



## Features

- 3" x 5" x 1.4" Package
- Ideal for 1U Applications
- Class I and Class II versions
- Up to 275W of AC-DC Power
- Universal Input 90-264 VAC
- Approved to CSA/EN/IEC/UL60601-1, 3<sup>rd</sup> Edition, 2 x MOPP Isolation
- Forced Current Share
- 5V standby and 12V fan outputs
- Inhibit, Power Fail, Output OK Signals
- Efficiency 92% typical
- 3 Year Warranty
- RoHS Compliant

## Description

A Superior performance 275 Watts AC to DC power supply designed for Medical applications. Feature rich and highly Efficient, the MINT1275 product family with active current share for redundant applications can easily fit in 1U chassis, and provides 180 Watts convection cooled or 275 Watts with moving air. Input & output monitoring alarms plus 12V/1A fan output and 5V standby voltage are among other standard features available in the MINT1275 family. All 5 models are CE marked to the low voltage directive and approved to IEC60601-1 3rd edition.

## Model Selection

| Model Number     | Volts  | Output Current*<br>w/200LFM air | Output Current*<br>Convection | Fan Output | Ripple & Noise** | Total Regulation | OVP Threshold |
|------------------|--------|---------------------------------|-------------------------------|------------|------------------|------------------|---------------|
| MINT1275A1214K01 | 12V    | 21.8A                           | 15.0A                         | 12Vdc/1.0A | 120mV pk-pk      | ±3%              | 14.0 ± 1.1V   |
| MINT1275A1514K01 | 15V    | 18.3A                           | 12.0A                         | 12Vdc/1.0A | 150mV pk-pk      | ±3%              | 19.5 ± 1.5V   |
| MINT1275A2414K01 | 24V    | 10.9A                           | 7.50A                         | 12Vdc/1.0A | 240mV pk-pk      | ±3%              | 28.0 ± 2.5V   |
| MINT1275A4814K01 | 48V    | 5.46A                           | 3.75A                         | 12Vdc/1.0A | 480mV pk-pk      | ±3%              | 55.0 ± 4.0V   |
| MINT1275A5614K01 | 56V*** | 4.68A                           | 3.21A                         | 12Vdc/1.0A | 560mV pk-pk      | ±3%              | 59.0 ± 1.0V   |

Notes: \* Total convection power is 180 Watts.

\*\* Measured with noise probe directly across output terminals, and load terminated with 0.1µF ceramic and 10µF low ESR capacitors.

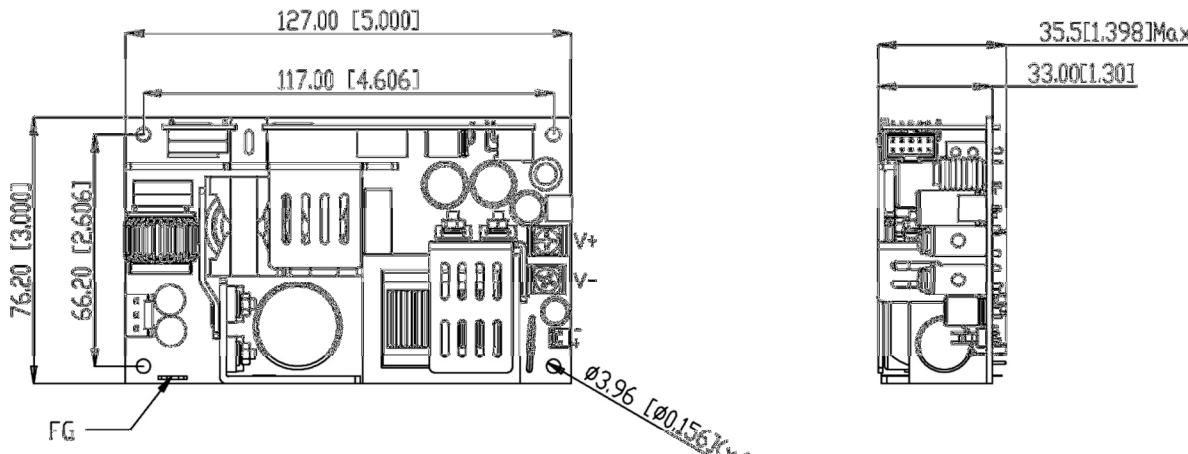
\*\*\* No Output adjustment on 56V model.

## General Specifications

|               |                                             |              |                                                                                               |
|---------------|---------------------------------------------|--------------|-----------------------------------------------------------------------------------------------|
| AC Input      | 100-240Vac, ±10%, 47-63Hz, 1Ø<br>120-370Vdc | Turn On Time | Less than 2 sec. @115Vac (inversely proportional to input voltage and thermistor temperature) |
| Input Current | 115Vac: 3A, 230Vac: 1.5A, 3.7A max at 90Vac | Hold-up Time | >16mS at 250W, 120Vac                                                                         |

## General Specifications (continued)

|                              |                                                                                                                              |                                 |                                                                                                                              |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>Inrush Current</b>        | 264Vac, cold start: will not exceed 50A                                                                                      | <b>Signals</b>                  | AC Power Fail, DC OK, Inhibit, Current Share                                                                                 |
| <b>Input Fuses</b>           | F1, F2: 5A, 275VAC fuses provided on all models                                                                              | <b>Overload Protection</b>      | 120%-150% of rating, Hiccup Mode                                                                                             |
| <b>Earth Leakage Current</b> | <275µA@264Vac, 60Hz, NC; <400µA SFC                                                                                          | <b>Short Circuit Protection</b> | Provided - no damage will occur if the output is shorted. Hiccup Mode.                                                       |
| <b>Efficiency</b>            | 92% typical                                                                                                                  | <b>Overvoltage Protection</b>   | OVP latch at 110%-130% of rated output voltage.                                                                              |
| <b>Output Power</b>          | 275W continuous, with 200 lfm airflow, 180W convection cooled – See chart for specific voltage model ratings.                | <b>Switching Frequency</b>      | PFC: Variable, 30kHz - 400kHz<br>Main Converter: Variable 30-250kHz, 65-70kHz at full load.                                  |
| <b>Transient Response</b>    | 500µS typ. for return to within 0.5% of nominal, 50% load step. $\Delta i/\Delta t < 0.2A/\mu S$ . Max Volt Deviation = 3%   | <b>Isolation</b>                | Input-Output: 4000Vac, 2 x MOPP<br>Input-Ground: 1800Vac, 1 x MOPP<br>Output-Ground: 1500Vac                                 |
| <b>Ripple and Noise</b>      | See chart                                                                                                                    | <b>Operating Temperature</b>    | -10°C to +70°C<br>Start Up at -40°C, full load                                                                               |
| <b>Output Voltage</b>        | See chart                                                                                                                    | <b>Temperature Derating</b>     | Derate output power linearly above 50°C to 50% at 70°C                                                                       |
| <b>Voltage Adjustability</b> | +/-5% from nominal                                                                                                           | <b>Storage Temperature</b>      | -40°C to +85°C                                                                                                               |
| <b>Minimum Load</b>          | Not required                                                                                                                 | <b>Altitude</b>                 | Operating: -500 to 10,000 ft.<br>Non-operating: -500 to 40,000 ft.                                                           |
| <b>Total Regulation</b>      | +/- 3%. See chart                                                                                                            | <b>Relative Humidity</b>        | 5% to 95%, non-condensing                                                                                                    |
| <b>Vibration</b>             | Operating: 0.003g²/Hz, 1.5grms overall, 3 axes, 10 min/axis<br>Non-Operating: 0.026g²/Hz, 5.0grms overall, 3 axes, 1 hr/axis | <b>Shock</b>                    | Operating: Half-sine, 20gpk, 10ms, 3 axes, 6 shocks total<br>Non-Operating: Half-sine, 40 gpk, 10 ms, 3 axes, 6 shocks total |
| <b>Dimensions</b>            | W: 3.0" x L: 5.0" x H: 1.4"(max. measured from bottom of the board to top of components)                                     | <b>Safety Standards</b>         | EN/CSA/UL/IEC 60601-1, 3 <sup>rd</sup> Edition                                                                               |
| <b>Weight</b>                | 325g                                                                                                                         | <b>MTBF</b>                     | 465,000 hours, 275W load, 25°C Ambient, 110Vac input                                                                         |


## Auxiliary Signals

|                       |                                                                                |                       |                                                                                                      |
|-----------------------|--------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------|
| <b>Standby Output</b> | 5V @ 200 mA                                                                    | <b>DC OK:</b>         | Open collector logic signal goes and stays HIGH 100mS to 500mS after main output reaches regulation. |
| <b>AC Power Fail:</b> | Goes LOW with 5mS warning before loss of DC output after loss of AC power.     | <b>Fan Output:</b>    | 12V @ 1A                                                                                             |
| <b>Inhibit:</b>       | Connect to inhibit pin (J201 pin 5) to output common to inhibit the DC output. | <b>Current Share:</b> | Forced Current Sharing provided for up to 5 units connected in parallel.                             |
| <b>Remote Sense:</b>  | Compensates for up to 250mV drop in load lines.                                |                       |                                                                                                      |

## EMI/EMC Compliance

|                                         |                                                                       |
|-----------------------------------------|-----------------------------------------------------------------------|
| Conducted Emissions                     | EN55011/22 Class B, FCC Part 15, Subpart B, Class B                   |
| Radiated Emissions                      | EN55011/22 Class A; FCC Part 15, Subpart A, Class A w/6db margin      |
| Static Discharge Immunity               | EN61000-4-2, 6kV Contact Discharge, 8kV air discharge                 |
| Radiated RF Immunity                    | EN61000-4-3, 3V/m.                                                    |
| EFT/Burst Immunity                      | EN61000-4-4, 2kV/5kHz                                                 |
| Line Surge Immunity                     | EN61000-4-5, 1kV differential, 2kV common-mode                        |
| Conducted RF Immunity                   | EN61000-4-6, 3Vrms                                                    |
| Power Frequency Magnetic Field Immunity | EN61000-4-8, 3A/m                                                     |
| Voltage Dip Immunity                    | EN61000-4-11, 0% Vin, 0.5cycle; 40% Vin, 5 cycles; 70% Vin, 25 cycles |
| Line Harmonic Emissions                 | EN61000-3-2, Class A, B, C, & D                                       |
| Flicker Test                            | EN61000-3-3, Complies (dmax<6%)                                       |

## Mechanical Drawing



**Notes:**

1. All dimensions in inches (mm), tolerance is +/-0.02".
2. Mounting holes should be grounded for EMI purposes.
3. FG is safety ground connection.
4. The power supply requires mounting on metal standoffs 0.20" (5mm) in height, min.

## Connector Information

| Input Connector                                           | Ground                                 | DC Output Connector                             | Fan Output Connector                                      | Signal Connector                                                                                              |                                                                                         |
|-----------------------------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| PIN 1) AC LINE<br>PIN 2) EMPTY<br>PIN 3) AC NEUTRAL       | 0.250" FASTON TAB                      | Term. 1: +Vout<br>Term. 2: -Vout                | PIN 1) +12Vfan RTN<br>PIN 2) +12V fan                     | PIN 1) Remote Sense (+)<br>PIN 2) Common<br>PIN 3) Remote Sense (-)<br>PIN 4) Current Share<br>PIN 5) Inhibit | Pin 6) Common<br>Pin 7) Power Good<br>Pin 8) +5Vsb<br>Pin 9) DC OK<br>Pin 10) +5Vsb RTN |
| Mating Connector:<br>Molex 09-50-3031<br>Pins= 08-52-0072 | Mating Connector:<br>Molex 01-90020001 | Mating Connector:<br>Molex 19141-0058/0063/0083 | Mating Connector:<br>Molex 22-01-3027<br>Pins: 08-50-0114 | Mating Connector:<br>Molex 90142-0010<br>Pins: 90119-2109 or 2120                                             |                                                                                         |

## Fan Output – J301

J301 provides a 12V@1A output to support a system cooling fan.

## AC Power Failure/DC OK, Current Share and Inhibit Signals – J201

### 1. Power fail/DC OK

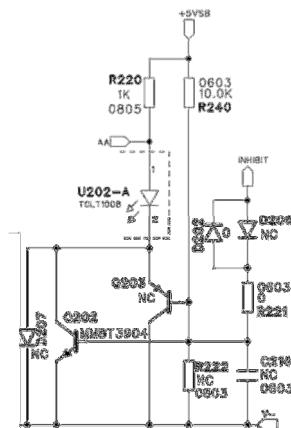



Figure 1

### 2. Inhibit

Remote inhibit control of the DC output.

J201 pin 5 open = ON  
J201 pin 5 LOW or GND = OFF



### 3. Current Sharing/Remote Sense

The outputs of N+1 (N=1,2...5) models can be shared. It is shown in Figure 3, one load-share controller is required for each model and circuits are identical when N+1 identical models are used.

Terminals J302 and J303 are connected to the Vo+ and Vo-, respectively, of the first power model. The Vo+ and Vo- correspond to the other models positive and negative output pins. The Vo+ connects to positive output bus to the load and Vo- connects the negative output bus to the load.

The J201 pin1 and pin3 connects to the S+ and S-, respectively, of the first power models. The S+ and S- correspond to the other models J201 pin1 and pin3. The S+ connects to positive output bus and S- connects to negative output bus.

#### Remote Sense < 250mV drop compensation:

The J201 Pin4 connects to current sharing bus that it connects to other models J201 pin4.

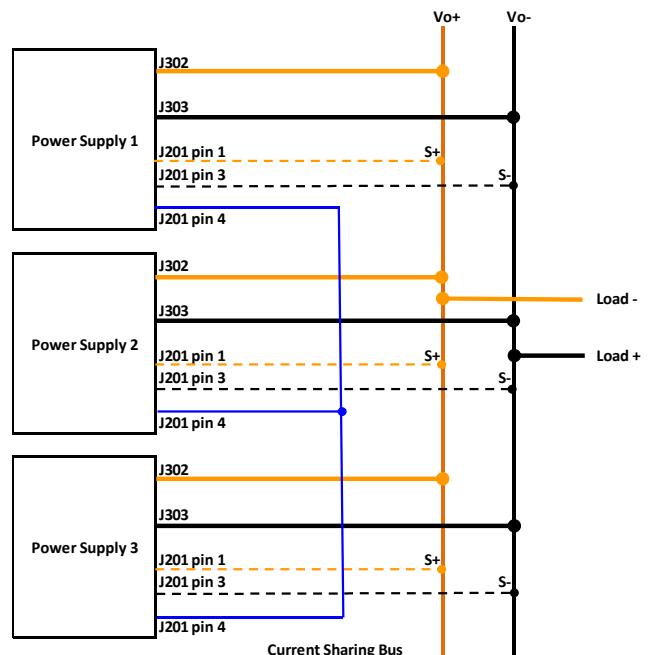
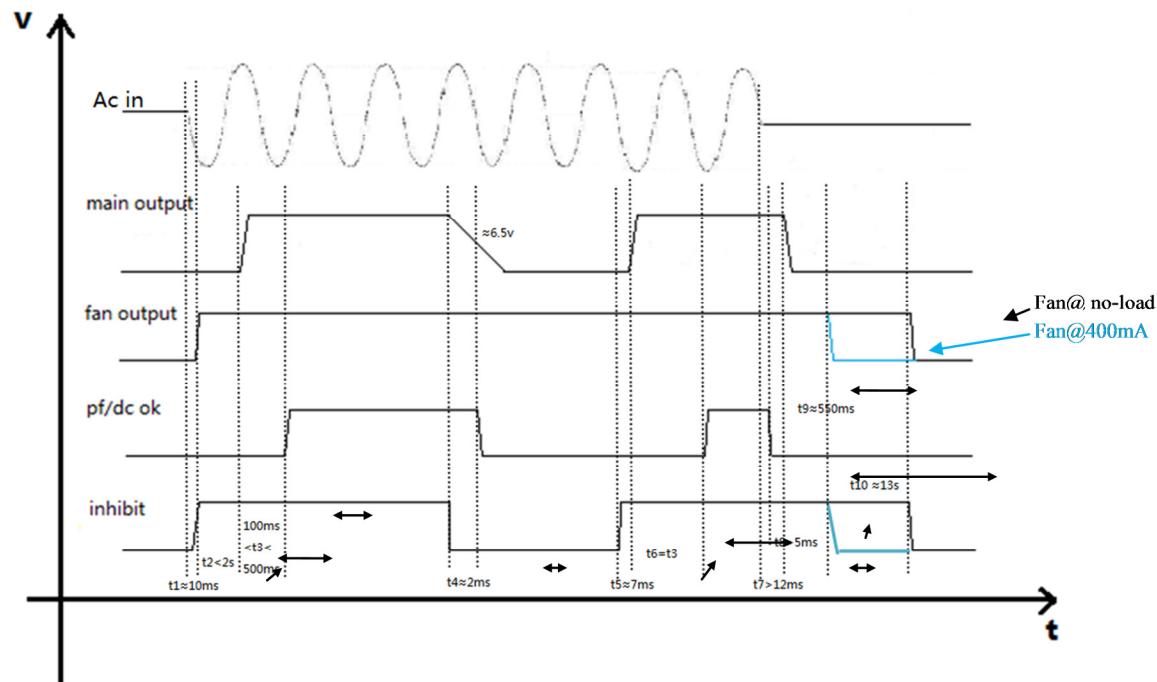




Figure 3: Current Share Method

## Timing Sequence



## Isolation Specifications

| Parameter                      | Conditions/Description                        | Min                  | Nom                                                  | Max | Units             |
|--------------------------------|-----------------------------------------------|----------------------|------------------------------------------------------|-----|-------------------|
| Insulation Safety Rating       | Input/Ground<br>Input/Output<br>Output/Ground |                      | Basic (1 MOPP)<br>Reinforced (2 MOPP)<br>Operational |     |                   |
| Electric Strength Test Voltage | Input/Ground<br>Input/Output<br>Output/Ground | 1800<br>4000<br>1500 | -                                                    | -   | Vac<br>Vac<br>Vac |

## Input Specifications

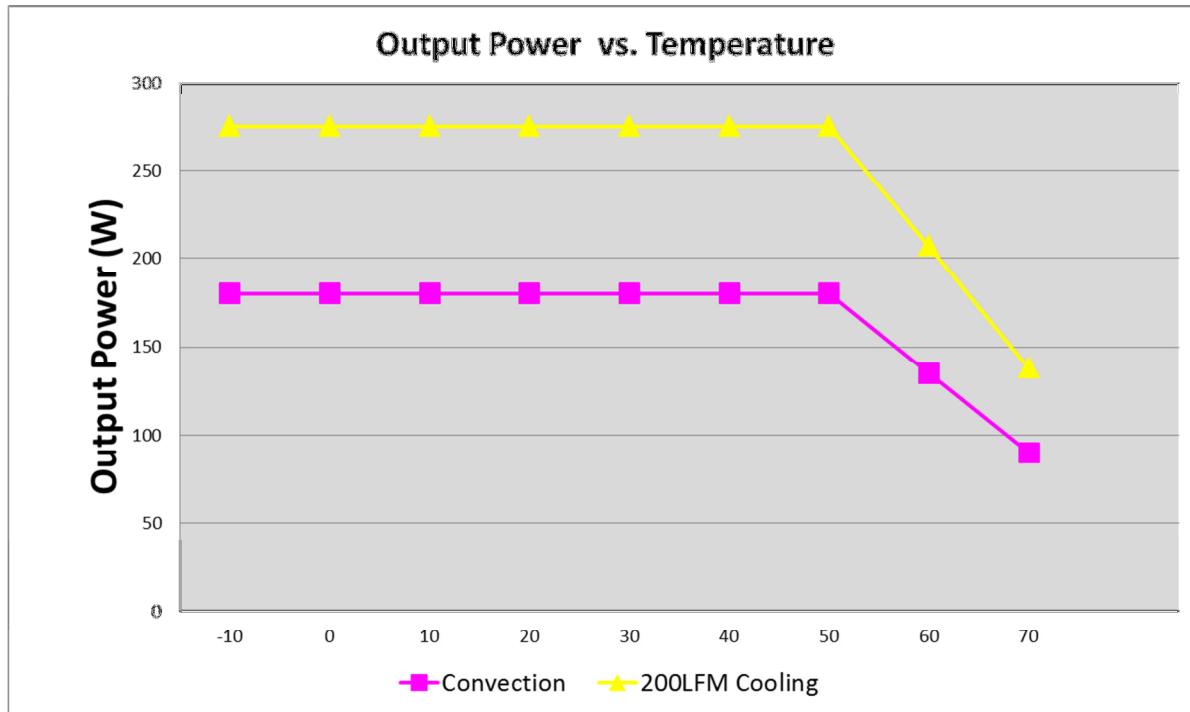
All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

| Parameter                 | Conditions/Description                                                                                                                       | Min | Nom     | Max | Units |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----|-------|
| Input Voltage             |                                                                                                                                              | 90  | 115/230 | 264 | Vac   |
| Turn-On Input Voltage     | Ramping up                                                                                                                                   |     | 80      |     | Vac   |
| Turn-Off Input Voltage    | Ramping down                                                                                                                                 |     | 75      |     | Vac   |
| Input Frequency           |                                                                                                                                              | 47  | 50/60   | 63  | Hz    |
| Inrush Current Limitation | 264Vac, cold start                                                                                                                           | -   | -       | 50  | A     |
| Power Factor              | $V_{I_{\text{nom}}}, I_{O_{\text{nom}}}$                                                                                                     | 0.9 | -       | -   |       |
| Efficiency                | $V_{I_{\text{nom}}}, I_{O_{\text{nom}}}$<br>MINT1275A1214K01<br>MINT1275A1514K01<br>MINT1275A2414K01<br>MINT1275A4814K01<br>MINT1275A5614K01 | -   | 92%     | -   | %     |

## Output Specifications

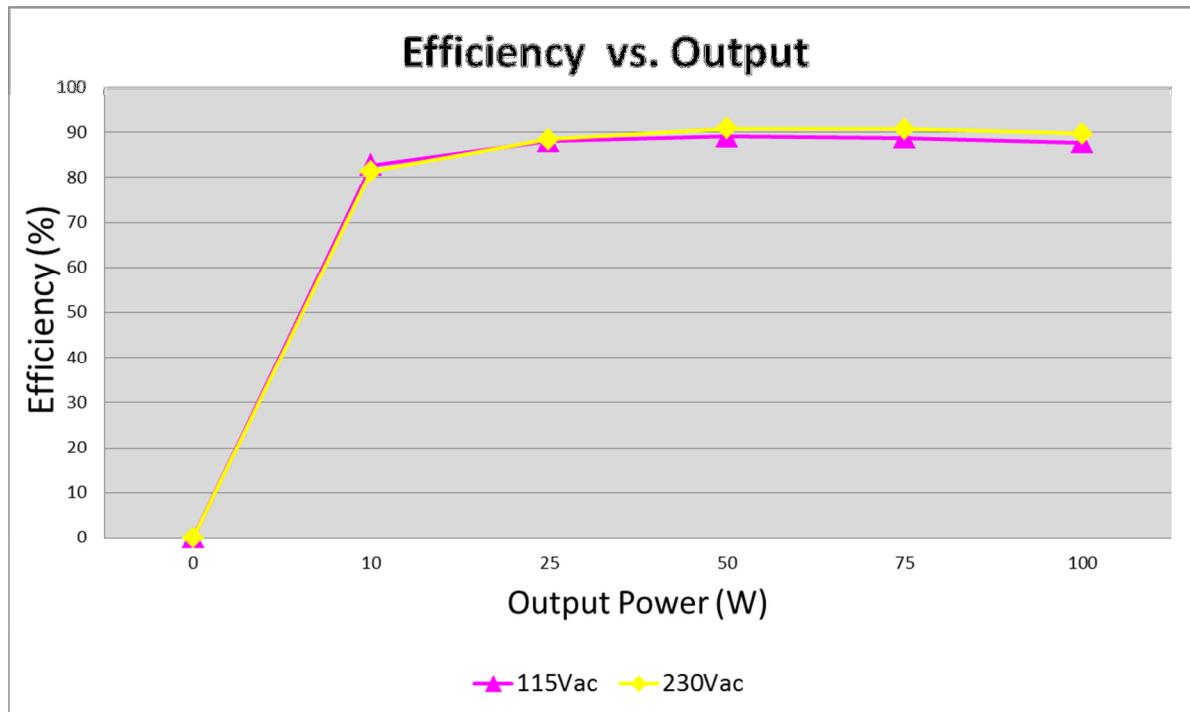
| Parameter                                            | Conditions/Description                                         | Min    | Nom       | Max          | Units       |
|------------------------------------------------------|----------------------------------------------------------------|--------|-----------|--------------|-------------|
| Output Voltage Setpoint Accuracy<br>MINT1275A1214K01 | $V_i$ nom., $I_o$ 1 @ ADC, $TC = 25^\circ C$                   | -3     | -         | 3            | % $V_o$ nom |
| Output Voltage Setpoint Accuracy<br>MINT1275A1514K01 | $V_i$ nom., $I_o$ 1 @ ADC, $TC = 25^\circ C$                   | -3     | -         | 3            | % $V_o$ nom |
| Output Voltage Setpoint Accuracy<br>MINT1275A2414K01 | $V_i$ nom., $I_o$ 1 @ ADC, $TC = 25^\circ C$                   | -3     | -         | 3            | % $V_o$ nom |
| Output Voltage Setpoint Accuracy<br>MINT1275A4814K01 | $V_i$ nom., $I_o$ 1 @ ADC, $TC = 25^\circ C$                   | -3     | -         | 3            | % $V_o$ nom |
| Output Voltage Setpoint Accuracy<br>MINT1275A5614K01 | $V_i$ nom., $I_o$ 1 @ ADC, $TC = 25^\circ C$                   | -3     | -         | 3            | % $V_o$ nom |
| Output Current V1<br>Output Current V2               | MINT1275A1214K01                                               | 0<br>0 | 15.0<br>- | 21.8<br>1.0  | ADC<br>ADC  |
| Output Current V1<br>Output Current V2               | MINT1275A1514K01                                               | 0<br>0 | 12.0<br>- | 17.47<br>1.0 | ADC<br>ADC  |
| Output Current V1<br>Output Current V2               | MINT1275A2414K01                                               | 0<br>0 | 7.5<br>-  | 10.9<br>1.0  | ADC<br>ADC  |
| Output Current V1<br>Output Current V2               | MINT1275A4814K01                                               | 0<br>0 | 3.75<br>- | 5.46<br>1.0  | ADC<br>ADC  |
| Output Current V1<br>Output Current V2               | MINT1275A5614K01                                               | 0<br>0 | 3.21<br>- | 4.68<br>1.0  | ADC<br>ADC  |
| Static Line Regulation V1                            | $V_i$ min- $V_i$ max, $V_i$ nom, 0-100% $I_o$ nom              | -1     | -         | 1            | % $V_o$ nom |
| Static Load Regulation V1<br>(Droop Characteristic)  | $V_i$ min- $V_i$ max, $V_i$ nom, 0-100% $I_o$ nom              | -3     | -         | 3            | % $V_o$ nom |
| Hold-Up Time                                         | Starting at $V_i = 230$ VAC, $P_o$ nom                         | -      | 16        | -            | ms          |
| Dynamic Load Regulation                              | Load change =50%, $di/dt = 0.2A/\mu S$<br>voltage deviation 3% | 0      |           | 3            | % $V_o$ nom |
| Start-Up Time                                        | $V_i$ nom, $I_o$ nom                                           | 0      | -         | 2            | s           |
| Start-Up Time                                        | $V_i$ nom, $I_o$ nom                                           | 0      | -         | 2            | s           |

## Protection


All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

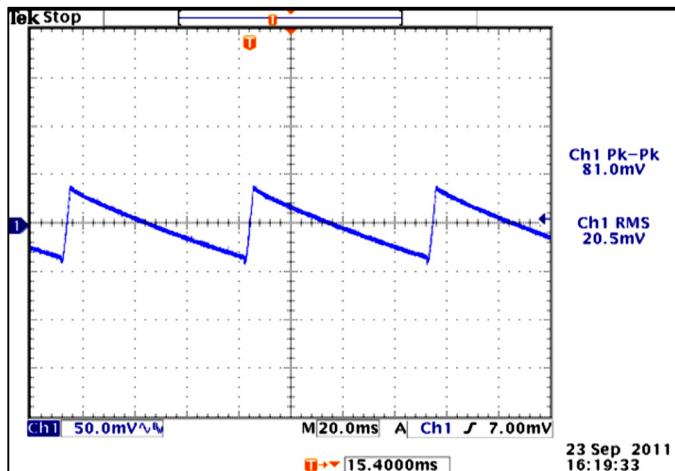
| Parameter                   | Conditions/Description                         | Min | Nom | Max | Units   |
|-----------------------------|------------------------------------------------|-----|-----|-----|---------|
| Input Fuse                  | Not user accessible                            |     |     |     |         |
| Input Transient Protection  | 2KV(CM) and 1KV(DM) surge                      |     |     | 2   | KV (CM) |
| Output                      | No-load and short circuit proof                |     |     |     | Hiccup  |
|                             | short circuit proof                            |     |     |     | Hiccup  |
|                             | overload (latch style)                         |     |     |     | Hiccup  |
| Overvoltage Protection      | Latch style                                    |     |     |     | Latch   |
| Over temperature Protection | Automatic power shutdown at $TC = 135^\circ C$ |     |     |     |         |

## Characteristic Curves

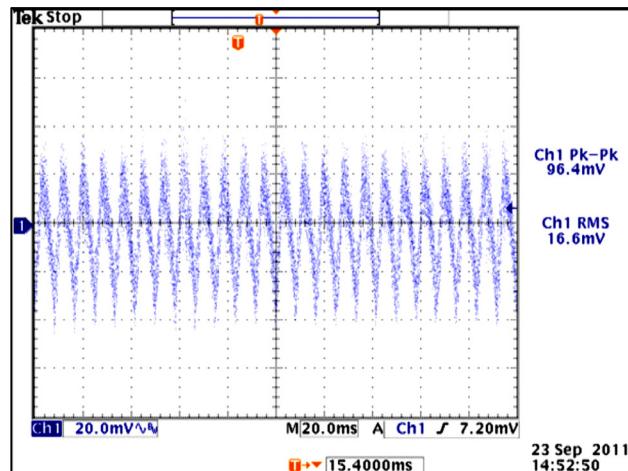

### Output vs. Temperature

180W convection cooled and 275W continuous with 200 LFM airflow. Derate output power to 50% at 70°C.

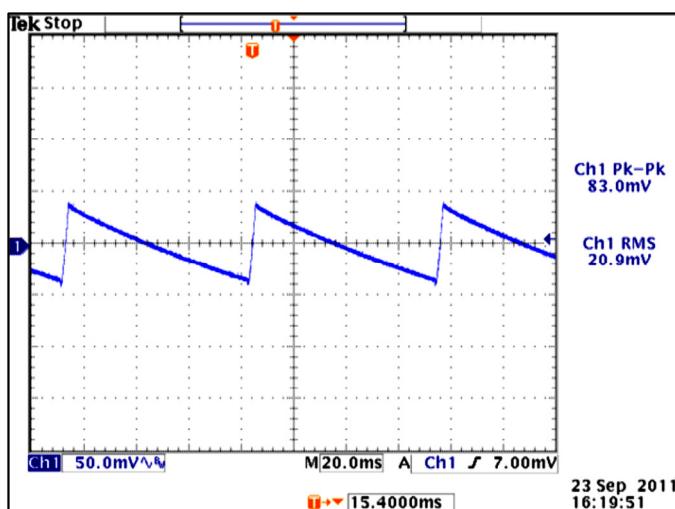



### Efficiency vs. Loading

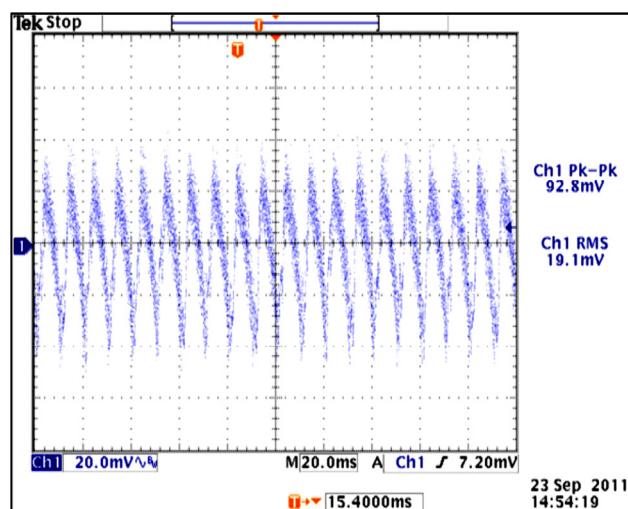
The high efficiency is achieved by using LLC technology, PFC topology minimizing switching losses. Synchronous SCHOTTKY or ultra-fast diode is used as rectifier in MINT1275 family because of high output voltage level.




### Ripple & Noise


To verify that the output ripple and noise does not exceed the level specified in the product specification. Measured using a scope probe socket with 0.1μF ceramic and a 10μF electrolytic capacitor connected in parallel across it, BW limit with 20MHz.

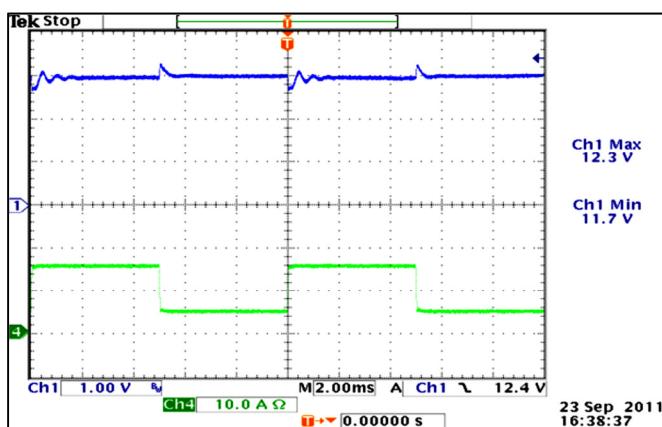



12V OUT, NO LOAD, 115VAC, 60Hz

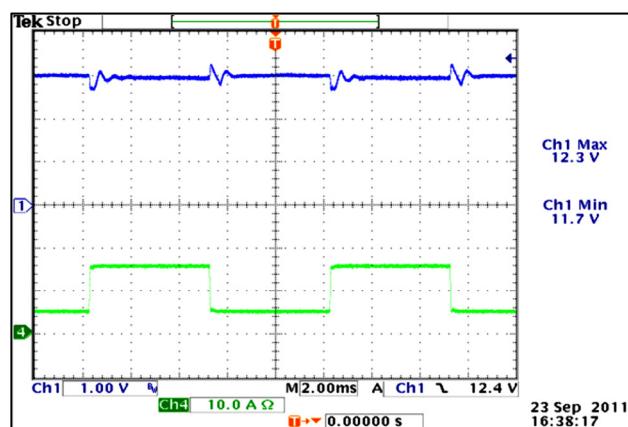


12V OUT, FULL LOAD, 115VAC, 60Hz




12V OUT, NO LOAD, 230VAC, 60Hz

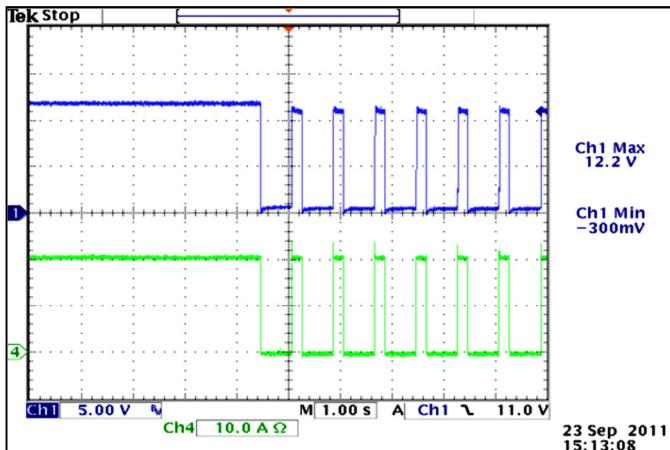



12V OUT, FULL LOAD, 230VAC, 60Hz

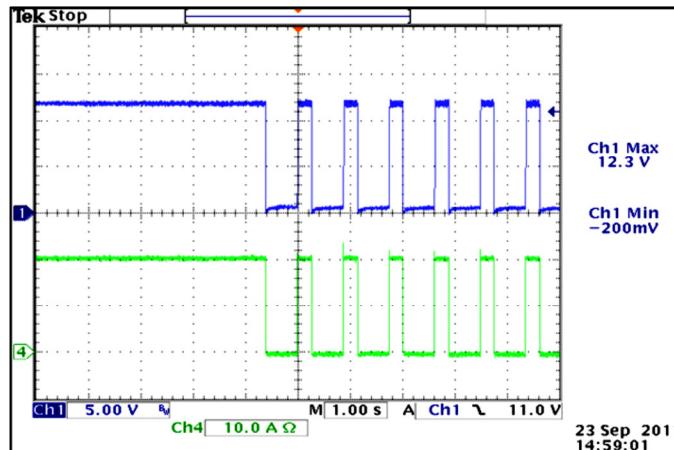
### Output Transient Response

50% load step within the regulation limits of minimum and maximum load,  $dl/dt < 0.2A/\mu\text{Sec}$ . Recovery time not specified as there is no laps in regulation with a 50% Load Step. Maximum voltage deviation is 3%.



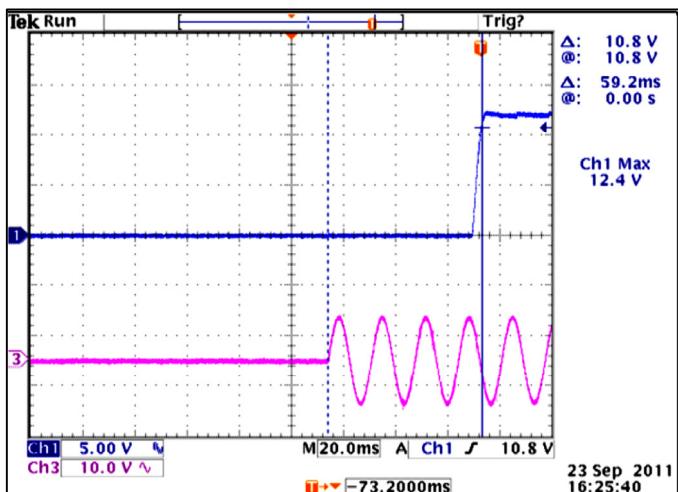

12V OUT, 115VAC, 25% TO 75% LOAD STEP




12V OUT, 230VAC, 25% TO 75% LOAD STEP

## Output Overload Characteristic

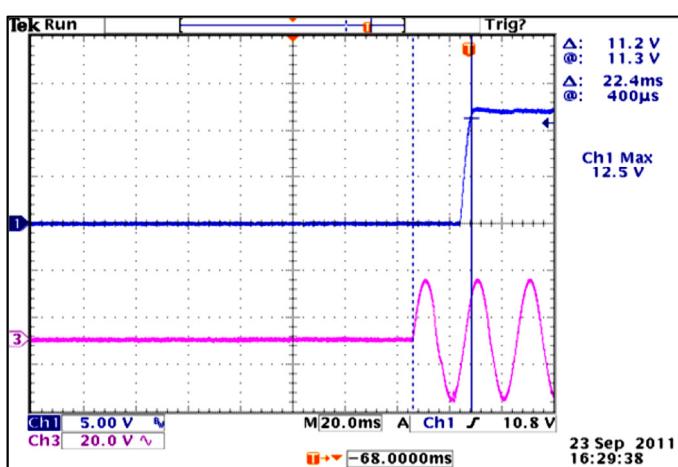
Supply shall protect itself against overload conditions. The Power Supply shall recover from Overload Conditions without operator intervention.



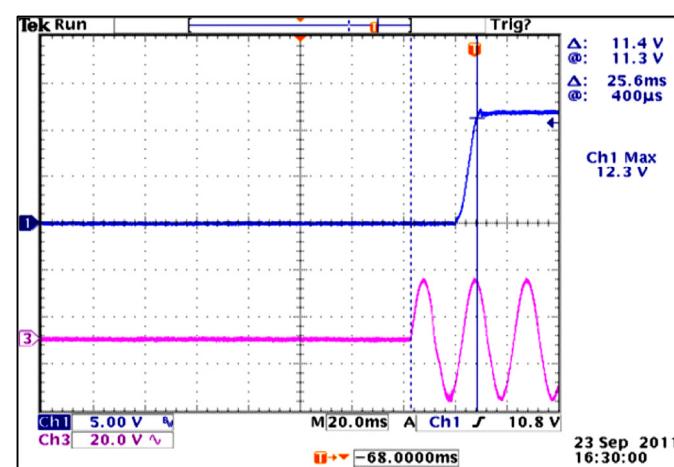

[12V OUT, 90VAC](#)




[12V OUT, 264VAC](#)


## Turn-On Time




[12V OUT, NO LOAD, 90VAC](#)



[12V OUT, FULL LOAD, 90VAC](#)



[12V OUT, NO LOAD, 264VAC](#)



[12V OUT, FULL LOAD, 264VAC](#)

# Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

SL Power:

[MINT1275A1214K01](#) [MINT1275A1514K01](#) [MINT1275A2414K01](#) [MINT1275A4814K01](#) [MINT1275A5614K01](#)