 33, 101

V
Versioning Software Packs 19

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Keil Tools:

 MDK-ARM-SMF MDK-ARM-CM-SM MDK-ARM-CM-FL-SM MDK-PRO-SMF MDK-ARM-CM-SM-LC MDKCM-RD-

40000 MDK-PRO-SMF-LC MDKPR-RT-40000 MDK-PRO-SM MDKST-RD-40000 MDK-ARM-CM-FL-SMLC MDK-

PRO-SM-LC MDKST-RT-40000 MDKPR-RD-40000 MDKCM-RT-40000

http://www.mouser.com/Keil-Tools
http://www.mouser.com/access/?pn=MDK-ARM-SMF
http://www.mouser.com/access/?pn=MDK-ARM-CM-SM
http://www.mouser.com/access/?pn=MDK-ARM-CM-FL-SM
http://www.mouser.com/access/?pn=MDK-PRO-SMF
http://www.mouser.com/access/?pn=MDK-ARM-CM-SM-LC
http://www.mouser.com/access/?pn=MDKCM-RD-40000
http://www.mouser.com/access/?pn=MDKCM-RD-40000
http://www.mouser.com/access/?pn=MDK-PRO-SMF-LC
http://www.mouser.com/access/?pn=MDKPR-RT-40000
http://www.mouser.com/access/?pn=MDK-PRO-SM
http://www.mouser.com/access/?pn=MDKST-RD-40000
http://www.mouser.com/access/?pn=MDK-ARM-CM-FL-SMLC
http://www.mouser.com/access/?pn=MDK-PRO-SM-LC
http://www.mouser.com/access/?pn=MDK-PRO-SM-LC
http://www.mouser.com/access/?pn=MDKST-RT-40000
http://www.mouser.com/access/?pn=MDKPR-RD-40000
http://www.mouser.com/access/?pn=MDKCM-RT-40000

	Preface
	Chapter Overview

	Contents
	MDK Introduction
	MDK Core
	Software Packs
	MDK Editions
	License Types

	Installation
	Software and Hardware Requirements
	Install MDK Core
	Install Software Packs
	MDK-Professional Trial License
	Verify Installation using Example Projects
	Copy an Example Project
	Use an Example Application with µVision
	Build the Application
	Download the Application
	Run the Application

	Use Software Packs
	Software Component Overview
	Product Lifecycle Management with Software Packs

	Access Documentation
	Request Assistance
	Learning Platform

	CMSIS
	CMSIS-CORE
	Using CMSIS-CORE
	Adding Software Components to the Project
	Source Code Example

	CMSIS-RTOS RTX
	Software Concepts
	Infinite Loop Design
	Advantages of an RTOS Kernel

	Using CMSIS-RTOS RTX
	Header File cmsis_os.h
	Define and Reference Object Definitions
	CMSIS-RTOS RTX Configuration
	Thread Stack Configuration
	RTX Kernel Timer Tick Configuration

	CMSIS-RTOS RTX API Functions
	CMSIS-RTOS User Code Templates
	Thread Management
	Single Thread Program
	Preemptive Thread Switching
	Timer Management
	Signal Management
	Mutex Management
	Semaphore Management
	Memory Pool Management
	Message Queue Management
	Mail Queue Management
	CMSIS-RTOS System and Thread Viewer

	CMSIS-DSP

	Software Component Compiler
	Create Applications
	Blinky with CMSIS-RTOS RTX
	Setup the Project
	Configure the Device Clock Frequency
	Customize the CMSIS-RTOS RTX Kernel
	Create the Source Code Files
	Build the Application Image

	Blinky with Infinite Loop Design
	Build the Application Image

	Device Startup Variations
	Example: Infineon XMC1000 using DAVE
	Change the Clock Setup using DAVE

	Example: STM32Cube
	Setup the Project for STM32F407 Discovery Kit

	Debug Applications
	Debugger Connection
	Using the Debugger
	Debug Toolbar
	Command Window
	Disassembly Window
	Breakpoints
	Breakpoints Window

	Watch Window
	Call Stack and Locals Window
	Register Window
	Memory Window
	Peripheral Registers
	System Viewer

	Trace
	Trace with Serial Wire Output
	Trace Exceptions
	Event Viewer
	Logic Analyzer
	Debug (printf) Viewer
	Event Counters

	Trace with 4-Pin Output
	Trace with On-Chip Trace Buffer

	Middleware
	Network Component
	File System Component
	USB Device Component
	USB Host Component
	Graphics Component
	Driver Components
	FTP Server Example

	Using Middleware
	USB HID Example
	Add Software Components
	Configure Middleware
	Configure Drivers
	Adjust System Resources
	Implement Application Features
	Build and Download
	Verify and Debug

	Index

