Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2015. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that TAIYO YUDEN CO., LTD. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

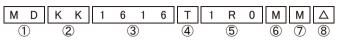
- Please contact TAIYO YUDEN CO., LTD. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact TAIYO YUDEN CO., LTD. for more detail in advance.

Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel").

 It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that TAIYO YUDEN CO., LTD. shall have no responsibility for any controversies or disputes that may
- occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. TAIYO YUDEN CO., LTD. grants no license for such rights.
- Caution for export


Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations", and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

METAL CORE SMD POWER INDUCTORS(MCOILTM MD SERIES)

PARTS NUMBER

*Operating Temp.:-40~+125°C (Including self-generated heat)

△=Blank space

Seri		

Code	Series name
MD	Metal base coil specification

②Dimensions(H)

Code	Dimensions (H) [mm]
JE	0.95
KK	1.0
MK	1.2
PK	1.4
WK	2.0

5 Nominal inductance Code

> (example) R47

> > 1R0

4R7

6 Inductance tol	erance
Code	Inductance tolerance
М	±20%
N	±30%

Nominal inductance [μ H]

0.47

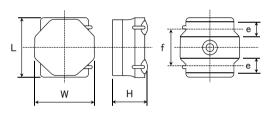
1.0

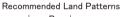
4.7

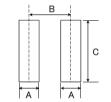
③Dimensions (L×W)

Code	Dimensions (L × W) [mm]
1616	1.6 × 1.6
2020	2.0 × 2.0
3030	3.0 × 3.0
4040	4.0 × 4.0
5050	4.9 × 4.9

(7)Special code


O-F	
Code	Special code
F	Ferrite coating
М	Metal coating


®Internal code


4 Packaging

Tr doridging	
Code	Packaging
T	Taping

■ STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Туре	Α	В	С	
MDKK1616	0.5	1.1	0.65	
MDJE2020				
MDKK2020	0.65	1.35	2.0	
MDMK2020				
MDKK3030	0.8	2.2	27	
MDMK3030	0.8	2.2	2.7	
MDJE4040				
MDMK4040	1.2	2.8	3.7	
MDWK4040				
MDPK5050	1.5	3.6	4.2	

Unit:mm

Туре	L	W	Н	е	f	Standard quantity [pcs] Taping	
MDKK1616	1.64±0.1	1.64±0.1	1.0 max	0.40 +0.2/-0.1	1.0±0.2	2500	
MDKK1010	(0.065 ± 0.004)	(0.065 ± 0.004)	(0.039 max)	(0.016 +0.008/-0.004)	(0.039 ± 0.008)	2300	
MDJE2020	2.0±0.15	2.0±0.15	0.95 max	0.50±0.2	1.25±0.2	2500	
MIDJEZUZU	(0.079 ± 0.006)	(0.079 ± 0.006)	(0.0374 max)	(0.02 ± 0.008)	(0.049 ± 0.008)	2300	
MDKK2020	2.0±0.15	2.0±0.15	1.0 max	0.50±0.2	1.25±0.2	2500	
MDKKZUZU	(0.079 ± 0.006)	(0.079 ± 0.006)	(0.039 max)	(0.02 ± 0.008)	(0.049 ± 0.008)	2300	
MDMK2020	2.0±0.15	2.0±0.15	1.2 max	0.50±0.2	1.25±0.2	2500	
WIDWINZUZU	(0.079 ± 0.006)	(0.079 ± 0.006)	(0.047 max)	(0.02 ± 0.008)	(0.049 ± 0.008)	2300	
MDKK3030	3.0±0.1	3.0±0.1	1.0 max	0.90±0.2	1.9±0.2	2000	
MDKK3030	(0.118 ± 0.004)	(0.118 ± 0.004)	(0.039 max)	(0.035 ± 0.008)	(0.075 ± 0.008)	2000	
MDMK3030	3.0±0.1	3.0±0.1	1.2 max	0.90±0.2	1.9±0.2	2000	
MIDINIKSUSU	(0.118 ± 0.004)	(0.118 ± 0.004)	(0.047 max)	(0.035 ± 0.008)	(0.075 ± 0.008)	2000	
MDJE4040	4.0±0.2	4.0±0.2	0.95 max	1.1±0.2	2.5±0.2	1000	
MDJE4040	(0.157 ± 0.008)	(0.157 ± 0.008)	(0.0374 max)	(0.043 ± 0.008)	(0.098 ± 0.008)	1000	
MDMK4040	4.0±0.2	4.0±0.2	1.2 max	1.1±0.2	2.5±0.2	1000	
WIDWIN4040	(0.157 ± 0.008)	(0.157 ± 0.008)	(0.047 max)	(0.043 ± 0.008)	(0.098 ± 0.008)	1000	
MDWK4040	4.0±0.2	4.0±0.2	2.0 max	1.1±0.2	2.5±0.2	700	
WIDWK4040	(0.157 ± 0.008)	(0.157 ± 0.008)	(0.0787 max)	(0.043 ± 0.008)	(0.098 ± 0.008)	700	
MDPK5050	4.9±0.2	4.9±0.2	1.4 max	1.20±0.2	3.3±0.2	1000	
MD5K2020	(0.193 ± 0.008)	(0.193 ± 0.008)	(0.055 max)	(0.047 ± 0.008)	(0.130 ± 0.008)	1000	
					<u> </u>	11.5 (5.1)	

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

MDKK	1616	typ
------	------	-----

		Manada al Sada akana		Self-resonant BOD		Rated current ※) [mA]		
Parts number		Nominal inductance [μ H]		frequency [MHz] (min.)	DC Resistance [Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MDKK1616TR47MM	RoHS	0.47	±20%	-	0.095	3,300	1,500	1
MDKK1616T1R0MM	RoHS	1.0	±20%	-	0.140	2,200	1,200	1
MDKK1616T1R5MM	RoHS	1.5	±20%	-	0.185	1,750	1,100	1
MDKK1616T2R2MM	RoHS	2.2	±20%	-	0.250	1,500	950	1
MDKK1616T3R3MM	RoHS	3.3	±20%	-	0.515	1,150	650	1
MDKK1616T4R7MM	RoHS	4.7	±20%	-	0.640	950	550	1
MDKK1616T6R8MM	RoHS	6.8	±20%	-	0.820	630	520	1
MDKK1616T100MM	RoHS	10	±20%	-	1.120	550	450	1
MDKK1616T150MM	R₀HS	15	±20%	-	1.800	460	400	1

MDJE2020 type

Parts number	EHS	Nominal inductance	Inductance tolerance frequence	Self-resonant	DC Resistance	Rated current ※) [mA]		
				frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MDJE2020T1R0MM	RoHS	1.0	±20%	ı	0.121	3,100	1,550	1
MDJE2020T2R2MM	RoHS	2.2	±20%	ı	0.266	1,550	1,050	1
MDJE2020T3R3MM	RoHS	3.3	±20%	ı	0.340	1,350	950	1
MDJE2020T4R7MM	RoHS	4.7	±20%	-	0.475	1,200	850	1
MDJE2020T6R8MM	RoHS	6.8	±20%	-	0.630	800	750	1
MDJE2020T100MM	RoHS	10	±20%	-	1.040	700	550	1

MDKK2020 type

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MDKK2020TR47MM	RoHS	0.47	±20%	-	0.046	3,500	2,200	1
MDKK2020TR68MM	RoHS	0.68	±20%	-	0.060	3,200	2,000	1
MDKK2020T1R0MM	RoHS	1.0	±20%	-	0.085	2,900	1,700	1
MDKK2020T1R5MM	RoHS	1.5	±20%	-	0.133	1,900	1,350	1
MDKK2020T2R2MM	RoHS	2.2	±20%	1	0.165	1,650	1,200	1
MDKK2020T3R3MM	RoHS	3.3	±20%	-	0.275	1,300	940	1
MDKK2020T4R7MM	RoHS	4.7	±20%	-	0.435	1,050	750	1
MDKK2020T100MM	R₀HS	10	±20%	-	0.690	750	630	1
MDKK2020T150MM	RoHS	15	±20%	-	1.180	550	480	1

MDMK2020 type

· III III COLO CIPO	Newinal industria			Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Managina
Parts number EHS		Nominal inductance [μ H]			[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MDMK2020TR47MM	RoHS	0.47	±20%	-	0.046	4,200	2,300	1
MDMK2020TR68MM	RoHS	0.68	±20%	-	0.058	3,500	2,000	1
MDMK2020T1R0MM	RoHS	1.0	±20%	-	0.064	2,550	1,900	1
MDMK2020T1R5MM	RoHS	1.5	±20%	-	0.086	2,000	1,650	1
MDMK2020T2R2MM	RoHS	2.2	±20%	-	0.109	1,750	1,450	1
MDMK2020T3R3MM	RoHS	3.3	±20%	-	0.178	1,350	1,150	1
MDMK2020T4R7MM	RoHS	4.7	±20%	-	0.242	1,150	950	1

MDKK3030 type

WIDKK3030 type								
		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MDKK3030TR47MM	RoHS	0.47	±20%	-	0.039	5,400	3,900	1
MDKK3030T1R0MM	RoHS	1.0	±20%	-	0.086	4,400	2,400	1
MDKK3030T1R5MM	RoHS	1.5	±20%	-	0.100	3,000	2,100	1
MDKK3030T2R2MM	RoHS	2.2	±20%	-	0.144	2,500	1,900	1
MDKK3030T3R3MM	RoHS	3.3	±20%	-	0.248	2,000	1,350	1
MDKK3030T4R7MM	RoHS	4.7	±20%	-	0.345	1,700	1,150	1
MDKK3030T6R8MM	RoHS	6.8	±20%	_	0.437	1,400	1,000	1
MDKK3030T100MM	RoHS	10	±20%	_	0.575	1.100	850	1

MDMK3030 type

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MDMK3030TR30MM	RoHS	0.30	±20%	-	0.020	7,600	5,500	1
MDMK3030TR33MM	RoHS	0.33	±20%	-	0.020	6,400	5,500	1
MDMK3030TR47MM	RoHS	0.47	±20%	-	0.027	6,300	4,700	1
MDMK3030T1R0MM	RoHS	1.0	±20%	-	0.050	4,300	3,300	1
MDMK3030T1R5MM	RoHS	1.5	±20%	-	0.074	3,400	2,500	1
MDMK3030T2R2MM	RoHS	2.2	±20%	-	0.112	2,800	2,100	1
MDMK3030T3R3MM	RoHS	3.3	±20%	=	0.167	2,100	1,650	1
MDMK3030T4R7MM	R ₀ HS	4.7	±20%	-	0.263	1,800	1,350	1

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

MDJE4040 type

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MDJE4040TR47MM	RoHS	0.47	±20%	-	0.040	6,000	4,000	1
MDJE4040T1R0MM	RoHS	1.0	±20%	-	0.069	4,700	3,000	1
MDJE4040T1R5MM	RoHS	1.5	±20%	-	0.084	3,000	2,700	1
MDJE4040T2R2MM	RoHS	2.2	±20%	-	0.115	2,400	2,400	1
MDJE4040T3R3MM	RoHS	3.3	±20%	-	0.200	2,000	1,800	1
MDJE4040T4R7MM	RoHS	4.7	±20%	-	0.250	1,900	1,600	1
MDJE4040T6R8MM	RoHS	6.8	±20%	-	0.370	1,500	1,300	1
MDJE4040T100MM	RoHS	10	±20%	-	0.510	1,400	1,100	1

MDMK4040F type

		Manada al Sankarkana a		Self-resonant	DO Desistence	Rated curren	t ※)[mA]	M
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency [MHz] (min.)	DC Resistance [Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[kHz]
MDMK4040TR47MF	RoHS	0.47	±20%	ı	0.029	7,500	4,600	100
MDMK4040T1R0MF	RoHS	1.0	±20%	ı	0.047	5,200	3,500	100
MDMK4040T1R2MF	RoHS	1.2	±20%	-	0.047	4,200	3,500	100
MDMK4040T1R5MF	RoHS	1.5	±20%	=	0.065	3,700	3,300	100
MDMK4040T2R2MF	RoHS	2.2	±20%	-	0.092	3,200	2,500	100

MDMK4040M type

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
		[μ H]			[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MDMK4040TR68MM	RoHS	0.68	±20%	-	0.029	6,700	5,000	1
MDMK4040T1R0MM	RoHS	1.0	±20%	1	0.036	5,000	4,500	1
MDMK4040T1R5MM	RoHS	1.5	±20%	1	0.065	4,500	3,200	1
MDMK4040T2R2MM	RoHS	2.2	±20%	1	0.079	3,800	2,800	1
MDMK4040T3R3MM	RoHS	3.3	±20%	1	0.130	3,200	2,200	1
MDMK4040T4R7MM	RoHS	4.7	±20%	1	0.160	2,500	1,900	1
MDMK4040T6R8MM	RoHS	6.8	±20%	-	0.230	1,900	1,600	1
MDMK4040T100MM	RoHS	10	±20%	-	0.330	1,700	1,400	1

MDWK4040M type

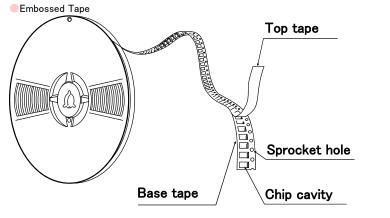
			1					
		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency	[Ω](max.)	Saturation current	Temperature rise current	frequency[MHz]
		[μ11]		[MHz] (min.)	[JE] (IIIax.)	Idc1	Idc2	irequericy[wiri2]
MDWK4040TR10NM	RoHS	0.10	±30%	-	0.0070	21,000	11,500	1
MDWK4040TR18NM	RoHS	0.18	±30%	-	0.0098	19,000	9,200	1
MDWK4040TR22NM	RoHS	0.22	±30%	-	0.0098	17,000	9,200	1
MDWK4040TR33NM	RoHS	0.33	±30%	-	0.013	16,000	7,800	1
MDWK4040TR47NM	RoHS	0.47	±30%	-	0.013	10,000	7,800	1
MDWK4040TR68MM	RoHS	0.68	±20%	-	0.016	8,000	7,300	1
MDWK4040T1R0MM	RoHS	1.0	±20%	-	0.027	7,000	5,100	1
MDWK4040T1R5MM	RoHS	1.5	±20%	-	0.041	7,000	4,100	1
MDWK4040T2R2MM	RoHS	2.2	±20%	-	0.054	5,400	3,500	1
MDWK4040T3R3MM	RoHS	3.3	±20%	-	0.075	3,700	3,000	1
MDWK4040T4R7MM	RoHS	4.7	±20%	-	0.107	3,500	2,500	1
MDWK4040T6R8MM	RoHS	6.8	±20%	-	0.158	2,900	2,000	1
MDWK4040T100MM	RoHS	10	±20%		0.194	2,200	1,600	1

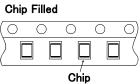
MDPK5050 type

WIND! NOODO CYPC								
		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MDPK5050T1R0MM	RoHS	1.0	±20%	-	0.040	8,500	4,300	1
MDPK5050T2R2MM	RoHS	2.2	±20%	-	0.055	4,100	3,600	1
MDPK5050T3R3MM	R₀HS	3.3	±20%	-	0.086	3,800	2,900	1
MDPK5050T4R7MM	RoHS	4.7	±20%	-	0.102	3,500	2,500	1
MDPK5050T6R8MM	RoHS	6.8	±20%	-	0.138	2,700	2,200	1
MDPK5050T100MM	R ₀ HS	10	±20%	-	0.225	2.200	1.700	1

- *X) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- **) The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)
- *
) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

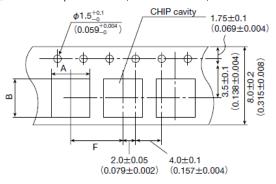
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

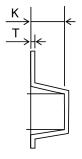

METAL CORE SMD POWER INDUCTORS (MCOIL™ MD SERIES)

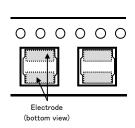

■PACKAGING

1)Minimum Quantity

Туре	Standard Quantity [pcs]
туре	Tape & Reel
MDKK1616	2500
MDJE2020	
MDKK2020	2500
MDMK2020	
MDKK3030	2000
MDMK3030	2000
MDJE4040	1000
MDMK4040	1000
MDWK4040	700
MDPK5050	1000

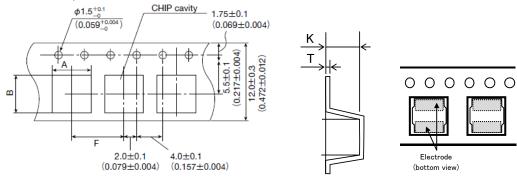

②Tape Material





3 Taping dimensions

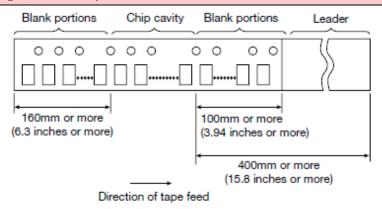
Embossed tape 8mm wide (0.315 inches wide)

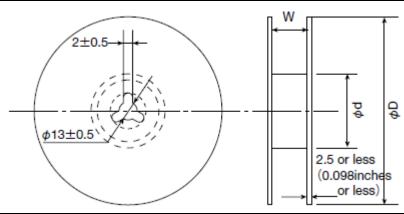


Туре	Chip	cavity	Insertion pitch	Tape thickness		
Туре	Α	В	F	T	K	
MDKK1616	1.79±0.1	1.79±0.1	4.0±0.1	0.25 ± 0.05	1.1±0.1	
MDKK1010	(0.071 ± 0.004)	(0.071 ± 0.004)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.043 ± 0.004)	
MDJE2020	22+01	2.2±0.1	4.0±0.1	0.25±0.05	1.3±0.1	
MDKK2020	(0.102±0.004)	(0.102 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.051 ± 0.004)	
MDMK2020	(0.102±0.004)	(0.102±0.004)	(0.137±0.004)	(0.009±0.002)	(0.031 ± 0.004)	
MDKK3030	3.2±0.1	3.2±0.1	4.0±0.1	0.3±0.05	1.4±0.1	
MDMK3030	(0.126 ± 0.004)	(0.126 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.055 ± 0.004)	
					11.11 /1 1.1	

Unit:mm(inch)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


Embossed tape 12mm wide (0.47 inches wide)

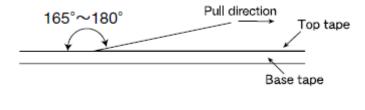

Туре	Chip	cavity	Insertion pitch	Tape thickness		
Туре	Α	В	F	Т	K	
MDJE4040 MDMK4040 MDWK4040	4.3±0.1 (0.169±0.004)	4.3±0.1 (0.169±0.004)	8.0±0.1 (0.315±0.004)	0.3±0.1 (0.012±0.004)	1.6±0.1 (0.063±0.004)	
MDPK5050	5.25±0.1 (0.207±0.004)	5.25±0.1 (0.207±0.004)	8.0±0.1 (0.315±0.004)	0.3±0.1 (0.012±0.004)	1.6±0.1 (0.063±0.004)	

Unit:mm(inch)

$\textcircled{4} Leader \ and \ Blank \ portion$

⑤Reel size

Type	Reel size (Reference values)				
туре	ϕ D	ϕ d	W		
MDKK1616					
MDJE2020					
MDKK2020	180±0.5	60±1.0	10.0 ± 1.5		
MDMK2020	(7.087 ± 0.019)	(2.36 ± 0.04)	(0.394 ± 0.059)		
MDKK3030					
MDMK3030					
MDJE4040					
MDMK4040	180±3.0	60±2.0	14.0±1.5		
MDWK4040	(7.087 ± 0.118)	(2.36 ± 0.08)	(0.551 ± 0.059)		
MDPK5050					


Unit:mm(inch)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

©Top Tape Strength

Top tape strength

Туре	Peel-off strength
MDKK1616	
MDJE2020	
MDKK2020	0.1N~1.0N
MDMK2020	0.1N~1.0N
MDKK3030	
MDMK3030	
MDJE4040	
MDMK4040	0.1N~1.3N
MDWK4040	0.1N~1.3N
MDPK5050	

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE SMD POWER INDUCTORS (MCOIL™ MD SERIES)

■RELIABILITY DATA

RELIABILITY DA	IA	
1. Operating Tempe	erature Range	
Specified Value	MD series	-40~+125°C
Test Methods and Remarks	Including self-generated heat	
	_	
2. Storage Tempera		T -
Specified Value	MD series	
Test Methods and Remarks	-5 to 40°C for the product with taping.	
3. Rated current		
Specified Value	MD series	Within the specified tolerance
4. Inductance		
Specified Value	MD series	Within the specified tolerance
Test Methods and		1285A or equivalent)
Remarks	Measuring condition : Please see item li	st.
5. DC Resistance		
	MD series	Within the constitution of
Specified Value Test Methods and	MD series	Within the specified tolerance
Remarks	Measuring equipment : DC ohmmeter (H	IOKI 3227 or equivalent)
6. Self resonance fr	requency	
Specified Value	MD series	_
	I	
7. Temperature cha	racteristic	
Specified Value	MD series	Inductance change : Within ±10%
Test Methods and Remarks	Measurement of inductance shall be taken at With reference to inductance value at $\pm 20^\circ$	t temperature range within $-40^{\circ}\text{C}\!\sim\!+125^{\circ}\text{C}$. C., change rate shall be calculated.
0.0	6.1	
8. Resistance to fle	I	N. I
Specified Value	MD series	No damage
Test Methods and Remarks	until deflection of the test board reaches to Test board size : 100 × 40 × 1.0 Test board material : Glass epoxy— Solder cream thickness : 0.10 mm	mm Force Rod 10, 20
9. Insulation resista	nce : between wires	
Specified Value	MD series	-
		·
10. Insulation resist	ance : between wire and core	
Specified Value	MD series	_
11. Withstanding vo	ltage : between wire and core	
Specified Value	MD series	_

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Specified Value	MD series		Shall not come off PC board	
	The test samples shall be soldered to the t		st board by the reflow.	
Test Methods and	Applied force : 10N to X and		Y directions.	
Remarks	Duration	: 5s.		
	Solder cream thickness	: 0.10mm.		
13. Resistance to v	ibration			
Specified Value	MD series		Inductance change : Within ±10% No significant abnormality in appearance.	
			No significant abnormality in appearance.	
	The test samples shall be s	oldered to the tes	7 11	
	The test samples shall be s Then it shall be submitted		st board by the reflow.	
	•		st board by the reflow.	
T . M . I . I	Then it shall be submitted	to below test cond 10~55Hz	st board by the reflow.	
Test Methods and Remarks	Then it shall be submitted to Frequency Range	to below test cond 10~55Hz	exceed acceleration 196m/s²)	

14. Solderability			
Specified Value	MD series		At least 90% of surface of terminal electrode is covered by new solder.
T . M .!	The test samples shall be dipped in flux, and then immersed in molten solder as shown in below table. Flux : Methanol solution containing rosin 25%.		
Test Methods and Remarks	Solder Temperature	245±5°C	
Remarks	Time	5±1.0 sec.	
	XImmersion depth : All side	es of mounting ter	minal shall be immersed.

Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.

15. Resistance to se	oldering heat	
Specified Value	MD series	Inductance change : Within ±10%
Specified value	MD series	No significant abnormality in appearance.
Test Methods and	The test sample shall be exposed to reflow ov	ven at 230±5°C for 40 seconds, with peak temperature at 260±5°C for 5 seconds, 2 times.
Remarks	Test board material : Glass epoxy-resin	
Remarks	Test board thickness : 1.0mm	

16. Thermal shock						
Specified Value	MD series			Inductance change : No significant abnorm		
	1			-	he test samples shall be placed at specified temperature for specified emperature cycle shall be repeated 100 cycles.	
		Conditions of 1 cycle				
Test Methods and	Step Temperature (°C)		[Duration (min)		
Remarks				30±3		
	2	Room temperature		Within 3		
	3	+85±2		30±3		
	4	Room temperature		Within 3		

17. Damp heat			
Specified Value	MD series		Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.
Test Methods and	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table.		•
Remarks	Temperature	60±2°C	
	Humidity	90~95%RH	
	Time	500+24/-0 hour	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

18. Loading under o	lamp heat		
Specified Value	e MD series		Inductance change: Within ±10%
			No significant abnormality in appearance.
	The test samples shall be soldered to the te		•
			mostatic oven set at specified temperature and humidity and applied the rated currer
Test Methods and		60±2°C	
Remarks	Temperature	90~95%RH	_
	Humidity Applied current	Rated current	_
	Time	500+24/-0 hour	_
	Time	300 + 24/ - 0 riour	
40.1			
19. Low temperatur	re life test		
Specified Value	MD series		Inductance change : Within ±10%
·			No significant abnormality in appearance.
Test Methods and	1	all be soldered to the te	st board by the reflow. After that, the test samples shall be placed at test conditions as show
Remarks	in below table.		
	Temperature	-40±2°C	
	Time	500+24/-0 hour	
20. High temperatur	ra lifa taat		
20. High temperatu	re me test		
Specified Value	MD series		_
			_
Specified Value			_
Specified Value 21. Loading at high	MD series temperature life test		Inductance change : Within ±10%
Specified Value	MD series		Inductance change : Within ±10% No significant abnormality in appearance.
Specified Value 21. Loading at high	MD series temperature life test MD series	all be soldered to the te	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value	MD series temperature life test MD series The test samples sha		No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples sha		No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shall		No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shabelow table.	all be placed in thermost	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shadelow table. Temperature	all be placed in thermost	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shadelow table. Temperature Applied current	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance.
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance. est board by the reflow. tatic oven set at specified temperature and applied the rated current continuously as shown
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance. est board by the reflow. tatic oven set at specified temperature and applied the rated current continuously as shown Standard test condition:
Specified Value 21. Loading at high Specified Value Test Methods and Remarks	MD series temperature life test MD series The test samples shabelow table. Temperature Applied current Time	all be placed in thermost 85±2°C Rated current	No significant abnormality in appearance. est board by the reflow. tatic oven set at specified temperature and applied the rated current continuously as shown Standard test condition: Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity.

METAL CORE SMD POWER INDUCTORS (MCOIL™ MD SERIES)

■PRECAUTIONS

1. Circuit Design

◆Operating environment

Precautions

1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance.

2. PCB Design Precautions ◆Land pattern design 1. Please refer to a recommended land pattern.

◆Land pattern design Surface Mounting

Technical considerations

Mounting and soldering conditions should be checked beforehand.

· Applicable soldering process to this products is reflow soldering only.

3. Considerations for automatic placement

Precautions

- ◆Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards.
 - 2. Mounting and soldering conditions should be checked beforehand.

Technical considerations

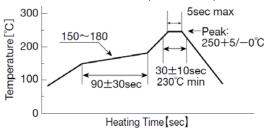
- ◆Adjustment of mounting machine
 - 1. When installing products, care should be taken not to apply distortion stress as it may deform the products.

4. Soldering

Reflow soldering

- 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified.
- 2. The product shall be used reflow soldering only.
- 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering.

♦Lead free soldering


Precautions

- 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently.
- ◆Recommended conditions for using a soldering iron (NR10050 Type)
 - Put the soldering iron on the land-pattern.
 - Soldering iron's temperature Below 350°C
 - Duration 3 seconds or less
- · The soldering iron should not directly touch the inductor.

◆Reflow soldering

- 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.
 - •NR30/40/50/60/80, NRV20/30, NRH24/30, NRS20/40/50/60/80 Type, NR10050 Type, NS101/125 Type Recommended reflow condition (Pb free solder)

Technical considerations

5. Cleaning

Precautions

♦Cleaning conditions

1. Washing by supersonic waves shall be avoided.

Technical considerations

♦Cleaning conditions

1. If washed by supersonic waves, the products might be broken.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling Precautions

◆Handling

- 1. Keep the product away from all magnets and magnetic objects.
- ◆Breakaway PC boards (splitting along perforations)
- 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board.
- 2. Board separation should not be done manually, but by using the appropriate devices.
- ◆Mechanical considerations
- 1. Please do not give the product any excessive mechanical shocks.
- 2. Please do not add any shock and power to a product in transportation.
- ◆Pick-up pressure
 - 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part.
- ◆Packing
- 1. Please avoid accumulation of a packing box as much as possible.
- ◆Board mounting
- 1. There shall be no pattern or via between terminals at the bottom of product.
- 2. Components which are located in peripheral of product shall not make contact with surface (top, side) of product.

◆Handling

- 1. There is a case that a characteristic varies with magnetic influence.
- ◆Breakaway PC boards (splitting along perforations)
 - 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs.
- ◆Mechanical considerations
 - 1. There is a case to be damaged by a mechanical shock.
 - 2. There is a case to be broken by the handling in transportation.
- Technical considerations

 Technical Pick-up pressure
 - 1. Damage and a characteristic can vary with an excessive shock or stress.
 - ◆Packing
 - 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.
 - ◆Board mounting
 - 1. If there is pattern or via between terminals at the bottom of product, it may cause characteristics change.
 - 2. If components which are located in peripheral of product make contact with surface (top, side) of product, it may cause damage or characteristics change.

7. Storage conditions

♦Storage

- To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled.
 - · Recommended conditions

Ambient temperature : −5~40°C

Humidity: Below 70% RH

- The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes.
 - For this reason, product should be used within 6 months from the time of delivery.
 - In case of storage over 6 months, solderability shall be checked before actual usage.

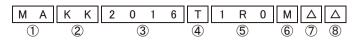
Technical considerations

Precautions

♦Storage

1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


METAL CORE WIRE-WOUND CHIP POWER INDUCTORS(MCOILTM MA SERIES)

REFLOW

PARTS NUMBER

* Operating Temp.:-40~+105°C (Including self-generated heat)

△=Blank space

①Series name

Code	Series name
MA	Metal Core Wire-wound Chip Power Inductor

②Dimensions(T)

Code	Dimensions(T)[mm]
KK	1.0
MK	1.2

③Dimensions (L×W)

<u> </u>	•
Code	Dimensions (L × W) [mm]
2016	2.0 × 1.6
2520	2.5 × 2.0

4 Packaging

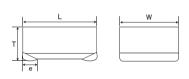
4 Packaging			
Code	Packaging		
Т	Taping		

⑤Nominal inductance

Code (example)	Nominal inductance[μ H]
R47	0.47
1R0	1.0
4R7	4.7

※R=Decimal point

6Inductance tolerance


Code	Inductance tolerance
М	±20%

7 Special code

Code	Special code
Δ	Standard

®Internal code

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

	Туре	L	W	Т	е	Standard quantity [pcs] Taping
	MAKK2016	2.0±0.1	1.6±0.1	1.0 max	0.5 ± 0.3	2000
	MARKZUIO	(0.079 ± 0.004)	(0.063 ± 0.004)	(0.039 max)	(0.020 ± 0.012)	3000
	MAKK2520	2.5±0.2	2.0 ± 0.2	1.0 max	0.5 ± 0.3	3000
	MARKZJZU	(0.098 ± 0.008)	(0.079 ± 0.008)	(0.039 max)	(0.020 ± 0.012)	3000
	MANKSESO	2.5±0.2	2.0±0.2	1.2 max	0.5±0.3	2000
	MAMK2520	(0.098 ± 0.008)	(0.079 ± 0.008)	(0.047 max)	(0.020 ± 0.012)	3000

Unit:mm(inch)

■PARTS NUMBER

MAKK2016 type

●MAKK2016 type								
	EHS	Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω] (max.)	Rated current ※) [mA](max.)		
Parts number						Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MAKK2016TR24M	RoHS	0.24	±20%	-	0.042	4,200	3,000	2
MAKK2016TR47M	RoHS	0.47	±20%	-	0.460	3,200	2,800	2
MAKK2016TR68M	RoHS	0.68	±20%	-	0.065	2,500	2,500	2
MAKK2016T1R0M	RoHS	1.0	±20%	-	0.075	2,200	2,200	2
MAKK2016T1R5M	RoHS	1.5	±20%	-	0.130	1,600	1,650	2
MAKK2016T2R2M	RoHS	2.2	±20%	-	0.160	1,500	1,500	2
MAKK2016T3R3M	RoHS	3.3	±20%	-	0.255	1,150	1,200	2
MAKK2016T4R7M	RoHS	4.7	+20%	_	0.380	1 000	950	2

MAKK2520 type

	Nominal inductance		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		Manageria	
Parts number	EHS	[μ H]	Inductance tolerance	frequency [MHz] (min.)	[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
MAKK2520TR47M	RoHS	0.47	±20%	-	0.046	3,900	3,200	2
MAKK2520TR68M	RoHS	0.68	±20%	-	0.059	3,700	2,900	2
MAKK2520T1R0M	RoHS	1.0	±20%	-	0.072	2,700	2,500	2
MAKK2520T2R2M	RoHS	2.2	±20%	-	0.156	1,900	1,500	2
MAKK2520T4R7M	RoHS	4.7	±20%	-	0.300	1,300	1,100	2

MAMK2520 type

		Nominal inductance [μ H]	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance	Rated current ※) [mA](max.)		Measuring
Parts number	EHS				[Ω] (max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MAMK2520TR47M	RoHS	0.47	±20%	-	0.039	4,200	3,400	2
MAMK2520TR68M	RoHS	0.68	±20%	-	0.048	3,200	3,200	2
MAMK2520T1R0M	RoHS	1	±20%	-	0.059	3,100	2,700	2
MAMK2520T2R2M	RoHS	2.2	±20%	-	0.110	2,000	1,900	2
MAMK2520T3R3M	RoHS	3.3	±20%	-	0.156	1,800	1,700	2
MAMK2520T4R7M	RoHS	4.7	±20%	-	0.260	1,500	1,300	2

- ※) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- imes) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C. (at 20°C)
- $\mbox{\%}$) The rated current value is following either Idc1 or Idc2, which is the lower one.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

METAL CORE WIRE-WOUND CHIP POWER INDUCTORS(MCOIL™ MA-H SERIES)

PARTS NUMBER

* Operating Temp.:-40 \sim +125 $^{\circ}$ C (Including self-generated heat)

M A	KK	2 0 1	6 H	1 R	0 M Δ	\triangle
1	2	3	4	(5)	6 7	8

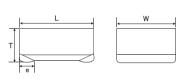
 Δ =Blank space

(1)Series name	
Code	Series name
MA	Metal Core Wire-wound Chip Power Inductor

(2)Dimensions (1)					
Code	Dimensions(T)[mm]				
KK	1.0				
MK	1.2				

③Dimensions (L × W)				
Code	Dimensions (L × W) [mm]			
2016	2.0 × 1.6			
2520	2.5 × 2.0			

4)Packaging	
Code	Packaging or Special specification
Н	Taping (High characteristics)


⑤Nominal inductance					
Code (example)	Nominal inductance [μ H]				
R47	0.47				
1R0	1.0				
4R7	4.7				

⑥Inductance tolerance				
Code	Inductance tolerance			
M	+2006			

7Special code	
Code	Special code
Δ	Standard

®Internal code

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

	Туре	L	W	Т	е	Standard quantity [pcs] Taping	
MAKK2016H		2.0±0.1	1.6±0.1	1.0 max	0.5±0.3	3000	
		(0.079 ± 0.004)	(0.063 ± 0.004)	(0.039 max)	(0.020 ± 0.012)	3000	
MAKK2520H		2.5±0.2	2.0±0.2	1.0 max	0.5±0.3	3000	
	WARRZJZUH	(0.098 ± 0.008)	(0.079 ± 0.008)	(0.039 max)	(0.020 ± 0.012)	3000	
MAMK2520H		2.5±0.2	2.0±0.2	1.2 max	0.5±0.3	3000	
	INIVINIVIZAZAL	(0.098 ± 0.008)	(0.079 ± 0.008)	(0.047 max)	(0.020 ± 0.012)	3000	

Unit:mm(inch)

■PARTS NUMBER

	MAKK2016H type									
			N		Self-resonant	DOD : .	Rated current ※) [mA](max.)		Measuring frequency[MHz]	
Parts number	EHS	Nominal inductance [μ H]	Inductance tolerance	frequency	DC Resistance [Ω](max.)	Saturation current	Temperature rise current			
			2,4113		[MHz] (min.)	£ 3 ()	Idc1	Idc2		
	MAKK2016HR24M	RoHS	0.24	±20%	-	0.026	5,800	4,000	2	
	MAKK2016HR33M	RoHS	0.33	±20%	ı	0.030	4,700	3,500	2	
	MAKK2016HR47M	RoHS	0.47	±20%	-	0.036	4,300	3,300	2	
	MAKK2016HR68M	RoHS	0.68	±20%	-	0.050	3,200	2,700	2	
	MAKK2016H1R0M	RoHS	1.0	±20%	-	0.070	2,700	2,300	2	

ΜΔΚΚ2520H ±vpe

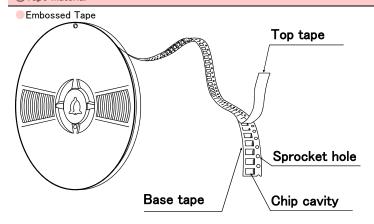
	WARK232UH type	MAKK252UH type							
		M	Naminal industria	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω] (max.)	Rated current ※) [mA](max.)		
Parts number	Parts number	EHS	Nominal inductance [μ H]				Saturation current	Temperature rise current	Measuring frequency[MHz]
							Idc1	Idc2	rrequericy[wiriz]
	MAKK2520HR33M	RoHS	0.33	±20%	-	0.026	6200	4300	2
	MAKK2520HR47M	RoHS	0.47	±20%	-	0.029	5700	4000	2
	MAKK2520HR68M	RoHS	0.68	±20%	ı	0.043	4300	3400	2
	MAKK2520H1R0M	RoHS	1.0	±20%	-	0.053	3800	3000	2
	MAKK2520H2R2M	RoHS	2.2	±20%	-	0.120	2500	1800	2

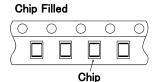
■MΔMK2520H ±vne

	• MAINTED ZOTT TYPE								
	Parts number	EHS Nominal inductance [μ H]		Self-resonant	DC Resistance	Rated current ※) [mA](max.)		Manager	
				Inductance tolerance	frequency [MHz] (min.)	$[\Omega]$ (max.)	Saturation current Idc1	Temperature rise current Idc2	Measuring frequency[MHz]
	MAMK2520HR47M	RoHS	0.47	±20%	-	0.026	5800	4100	2
	MAMK2520HR68M	RoHS	0.68	±20%	-	0.036	5100	3500	2
	MAMK2520H1R0M	RoHS	1.0	±20%	-	0.045	4300	3100	2
	MAMK2520H1R5M	RoHS	1.5	±20%	-	0.065	3300	2600	2
	MAMK2520H2R2M	RoHS	2.2	±20%	-	0.090	2800	2200	2

- * The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- *\times) The temperature rise current value (Idc2) is the DC current value having temperature increase by 40°C. (at 20°C)
- X) The rated current value is following either Idc1 or Idc2, which is the lower one.

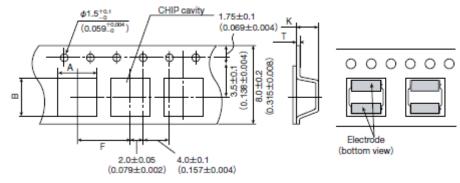
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .


METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MA SERIES / MCOIL™ MA-H SERIES)

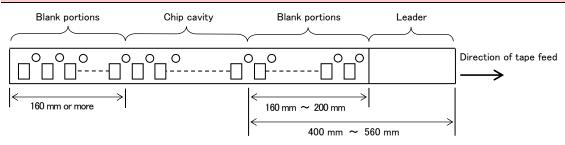

PACKAGING

1 Minimum Quantity

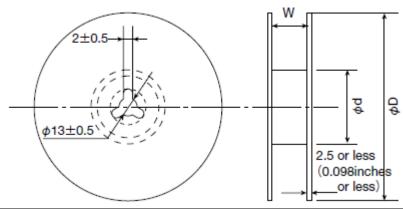
Туре	Standard Quantity [pcs]
	Tape & Reel
MAKK2016	3000
MAKK2520	3000
MAMK2520	3000


2Tape Material

3Taping dimensions


Embossed tape 8mm wide (0.315 inches wide)

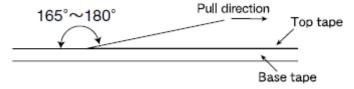
Tuna	Chip cavity		Insertion pitch	Tape thickness	
Туре	Α	В	F	T	K
MAKK0016	1.9±0.1	2.3±0.1	4.0±0.1	0.25±0.05	1.1 max
MAKK2016	(0.075 ± 0.004)	(0.091 ± 0.004)	(0.157 ± 0.004)	(0.009 ± 0.002)	(0.043 max)
MAKKOFOO	2.3±0.1	2.8±0.1	4.0±0.1	0.3±0.05	1.1 max
MAKK2520	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.043 max)
MANAKOEOO	2.3±0.1	2.8±0.1	4.0±0.1	0.3±0.05	1.45 max
MAMK2520	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.057 max)


Unit:mm(inch)

4 Leader and Blank portion

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

⑤Reel size



Type	Reel size (Reference values)					
Туре	ϕ D	ϕ d	W			
MAKK2016	100+0 / 2	60.1/0	10.0 ± 1.5			
MAKK2520	180+0/-3 (7.087+0/-0.118)	60+1/-0 (2.36+0.039/0)	10.0±1.5 (0.394±0.059)			
MAMK2520	(7.087+0/-0.118)	(2.30+0.039/0)	(0.394±0.059)			
•						

Unit:mm(inch)

6Top Tape Strength

The top The top tape requires a peel-off force of 0.1 to 1.2N in the direction of the arrow as illustrated below.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MA SERIES / MCOIL™ MA-H SERIES)

■RELIABILITY DATA

1. Operating Tempe	rature Range				
Consider 11/1	MA series	-40~+105°C			
Specified Value	MA−H series				
Test Methods and Remarks	Including self-generated heat				
0.00 T					
2. Storage Tempera					
Specified Value	MA II assista	-40~+85°C			
Test Methods and Remarks	MA-H series 0 to 40°C for the product with taping.	<u> </u>			
3. Rated current					
0 :5 1)/1	MA series	West of the Control o			
Specified Value	MA-H series	Within the specified tolerance			
4. Inductance					
Specified Value	MA series	Within the specified tolerance			
Specified value	MA-H series	Within the Specified tolerance			
Test Methods and Remarks	Measuring equipment : LCR Meter (HP 4 Measuring frequency : 2MHz, 1V	285A or equivalent)			
5. DC Resistance					
5. DO Resistance	MA series				
Specified Value	MA-H series	Within the specified tolerance			
Test Methods and Remarks		IOKI 3227 or equivalent)			
6. Self resonance fr	requency				
Specified Value	MA series				
Specified value	MA-H series				
7. Temperature cha	racteristic				
Specified Value	MA series	Inductance change : Within ±15%			
opecined value	MA-H series	Inductance change . Within 2.10%			
Test Methods and Remarks	Measurement of inductance shall be taken at With reference to inductance value at +20°0	•			
8. Resistance to fle	vure of substrate				
o. Resistance to ne	MA series				
Specified Value	MA-H series	No damage			
Test Methods and Remarks		resin Force Rod 10 R230 Board			
		R5 Test Sample 45±2mm			

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Insulation resista	nce : between wires				
	MA series				
Specified Value	MA-H series	_			
10. Insulation resist	ance : between wire and core				
0 10 11/1	MA series	MAKK2016、MAMK2520 タイプ: DC25V 100kΩ min			
Specified Value	MA-H series	MAKK2520 タイプ : DC20V 100kΩ min			
11. Withstanding vo	Itage : between wire and core				
0 :5 1)/1	MA series				
Specified Value	MA-H series	_			
12. Adhesion of ter	minal electrode				
	MA series				
Specified Value	MA-H series	No abnormality.			
Test Methods and Remarks	The test samples shall be soldered to the test Applied force : 10N to X and Duration : 5s.				
	Solder cream thickness : 0.12mm.				
10 Decistance to	9				
13. Resistance to v					
Specified Value	MA series	Inductance change : Within ±10% No significant abnormality in appearance.			
	MA-H series				
	The test samples shall be soldered to the test board by the reflow. Then it shall be submitted to below test conditions.				
	Frequency Range 10~55Hz				
Test Methods and	Total Amplitude 1.5mm (May not	exceed acceleration 196m/s²)			
Remarks	Sweeping Method 10Hz to 55Hz to	10Hz for 1min.			
	Time X Y Z	For 2 hours on each X, Y, and Z axis.			
	Recovery : At least 2hrs of recovery under the	ne standard condition after the test, followed by the measurement within 48hrs.			
14. Solderability					
Specified Value	MA series	At least 90% of surface of terminal electrode is covered by new solder.			
Specified value	MA-H series	At least 3070 of surface of terminal electrode is covered by new solder.			
Test Methods and	Flux : Methanol solution containing rosin 25%.	then immersed in molten solder as shown in below table.			
Remarks	Solder Temperature 245±5°C	_			
	Time 5±0.5 sec. XImmersion depth : All sides of mounting ter	 minal shall be immersed			
	Account dopen . All sides of mounting ter				
15. Resistance to s	oldering heat				
	MA series	Inductance change : Within ±10% No significant abnormality in appearance.			
Specified Value	MA-H series				
Test Methods and Remarks	The test sample shall be exposed to reflow oven at 230°C for 40 seconds, with peak temperature at 260+0/-5°C for 5 seconds, 3 times.				

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

16. Thermal shock MA series Inductance change: Within ±10% Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. The test samples shall be placed at specified temperature for specified time by step 1 to step 4 as shown in below table in sequence. The temperature cycle shall be repeated 100 cycles. Conditions of 1 cycle Duration (min) Step Temperature (°C) Test Methods and -40±3 30 ± 3 1 Remarks 2 Room temperature Within 3 3 +85±2 30 ± 3 Room temperature Within 3 Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 17. Damp heat MA series Inductance change: Within ±10% Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table. Test Methods and 60±2°C Temperature Remarks Humidity 90~95%RH 500+24/-0 hour Time Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 18. Loading under damp heat MA series Inductance change : Within $\pm 10\%$ Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity and applied the rated current continuously as shown in below table. Test Methods and Temperature 60±2°C Remarks Humidity 90∼95%RH Applied current Rated current Time 500+24/-0 hour Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 19. Low temperature life test MA series Inductance change : Within $\pm 10\%$ Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown in below table. Test Methods and Remarks Temperature -40±2°C Time 500+24/-0 hour Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 20. High temperature life test MA series Inductance change: Within ±10% Specified Value No significant abnormality in appearance. MA-H series The test samples shall be soldered to the test board by the reflow. After that, the test samples shall be placed at test conditions as shown Test Methods and in below table 85 ± 2°C Remarks Temperature 500+24/-0 hour Time Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs. 21. Loading at high temperature life test MA series

Specified Value

MA-H series

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

22. Standard condition					
Specified Value	MA series	Standard test condition : Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity.			
	MA-H series	When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of $20\pm2^{\circ}C$ of temperature, $65\pm5\%$ relative humidity. Inductance is in accordance with our measured value.			


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL CORE WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MA SERIES / MCOIL™ MA-H SERIES)

PRECAUTIONS

1. Circuit Design Operating environment 1. The products described in this specification are intended for use in general electronic equipment, office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical Precautions equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance. 2. PCB Design Land pattern design Precautions 1. Please refer to a recommended land pattern. ◆Land pattern design Technical Surface Mounting Mounting and soldering conditions should be checked beforehand. considerations · Applicable soldering process to this products is reflow soldering only. 3. Considerations for automatic placement Adjustment of mounting machine Precautions 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. Adjustment of mounting machine considerations 1. When installing products, care should be taken not to apply distortion stress as it may deform the products. 4. Soldering ◆Reflow soldering 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. 2. The product shall be used reflow soldering only Precautions 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. ◆Lead free soldering 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently. Reflow soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. Recommended reflow condition (Pb free solder)

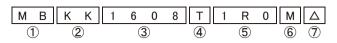
Technical considerations

5. Cleaning Precautions ↑ Cleaning conditions 1. Washing by supersonic waves shall be avoided. Technical considerations 1. If washed by supersonic waves, the products might be broken.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations Precautions 1. Please do not give the product any excessive mechanical shocks. 2. Please do not add any shock and power to a product in transportation. ◆Pick-up pressure 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. ◆Packing 1. Please avoid accumulation of a packing box as much as possible. 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards (splitting along perforations) 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by the handling in transportation. ◆Pick-up pressure 1. Damage and a characteristic can vary with an excessive shock or stress. **♦**Packing 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage condi	7. Storage conditions						
Precautions	 ♦ Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. • Recommended conditions Ambient temperature : 0~40°C Humidity : Below 70% RH • The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. 						
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.						


METAL WIRE-WOUND CHIP POWER INDUCTORS(MCOILTM MB SERIES)

REFLOW

■PARTS NUMBER

* Operating Temp.:- $40\sim+105^{\circ}$ C (Including self-generated heat)

△=Blank space

①Series name

Code	Series name		
MB	Metal Wire-Wound chip power inductor		

②Dimensions(T)

Code	Dimensions(T)[mm]
KK	1.0
MK	1.2

③Dimensions (L × W)

Code	Type (inch)	Dimensions (L×W)[mm]
1608	1608 (0603)	1.6 × 0.8
2012	2012 (0805)	2.0 × 1.25
2520	2520(1008)	2.5 × 2.0

4Packaging

	Code	Packaging
Ī	Т	Taping

⑤Nominal inductance

©*************************************					
Code (example)	Nominal inductance[μ H]				
R24	0.24				
1R0	1.0				
4R7	4.7				

※R=Decimal point

6Inductance tolerance

Code	Inductance tolerance
М	±20%
N	±30%

7Internal code

STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Recommended Land Patterns

Surface Mounting

•Mounting and soldering conditions should be checked beforehand.

*Applicable soldering process to these products is reflow soldering only.

Туре	Α	В	С	
1608	0.55	0.70	1.00	
2012	0.60	1.00	1.45	
2520	0.60	1.50	2.00	

Unit:mm

Туре	1	W	Т	_	Standard quantity[pcs]		
	L	VV		е	Paper tape	Embossed tape	
MBKK1608	1.6±0.2 (0.063±0.008)	0.8 ± 0.2 (0.031 ± 0.008)	1.0 max (0.040 max)	0.45±0.15 (0.016±0.006)	_	3000	
MBKK2012	2.0±0.2 (0.079±0.008)	1.25±0.2 (0.049±0.008)	1.0 max (0.040 max)	0.5±0.2 (0.020±0.008)	_	3000	
MBMK2520	2.5±0.2 (0.098±0.008)	2.0±0.2 (0.079±0.008)	1.2 max (0.047 max)	0.5±0.2 (0.020±0.008)	_	3000	
Unit:mm(inch)							

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

●1608(0603)TYPE

	EHS	Nominal inductance $\left[\ \mu \ \mathrm{H} \right]$	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω] (max.)	Rated current ※)[mA]		Measuring
Parts number						Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MBKK1608TR24N	RoHS	0.24	±30%	-	0.049	1,650	2,300	1.0
MBKK1608TR47N	RoHS	0.47	±30%	-	0.104	1,100	1,400	1.0
MBKK1608TR68N	RoHS	0.68	±30%	-	0.120	950	1,200	1.0
MBKK1608T1R0M	RoHS	1.0	±20%	-	0.150	800	1,150	1.0
MBKK1608T1R5M	RoHS	1.5	±20%	-	0.200	650	1,000	1.0
MBKK1608T2R2M	RoHS	2.2	±20%	-	0.345	520	750	1.0
MBKK1608T3R3M	RoHS	3.3	±20%	-	0.512	450	600	1.0
MBKK1608T4R7M	RoHS	4.7	±20%	-	0.730	370	500	1.0

2012 (0805) TYPE

		Nominal inductance		Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number	EHS	[μ H]		frequency [MHz] (min.)	[Ω](max.)	Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MBKK2012TR24N	RoHS	0.24	±30%	-	0.041	3,000	2,400	1.0
MBKK2012TR47N	RoHS	0.47	±30%	ı	0.078	2,000	1,650	1.0
MBKK2012TR68N	RoHS	0.68	±30%	-	0.090	1,800	1,500	1.0
MBKK2012T1R0M	RoHS	1.0	±20%	-	0.106	1,500	1,450	1.0
MBKK2012T1R5M	RoHS	1.5	±20%	-	0.173	1,200	1,100	1.0
MBKK2012T2R2M	RoHS	2.2	±20%	-	0.290	900	850	1.0
MBKK2012T3R3M	RoHS	3.3	±20%	-	0.500	700	650	1.0
MBKK2012T4R7M	RoHS	4.7	±20%	-	0.615	600	600	1.0

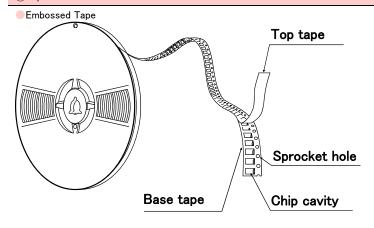
2520(1008)TYPE

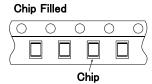
	Parts number EHS Nominal inductance [μ H] Inductance toler			Self-resonant	DC Resistance	Rated curren	t ※)[mA]	Measuring
Parts number			Inductance tolerance	ductance tolerance frequency [MHz] (min.)		Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MBMK2520TR24N	RoHS	0.24	±30%	-	0.026	4,750	3,500	1.0
MBMK2520TR47N	RoHS	0.47	±30%	-	0.042	3,900	2,600	1.0
MBMK2520TR68N	RoHS	0.68	±30%	ı	0.058	3,150	2,150	1.0
MBMK2520T1R0M	RoHS	1.0	±20%	-	0.072	2,350	1,850	1.0
MBMK2520T1R5M	RoHS	1.5	±20%	-	0.106	2,050	1,500	1.0
MBMK2520T2R2M	RoHS	2.2	±20%	-	0.159	1,800	1,250	1.0
MBMK2520T3R3M	RoHS	3.3	±20%	-	0.260	1,400	970	1.0
MBMK2520T4R7M	RoHS	4.7	±20%	-	0.380	1,150	800	1.0

 $[\]frak{\%}\)$ The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)

^{**)} The temperature rise current value (Idc2) is the DC current value having temperature increase up to 40°C. (at 20°C)

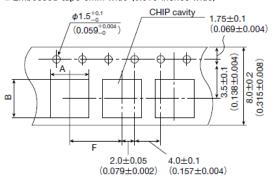
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

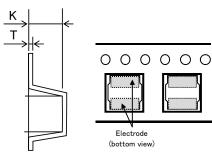

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB SERIES)


PACKAGING

1 Minimum Quantity

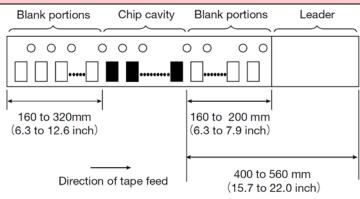
Type	Standard Quantity [pcs]		
туре	Tape & Reel		
MBKK1608	3000		
MBKK2012	3000		
MBMK2520	3000		


2Tape Material

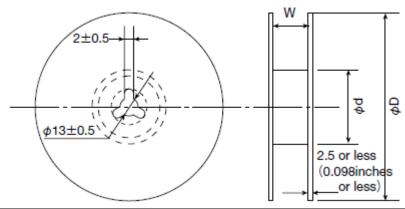


3Taping dimensions

Embossed tape 8mm wide (0.315 inches wide)



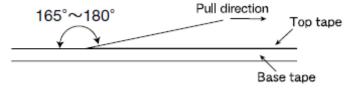
Туре	Chip	cavity	Insertion pitch	Tape th	ickness
туре	Α	В	F	Т	K
MBKK1608	1.1	1.9	4.0±0.1	0.25±0.05	1.6 max
	(0.043)	(0.075)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.063 max)
MBKK2012	1.45	2.2	4.0±0.1	0.25±0.05	1.6 max
	(0.057)	(0.087)	(0.157 ± 0.004)	(0.010 ± 0.002)	(0.063 max)
MENALOSOO	2.3	2.8	4.0±0.1	0.3±0.05	1.45 max
MBMK2520	(0.091)	(0.110)	(0.157 ± 0.004)	(0.012 ± 0.002)	(0.057 max)


Unit:mm(inch)

4 Leader and Blank portion

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

⑤Reel size



Typo	Reel size (Reference values)					
Туре	ϕ D	ϕ d	W			
MBKK1608	180+0/-3	60+1/-0	10.0±1.5			
MBKK2012	(7.087+0/-0.118)	(2.36+0.039/0)				
MBMK2520	(1.001+0/-0.118)	(2.30±0.039/0)	(0.394 ± 0.059)			

Unit:mm(inch)

6Top Tape Strength

The top The top tape requires a peel-off force of 0.2 to 0.7N in the direction of the arrow as illustrated below.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB SERIES)

■RELIABILITY DATA

1 On south T					
1. Operating Tempe		40 1 4000			
Specified Value	MB series	-40~+105°C			
Test Methods and Remarks	Including self-generated heat				
2. Storage Tempera	ture Range				
Specified Value	MB series	-40~+85°C			
Test Methods and Remarks	0 to 40°C for the product with taping.				
3. Rated current					
Specified Value	MB series	Within the specified tolerance			
	12				
4. Inductance					
Specified Value	MB series	Within the specified tolerance			
Test Methods and Remarks	Measuring equipment : LCR Meter (HP 4 Measuring frequency : 1MHz, 1V	l · · · · ·			
5. DC Resistance					
Specified Value	MB series	Within the specified tolerance			
Test Methods and Remarks	Measuring equipment : DC ohmmeter (HIOKI 3227 or equivalent)				
6. Self resonance fr	aguanav.				
Specified Value	MB series	_			
Opcomed Value	MD 301103				
7. Temperature cha	racteristic				
Specified Value	MB series	Inductance change : Within ±15%			
Test Methods and		temperature range within $-40^{\circ}\text{C} \sim +105^{\circ}\text{C}$.			
Remarks	With reference to inductance value at +20°C				
8. Resistance to fle	xure of substrate				
Specified Value	MB series	No damage			
Test Methods and Remarks	Interest samples shall be soldered to the test until deflection of the test board reaches to a Test board size : 100 × 40 × 1.0 Test board material : Glass epoxy-resolder cream thickness : 0.1 mm	mm Force Rod 10 20			
9. Insulation resista	nce : between wires	* . * * *			
Specified Value	MB series	-			
10. Insulation resist	ance : between wire and core				
Specified Value	MB series	DC25V 100kΩ min			
11. Withstanding vo	tage : between wire and core				
Specified Value	MB series	_			

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Specified Value	MB series		No abnormality.
T	The test samples shall be s		•
Test Methods and	Applied force	: 10N to X and	Y directions.
Remarks	Duration	: 5s.	
	Solder cream thickness : 0.1mm.		

13. Resistance to v	bration						
Specified Value	MB series		Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.				
	The test samples shall be	The test samples shall be soldered to the test board by the reflow.					
	Then it shall be submitted	to below test cond	nditions.				
	Frequency Range	10∼55Hz					
Test Methods and	Total Amplitude	1.5mm (May not	ot exceed acceleration 196m/s²)				
Remarks	Sweeping Method	10Hz to 55Hz to	to 10Hz for 1min.				
Remarks		X					
	Time	Υ	For 2 hours on each X, Y, and Z axis.				
		Z					
	Recovery : At least 2hrs o	f recovery under t	the standard condition after the test, followed by the measurement within 48hrs.				

14. Solderability						
Specified Value	MB series		At least 90% of surface of terminal electrode is covered by new solder.			
Test Methods and	The test samples shall be dipped in flux, and then immersed in molten solder as shown in below table. Flux: Methanol solution containing rosin 25%. Solder Temperature 245±5°C					
Remarks	Time	5±0.5 sec.				
	XImmersion depth : All signal in the signal is a signal in the signal is a signal in the signal is a signal in the signal in the signal is a signal in the signal in t	※Immersion depth : All sides of mounting terminal shall be immersed.				

15. Resistance to se	. Resistance to soldering heat					
Specified Value	MB series	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.				
	The test sample shall be exposed to reflow oven at 230°C for 40 seconds, with peak temperature at $260+0/-5$ °C for 5 seconds, 3 ti					
Test Methods and	Test board material : Glass epoxy-resin	Test board material : Glass epoxy-resin				
Remarks	Test board thickness : 1.0mm					
	Recovery : At least 2hrs of recovery under the	ne standard condition after the test, followed by the measurement within 48hrs.				

16. Thermal shock						
Specified Value	MB series		_	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
		•	elow table in sequence. The	The test samples shall be placed at specified temperature for specified temperature cycle shall be repeated 100 cycles.		
Test Methods and	1	-40±3	30±3			
Remarks	2	Room temperature	Within 3	7		
	3	+85±2	30±3			
	4	Room temperature	Within 3			
	Recovery	: At least 2hrs of recovery ur	nder the standard condition	after the test, followed by the measurement within 48hrs.		

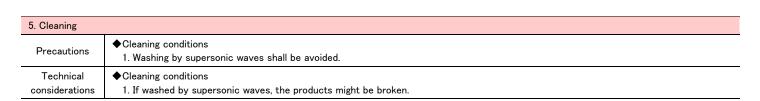
17. Damp heat					
Specified Value	MB series		Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.		
T . M .:	The test samples shall be soldered to the test board by the reflow. The test samples shall be placed in thermostatic oven set at specified temperature and humidity as shown in below table.				
Test Methods and	Temperature	60±2℃			
Remarks	Humidity	90∼95%RH			
	Time	1000+24/-0 hour			
	Recovery : At least 2	hrs of recovery under th	e standard condition after the test, followed by the measurement within 48hrs.		

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

18. Loading under d	lamp heat				
Specified Value	MB series		Inductance change : Within ±10%		
Specified value	ed value MB series		No significant abnormality in appearance.		
	The test samples shall be soldered to the test		st board by the reflow.		
	The test samples shall be placed in thermostatic oven set at specified temperature and humidity and applied the rated current				
Test Methods and	continuously as sho				
Remarks	Temperature	60±2°C			
T.G.I.I.G.I	Humidity	90~95%RH			
	Applied current	Rated current			
	Time	1000+24/-0 hour			
	Recovery : At least	2hrs of recovery under t	he standard condition after the test, followed by the measurement within 48hrs.		
19. Low temperatur	e life test				
0 10 11/1			Inductance change : Within ±10%		
Specified Value	MB series		No significant abnormality in appearance.		
	The test samples sh	all be soldered to the tes	t board by the reflow. After that, the test samples shall be placed at test conditions as shown		
-					
Test Methods and	in below table.				
Remarks	Temperature	-40±2°C	7		
		-40±2°C 1000+24/-0 hour			
	Temperature Time	1000+24/-0 hour	he standard condition after the test, followed by the measurement within 48hrs.		
	Temperature Time	1000+24/-0 hour	he standard condition after the test, followed by the measurement within 48hrs.		
	Temperature Time Recovery : At least	1000+24/-0 hour	he standard condition after the test, followed by the measurement within 48hrs.		
Remarks 20. High temperature	Temperature Time Recovery : At least	1000+24/-0 hour	he standard condition after the test, followed by the measurement within 48hrs. Inductance change: Within ±10%		
Remarks	Temperature Time Recovery : At least	1000+24/-0 hour			
Remarks 20. High temperatur	Temperature Time Recovery : At least re life test MB series	1000+24/-0 hour 2hrs of recovery under t	Inductance change : Within ±10%		
Remarks 20. High temperatur	Temperature Time Recovery : At least re life test MB series	1000+24/-0 hour 2hrs of recovery under t	Inductance change: Within ±10% No significant abnormality in appearance.		
20. High temperatur Specified Value	Temperature Time Recovery: At least re life test MB series The test samples sh	1000+24/-0 hour 2hrs of recovery under t	Inductance change: Within ±10% No significant abnormality in appearance.		
20. High temperature Specified Value Test Methods and	Temperature Time Recovery: At least re life test MB series The test samples sh in below table.	1000+24/-0 hour 2hrs of recovery under t	Inductance change: Within ±10% No significant abnormality in appearance.		
20. High temperature Specified Value Test Methods and	Temperature Time Recovery: At least Te life test MB series The test samples sh in below table. Temperature Time	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance.		
20. High temperature Specified Value Test Methods and	Temperature Time Recovery: At least Te life test MB series The test samples sh in below table. Temperature Time	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown		
20. High temperature Specified Value Test Methods and Remarks	Temperature Time Recovery: At least Te life test MB series The test samples sh in below table. Temperature Time	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown		
20. High temperature Specified Value Test Methods and Remarks	Temperature Time Recovery: At least MB series The test samples sh in below table. Temperature Time Recovery: At least	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown		
20. High temperature Specified Value Test Methods and Remarks 21. Loading at high	Temperature Time Recovery: At least MB series The test samples sh in below table. Temperature Time Recovery: At least	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown		
20. High temperature Specified Value Test Methods and Remarks 21. Loading at high	Temperature Time Recovery: At least MB series The test samples sh in below table. Temperature Time Recovery: At least	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown		
20. High temperature Specified Value Test Methods and Remarks 21. Loading at high Specified Value	Temperature Time Recovery: At least MB series The test samples sh in below table. Temperature Time Recovery: At least	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown		
20. High temperature Specified Value Test Methods and Remarks 21. Loading at high Specified Value	Temperature Time Recovery: At least MB series The test samples sh in below table. Temperature Time Recovery: At least	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown he standard condition after the test, followed by the measurement within 48hrs.		
20. High temperature Specified Value Test Methods and Remarks 21. Loading at high Specified Value	Temperature Time Recovery: At least MB series The test samples sh in below table. Temperature Time Recovery: At least	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown he standard condition after the test, followed by the measurement within 48hrs. — Standard test condition:		
20. High temperature Specified Value Test Methods and Remarks 21. Loading at high Specified Value 22. Standard condit	Temperature Time Recovery: At least MB series The test samples sh in below table. Temperature Time Recovery: At least temperature life test MB series	$1000+24/-0$ hour 2hrs of recovery under to the tess $85\pm2^{\circ}\text{C}$ $500+24/-0$ hour	Inductance change: Within ±10% No significant abnormality in appearance. t board by the reflow. After that, the test samples shall be placed at test conditions as shown he standard condition after the test, followed by the measurement within 48hrs. Standard test condition: Unless otherwise specified, temperature is 20±15°C and 65±20% of relative humidity.		

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ MB SERIES)

damage. For such uses, contact TAIYO YUDEN Sales Department in advance.


■PRECAUTIONS

1. Circuit Design Operating environment 1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or

2. PCB Design			
Precautions	◆Land pattern design 1. Please refer to a recommended land pattern.		
Technical considerations	 ◆Land pattern design Surface Mounting • Mounting and soldering conditions should be checked beforehand. • Applicable soldering process to this products is reflow soldering only. 		

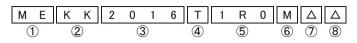
3. Considerations for automatic placement		
Precautions	 ◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. 	
Technical considerations	◆Adjustment of mounting machine 1. When installing products, care should be taken not to apply distortion stress as it may deform the products.	

4. Soldering 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified. 2. The product shall be used reflow soldering only. Precautions 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering. Lead free soldering 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently. ◆Reflow soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. Recommended reflow condition (Pb free solder) 5sec max 300 Peak: 260+0/-5°C $Temperature[^{\circ}C]$ 150~180 Technical 200 considerations 100 90±30sec 230°C min 0 Heating Time[sec]

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations Precautions 1. Please do not give the product any excessive mechanical shocks. 2. Please do not add any shock and power to a product in transportation. ◆Pick-up pressure 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. ◆Packing 1. Please avoid accumulation of a packing box as much as possible. 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards (splitting along perforations) 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by the handling in transportation. ◆Pick-up pressure 1. Damage and a characteristic can vary with an excessive shock or stress. **♦**Packing 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage conditions				
Precautions	 ♦ Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. • Recommended conditions Ambient temperature : 0~40°C Humidity : Below 70% RH • The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. 			
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.			


METAL WIRE-WOUND CHIP POWER INDUCTORS(MCOILTM ME SERIES)

REFLOW

■PARTS NUMBER

* Operating Temp.:-40~+125°C (Including self-generated heat)

△=Blank space

①Series name

Code	Series name
ME	Metal Wire-wound Chip Power Inductor

②Dimensions(T)

Code	Dimensions(T)[mm]	
KK	1.0	

 $\Im Dimensions(L \times W)$

92				
Code	Dimensions (L × W) [mm]			
2016	2.0 × 1.6			

4)Packaging

- ackaging				
Code	Packaging			
Т	Taping			

5 Nominal inductance

Code (example)	Nominal inductance [μ H]	
R47	0.47	
1R0	1.0	
4R7	4.7	

※R=Decimal point

6 Inductance tolerance

Code	Inductance tolerance	
M	±20%	

(7)Special code

© -F		
Code	Special code	
Δ	Standard	

®Internal code

■ STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Туре	L	W	Т	е	Standard quantity [pcs] Taping
MEKK2016	2.0±0.2 (0.079±0.008)	1.6±0.2 (0.063±0.008)	1.0 max (0.039 max)	0.5±0.3 (0.020±0.012)	3000

Unit:mm(inch)

PARTS NUMBER

MEKK2016 type

● WILKINZOTO type								
		Manada al fanda akan a	Inductance tolerance	Self-resonant frequency [MHz] (min.)	DC Resistance [Ω](max.)	Rated current ※) [mA] (max.)		Measuring
Parts number	EHS	Nominal inductance [μ H]				Saturation current Idc1	Temperature rise current Idc2	frequency[MHz]
MEKK2016TR47M	RoHS	0.47	±20%	-	0.030	4,500	4,300	1
MEKK2016T1R0M	RoHS	1.0	±20%	-	0.060	3,600	3,100	1
MEKK2016T2R2M	RoHS	2.2	±20%	_	0.150	2,400	1,900	1

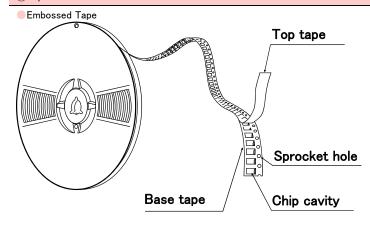
- *) The saturation current value (Idc1) is the DC current value having inductance decrease down to 30%. (at 20°C)
- *) The rated current is the DC current value that satisfies both of current value saturation current value and temperature rise current value.

Board dimensions: 100 × 50 × 1.6t mm

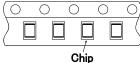
Pattern dimensions: $45 \times 45~\text{mm}$ (Double side board)

Pattern thickness: 70 μ m

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

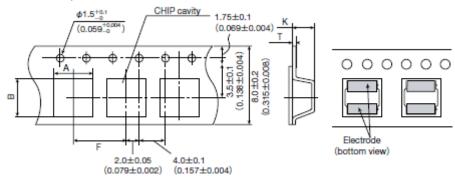

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ ME SERIES)

PACKAGING

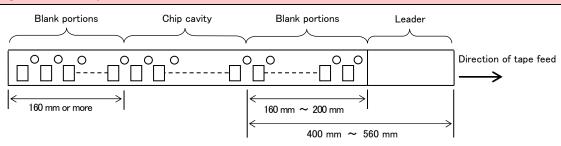

1)Minimum Quantity

Tuna	Standard Quantity [pcs]
Туре	Tape & Reel
MEKK2016	3000

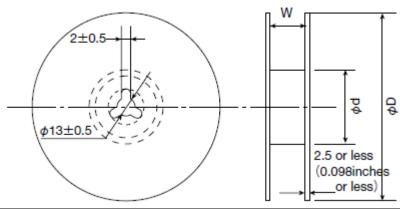
2Tape Material



3Taping dimensions


Embossed tape 8mm wide (0.315 inches wide)

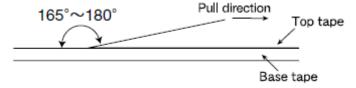
Type	Chip	cavity	Insertion pitch	Tape thickness		
Type	Α	В	F	T	K	
MEKK2016	1.9±0.1 (0.075±0.004)	2.45±0.1 (0.097±0.004)	4.0±0.1 (0.157±0.004)	0.25 ± 0.05 (0.009±0.002)	1.2 max (0.047 max)	


Unit:mm(inch)

4 Leader and Blank portion

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

⑤Reel size



Type	Reel size (Reference values)				
Туре	ϕ D	ϕ d	W		
MEKK2016	180+0/-3 (7.087+0/-0.118)	60+1/-0 (2.36+0.039/0)	10.0±1.5 (0.394±0.059)		

Unit:mm(inch)

©Top Tape Strength

The top The top tape requires a peel-off force of 0.1 to 1.0N in the direction of the arrow as illustrated below.

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ ME SERIES)

■RELIABILITY DATA

1. On and ' T			
1. Operating Tempe		40 1 4000	
Specified Value	ME series	-40~+125°C	
Test Methods and Remarks	Including self-generated heat		
2. Storage Tempera	ture Range		
Specified Value	ME series	-40~+85°C	
Test Methods and Remarks	0 to 40°C for the product with taping.		
3. Rated current			
Specified Value	ME series	Within the specified tolerance	
Opcomed Value	WE SOLIOS	The specifical constance	
4. Inductance			
Specified Value	ME series	Within the specified tolerance	
Test Methods and Remarks	Measuring equipment : LCR Meter (HP 4 Measuring frequency : 1MHz, 0.5V	l · · · · ·	
5. DC Resistance			
Specified Value	ME series	Within the specified tolerance	
Test Methods and Remarks	Measuring equipment : DC ohmmeter (HIOKI 3227 or equivalent)		
6. Self resonance fr	reguency		
Specified Value	ME series	_	
opcomed value	WE SOLICE		
7. Temperature cha	racteristic		
Specified Value	ME series	Inductance change : Within ±15%	
Test Methods and	Measurement of inductance shall be taken at		
Remarks	With reference to inductance value at +20°0		
8. Resistance to fle	xure of substrate		
Specified Value	ME series	No damage	
Test Methods and Remarks	The test samples shall be soldered to the test until deflection of the test board reaches to a state of the test board size and the samples of the test board size are the samples of the test board size and the samples of the test board size are the samples of the test board size and the samples of the test board reaches are the samples of the test board reaches and the samples of the test board reaches are the samples of the test board reaches and the samples of the test board reaches are the samples of the test board reaches to a sample of the test board reaches are the test board reaches and the test board reaches are the te	mm Force Rod 10 20	
9. Insulation resista	nce : between wires		
Specified Value	ME series		
10. Insulation resist	ance : between wire and over-coating		
Specified Value	ME series	DC25V 100k Ωmin	
11. Withstanding vo	Itage : between wire and over-coating		
Specified Value	ME series	-	
	•		

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Specified Value	ME series		No abnormality.
	The test samples shall be soldered to the tes		st board by the reflow.
Test Methods and	Applied force	: 10N to X and `	Y directions.
Remarks	Duration : 5s.		
	Solder cream thickness	: 0.12mm.	
13. Resistance to v		: 0.12mm.	
13. Resistance to v	ibration	: 0.12mm.	Inductance change : Within ±10%
13. Resistance to v		; 0.12mm.	Inductance change : Within ±10% No significant abnormality in appearance.
	ibration		No significant abnormality in appearance.

Test Methods and Remarks

Frequency Range 10~55Hz

Total Amplitude 1.5mm (May not exceed acceleration 196m/s²)

Sweeping Method 10Hz to 55Hz to 10Hz for 1min.

X

Time Y

For 2 hours on ach X, Y, and Z axis.

Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.

14. Solderability					
Specified Value	ME series		At least 90% of surface of terminal electrode is covered by new solder.		
Test Methods and Remarks	The test samples shall be dip Flux: Methanol solution cont Solder Temperature Time **Immersion depth: All sides**	aining rosin 25%. 245±5°C 5±0.5 sec.	then immersed in molten solder as shown in below table.		

15. Resistance to se	to soldering heat				
Specified Value	ME series	Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.			
Test Methods and Remarks	Test board material : Glass epoxy-resin Test board thickness : 1.0mm	ren at 230°C for 40 seconds, with peak temperature at $260+0/-5$ °C for 5 seconds, 2 times. The standard condition after the test, followed by the measurement within 48hrs.			

16. Thermal shock				
Specified Value	ME series		Inductance change No significant abnor	Within ±10% mality in appearance.
Test Methods and Remarks	Step 1 2 3 4	step 1 to step 4 as shown in be Conditions of 1 Temperature (°C) -40±3 Room temperature +85±2 Room temperature	low table in sequence. The cycle Duration (min) 30±3 Within 3 30±3 Within 3	The test samples shall be placed at specified temperature for specified temperature cycle shall be repeated 100 cycles.
	Recover	v : At least 2hrs of recovery un	der the standard condition	after the test, followed by the measurement within 48hrs.

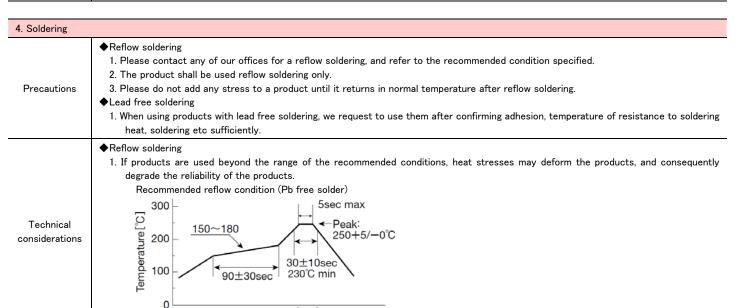
17. Damp heat			
Specified Value	ME series		Inductance change: Within ±10% No significant abnormality in appearance.
T . M	·	hall be soldered to the te hall be placed in thermost	st board by the reflow. tatic oven set at specified temperature and humidity as shown in below table.
Test Methods and Remarks	Temperature	60±2°C	
Remarks	Humidity	90∼95%RH	
	Time $500+24/-0$ hour		
	Recovery: At least 2hrs of recovery under the standard condition after the test, followed by the measurement within 48hrs.		

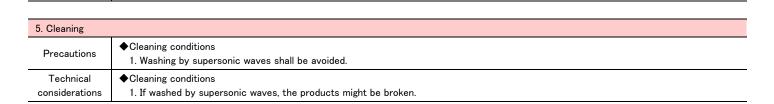
This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

18. Loading under d	amp heat		
Specified Value	ME series		Inductance change : Within ±10% No significant abnormality in appearance.
Test Methods and continuously as shown in below table.		hall be placed in thern	st board by the reflow. nostatic oven set at specified temperature and humidity and applied the rated current
Remarks	Temperature Humidity Applied current Time Recovery: At least 2	90~95%RH Rated current 500+24/-0 hour	he standard condition after the test, followed by the measurement within 48hrs.
19. Low temperatur	e life test		
Specified Value	ME series		Inductance change : Within $\pm 10\%$ No significant abnormality in appearance.
Test Methods and Remarks	The test samples sha in below table. Temperature	Il be soldered to the tes	t board by the reflow. After that, the test samples shall be placed at test conditions as shown
Nemarks	Time	500+24/-0 hour	he standard condition after the test, followed by the measurement within 48hrs.
20. High temperatur	re life test		
Specified Value	ME series		Inductance change : Within ±10% No significant abnormality in appearance.
Test Methods and Remarks	in below table. Temperature Time	85±2°C 500+24/-0 hour	t board by the reflow. After that, the test samples shall be placed at test conditions as shown he standard condition after the test, followed by the measurement within 48hrs.
21 Loading at high	temperature life test		
Specified Value	ME series		_
			<u> </u>
22. Standard condit	ion		
Specified Value	ME series		Standard test condition: Unless otherwise specified, temperature is $20\pm15^{\circ}$ C and $65\pm20\%$ of relative humidity. When there is any question concerning measurement result: In order to provide correlation data, the test shall be condition of $20\pm2^{\circ}$ C of temperature, $65\pm5\%$ relative humidity. Inductance is in accordance with our measured value.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

METAL WIRE-WOUND CHIP POWER INDUCTORS (MCOIL™ ME SERIES)


damage. For such uses, contact TAIYO YUDEN Sales Department in advance.


■PRECAUTIONS

1. Circuit Design Operating environment 1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or

2. PCB Design	
Precautions A Land pattern design 1. Please refer to a recommended land pattern.	
Technical considerations	 ◆Land pattern design Surface Mounting • Mounting and soldering conditions should be checked beforehand. • Applicable soldering process to this products is reflow soldering only.

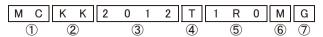
3. Considerations	3. Considerations for automatic placement		
 ◆Adjustment of mounting machine Precautions 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards. 2. Mounting and soldering conditions should be checked beforehand. 			
Technical considerations	• • • • • • • • • • • • • • • • • • • •		

Heating Time [sec]

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations Precautions 1. Please do not give the product any excessive mechanical shocks. 2. Please do not add any shock and power to a product in transportation. ◆Pick-up pressure 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push into a ferrite core exposure part. ◆Packing 1. Please avoid accumulation of a packing box as much as possible. 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards (splitting along perforations) 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by the handling in transportation. ◆Pick-up pressure 1. Damage and a characteristic can vary with an excessive shock or stress. **♦**Packing 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

7. Storage conditions		
Precautions	 ♦ Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. • Recommended conditions Ambient temperature : 0~40°C Humidity : Below 70% RH • The ambient temperature must be kept below 30°C. Even under ideal storage conditions, solderability of products electrodes may decrease as time passes. For this reason, product should be used within 6 months from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. 	
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.	


METAL MULTILAYER CHIP POWER INDUCTORS(MCOILTM MC SERIES)

REFLOW

■PARTS NUMBER

* Operating Temp.: -40~+125°C(Including self-generated heat)

 Δ =Blank space

(1)Series	name	

Code Series name		Series name
	MC	Metal base multilayer chip power inductor

historia (E)Nami

<u></u>		
ンロ	hickness	•

Code	Thickness[mm]
FE	0.65 max
KK	1.0 max

③Dimensions (L×W)

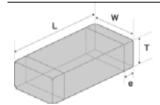
© 2 (2 ·)		
Code	Type (inch)	Dimensions (L×W) [mm]
1608	1608 (0603)	1.6 × 0.8
2012	2012 (0805)	2.0 × 1.2

4 Packaging

Code	Packaging
Т	Taping

5Nominal inductance

Code (example)	Nominal inductance[μ H]
R24	0.24
R47	0.47
1R0	1.0


6 Inductance tolerance

Code	Inductance tolerance
М	±20%

(7)Special code

Opecial code	
Code	Special code
G	5 surface terminal

■STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY

Type		w	т		Standard quantity[pcs]		
Туре	L	vv I e	е	Paper tape	Embossed tape		
MCFE1608	1.6±0.2	0.8±0.2	0.65 max	0.3±0.2	4000		
(0603)	(0.063 ± 0.008)	(0.031 ± 0.008)	(0.026 max)	(0.012 ± 0.008)	4000	_	
MCKK2012	2.0±0.2	1.2±0.2	1.0 max	0.5±0.3		2000	
(0805)	(0.079 ± 0.008)	(0.047 ± 0.008)	(0.039 max)	(0.02 ± 0.012)	_	3000	

Unit:mm(inch)

■PARTS NUMBER

MC1608

Parts number	EHS	EHS Nominal inductance [μ H]	Inductance tolerance	DC Resistance [Ω]		Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness
				(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	Emmi (max.)
MCFE1608TR24MG	RoHS	0.24	±20%	0.100	0.075	2.6	1.5	1	0.65
MCFE1608TR47MG	RoHS	0.47	±20%	0.150	0.114	2.0	1.2	1	0.65
MCFE1608T1R0MG	RoHS	1.0	±20%	0.340	0.270	1.4	0.8	1	0.65

MC2012

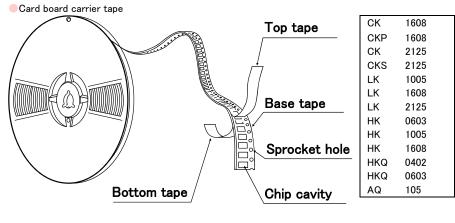
Parts number	EHS	Nominal inductance	Inductance tolerance	DC Resistance [Ω]		Rated current(Idc1)	Rated current(Idc2)	Measuring frequency	Thickness
		[μπ]		(max.)	(typ.)	[A] (max.)	[A] (max.)	[MHz]	[IIIII] (IIIax.)
MCKK2012T1R0MG	R₀HS	1.0	±20%	0.123	0.100	2.0	1.4	1	1.0

**Idc1 is the DC value at which the initial L value is decreased within 30% by the application of DC bias. (at 20°C)

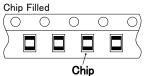
%Idc2 is the DC value at which the temperature of element is increased within 40°C by the application of DC bias. (at 20°C)

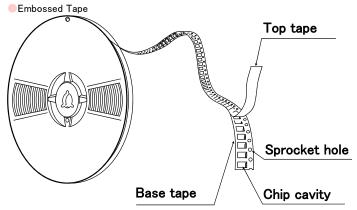
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type) Metal Multilayer Chip Power Inductors (MCOILTM MC series)

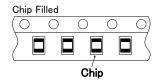

PACKAGING

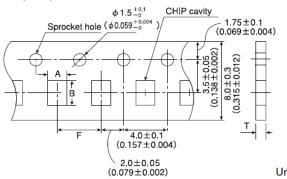
1 Minimum Quantity


Tape & Reel Packaging			
Turna	Thickness	Standard Q	uantity [pcs]
Туре	mm(inch)	Paper Tape	Embossed Tape
CK1608(0603)	0.8 (0.031)	4000	_
CK2125 (0805)	0.85 (0.033)	4000	_
GN2123 (0003)	1.25(0.049)	_	2000
CK6313E(000E)	0.85 (0.033)	4000	_
CKS2125 (0805)	1.25(0.049)	_	2000
CKP1608 (0603)	0.8 (0.031)	4000	_
CKP2012 (0805)	0.9 (0.035)	_	3000
CKP2016 (0806)	0.9 (0.035)	_	3000
	0.7 (0.028)	_	3000
CKP2520 (1008)	0.9 (0.035)	_	3000
	1.1 (0.043)	_	2000
NM2012 (0805)	0.9 (0.035)	_	3000
NIMOTOO (1000)	0.9 (0.035)	_	3000
NM2520(1008)	1.1 (0.043)	_	2000
LK1005 (0402)	0.5 (0.020)	10000	_
LK1608 (0603)	0.8 (0.031)	4000	_
11(0105 (0005)	0.85(0.033)	4000	_
LK2125 (0805)	1.25(0.049)	_	2000
HK0603 (0201)	0.3 (0.012)	15000	_
HK1005 (0402)	0.5 (0.020)	10000	_
HK1608 (0603)	0.8 (0.031)	4000	_
(0.1.0.5 (0.0.0.5)	0.85(0.033)	_	4000
HK2125(0805)	1.0 (0.039)	_	3000
HKQ0402 (01005)	0.2 (0.008)	20000	40000
HKQ0603W(0201)	0.3 (0.012)	15000	_
HKQ0603C (0201)	0.3 (0.012)	15000	_
HKQ0603S(0201)	0.3 (0.012)	15000	_
HKQ0603U(0201)	0.3 (0.012)	15000	_
AQ105(0402)	0.5 (0.020)	10000	_
BK0402(01005)	0.2 (0.008)	20000	_
BK0603(0201)	0.3 (0.012)	15000	_
BK1005(0402)	0.5 (0.020)	10000	_
BKH0603(0201)	0.3 (0.012)	15000	_
BKH1005 (0402)	0.5 (0.020)	10000	_
BK1608(0603)	0.8 (0.031)	4000	_
	0.85(0.033)	4000	_
BK2125(0805)	1.25(0.049)	_	2000
BK2010(0804)	0.45(0.018)	4000	_
BK3216(1206)	0.8 (0.031)	_	4000
BKP0402 (01005)	0.2 (0.008)	20000	_
BKP0603 (0201)	0.3 (0.012)	15000	_
BKP1005 (0402)	0.5 (0.020)	10000	_
BKP1608 (0603)	0.8 (0.031)	4000	_
BKP2125 (0805)	0.85 (0.033)	4000	_
MCF0605 (0202)	0.3 (0.012)	15000	_
MCF0806 (0302)	0.4 (0.016)	_	10000
MCF1210(0504)	0.55 (0.022)	_	5000
MCF2010(0804)	0.45 (0.018)	_	4000
MCFE1608 (0603)	0.65(0.026)	4000	-
MCKK2012 (0805)	1.00(0.039)	-	3000
		1	·


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

2Taping material


BK	0402	
BK	0603	
BK	1005	
BK	1608	
BK	2125	
BK	2010	
BKP	0402	
BKP	0603	
BKP	1005	
BKP	1608	
BKP	2125	
BKH	0603	
BKH	1005	
MCF	0605	
MC	1608	

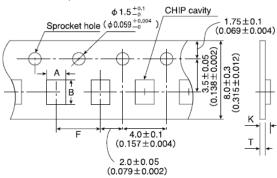

CK	2125
CKS	2125
CKP	2012
CKP	2016
CKP	2520
NM	2012
NM	2520
LK	2125
HKQ	0402
HK	2125

BK	2125	
BK	3216	
MCF	0806	
MCF	1210	
MCF	2010	
MC	2012	
	•	

3Taping Dimensions

Paper tape (8mm wide)

Unit: mm (inch)

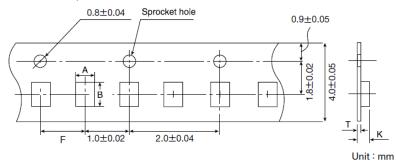

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

	Thickness	Chip	cavity	Insertion Pitch	Tape Thickness
Туре	mm (inch)	A	В	F	Т
		1.0±0.2	1.8±0.2	4.0±0.1	1.1max
CK1608(0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
		1.5±0.2	2.3±0.2	4.0±0.1	1.1max
CK2125(0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
		1.5±0.2	2.3±0.2	4.0±0.1	1.1max
CKS2125(0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
		1.0±0.2	1.8±0.2	4.0±0.1	1.1max
CKP1608 (0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
		0.65±0.1	1.15±0.1	2.0±0.05	0.8max
LK1005 (0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
		1.0±0.2	1.8±0.2	4.0±0.1	1.1max
LK1608(0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
11(0405(0005)	0.05(0.000)	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
LK2125 (0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
	()	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HK0603(0201)	0.3 (0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
	()	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
HK1005(0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
LU(1000 (0000)	0.0 (0.004)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
HK1608 (0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
HKO0400 (0100E)	0.0 (0.000)	0.25±0.04	0.45±0.04	2.0±0.05	0.36max
HKQ0402 (01005)	0.2 (0.008)	(0.010 ± 0.002)	(0.018 ± 0.002)	(0.079 ± 0.002)	(0.014max)
LIKO0603W(0301)	0.2 (0.010)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ0603W(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
HKO0603C (0301)	0.3 (0.012)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ0603C (0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
HKQ0603S(0201)	0.3 (0.012)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HNQ00033(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
HKQ0603U(0201)	0.3 (0.012)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ00030 (0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
AQ105(0402)	0.5 (0.020)	0.75±0.1	1.15±0.1	2.0±0.05	0.8max
AQ100(0402)	0.0 (0.020)	(0.030 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
BK0402(01005)	0.2 (0.008)	0.25 ± 0.04	0.45 ± 0.04	2.0±0.05	0.36max
	0.2 (0.000)	(0.010 ± 0.002)	(0.018±0.002)	(0.079 ± 0.002)	(0.014max)
BK0603(0201)	0.3 (0.012)	0.40 ± 0.06	0.70±0.06	2.0±0.05	0.45max
	0.0 (0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
BK1005(0402)	0.5 (0.020)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
	0.0 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
BK1608(0603)	0.8 (0.031)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
	, ,	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
BK2125(0805)	0.85(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
	, ,	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
BK2010(0804)	0.45 (0.018)	1.2±0.1	2.17±0.1	4.0±0.1	0.8max
· · ·		(0.047±0.004)	(0.085 ± 0.004)	(0.157±0.004)	(0.031max)
BKP0402 (01005)	0.2 (0.008)	0.25 ± 0.04	0.45 ± 0.04	2.0±0.05	0.36max
		(0.010±0.002)	(0.018±0.002)	(0.079±0.002)	(0.014max)
BKP0603(0201)	0.3 (0.012)	0.40 ± 0.06	0.70 ± 0.06	2.0 ± 0.05	0.45max
		(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
BKP1005 (0402)	0.5 (0.020)	0.65 ± 0.1	1.15 ± 0.1	2.0±0.05	0.8max
	+	(0.026±0.004) 1.0±0.2	(0.045±0.004)	(0.079±0.002)	(0.031max)
BKP1608 (0603)	0.8 (0.031)	(0.039 ± 0.008)	1.8±0.2 (0.071±0.008)	4.0±0.1	1.1max (0.043max)
		(0.039±0.008) 1.5±0.2	2.3±0.2	(0.157±0.004) 4.0±0.1	(0.043max) 1.1max
BKP2125 (0805)	0.85(0.033)	(0.059±0.008)	(0.091 ± 0.008)	4.0±0.1 (0.157±0.004)	(0.043max)
		0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BKH0603(0201)	0.3 (0.012)	(0.40±0.06 (0.016±0.002)	(0.028±0.002)	(0.079±0.002)	0.45max (0.018max)
		0.016±0.002)	1.15±0.1		
BKH1005(0402)	0.5 (0.020)	(0.026±0.004)	(0.045±0.004)	2.0±0.05 (0.079±0.002)	0.8max (0.031max)
		0.62±0.03	0.77±0.03	2.0±0.05	0.45max
MCF0605(0202)	0.3 (0.012)	(0.024±0.001)	(0.030 ± 0.001)	(0.079±0.002)	(0.018max)
		1.1±0.05	1.9±0.05	4.0±0.1	0.72max
MCFE1608(0603)	0.65(0.026)	(0.043 ± 0.002)	(0.075 ± 0.002)	(0.157 ± 0.004)	(0.028max)
	1	(0.040 ± 0.002)	(0.070 ± 0.002)	(0.107 ± 0.004)	Unit: mm (inch)

Unit: mm(inch)

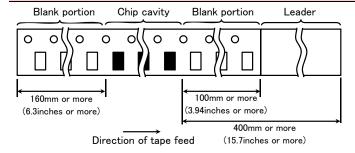
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Embossed Tape (8mm wide)

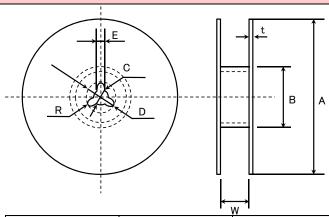

Unit: mm (inch)

T	Thickness	Chip	cavity	Insertion Pitch	Tape Th	nickness
Туре	mm(inch)	Α	В	F	K	Т
CK2125(0805)	1.25 (0.049)	1.5±0.2 (0.059±0.008)	2.3±0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	2.0 (0.079)	0.3 (0.012)
CKS2125(0805)	1.25 (0.049)	1.5±0.2 (0.059±0.008)	2.3±0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	2.0 (0.079)	0.3 (0.012)
CKP2012 (0805)	0.9 (0.035)	1.55±0.2 (0.061±0.008)	2.3 ± 0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	1.3 (0.051)	0.3 (0.012)
CKP2016 (0806)	0.9 (0.035)	1.8±0.1 (0.071±0.004)	2.2 ± 0.1 (0.087±0.004)	4.0±0.1 (0.157±0.004)	1.3 (0.051)	0.25 (0.01)
	0.7 (0.028)				1.4 (0.055)	
CKP2520 (1008)	0.9 (0.035)	2.3±0.1 (0.091±0.004)	2.8±0.1 (0.110±0.004)	4.0±0.1 (0.157±0.004)	1.4 (0.055)	0.3 (0.012)
	1.1 (0.043)				1.7 (0.067)	
NM2012 (0805)	0.9 (0.035)	1.55±0.2 (0.061±0.008)	2.3±0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	1.3 (0.051)	0.3 (0.012)
	0.9 (0.035)	2.3±0.1	2.8±0.1	4.0±0.1	1.4 (0.055)	0.3
NM2520(1008)	1.1 (0.043)	(0.091 ± 0.004)	(0.110±0.004)	(0.157±0.004)	1.7 (0.067)	(0.012)
LK2125 (0805)	1.25(0.049)	1.5±0.2 (0.059±0.008)	2.3±0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	2.0 (0.079)	0.3 (0.012)
	0.85 (0.033)	1.5±0.2	2.3±0.2	4.0±0.1	1.5 (0.059)	0.3
HK2125 (0805)	1.0 (0.039)	(0.059 ± 0.008)	(0.091±0.008)	(0.157±0.004)	2.0 (0.079)	(0.012)
BK2125(0805)	1.25 (0.049)	1.5±0.2 (0.059±0.008)	2.3±0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	2.0 (0.079)	0.3 (0.012)
BK3216(1206)	0.8(0.031)	1.9±0.1 (0.075±0.004)	3.5±0.1 (0.138±0.004)	4.0±0.1 (0.157±0.004)	1.4 (0.055)	0.3 (0.012)
MCF0806 (0302)	0.4 (0.016)	0.75±0.05 (0.030±0.002)	0.95±0.05 (0.037±0.002)	2.0±0.05 (0.079±0.002)	0.55 (0.022)	0.3 (0.012)
MCF1210 (0504)	0.55(0.022)	1.15±0.05 (0.045±0.002)	1.40±0.05 (0.055±0.002)	4.0±0.1 (0.157±0.004)	0.65 (0.026)	0.3 (0.012)
MCF2010(0804)	0.45(0.018)	1.1±0.1 (0.043±0.004)	2.3±0.1 (0.091±0.004)	4.0±0.1 (0.157±0.004)	0.85 (0.033)	0.3 (0.012)
MCKK2012(0805)	1.0 (0.039)	1.55±0.2 (0.061±0.008)	2.3±0.2 (0.091±0.008)	4.0±0.1 (0.157±0.004)	1.3 (0.051)	0.25 (0.010)

Unit: mm(inch)


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

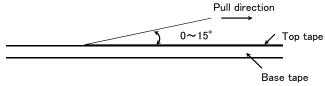
Embossed Tape (4mm wide)



Type	Thickness	Chip (cavity	Insertion Pitch	Tape Thickness	
Туре	mm(inch)	Α	В	F	K	Т
HKQ0402(01005)	0.2 (0.008)	0.23	0.43	1.0±0.02	0.5max.	0.25max.
					Unit	: mm

4LEADER AND BLANK PORTION

⑤Reel Size


Α	В	С	D	E	R
ϕ 178 ± 2.0	ϕ 50 or more	ϕ 13.0 \pm 0.2	ϕ 21.0±0.8	2.0±0.5	1.0

	t	W
4mm width tape	1.5max.	5±1.0
8mm width tape	2.5max.	10±1.5

(Unit:mm)

$\ensuremath{\text{6}\text{Top}}$ tape strength

The top tape requires a peel-off force of 0.1 \sim 0.7N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Multilayer chip inductors

Multilayer chip inductors for high frequency, Multilayer chip bead inductors

Multilayer common mode choke coils (MC series F type)

Metal Multilayer Chip Power Inductors (MCOIL™ MC series)

■RELIABILITY DATA

1. Operating Temper	rature Range			
	BK0402			
	BK0603			
	BK1005			
	BKH0603			
	BKH1005		_55~+125°C	
	BK1608			
	BK2125			
	4004)/	BK2010		
	ARRAY	BK3216		
	BKP0402	•		
	BKP0603			
	BKP1005			
	BKP1608			
	BKP2125			
	MCF 0605			
	MCF 0806		40 105%	
	MCF 1210		-40~+85°C	
	MCF 2010		1	
	CK1608			
	CK2125			
Specified Value	CKS2125			
	CKP1608			
	CKP2012			
	CKP2016			
	CKP2520			
	NM2012			
	NM2520			
	LK1005			
	LK1608			
	LK2125		7	
	HKQ0402			
	HK0603		55~+125°C	
	HK1005		1	
	HK1608		10 10590	
	HK2125		-40~+85°C	
	HKQ0603W/HK	Q0603C/HKQ0603S/		
	HKQ0603U/		-55~+125°C	
	AQ105			
	MCFE1608		40 1 40 10 2 (2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	MCKK2012		-40∼+125°C (Including self-generated heat)	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

ure Range				
BK0402				
BK0603				
BK1005				
BKH0603				
BKH1005		-55~+125°C		
BK1608				
BK2125				
ADDAV	BK2010			
ARRAT	BK3216			
BKP0402	•			
BKP0603				
BKP1005		-55~+85°C		
BKP1608				
BKP2125				
MCF 0605				
MCF 0806		40 10500		
MCF 1210		-40~+85°C		
MCF 2010		1		
CK1608				
CK2125				
CKS2125				
CKP1608				
CKP2012		-40~+85°C		
CKP2016				
CKP2520				
NM2012				
NM2520				
LK1005				
LK1608				
LK2125				
HKQ0402				
HK0603		55~+125°C		
HK1005				
HK1608		40 L05 ⁰ 0		
HK2125		-40~+85°C		
HKQ0603W/H	KQ0603C/HKQ0603S/			
HKQ0603U/		-55~+125°C		
AQ105				
MCFE1608		10 1000		
MCKK2012				
	BK0402 BK0603 BK1005 BK1005 BK1005 BK1008 BK11005 BK1608 BK2125 ARRAY BKP0402 BKP0603 BKP1005 BKP1608 BKP125 MCF 0605 MCF 0806 MCF 1210 MCF 2010 CK1608 CK2125 CK2125 CK2125 CK2125 CK2125 CKP1608 CKP2012 CKP2016 CKP2012 CKP2016 CKP2012 HX0603 LK1005 LK1608 LK2125 HKQ0402 HK0603 HK1005 HK1608 HK1005 HK1608 HK2125 HKQ0603W/HHCQ0603W/HHCQ0603W/HCFE1608	BK0402 BK0603 BK1005 BK1005 BK1005 BK1608 BK11005 BK1608 BK2125 ARRAY BK3216 BK90603 BKP1005 BK91608 BKP2125 MCF 0605 MCF 0806 MCF 1210 MCF 2010 CK1608 CK2125 CKS2125 CKP2012 CKP2012 CKP2016 CKP2520 NM2012 NM2520 LK1005 LK1608 LK2125 HKQ0402 HK0603 HK1005 HK1608 LK2125 HKQ0402 HK0603 HK1005 HK1608 HK2125 HKQ0603W/HKQ0603C/HKQ0603S/ HKQ0603U/ AQ105 MCFE1608		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

BK0402
BK0603
BK1005 BKH0603 BKH1005 BKH1005 BKH1005 BK1608 BK2125 BK2125 BK2010 BK200 BK90402 BK90603 BKP0603 BKP1005 BKP0603 BKP1005 BKP0603 BKP1005 BKP1005 BKP1005 BKP1608 BKP1005 BKP1608 BKP1005 BKP1608 BKP1005 BKP1608 BKP1095 BKP1608 BKP1095 BKP1
BKH0603
BKH1005 BK1608 BK2125 BK2125 BK2010 BK3216 BK216 BK9402 BKP0402 BKP0603 BKP1005 BKP1005 BKP1005 BKP1608 BKP125 BKP1608 BKP2125 BKP1608 BKP2125 BKP2
BK1608
BK2125 ARRAY BK2010 BK3216 100~200mA DC BKP0402 0.55~1.1A DC BKP0603 0.8~1.8A DC BKP1005 BKP1005 BKP1608 1.0~3.0A DC BKP2125 1.5~4.0A DC MCF 0605 MCF 0806 0.1~0.13A DC MCF 2010 MCF 2010 CK1608 CK2125 60~500mA DC CK52125 110~280mA DC CK52125 110~280mA DC CK52125 110~280mA DC CK52125
BK2010 100mA DC BK90402 0.55~1.1A DC BKP0603 0.8~1.8A DC BKP1005 0.8~2.4A DC BKP1608 1.0~3.0A DC BKP2125 1.5~4.0A DC MCF 0605 0.05A DC MCF 0806 0.1~0.13A DC MCF 2010 0.1 ~0.15A DC CK12125 0.0~60mA DC CK2125 0.0~500mA DC CK2125 60~500mA DC CK2125 110~280mA DC
BK3216 100~200mA DC
BK3216 100~200mA DC
BKP0603
BKP1005 0.8~2.4A DC BKP1608 1.0~3.0A DC BKP2125 1.5~4.0A DC MCF 0605 0.05A DC MCF 0806 0.1~0.13A DC MCF 1210 0.1~0.15A DC MCF 2010 0.1A DC CK1608 50~60mA DC CK2125 60~500mA DC CK2125 60~500mA DC CKS125 110~280mA DC
BKP1608 1.0~3.0A DC BKP2125 1.5~4.0A DC MCF 0605 0.05A DC MCF 0806 0.1~0.13A DC MCF 1210 0.1~0.15A DC MCF 2010 0.1A DC CK1608 50~60mA DC CK2125 60~500mA DC CK2125 110~280mA DC
BKP2125 1.5~4.0A DC MCF 0605 0.05A DC MCF 0806 0.1~0.13A DC MCF 1210 0.1~0.15A DC MCF 2010 0.1A DC CK1608 50~60mA DC CK2125 60~500mA DC CKS2125 110~280mA DC
MCF 0605 0.05A DC MCF 0806 0.1~0.13A DC MCF 1210 0.1~0.15A DC MCF 2010 0.1A DC CK1608 50~60mA DC CK2125 60~500mA DC CKS2125 110~280mA DC
MCF 0806 0.1~0.13A DC MCF 1210 0.1~0.15A DC MCF 2010 0.1A DC CK1608 50~60mA DC CK2125 60~500mA DC CKS2125 110~280mA DC
MCF 1210 0.1~0.15A DC MCF 2010 0.1A DC CK1608 50~60mA DC CK2125 60~500mA DC CKS2125 110~280mA DC
MCF 2010 0.1A DC CK1608 50~60mA DC CK2125 60~500mA DC CKS2125 110~280mA DC
CK1608 50~60mA DC CK2125 60~500mA DC CKS2125 110~280mA DC
CK2125 60~500mA DC CKS2125 110~280mA DC
CKS2125 110~280mA DC
CKS2125 110~280mA DC
Specified Value CKP1608 0.35~0.9A DC
CKP2012 0.7~1.7A DC
CKP2016 0.9∼1.6A DC
CKP2520 1.1∼1.8A DC
NM2012 1.0∼1.2A DC
NM2520 0.9∼1.2A DC
LK1005 20~25mA DC
LK1608 1 ~150mA DC
LK2125 5~300mA DC
HK0603 60~470mA DC
HK1005 110~300mA DC (-55~+125°C) 200~900mA DC (-55~+85°C)
HK1608 150~300mA DC
HK2125 300mA DC
HKQ0402 100~500mA DC
HKQ0603W 100~850mA DC
HKQ0603C 160~850mA DC
HKQ0603S 130~600mA DC
HKQ0603U 190~900mA DC
AQ105 280~710mA DC
MCFE1608
MCKK2012 Idc1 :2000mA DC, Idc2 :1400mA DC

Definition of rated current:

- ·In the CK, CKS and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.
- •In the BK Series P type, CK Series P type, NM Series, the rated current is the value of current at which the temperature of the element is increased within 40°C.
- •In the LK, HK, HKQ0603, and AQ Series, the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.
- •In the HKQ0402(~9N1), the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.
- •In the HKQ0402(10N~), the rated current is either the DC value at which the initial L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 25°C.
- In the MC Series, Idc1 is the DC value at which the initial L value is decreased within 30% and Idc2 is the DC value at which the temperature of element is increased within 40°C by the application of DC bias. (at 20°C)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4. Impedance			
	BK0402		$10\sim330\Omega \pm 5\Omega(10\Omega), \pm 25\%(Other)$
	BK0603		10~1200Ω ±25%
	BK1005		10~1800Ω ±25%
	BKH0603		25~1500Ω ±25%
	BKH1005		600~1800Ω ±25%
	BK1608		22~2500Ω ±25%
	BK2125		15~2500Ω ±25%
	ARRAY BK2	010	5~1000Ω ±25%
	BK3	216	60~1000Ω ±25%
	BKP0402		$10\sim33\Omega \pm 5\Omega \times 10\Omega$, $\pm 25\% \times (Other)$
	BKP0603		$10\sim120Ω \pm 5Ω(10Ω)$, $\pm25\%(Other)$
	BKP1005		$10\sim330$ Ω ±5 Ω(EM100), ±25%(Other)
	BKP1608		33~470Ω ±25%
	BKP2125		33~330Ω ±25%
	MCF 0605		$12 \sim 90 \Omega \pm 5 \Omega (12 \Omega)$, $\pm 20\% (35 \Omega)$, $\pm 25\% (Other)$
	MCF 0806		$12 \sim 90 \Omega \pm 5 \Omega(12 \Omega)$, $\pm 20\%$ (Other)
	MCF 1210		$40 \sim 90 \Omega \pm 20\% (2H900), \pm 25\% (Other)$
	MCF 2010		90Ω ±25%
	CK1608		-
Specified Value	CK2125 CKS2125		-
	CKP1608		-
	CKP1008		-
	CKP2012 CKP2016		-
	CKP2520		-
	NM2012		-
	NM2520		-
	LK1005		-
	LK1608		-
	LK2125		-
	HKQ0402		
	HK0603		
	HK1005		
	HK1608		
	HK2125		
	HKQ0603W/HKQ0603C	/HKQ0603S/	
	HKQ0603U		
	AQ105		
	MCFE1608		
	MCKK2012		
	BK0402Series, BKP040		
	Measuring frequency	: 100±1MHz	
	Measuring equipment	: E4991A(or its eq	
	Measuring jig	: 16197A(or its eq	uivalent)
	BK0603Series, BKP060		
	Measuring frequency	: 100±1MHz : 4291A(or its equi	inclose)
	Measuring equipment Measuring jig	: 16193A(or its equi	
		5Series ,BKH1005Series	uivaiciit/
Test Methods and	Measuring frequency	: 100±1MHz	
Remarks	Measuring equipment	: 4291A (or its equi	ivalent)
riomanio	Measuring jig		uivalent), 16193A(or its equivalent)
	BK1608 • 2125 Series, Bh		
	Measuring frequency	: 100±1MHz	
	Measuring equipment	: 4291A (or its equi	ivalent), 4195A(or its equivalent)
	Measuring jig	: 16092A(or its eq	uivalent)or 16192A(or its equivalent)/HW
	BK2010 • 3216Series, M		
	Measuring frequency	: 100±1MHz	
	Measuring equipment		ivalent), 4195A(or its equivalent)
	Measuring jig : 16192A(or its equ		uivalent)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

5. Inductance	DIVO400		
	BK0402		
	BK0603		<u> </u>
	BK1005		<u> </u>
	BKH0603		
	BKH1005		
	BK1608		
	BK2125		
	ARRAY BK201)	
	BK321	3	_
	BKP0402		
	BKP0603		
	BKP1005		
	BKP1608		
	BKP2125		
	MCF 0605		
	MCF 0806		
	MCF 1210]
	MCF 2010]
	CK1608		4.7~10.0 µH: ±20%
	CK2125		0.1~10.0 µH: ±20%
	CKS2125		1.0~10.0 µH: ±20%
	CKP1608		0.33~2.2 µH: ±20%
Specified Value	CKP2012		0.47~4.7 µH: ±20%
	CKP2016		0.47~4.7 µH: ±20%
	CKP2520		0.47~4.7 µH: ±20%
	NM2012		0.82~1.0 μH: ±20%
	NM2520		$1.0 \sim 2.2 \mu\text{H}$: $\pm 20\%$
	LK1005		0.12~2.2 µH: ±10 or 20%
	LK1608		0.047~33.0 μH: ±20% 0.10~12.0 μH: ±10%
	LK2125		0.047~33.0 µH: ±20% 0.10~12.0 µH: ±10%
	HK0603		1.0~6.2nH: ±0.3nH 6.8~100nH: ±5%
	HK1005		1.0~6.2nH: ±0.3nH
	HK1608		1.0~5.6nH: ±0.3nH
	HK2125		1.5~5.6nH: ±0.3nH 6.8~470nH: ±5%
	HKQ0402		0.5~3.9nH: ±0.1 or 0.2 or 0.3nH 4.3~5.6nH: ±0.3nH or 3% or 5% 6.2~47nH: ±3 or 5%
			0.6~3.9nH: ±0.1 or 0.2 or 0.3nH 4.3~6.2nH: ±0.2 or 0.3nH or 3 or 5%
	HKQ0603W		6.8~27nH: ±3 or 5% 33~100nH: ±5%
	HKQ0603C		0.6~3.9nH: ±0.1 or 0.2 or 0.3nH 4.3~6.2nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5%
	HKQ0603S		0.6~6.2nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5%
	HKQ0603U		0.6~4.2nH: ±0.1 or 0.2 or 0.3nH 4.3~6.5nH: ±0.2 or 0.3nH 6.8~22nH: ±3 or 5%
	AQ105		1.0~6.2nH: ±0.3nH 6.8~15nH: ±5%
	MCFE1608		0.24~1.0 µH: ±20%
	MCKK2012		1.0 μH: ±20%
-		at a c	1.0 μπ. ±20%
	CK, LK, CKP, NM, MC S	:ries : 2~4MHz(CK1)	cuo)
	Measuring frequency Measuring frequency		
	Measuring frequency	: 2~25MHz(CK) : 2~10MHz(CK)	
	Measuring frequency	: 10~25MHz(Lk	
	Measuring frequency	: 1~50MHz(LK1	
	Measuring frequency	: 0.4~50MHz(LI	
	Measuring frequency		8 · CKP2012 · CKP2016 · CKP2520 · NM2012 · NM2520 · MCFE1608 · MCKK2012)
	Measuring equipment /jig		iB+16092A(or its equivalent) •4195A+41951+16092A(or its equivalent)
	Wodau ing equipment / Jig		2A(or its equivalent) •4291A+16193A(or its equivalent)/LK1005
			41A + 42842C + 42851 - 61100 (or its equivalent) / CKP1608 · CKP2012 · CKP2016 · CKP2520 · NM2012 ·
			E1608•MCKK2012
Test Methods and	Measuring current	:•1mA rms(0.04	
Remarks		•0.1mA rms(5.	
	HK、HKQ、AQ Series	• · · · · · · · · · · · · · · · · · · ·	
	Measuring frequency	· 100MHz(HK06)	03•HK1005•AQ105)
	Measuring frequency	: 50/100MHz(H	
	Measuring frequency		1603C·HKQ0603S·HKQ0603U)
	Measuring frequency	: 300/500MHz(H	
	Measuring frequency	: 100/500MHz(H	
	Measuring equipment /jig		A(or its equivalent)/HK0603•AQ105
	3 ,		3A(or its equivalent)/HK1005
			97A(or its equivalent)/HKQ0603S+HKQ0603U+HKQ0603W+HKQ0603C
			2A + in-house made jig(or its equivalent)/HK1608•HK2125
			96D (or its equivalent) /HKQ0402

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Q			
	BK0402		
	BK0603		
	BK1005		
	BKH0603		
	BKH1005		
	BK1608		
	BK2125		
	ARRAY BK2010		
	BK3216		_
	BKP0402		-
	BKP0603		-
	BKP1005		-
	BKP1608		
	BKP2125		
	MCF 0605		
	MCF 0806		
	MCF 1210		-
	MCF 2010		
	CK1608 CK2125		1
	CKS2125		-
Specified Value	CK92123 CKP1608		1
	CKP2012		_
	CKP2016		1
	CKP2520		1
	NM2012		
	NM2520		
	LK1005		10~20 min.
	LK1608		10~35 min.
	LK2125		15∼50 min.
	HK0603		4~5 min.
	HK1005		8 min.
	HK1608		8~12 min.
	HK2125		10~18 min.
	HKQ0402		3∼8 min.
	HKQ0603W		6~15 min.
	HKQ0603C		14∼15 min.
	HKQ0603S		10~13 min.
	HKQ0603U		14 min.
	AQ105		8 min.
	MCFE1608		_
	MCKK2012 LK Series		
	Measuring frequency	: 10~25MHz(LK10	105)
	Measuring frequency	: 1~50MHz(LK160	
	Measuring frequency	: 0.4~50MHz(LK21	
	Measuring equipment /jig		+16092A(or its equivalent)
			-16092A(or its equivalent)
			(or its equivalent)
			(or its equivalent)/LK1005
	Measuring current	1mA rms(0.047	
Test Methods and		•0.1mA rms(5.6~	γ33 μH)
Remarks	HK, HKQ, AQ Series	1001111 /111/0000	LIKTORE ACTOR)
	Measuring frequency	: 100MHz(HK0603• : 50/100MHz(HK16	
	Measuring frequency Measuring frequency		30°HKQ0603S•HKQ0603U)
	Measuring frequency	: 300/500MHz(HKC	
	Measuring frequency	: 100/500MHz(HKC	
	Measuring equipment /jig		or its equivalent)/HK0603·AQ105
			(or its equivalent)/HK1005
		•E4991A+16197A	A(or its equivalent)/HKQ0603S+HKQ0603U+HKQ0603W+HKQ0603C
			+ in-house made jig(or its equivalent)/HK1608, HK2125
		•E4991A+16196	D(or its equivalent)HKQ0402
	·	·	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

	BK0402		0.07∼1.2Ωmax.		
	BK0603		0.065~1.50 Ω max.		
	BK1005		0.03~0.90Ω max.		
	BKH0603		0.26~3.20 Ω max.		
	BKH1005		0.85~2.00 Ω max.		
	BK1608		0.05~1.10 Ω max.		
	BK2125		0.05~0.75Ω max.		
	ARRAY	BK2010	0.10~0.90 Ω max.		
	ARRAT	BK3216	0.15~0.80 Ω max.		
	BKP0402		0.05~0.15Ω max.		
	BKP0603		0.030~0.180Ω max.		
	BKP1005		0.0273~0.220 Ω max.		
	BKP1608		0.025~0.18 Ω max.		
	BKP2125		0.020~0.075Ω max.		
	MCF 0605		2.5~6.5 Ω max		
	MCF 0806		2.5∼5.0 Ω max.		
	MCF 1210		2.5~4.5 Ω max.		
	MCF 2010		4.5Ω max.		
	CK1608		$0.45 \sim 0.85 \Omega(\pm 30\%)$		
	CK2125		0.16∼0.65 Ω max.		
pecified Value	CKS2125		0.12∼0.52 Ω max.		
Deciried Value	CKP1608		0.15~0.35 Ω max.		
	CKP2012		0.08∼0.28 Ω max.		
	CKP2016		0.075∼0.20 Ω max		
	CKP2520		0.05∼0.16Ω max.		
	NM2012		0.10~0.15Ω max.		
	NM2520		0.11∼0.22 Ω max.		
	LK1005		0.41∼1.16Ω max.		
	LK1608		0.2~2.2Ω max.		
	LK2125		0.1~1.1Ω max.		
	HK0603		0.11~3.74Ω max.		
	HK1005		0.08~4.8 Ω max.		
	HK1608		0.05~2.6Ω max.		
	HK2125		0.10∼1.5Ω max.		
	HKQ0402		0.08~5.0Ω max.		
	HKQ0603W		0.07~4.1 Ω max.		
	HKQ0603C		0.07~1.6Ω max.		
	HKQ0603S		0.06~1.29 Ω max.		
	HKQ0603U		0.06~1.29 Ω max.		
	AQ105		0.07~0.45 Ω max.		
	MCFE1608		0.100~0.340 Ω max.		
	MCKK2012		0.123 Ω max.		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

8. Self Resonance Fre			
	BK0402		
	BK0603		
	BK1005		
	BKH0603		
	BKH1005		
	BK1608		
	BK2125		
	ARRAY	BK2010	
		BK3216	
	BKP0402		
	BKP0603		
	BKP1005		
	BKP1608		
	BKP2125		
	MCF 0605		
	MCF 0806		
	MCF 1210		
	MCF 2010		
	CK1608		17∼25MHz min.
	CK2125		24~235MHz min.
Specified Value	CKS2125		24~75MHz min.
Specified value	CKP1608		
	CKP2012		
	CKP2016		_
	CKP2520		
	NM2012		
	NM2520		
	LK1005		40~180MHz min.
	LK1608		9~260MHz min.
	LK2125		13∼320MHz min.
	HK0603		900∼10000MHz min.
	HK1005		400∼10000MHz min.
	HK1608		300∼10000MHz min.
	HK2125		200∼4000MHz min.
	HKQ0402		1200~10000MHz min.
	HKQ0603W		800∼10000MHz min.
	HKQ0603C		2500~10000MHz min.
	HKQ0603S		1900~10000MHz min.
	HKQ0603U		1900~10000MHz min.
	AQ105		2300~10000MHz min.
	MCFE1608		
	MCKK2012		_
	LK, CK Series :		
T . M	Measuring equip	oment : 4195A (or its equi	valent)
Test Methods and	Measuring jig	: 41951+16092A (or its equivalent)
Remarks	HK, HKQ, AQ Series :		
	Measuring equip	oment : 8719C(or its equi	ivalent) •8753D (or its equivalent) /HK2125

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Temperature Chara						
	BK0402					
	BK0603					
	BK1005					
	BKH0603					
	BKH1005					
	BK1608					
	BK2125					
		BK2010				
		BK3216				
	BKP0402					
	BKP0603					
	BKP1005					
	BKP1608					
	BKP2125					
	MCF 0605					
Specified Value	MCF 0806			_		
	MCF 1210					
	MCF 2010					
	CK1608			7		
	CK2125			1		
	CKS2125					
	CKP1608					
	CKP2012					
	CKP2016					
	CKP2520			1		
	NM2012			7		
	NM2520					
	LK1005			7		
	LK1608			٦		
	LK2125			٦		
	HK0603					
	HK1005			1		
	HK1608					
	HK2125					
	HKQ0402			┪		
	HKQ0603W			┪		
	HKQ0603V			┥	Inductance change: Within ±10%	
				┪		
	HKQ0603S			\dashv		
	HKQ0603U			4		
	AQ105			4		
	MCFE1608			4		
	MCKK2012					
	HK、HKQ、AQ Seri					
	Temperature rang		: −30~+85°C			
Test Methods and	Reference temper	ature	: +20°C			
Remarks	MC Series:		40 1.0=05			
	Temperature rang		: −40~+85°C			
	Reference temper	ature	: +20°C			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

10. Resistance to Flex	ure of Substrate		
	BK0402		
	BK0603		
	BK1005		
	BKH0603		
	BKH1005		
	BK1608		
	BK2125		
		BK2010	
	ARRAY	BK3216	
	BKP0402	BROZIO	
	BKP0603		
	BKP1005		
	BKP1608		
	BKP2125		
	MCF 0605		
	MCF 0806		
	MCF 1210		
	MCF 2010		
	CK1608 CK2125		
Specified Value	CKS2125		No mechanical damage.
	CKP1608		
	CKP2012		
	CKP2016		
	CKP2520		
	NM2012		
	NM2520		
	LK1005		
	LK1608		
	LK2125		
	HK0603		
	HK1005		
	HK1608		
	HK2125		
	HKQ0402		
	HKQ0603W		
	HKQ0603C		
	HKQ0603S		
	HKQ0603U		
	AQ105		
	MCFE1608		
	MCKK2012		
	Warp		ize, BKP, BKH1005, CK, CKS, CKP, NM, LK, HK, HKQ0603S, HKQ0603U,
		AQ Series, MCF1210, MC Ser	
	To add to a 1		0603、HKQ0402、HKQ0603W、HKQ0603C Series、MCF Series without 1210 size,)
	Testing board	: glass epoxy-resin substrate	
	Thickness	: 0.8mm	
		<u>20</u>	
Test Methods and		[D 220]	
Remarks		Board R-230	w
		Board	Warp
			\
			14
		45 45	
		← → ←	→
		1 1	(Unit:mm)
	Ī		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

11 0-14							
11. Solderability	BK0402						
	BK0603						
	BK1005						
	BKH0603						
	BKH1005						
	BK1608						
	BK2125						
	ARRAY	BK2010					
		BK3216			<u></u>		
	BKP0402				At least 75% of terminal electrode is covered by new solder.		
	BKP0603						
	BKP1005						
	BKP1608						
Specified Value	BKP2125						
	MCF 0605						
	MCF 0806						
	MCF 1210						
	MCF 2010						
	CK1608						
	CK2125						
	CKS2125						
opcomou value	CKP1608						
	CKP2012						
	CKP2016						
	CKP2520						
	NM2012						
	NM2520						
	LK1005						
	LK1608						
	LK2125				At least 75% of terminal electrode is covered by new solder.		
	HK0603 HK1005						
	HK1005 HK1608						
	HK2125						
	HKQ0402						
	HKQ0603W				1		
	HKQ0603C						
	HKQ0603S						
	HKQ0603U						
	AQ105						
	MCFE1608						
	MCKK2012						
Test Methods and	Solder temperati	ure	:230±5°	C (JIS Z 32	32 H60A or H63A)		
Remarks	Solder temperatu	ure	:245±3°	C (Sn/3.0Ag	s/0.5Cu)		
I Ciliai NS	Duration :4±1 sec.			э.			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

10 D 11 1 2 11						
12. Resistance to Sold						
1	BK0402			-		
ĺ	BK0603			4		
1	BK1005			-		
Í	BKH0603 BKH1005 BK1608 BK2125 ARRAY BK2010 BK3216			-		
				1		
				1		
!				Appearance: No significant abnormality		
1				Impedance change: Within ±30%		
!				1		
!	BKP0402			-		
!	BKP0603			1		
!	BKP1005			1		
	BKP1608			1		
!	BKP2125					
	MCF 0605			1		
	MCF 0806			Appearance: No significant abnormality		
!	MCF 1210			Impedance change: Within ±20%		
	MCF 2010					
!	CK1608			No mechanical damage.		
	CK2125			No mechanical damage. Remaining terminal electrode: 70% min		
!	CKS2125			Transming communications and a second section of the section of the second section of the section of the second section of the section of t		
!	CKP1608			Inductance change		
	CKP2012			R10~4R7: Within ±10%		
Specified Value	CKP2016			6R8~100: Within ±15%		
!	CKP2520			CKS2125 : Within ±20%		
!	NM2012			CKP1608, CKP2012, CKP2016, CKP2520, NM2012, NM2520: Within ±30%		
	NM2520					
1	I	_	_	No mechanical damage.		
	LK1005			Remaining terminal electrode: 70% min.		
!	11// 22-			Inductance change: Within ±15%		
!	LK1608		-	No mechanical damage.		
!				Remaining terminal electrode: 70% min.		
!	LK2125			Inductance change		
!				47N~4R7: Within ±10% 5R6~330: Within ±15%		
	HK0603		_	5R6~330: Within ±15%		
!	HK0603 HK1005		_	1		
!			_	1		
1	HK1608 HK2125			1		
!			_	No mechanical damage.		
!	HKQ0402 HKQ0603W		_	Remaining terminal electrode: 70% min.		
1	HKQ0603W HKQ0603C		_	Inductance change: Within ±5%		
!	HKQ0603C HKQ0603S			1		
!	HKQ0603S HKQ0603U			1		
!				1		
1	AQ105			No machanical damage		
!	MCFE1608			No mechanical damage. Remaining terminal electrode: 70% min.		
1	MCKK2012			Remaining terminal electrode: /0% min. Inductance change: Within ±10%		
			:260±5°C	1 10/0		
!	Duration	. 5	:10±0.5 sec.			
Test Methods and	Preheating tempe	rature	:150 to 180°C			
Remarks	Preheating time		: 3 min.			
	Flux			methanol solution with colophony for 3 to 5 sec.		
1				rectnanol solution with colophony for 3 to 5 sec.		
(Note 1) When there as		rning measureme		ement shall be made after 48±2 hrs of recovery under the standard condition.		
u			,	· · · · · · · · · · · · · · · · · · ·		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

13. Thermal Shock						
	BK0402					
	BK0603					
	BK1005					
	BKH0603					
	BKH1005					
	BK1608					
	BK2125		Appearance: No significant abnormality			
		BK2010	Impedance change			
	ARRAY	BK3216	1			
	BKP0402					
	BKP0603		1			
	BKP1005					
	BKP1608					
	BKP2125					
	MCF 0605					
	MCF 0806		Appearance: No sig	gnificant abnormality		
	MCF 1210		Impedance change	: Within ±20%		
	MCF 2010					
	CK1608		No mechanical dam	nage.		
	CK2125		Inductance change:Within ±20% Q change:Within ±30%			
	CKS2125		Inductance change: Within ±20% (CKS2125)			
Specified Value	CKP1608	CKP1608				
	CKP2012					
	CKP2016		No mechanical dam	nage.		
	CKP2520		Inductance change: Within ±30%			
	NM2012					
	NM2520					
	LK1005		No mechanical damage. Inductance change: Within ±10% Q change: Within ±30%			
	LK1608					
	LK2125					
	HK0603					
	HK1005					
	HK1608					
	HK2125		No mechanical damage. Inductance change: Within $\pm 10\%$ Q change: Within $\pm 20\%$			
	HKQ0402					
	HKQ0603W					
	HKQ0603C					
	HKQ0603S					
	HKQ0603U		1			
	AQ105		1			
	MCFE1608		Appearance: No significant abnormality			
	MCKK2012		Inductance change: Within ±10%			
	Conditions for 1	cycle	•			
	Step	temperature(°C)		time (min.)		
	1	Minimum operating temperatur	re +0/-3	30±3		
Test Methods and	2	Room temperature		2~3		
Remarks	3	Maximum operating temperatur	re +3/-0	30±3		
	4	Room temperature		2~3		
	Number of cycle	s:5				
	Recovery: 2 to 3	hrs of recovery under the standar	d condition after the	test.(See Note 1)		

(Note 1) When there are questions concerning measurement result; measurement shall be made after 48±2 hrs of recovery under the standard condition.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

14. Damp Heat (Stea	dy state)						
	BK0402						
	BK0603						
	BK1005						
	BKH0603						
	BKH1005						
	BK1608						
	BK2125 ARRAY BK2010 BK3216		Appearance: No significant abnormality				
			Impedance change: Within ±30%				
			† '				
	BKP0402	5.02.0					
	BKP0603						
	BKP1005						
	BKP1005 BKP1608						
	BKP2125						
	MCF 0605						
	MCF 0806		Appearance: No significant abnormality				
	MCF 1210		Impedance change: Within ±20%				
	MCF 1210		ampounted straings. Highlin ±2070				
			No mark of desired desired				
	CK1608		No mechanical damage.				
	CK2125		Inductance change: Within ±20% Q change: Within ±30% Inductance change: Within ±20%				
C: G! \/-!	CKS2125		Inductance change: Within ±20%				
Specified Value	CKP1608		-				
	CKP2012						
	CKP2016		No mechanical damage.				
	CKP2520		Inductance change: Within ±30%				
	NM2012						
	NM2520						
	LK1005		No mechanical damage.				
	LK1608		Inductance change: Within ±10% Q change: Within ±30%				
	LK2125		No mechanical damage.				
			Inductance change: Within ±20% Q change: Within ±30%				
	HK0603						
	HK1005						
	HK1608						
	HK2125		No mechanical damage.				
	HKQ0402						
	HKQ0603W		Inductance change: Within ±10% Q change: Within ±20%				
	HKQ0603C						
	HKQ0603S						
	HKQ0603U						
	AQ105						
	MC1608		Appearance: No significant abnormality				
	MC2012		Inductance change: Within ±10%				
	BK, BKP, BKH	Series, MCF Series:					
	Temperature	:40±2°C					
	Humidity	:90 to 95%RH					
	Duration	:500+24/-0 hrs					
	Recovery	:2 to 3 hrs of recovery under the	ne standard condition after the removal from test chamber.(See Note 1)				
Test Methods and							
Remarks		KP, NM, HK, HKQ, AQ, MC Series					
	Temperature	:40±2°C(LK, CK, CKS, CKP					
		:60±2°C(HK, HKQ, AQ, MC	Series)				
	Humidity	:90 to 95%RH					
	Duration	:500±12 hrs					
41	Recovery		ne standard condition after the removal from test chamber. (See Note 1)				
(Note 1) When there a	are questions conce	e questions concerning measurement result; measurement shall be made after 48±2 hrs of recovery under the standard condition.					

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

45 1 2 1 5					
15. Loading under Dar					
	BK0402		-		
	BK0603		4		
	BK1005		-		
	BKH1005		-		
	BKH1005		4		
	BK1608				
	BK2125		Appearance: No significant abnormality		
	ARRAY	K2010	Impedance change: Within ±30%		
		K3216	4		
	BKP0402		4		
	BKP0603		4		
	BKP1005		4		
	BKP1608				
	BKP2125				
	CK1608		No mechanical damage.		
	CK2125		Inductance change: Within ±20% Q change: Within ±30%		
	CKS2125		No mechanical damage. Inductance change: Within ±20%		
	CKP1608				
	CKP2012				
	CKP2016		No mechanical damage.		
Specified Value	CKP2520		Inductance change: Within ±30%		
	NM2012				
	NM2520				
	LK1005		No mechanical damage. Inductance change: Within ±10% Q change: Within ±30%		
	LK1608		No mechanical damage. Inductance change: 0.047~12.0 H: Within ±10% 15.0~33.0 H: Within ±15% Q change: Within ±30%		
	LK2125		No mechanical damage. Inductance change: Within ±20% Q change: Within ±30%		
	HK0603				
	HK1005		1		
	HK1608		1		
	HK2125		1		
	HKQ0402		No mechanical damage.		
	HKQ0603W		Inductance change: Within ±10% Q change: Within ±20%		
	HKQ0603C				
	HKQ0603S		1		
	HKQ0603U		1		
	AQ105		1		
	MCFE1608		Appearance: No significant abnormality		
	MCKK2012		Inductance change: Within ±10%		
	BK、BKP、BKH Serie	s:			
	Temperature	:40±2°C			
	Humidity	:90 to 95%RH			
	Applied current	: Rated current			
	Duration	:500+24/-0 hrs			
Test Methods and	Recovery		der the standard condition after the removal from test chamber. (See Note 1)		
Remarks		NK, HK, HKQ, AQ, MC Serie			
	Temperature	:40±2°C(LK, CK, CKS,			
	Humidity	:60±2°C(HK, HKQ, AQ.	, INC Series)		
	Humidity	:90 to 95%RH			
	Applied current Duration	:Rated current :500±12 hrs			
	Recovery		der the standard condition after the removal from test chamber.(See Note 1)		
Note on standard con	<u> </u>	ion" referred to herein is defin			

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to $35^{\circ}\!C\,$ of temperature, 45 to 85% relative humidity, and 86 to 106 kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of 20 ± 2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

16. Loading at High To	emperature				
	BK0402				
	BK0603				
	BK1005				
	BKH0603				
	BKH1005				
	BK1608				
	BK2125		Appearance: No significant abnormality		
	ARRAY BK2010 BK3216		Impedance change: Within ±30%		
	BKP0402				
	BKP0603				
	BKP1005				
	BKP1608				
	BKP2125				
	MCF 0605				
			Annual National Control of the Contr		
	MCF 0806		Appearance: No significant abnormality		
	MCF 1210		Impedance change: Within ±20%		
	MCF 2010				
	CK1608		No mechanical damage.		
	CK2125		Inductance change: Within ±20% Q change: Within ±30%		
	CK53135		No mechanical damage.		
	CKS2125		Inductance change: Within ±20%		
	CKP1608				
Specified Value	CKP2012				
			No mechanical damage.		
	CKP2016 CKP2520		Inductance change: Within ±30%		
			Inductance change. Within ±3070		
	NM2012		-		
	NM2520				
	LK1005		No mechanical damage.		
			Inductance change: Within ±10% Q change: Within ±30%		
	LK1608		No mechanical damage.		
			Inductance change: $0.047 \sim 12.0 \mu\text{H}$: Within $\pm 10\%$ $15.0 \sim 33.0 \mu\text{H}$: Within $\pm 15\%$		
			Q change: Within ±30%		
	LK2125		No mechanical damage.		
	LINZTZS		Inductance change: Within ±20% Q change: Within ±30%		
	HK0603				
	HK1005				
	HK1608				
	HK2125				
	HKQ0402		No mechanical damage.		
	HKQ0603W		Inductance change: Within ±10% Q change: Within ±20%		
	HKQ0603C				
	HKQ0603S				
	HKQ0603U				
	AQ105				
	MCFE1608				
			Appearance: No significant abnormality		
	MCKK2012		Inductance change: Within ±10%		
	MCKK2012	eries、MCF Series:			
	MCKK2012	eries、MCF Series: :125±3°C(BK、BKH Series)			
	MCKK2012 BK, BKH, BKP Se				
	MCKK2012 BK、BKH、BKP So Temperature	: 125±3°C(BK, BKH Series)			
	MCKK2012 BK、BKH、BKP So Temperature	: 125±3°C(BK, BKH Series) : 85±3°C(BKP, MCF Series)			
	MCKK2012 BK, BKH, BKP Son Temperature Applied current	: 125±3°C(BK, BKH Series) : 85±3°C(BKP, MCF Series) : Rated current :500+24/-0 hrs			
Total Matheda and	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration	: 125±3°C(BK, BKH Series) : 85±3°C(BKP, MCF Series) : Rated current :500+24/-0 hrs	Inductance change: Within ±10%		
Test Methods and	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration Recovery	: 125±3°C(BK, BKH Series) : 85±3°C(BKP, MCF Series) :Rated current :500+24/-0 hrs :2 to 3 hrs of recovery under the	Inductance change: Within ±10% ne standard condition after the removal from test chamber.		
Test Methods and Remarks	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration Recovery	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) :Rated current :500+24/-0 hrs :2 to 3 hrs of recovery under the (See Note 1)	Inductance change: Within ±10% ne standard condition after the removal from test chamber. s:		
	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration Recovery LK, CK, CKS, CK	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) :Rated current :500+24/-0 hrs :2 to 3 hrs of recovery under the (See Note 1) (P, NM, HK, HKQ, AQ, MC Serie	Inductance change: Within ±10% ne standard condition after the removal from test chamber. s:		
	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration Recovery LK, CK, CKS, CK	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) : Rated current : 500+24/-0 hrs : 2 to 3 hrs of recovery under th (See Note 1) (P, NM, HK, HKQ, AQ, MC Serie : 85±2°C (LK, CK, CKS, CKP, : 85±2°C (HK1608, 2125)	Inductance change: Within ±10% ne standard condition after the removal from test chamber. s:		
	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration Recovery LK, CK, CKS, CK	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) : Rated current : 500+24/-0 hrs : 2 to 3 hrs of recovery under th (See Note 1) (P, NM, HK, HKQ, AQ, MC Serie : 85±2°C (LK, CK, CKS, CKP, : 85±2°C (HK1608, 2125) : 85±2°C (HK1005, AQ105 oper	Inductance change: Within ±10% the standard condition after the removal from test chamber. S: NM, MC Series)		
	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration Recovery LK, CK, CKS, CK	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) : Rated current : 500+24/-0 hrs : 2 to 3 hrs of recovery under the (See Note 1) (P, NM, HK, HKQ, AQ, MC Series) : 85±2°C (LK, CK, CKS, CKP, 185±2°C (HK1608, 2125) : 85±2°C (HK1005, AQ105 opers) : 125±2°C (HKQ0402, HK0603,	Inductance change: Within ±10% The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber.		
	MCKK2012 BK, BKH, BKP Soft Temperature Applied current Duration Recovery LK, CK, CKS, CK	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) : Rated current : 500+24/-0 hrs : 2 to 3 hrs of recovery under the (See Note 1) (P, NM, HK, HKQ, AQ, MC Series) : 85±2°C (LK, CK, CKS, CKP, 185±2°C (HK1608, 2125) : 85±2°C (HK1005, AQ105 oper 125±2°C (HKQ0402, HK0603, operating temperature	Inductance change: Within ±10% the standard condition after the removal from test chamber. s: NM、MC Series) ating temperature range—55~+85°C)		
	MCKK2012 BK, BKH, BKP So Temperature Applied current Duration Recovery LK, CK, CKS, CK Temperature Applied current	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) :Rated current :500+24/-0 hrs :2 to 3 hrs of recovery under the (See Note 1) (P, NM, HK, HKQ, AQ, MC Serie) : 85±2°C (LK, CK, CKS, CKP, CKP, CKP, CKP, CKP, CKP, CKP, CKP	Inductance change: Within ±10% The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber.		
	MCKK2012 BK, BKH, BKP So Temperature Applied current Duration Recovery LK, CK, CKS, CK Temperature	: 125±3°C (BK, BKH Series) : 85±3°C (BKP, MCF Series) :Rated current :500+24/-0 hrs :2 to 3 hrs of recovery under the series of	Inductance change: Within ±10% The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber. The standard condition after the removal from test chamber.		

5 to $35^{\circ}\!C$ of temperature, 45 to 85% relative humidity, and 86 to 106 kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

Precautions on the use of Multilayer chip inductors

Multilayer chip inductors for high frequency, Multilayer chip bead inductors

Multilayer common mode choke coils (MC series F type)

Metal Multilayer Chip Power Inductors (MCOILTM MC series)

PRECAUTIONS

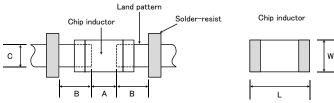
1. Circuit Design

- ◆ Verification of operating environment, electrical rating and performance
 - 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications

Precautions

As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.

- ◆Operating Current(Verification of Rated current)
 - 1. The operating current for inductors must always be lower than their rated values.
 - 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.


2. PCB Design

Precautions

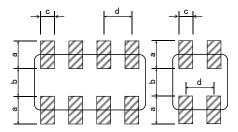
- ◆Pattern configurations (Design of Land-patterns)
- 1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance.

Therefore, the following items must be carefully considered in the design of solder land patterns:

- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.
- (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips.
- ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards)
 - 1. After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress.
- ◆Pattern configurations(Design of Land-patterns)
 - The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown.
 - (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs

Recommended land dimensions for wave-soldering (Unit:mm)

Ту	ре	1608	2012	2125	2016	2520	3216
Size	┙	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.8	1.25	1.25	1.6	2.0	1.6
Α		0.8~1.0	1.0~1.4	1.0~1.4	1.0~1.4	1.0~1.4	1.8~2.5
В		0.5~0.8	0.8~1.5	0.8~1.5	0.8~1.5	0.6~1.0	0.8~1.7
С		0.6~0.8	0.9~1.2	0.9~1.2	1.3~1.6	1.6~2.0	1.2~1.6


Technical considerations

Recommended land dimensions for reflow-soldering (Unit:mm)

T	уре	0402	0603	1005	105	1608	2012	2125	2016	2520	3216
Size	L	0.4	0.6	1.0	1.0	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.2	0.3	0.5	0.6	0.8	1.25	1.25	1.6	2.0	1.6
	A	0.15~0.25	0.20~0.30	0.45~0.55	0.50~0.55	0.8~1.0	0.8~1.2	0.8~1.2	0.8~1.2	1.0~1.4	1.8~2.5
	В	0.10~0.20	0.20~0.30	0.40~0.50	0.30~0.40	0.6~0.8	0.8~1.2	0.8~1.2	0.8~1.2	0.6~1.0	0.6~1.5
	С	0.15~0.30	0.25~0.40	0.45~0.55	0.60~0.70	0.6~0.8	0.9~1.6	0.9~1.6	1.2~2.0	1.8~2.2	1.2~2.0

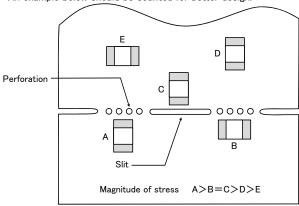
This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns.

Ty	эе	3216	2010	1210	0806	0605
Size	L	3.2	2.0	1.25	0.85	0.65
Size	W	1.6	1.0	1.0	0.65	0.50
а		0.7~0.9	0.5~0.6	0.45~0.55	0.25~0.35	0.27~0.33
b		0.8~1.0	0.5~0.6	0.7~0.8	0.25~0.35	0.17~0.23
С		0.4~0.5	0.2~0.3	0.25~0.35	0.25~0.35	0.20~0.26
d		0.8	0.5	0.55	0.5	0.4

(Unit:mm)

((2) Examples of good and bad solder application


É	Examples of good and bad solde							
L	Item	Not recommended	Recommended					
	Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist					
	Component placement close to the chassis	Chassis Solder (for grounding) Electrode pattern	Solder-resist					
	Hand-soldering of leaded components near mounted components	Lead wire of component Soldering iron	Solder-resist					
	Horizontal component placement		Solder-resist					

- ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards)
 - 1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection.

Item	Not recommended	Recommended
Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.

1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout.

An example below should be counted for better design.

1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.

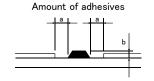
3. Considerations for automatic placement

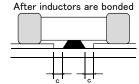
- ◆Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.
 - 2. The maintenance and inspection of the mounter should be conducted periodically.

Precautions

◆ Selection of Adhesives

- 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.
- ◆Adjustment of mounting machine
 - 1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle:
 - The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board.
 - (2) The pick-up pressure should be adjusted between 1 and 3N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:


Item	Improper method	Proper method
Single-sided mounting	chipping or cracking	supporting pins — or back-up pins
Double-sided mounting	chipping or cracking	supporting pins or back-up pins


Technical considerations

- 2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.
- ◆Selection of Adhesives
 - 1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives.
 - (1) Required adhesive characteristics
 - a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive should have sufficient strength at high temperatures.
 - c. The adhesive should have good coating and thickness consistency.
 - d. The adhesive should be used during its prescribed shelf life.
 - e. The adhesive should harden rapidly.
 - f. The adhesive must not be contaminated.
 - g. The adhesive should have excellent insulation characteristics.
 - h. The adhesive should not be toxic and have no emission of toxic gasses.
 - (2) When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.

[Recommended conditions]

Figure	0805 case sizes as examples
а	0.3mm min
b	100∼120 μm
С	Area with no adhesive

4. Soldering

Precautions

◆Selection of Flux

- 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use;
 - (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied.
 - (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level.
 - (3) When using water-soluble flux, special care should be taken to properly clean the boards.

◆Soldering

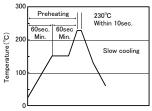
1. Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us about peak temperature when you use lead-free paste.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

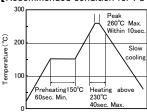
◆Selection of Flux

- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor.
- 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.

◆Soldering


1-1. Preheating when soldering

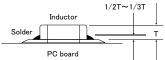
Heating: Chip inductor components should be preheated to within $100 \text{ to } 130^{\circ}\text{C}$ of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C .


Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.

[Reflow soldering]

[Recommended conditions for eutectic soldering]

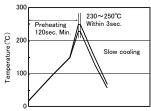
[Recommended condition for Pb-free soldering]

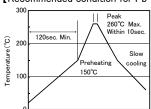

%Ceramic chip components should be preheated to within 100 to 130°C of the soldering.

*Assured to be reflow soldering for 2 times.

Caution

Technical considerations


1. The ideal condition is to have solder mass(fillet) controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below:


2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible.

[Wave soldering]

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free soldering]

 $\rm \& Ceramic$ chip components should be preheated to within 100 to 130°C of the soldering.

Assured to be wave soldering for 1 time.

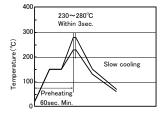
Except for reflow soldering type.

Assured to be wave soldering type.

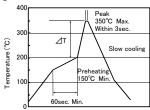
Assured to be wave soldering type.

Assured to be wave soldering for 1 time.

Assured to be wave soldering type.


Assured to be wave s

Caution


- 1. Make sure the inductors are preheated sufficiently.
- 2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130° C.
- 3. Cooling after soldering should be as gradual as possible.
- 4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.

[Hand soldering]

[Recommended conditions for eutectic soldering

[Recommended condition for Pb-free soldering]

(<u>%</u> <u>/</u>T≦190°C(3216Type max), <u>/</u>T≦130°C(3225 Type min)

%It is recommended to use 20W soldering iron and the tip is 1 ϕ or less.

*The soldering iron should not directly touch the components.

XAssured to be soldering iron for 1 time

Note: The above profiles are the maximum allowable soldering condition, therefore these profiles are not always recommended.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor.

5. Cleaning

Precautions

considerations

♦Cleaning conditions

- 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.)
- 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics.

◆Cleaning conditions

- 1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance).
- 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors.

Technical (1) Excessive cleaning

a. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked;

Ultrasonic output Below 20W/2
Ultrasonic frequency Below 40kHz
Ultrasonic washing period 5 min. or less

6. Post cleaning processes

◆Application of resin coatings, moldings, etc. to the PCB and components.

Precautions

- 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance.
- 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction.
- 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors.

The use of such resins, molding materials etc. is not recommended.

7. Handling

- ◆Breakaway PC boards (splitting along perforations)
 - 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.
 - 2. Board separation should not be done manually, but by using the appropriate devices.
- ◆General handling precautions
 - 1. Always wear static control bands to protect against ESD.
 - $\ensuremath{\mathbf{2}}.$ Keep the inductors away from all magnets and magnetic objects.
- Precautions

 3. Use non-magnetic tweezers when handling inductors.
 - 4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded.
 - 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes.
 - 6. Keep inductors away from items that generate magnetic fields such as speakers or coils.
 - ◆Mechanical considerations
 - 1. Be careful not to subject the inductors to excessive mechanical shocks.
 - (1) If inductors are dropped on the floor or a hard surface they should not be used.
 - (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions

◆Storage

1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.

Precautions

Recommended conditions
Ambient temperature Below 30°C

Humidity Below 70% RH

The ambient temperature must be kept below 40°C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery.

*The packaging material should be kept where no chlorine or sulfur exists in the air.

◆Storage

Technical considerations

1. If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).