

October 1987 Revised May 2002

# MM74C42 BCD-to-Decimal Decoder

## **General Description**

The MM74C42 one-of-ten decoder is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. This decoder produces a logical "0" at the output corresponding to a four bit binary input from zero to nine, and a logical "1" at the other outputs. For binary inputs from ten to fifteen all outputs are logical "1".

#### **Features**

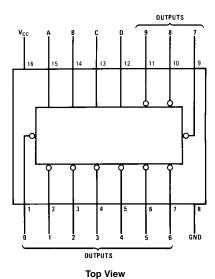
■ Supply voltage range: 3V to 15V

■ Tenth power TTL compatible: drive 2 LPTTL loads

■ High noise immunity: 0.45 V<sub>CC</sub> (typ.)

■ Low power: 50 nW (typ.)

■ Medium speed operation: 10 MHz (typ.) with 10V V<sub>CC</sub>

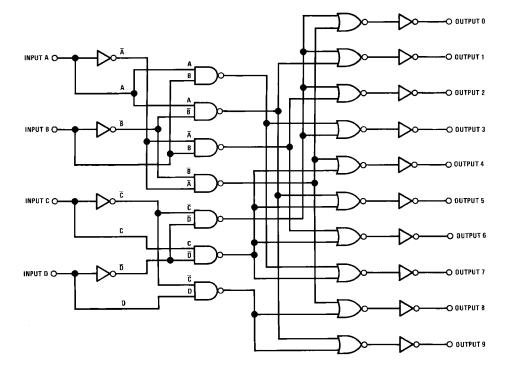

## **Applications**

- Automotive
- Data terminals
- Instrumentation
- · Medical electronics
- Alarm systems
- · Industrial electronics
- · Remote metering
- Computers

## **Ordering Code:**

| Order Number | Package Number | Package Description                                                    |
|--------------|----------------|------------------------------------------------------------------------|
| MM74C42N     | N16E           | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide |

## **Connection Diagram**




© 2002 Fairchild Semiconductor Corporation

DS005882

www.fairchildsemi.com

# Schematic Diagram



# **Truth Table**

| Inputs |   |   |   |   |   |   | Out | puts |   |   |   |   |   |
|--------|---|---|---|---|---|---|-----|------|---|---|---|---|---|
| D      | С | В | Α | 0 | 1 | 2 | 3   | 4    | 5 | 6 | 7 | 8 | 9 |
| 0      | 0 | 0 | 0 | 0 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 0      | 0 | 0 | 1 | 1 | 0 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 0      | 0 | 1 | 0 | 1 | 1 | 0 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 0      | 0 | 1 | 1 | 1 | 1 | 1 | 0   | 1    | 1 | 1 | 1 | 1 | 1 |
| 0      | 1 | 0 | 0 | 1 | 1 | 1 | 1   | 0    | 1 | 1 | 1 | 1 | 1 |
| 0      | 1 | 0 | 1 | 1 | 1 | 1 | 1   | 1    | 0 | 1 | 1 | 1 | 1 |
| 0      | 1 | 1 | 0 | 1 | 1 | 1 | 1   | 1    | 1 | 0 | 1 | 1 | 1 |
| 0      | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 0 | 1 | 1 |
| 1      | 0 | 0 | 0 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 0 | 1 |
| 1      | 0 | 0 | 1 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 0 |
| 1      | 0 | 1 | 0 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 1      | 0 | 1 | 1 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 1      | 1 | 0 | 0 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 1      | 1 | 0 | 1 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 1      | 1 | 1 | 0 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |
| 1      | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1    | 1 | 1 | 1 | 1 | 1 |

www.fairchildsemi.com

## **Absolute Maximum Ratings**(Note 1)

Voltage at Any Pin (Note 1) -0.3V to  $V_{CC} + 0.3V$ -55°C to +125°C Operating Temperature Range  $-65^{\circ}$ C to  $+150^{\circ}$ C

Storage Temperature Range

Power Dissipation (P<sub>D</sub>)

Dual-In-Line 700 mW Small Outline 500 mW Operating V<sub>CC</sub> Range 3.0V to 15V

Absolute Maximum V<sub>CC</sub> Lead Temperature

260°C (Soldering, 10 seconds)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

#### **DC Electrical Characteristics**

Min/Max limits apply across temperature range unless otherwise noted

| Symbol              | Parameter                          | Conditions                                                                          | Min                   | Тур  | Max | Units |  |
|---------------------|------------------------------------|-------------------------------------------------------------------------------------|-----------------------|------|-----|-------|--|
| смоѕ то с           | MOS                                |                                                                                     |                       |      |     |       |  |
| V <sub>IN(1)</sub>  | Logical "1" Input Voltage          | V <sub>CC</sub> = 5.0V                                                              | 3.5                   |      |     | V     |  |
|                     |                                    | V <sub>CC</sub> = 10V                                                               | 8.0                   |      |     | ľ     |  |
| V <sub>IN(0)</sub>  | Logical "0" Input Voltage          | V <sub>CC</sub> = 5.0V                                                              |                       |      | 1.5 | V     |  |
|                     |                                    | V <sub>CC</sub> = 10V                                                               |                       |      | 2.0 |       |  |
| V <sub>OUT(1)</sub> | Logical "1" Output Voltage         | $V_{CC} = 5.0V, I_{O} = -10 \mu A$                                                  | 4.5                   |      |     | V     |  |
|                     |                                    | $V_{CC} = 10V$ , $I_{O} = -10 \mu A$                                                | 9.0                   |      |     |       |  |
| V <sub>OUT(0)</sub> | Logical "0" Output Voltage         | $V_{CC} = 5.0V$ , $I_{O} = 10 \mu A$                                                |                       |      | 0.5 | V     |  |
|                     |                                    | $V_{CC} = 10V$ , $I_{O} = 10 \mu A$                                                 |                       |      | 1.0 |       |  |
| I <sub>IN(1)</sub>  | Logical "1" Input Current          | V <sub>CC</sub> = 15V, V <sub>IN</sub> = 15V                                        |                       |      | 1.0 | μА    |  |
| I <sub>IN(0)</sub>  | Logical "0" Input Current          | V <sub>CC</sub> = 15V, V <sub>IN</sub> = 0V                                         | -1.0                  |      |     | μΑ    |  |
| I <sub>cc</sub>     | Supply Current                     | V <sub>CC</sub> = 15V                                                               |                       | 0.05 | 300 | μΑ    |  |
| CMOS/LPT1           | L INTERFACE                        | ·                                                                                   |                       |      |     |       |  |
| V <sub>IN(1)</sub>  | Logical "1" Input Voltage          | V <sub>CC</sub> = 4.75V                                                             | V <sub>CC</sub> – 1.5 |      |     | V     |  |
| V <sub>IN(0)</sub>  | Logical "0" Input Voltage          | V <sub>CC</sub> = 4.75V                                                             |                       |      | 0.8 | V     |  |
| V <sub>OUT(1)</sub> | Logical "1" Output Voltage         | $V_{CC} = 4.75V$ , $I_{O} = -360 \mu A$                                             | 2.4                   |      |     | V     |  |
| V <sub>OUT(0)</sub> | Logical "0" Output Voltage         | $V_{CC} = 4.75V$ , $I_{O} = 360 \mu A$                                              |                       |      | 0.4 | V     |  |
| OUTPUT DR           | RIVE (see Family Characteristics D | ata Sheet) T <sub>A</sub> = 25°C (short circuit current)                            | '                     |      |     |       |  |
| Isource             | Output Source Current              | $V_{CC} = 5.0V$ , $V_{IN(0)} = 0V$ , $V_{OUT} = 0V$                                 | -1.75                 |      |     | mA    |  |
| I <sub>SOURCE</sub> | Output Source Current              | $V_{CC} = 10V, V_{IN(0)} = 0V, V_{OUT} = 0V$                                        | -8.0                  |      |     | mA    |  |
| I <sub>SINK</sub>   | Output Sink Current                | $V_{CC} = 5.0V, V_{IN(1)} = 5.0V, V_{OUT} = V_{CC}$                                 | 1.75                  |      |     | mA    |  |
| I <sub>SINK</sub>   | Output Sink Current                | V <sub>CC</sub> = 10V, V <sub>IN(1)</sub> = 10V, V <sub>OUT</sub> = V <sub>CC</sub> | 8.0                   |      |     | mA    |  |

## AC Electrical Characteristics (Note 2)

 $T_A = 25^{\circ}C, \ C_L = 50 \ \text{pF}, \text{ unless otherwise specified}$ 

| Symbol          | Parameter                     | Conditions             | Min | Тур | Max | Units |
|-----------------|-------------------------------|------------------------|-----|-----|-----|-------|
| t <sub>pd</sub> | Propagation Delay Time to     | V <sub>CC</sub> = 5.0V |     | 200 | 300 | ns    |
|                 | Logical "0" or "1"            | V <sub>CC</sub> = 10V  |     | 90  | 140 | ns    |
| C <sub>IN</sub> | Input Capacitance             | (Note 3)               |     | 5   |     | pF    |
| C <sub>PD</sub> | Power Dissipation Capacitance | (Note 4)               |     | 50  |     | pF    |

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: CPD determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note—

#### Physical Dimensions inches (millimeters) unless otherwise noted 0.740 - 0.780 0.090 (18.80 - 19.81)(2.286)<u>16 15 14 13 12 11 10 9</u> [6] [15] [ INDEX AREA 0.250 ± 0.010 $(6.350 \pm 0.254)$ PIN NO. 1 PIN NO. 1 2 3 4 5 6 7 8 1 2 IDENT IDENT OPTION 02 0.065 0.130 ± 0.005 $\frac{0.060}{(1.524)}$ 4º TYP 0.300 - 0.320 (1.651) $\overline{(3.302 \pm 0.127)}$ OPTIONAL (7.620 - 8.128) 0.145 - 0.200 (3.683 - 5.080) 95°±5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 90° ± 4° TYP 0.020 MIN 0.280 (0.508) $\frac{0.125 - 0.150}{(3.175 - 3.810)}$ (7.112) MIN $(0.762 \pm 0.381)$ 0.014 - 0.023 $0.100 \pm 0.010$ (0.325 +0.040 -0.015 (0.356 - 0.584) $(2.540 \pm 0.254)$ 0.050 ± 0.010 (1.270 ± 0.254) N16E (REV F) TYP

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com