


## Features

- Epitaxial Planar Die Construction
- Ideal for Low Power Amplification and Switching
- Ultra-Small Surface Mount Package
- Lead Free By Design/RoHS Compliant (Note 1)**
- Qualified to AEC-Q101 Standards for High Reliability
- "Green" Device (Note 4 and 5)

## Mechanical Data

- Case: SOT-563
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Finish - Matte Tin annealed over Alloy 42 leadframe. Solderable per MIL-STD-202, Method 20
- Terminals: Lead bearing terminal plating available. See Ordering information Page 3
- Marking & Type Code Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.003 grams (approximate)



| SOT-563  |      |      |      |
|----------|------|------|------|
| Dim      | Min  | Max  | Typ  |
| <b>A</b> | 0.15 | 0.30 | 0.25 |
| <b>B</b> | 1.10 | 1.25 | 1.20 |
| <b>C</b> | 1.55 | 1.70 | 1.60 |
| <b>D</b> | 0.50 |      |      |
| <b>G</b> | 0.90 | 1.10 | 1.00 |
| <b>H</b> | 1.50 | 1.70 | 1.60 |
| <b>K</b> | 0.56 | 0.60 | 0.60 |
| <b>L</b> | 0.10 | 0.30 | 0.20 |
| <b>M</b> | 0.10 | 0.18 | 0.11 |

All Dimensions in mm

## Maximum Ratings

@ $T_A = 25^\circ\text{C}$  unless otherwise specified

| Characteristic                 | Symbol    | Value | Unit |
|--------------------------------|-----------|-------|------|
| Collector-Base Voltage         | $V_{CBO}$ | -40   | V    |
| Collector-Emitter Voltage      | $V_{CEO}$ | -40   | V    |
| Emitter-Base Voltage           | $V_{EBO}$ | -5.0  | V    |
| Collector Current - Continuous | $I_C$     | -200  | mA   |

## Thermal Characteristics

| Characteristic                                                              | Symbol          | Value       | Unit |
|-----------------------------------------------------------------------------|-----------------|-------------|------|
| Power Dissipation (Note 3) @ $T_A = 25^\circ\text{C}$                       | $P_d$           | 150         | mW   |
| Thermal Resistance, Junction to Ambient (Note 3) @ $T_A = 25^\circ\text{C}$ | $R_{\theta JA}$ | 833         | °C/W |
| Operating and Storage Temperature Range                                     | $T_j, T_{STG}$  | -55 to +150 | °C   |

Notes:

- No purposefully added lead.
- Package is non-polarized. Parts may be on reel in orientation illustrated, 180° rotated, or mixed (both ways).
- Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at <http://www.diodes.com/datasheets/ap02001.pdf>.
- Diodes Inc.'s "Green" policy can be found on our website at [http://www.diodes.com/products/lead\\_free/index.php](http://www.diodes.com/products/lead_free/index.php).
- Product manufactured with Date Code UO (week 40, 2007) and newer are built with Green Molding Compound. Product manufactured prior to Date Code UO are built with Non-Green Molding Compound and may contain Halogens or Sb<sub>2</sub>O<sub>3</sub> Fire Retardants.

**Electrical Characteristics** @ $T_A = 25^\circ\text{C}$  unless otherwise specified

| Characteristic                       | Symbol                      | Min                         | Max                     | Unit             | Test Condition                                                                                                                                                                                                                                                                  |
|--------------------------------------|-----------------------------|-----------------------------|-------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>OFF CHARACTERISTICS (Note 6)</b>  |                             |                             |                         |                  |                                                                                                                                                                                                                                                                                 |
| Collector-Base Breakdown Voltage     | $V_{(\text{BR})\text{CBO}}$ | -40                         | —                       | V                | $I_C = -10\mu\text{A}, I_E = 0$                                                                                                                                                                                                                                                 |
| Collector-Emitter Breakdown Voltage  | $V_{(\text{BR})\text{CEO}}$ | -40                         | —                       | V                | $I_C = -1.0\text{mA}, I_B = 0$                                                                                                                                                                                                                                                  |
| Emitter-Base Breakdown Voltage       | $V_{(\text{BR})\text{EBO}}$ | -5.0                        | —                       | V                | $I_E = -10\mu\text{A}, I_C = 0$                                                                                                                                                                                                                                                 |
| Collector Cutoff Current             | $I_{\text{CEX}}$            | —                           | -50                     | nA               | $V_{\text{CE}} = -30\text{V}, V_{\text{EB}(\text{OFF})} = -3.0\text{V}$                                                                                                                                                                                                         |
| Base Cutoff Current                  | $I_{\text{BL}}$             | —                           | -50                     | nA               | $V_{\text{CE}} = -30\text{V}, V_{\text{EB}(\text{OFF})} = -3.0\text{V}$                                                                                                                                                                                                         |
| <b>ON CHARACTERISTICS (Note 6)</b>   |                             |                             |                         |                  |                                                                                                                                                                                                                                                                                 |
| DC Current Gain                      | $h_{\text{FE}}$             | 60<br>80<br>100<br>60<br>30 | —<br>—<br>300<br>—<br>— | —                | $I_C = -100\mu\text{A}, V_{\text{CE}} = -1.0\text{V}$<br>$I_C = -1.0\text{mA}, V_{\text{CE}} = -1.0\text{V}$<br>$I_C = -10\text{mA}, V_{\text{CE}} = -1.0\text{V}$<br>$I_C = -50\text{mA}, V_{\text{CE}} = -1.0\text{V}$<br>$I_C = -100\text{mA}, V_{\text{CE}} = -1.0\text{V}$ |
| Collector-Emitter Saturation Voltage | $V_{\text{CE}(\text{SAT})}$ | —                           | -0.25<br>-0.40          | V                | $I_C = -10\text{mA}, I_B = -1.0\text{mA}$<br>$I_C = -50\text{mA}, I_B = -5.0\text{mA}$                                                                                                                                                                                          |
| Base-Emitter Saturation Voltage      | $V_{\text{BE}(\text{SAT})}$ | -0.65<br>—                  | -0.85<br>-0.95          | V                | $I_C = -10\text{mA}, I_B = -1.0\text{mA}$<br>$I_C = -50\text{mA}, I_B = -5.0\text{mA}$                                                                                                                                                                                          |
| <b>SMALL SIGNAL CHARACTERISTICS</b>  |                             |                             |                         |                  |                                                                                                                                                                                                                                                                                 |
| Output Capacitance                   | $C_{\text{obo}}$            | —                           | 4.5                     | pF               | $V_{\text{CB}} = -5.0\text{V}, f = 1.0\text{MHz}, I_E = 0$                                                                                                                                                                                                                      |
| Input Capacitance                    | $C_{\text{ibo}}$            | —                           | 10                      | pF               | $V_{\text{EB}} = -0.5\text{V}, f = 1.0\text{MHz}, I_C = 0$                                                                                                                                                                                                                      |
| Input Impedance                      | $h_{\text{ie}}$             | 2.0                         | 12                      | k $\Omega$       | $V_{\text{CE}} = 10\text{V}, I_C = 1.0\text{mA}, f = 1.0\text{kHz}$                                                                                                                                                                                                             |
| Voltage Feedback Ratio               | $h_{\text{re}}$             | 0.1                         | 10                      | $\times 10^{-4}$ |                                                                                                                                                                                                                                                                                 |
| Small Signal Current Gain            | $h_{\text{fe}}$             | 100                         | 400                     | —                |                                                                                                                                                                                                                                                                                 |
| Output Admittance                    | $h_{\text{oe}}$             | 3.0                         | 60                      | $\mu\text{S}$    |                                                                                                                                                                                                                                                                                 |
| Current Gain-Bandwidth Product       | $f_T$                       | 250                         | —                       | MHz              | $V_{\text{CE}} = -20\text{V}, I_C = -10\text{mA}, f = 100\text{MHz}$                                                                                                                                                                                                            |
| Noise Figure                         | NF                          | —                           | 4.0                     | dB               | $V_{\text{CE}} = -5.0\text{V}, I_C = -100\mu\text{A}, R_S = 1.0\text{k}\Omega, f = 1.0\text{kHz}$                                                                                                                                                                               |
| <b>SWITCHING CHARACTERISTICS</b>     |                             |                             |                         |                  |                                                                                                                                                                                                                                                                                 |
| Delay Time                           | $t_d$                       | —                           | 35                      | ns               | $V_{\text{CC}} = -3.0\text{V}, I_C = -10\text{mA},$                                                                                                                                                                                                                             |
| Rise Time                            | $t_r$                       | —                           | 35                      | ns               | $V_{\text{BE}(\text{off})} = 0.5\text{V}, I_{\text{B}1} = -1.0\text{mA}$                                                                                                                                                                                                        |
| Storage Time                         | $t_s$                       | —                           | 225                     | ns               | $V_{\text{CC}} = -3.0\text{V}, I_C = -10\text{mA},$                                                                                                                                                                                                                             |
| Fall Time                            | $t_f$                       | —                           | 75                      | ns               | $I_{\text{B}1} = I_{\text{B}2} = -1.0\text{mA}$                                                                                                                                                                                                                                 |

Notes: 6. Short duration pulse test used to minimize self-heating effect.

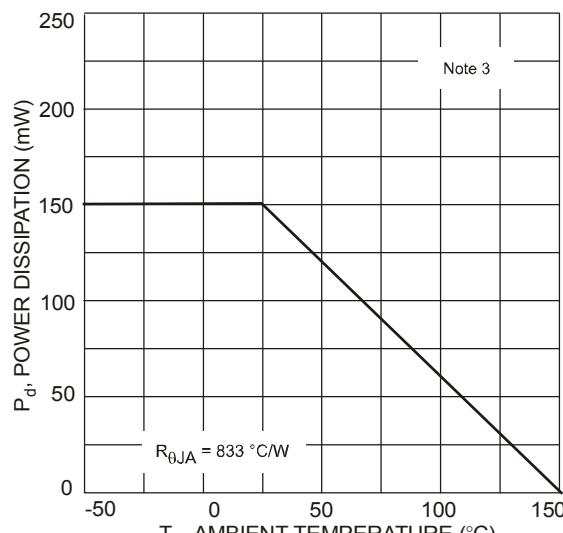



Fig. 1, Derating Curve - Total Device

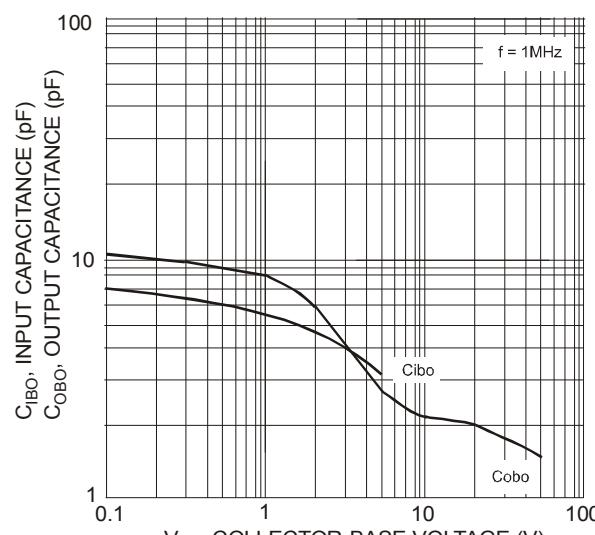



Fig. 2, Input and Output Capacitance vs. Collector-Base Voltage

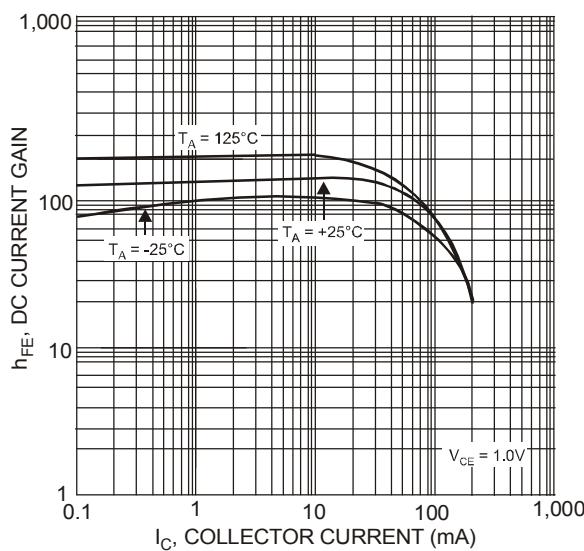



Fig. 3, Typical DC Current Gain vs.  
Collector Current

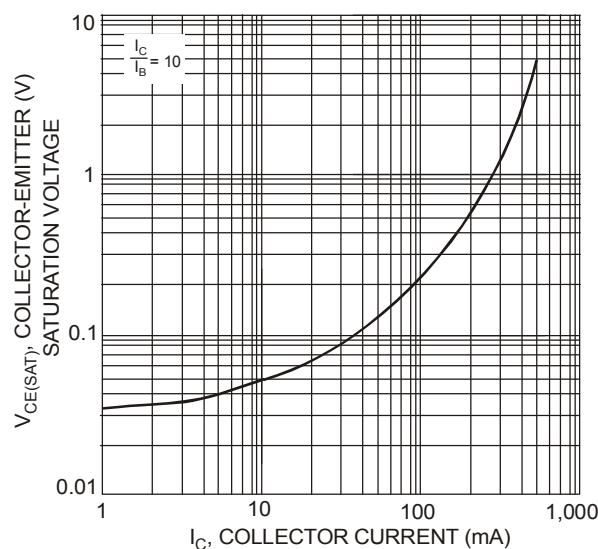



Fig. 4, Typical Collector-Emitter Saturation Voltage  
vs. Collector Current

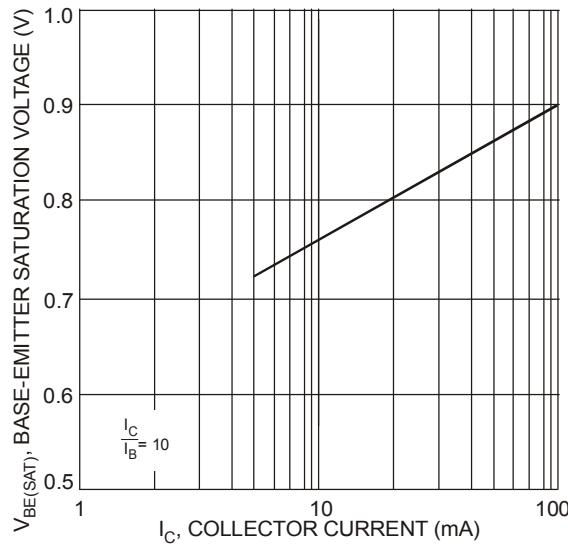



Fig. 5, Typical Base-Emitter  
Saturation Voltage vs. Collector Current

## Ordering Information (Note 7)

| Device      | Packaging | Shipping         |
|-------------|-----------|------------------|
| MMDT3906V-7 | SOT-563   | 3000/Tape & Reel |

Notes: 7. For packaging details, go to our website at <http://www.diodes.com/datasheets/ap02007.pdf>.

## Marking Information



KAR = Product Type Marking Code  
YM = Date Code Marking  
Y = Year (ex: T = 2006)  
M = Month (ex: 9 = September)

### Date Code Key

| Year  | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |     |     |     |     |
|-------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|
| Code  | S    | T    | U    | V    | W    | X    | Y    | Z    |     |     |     |     |
| Month | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep | Oct | Nov | Dec |
| Code  | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9   | O   | N   | D   |



#### IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

#### LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

# Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Diodes Inc.:](#)

[MMDT3906V-7](#)