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ABSTRACT
Stochastic gradient descent (SGD) is one of the most popu-
lar numerical algorithms used in machine learning and other
domains. Since this is likely to continue for the foreseeable
future, it is important to study techniques that can make it
run fast on parallel hardware. In this paper, we provide the
first analysis of a technique called BUCKWILD! that uses
both asynchronous execution and low-precision computa-
tion. We introduce the DMGC model, the first conceptual-
ization of the parameter space that exists when implement-
ing low-precision SGD, and show that it provides a way to
both classify these algorithms and model their performance.
We leverage this insight to propose and analyze techniques
to improve the speed of low-precision SGD. First, we pro-
pose software optimizations that can increase throughput on
existing CPUs by up to 11×. Second, we propose architec-
tural changes, including a new cache technique we call an
obstinate cache, that increase throughput beyond the limits
of current-generation hardware. We also implement and an-
alyze low-precision SGD on the FPGA, which is a promising
alternative to the CPU for future SGD systems.

1. INTRODUCTION
Stochastic gradient descent (SGD) is a ubiquitous opti-

mization algorithm used in a wide variety of applications,
notably as part of the famous backpropagation algorithm
for training neural networks [4, 6, 42]. SGD and its vari-
ants form a critical component of enterprise machine learn-
ing systems, such as MLbase [47], Project Adam [7], and
Google Brain [24]. Additionally, it is used in finance [13]
and other analytics domains, in systems such as GraphLab [30],
MadLib [17], which is used by Cloudera Impala and Pivotal,
and Vowpal Wabbit [2], which is developed at Microsoft.
Since these billion-dollar industries depend on dataflows which
rely in part on, and are often bottlenecked [5, 55] by, SGD,
it is important for systems designers to study techniques to
make SGD run efficiently.

Concretely, SGD is used for solving optimization prob-
lems, wherein the goal is to find a model vector w that min-
imizes a given loss function. As shown in Algorithm 11, it

1Practical SGD applications differ from Algorithm 1 in that the step
size η typically decreases over time. Since this and other minor
changes do not significantly affect the hardware behavior of SGD,
we will not discuss them further in this paper.

Algorithm 1 Stochastic gradient descent

Require: Initial model w ∈ Rn, input dataset x ∈ Rn×m loss
function f , and step size η ∈ R.

1: for k = 1 to NumPasses do
2: for i = 1 to m do
3: Compute a gradient estimate: g = ∇ f (w;xi)
4: Update the model: w← w−η ·g
5: end for
6: end for
7: return w

operates by updating the model vector w repeatedly in a se-
quential loop based on vectors xi from an input dataset.

In order to enhance the performance of SGD, it is im-
portant to consider both the current properties and the de-
sign trajectory of hardware systems. Over the past decade,
due to the breakdown of Dennard scaling, computer hard-
ware has been trending towards more parallel, specialized
architectures [49]. Unfortunately, despite the simplicity of
its update rule, Algorithm 1 is a sequential algorithm, so it
is unlikely to perform well on this parallel hardware—and
generic compiler and architectural techniques cannot fix this
problem because they cannot alter the semantics of the algo-
rithm. To address this, it is common to consider variants of
SGD which are modified to run in parallel [36].

In this paper, we analyze the performance of a new SGD
variant that combines parallel asynchronous execution with
low-precision computation, a technique called BUCKWILD! [10].
In BUCKWILD!, multiple worker threads execute the inner
loop of Algorithm 1 (lines 2-5) asynchronously without lock-
ing; this exploits multi-core parallelism. Also, the real num-
bers in Algorithm 1 are represented by low-precision fixed
point numbers2, which enables higher memory throughput
and better utilization of SIMD parallelism.

Despite BUCKWILD!’s promising benefits in terms of im-
proving the parallelism and memory throughput of SGD,
both these techniques cannot be used naively, since they change
the semantics of the original algorithm. In order to apply
them, we need to be confident that the modified algorithm
will still produce a useful answer. There are reasons to think
that the modified algorithm will be error-prone: the low-
precision computation introduces round-off error and the asyn-

2Rather than by 32- or 64-bit floating point numbers as is standard.



chronous execution may produce race conditions. Fortu-
nately, several recent papers that analyze asynchronous SGD [31,
36] and low-precision SGD [9, 10, 14] show, both empiri-
cally and theoretically, that this extra round-off error often
does not significantly impact the quality of the output.

Unfortunately, just knowing that low-precision SGD is a
valid strategy is not enough: there are many choices that
must be made when implementing this algorithm—and when
designing hardware for this algorithm. These decisions in-
clude setting the precision of the variables, distributing work
across parallel resources, and choosing how to perform the
rounding when we lower the precision of a number. Chang-
ing these implementation details for a BUCKWILD! SGD
algorithm effects a trade-off between: the speed at which the
hardware can execute an update step; and the quality of the
resulting solution. We call these metrics hardware efficiency
and statistical efficiency, respectively.3 While there has been
significant theoretical analysis of the statistical efficiency of
asynchronous low-precision algorithms, their hardware effi-
ciency has not been explored in depth—this is particularly
true for low-precision computation, which has received less
attention from SGD researchers and practitioners than asyn-
chronous execution. As we will show, the decisions made
when implementing a BUCKWILD! algorithm can have a
significant effect (up to 11×) on its hardware efficiency, and
the optimal choices can depend on the structure of the input
dataset—for example, the sparsity of the input can affect the
optimal design. There has been no principled way of reason-
ing about these decisions, and past analyses have focused on
a particular problem or hardware target in ad hoc ways.

To address this issue, we introduce a principled way of
relaxing precision in SGD, called the DMGC model. Specif-
ically, “DMGC” is an acronym that identifies four differ-
ent ways in which arithmetic precision can be reduced: by
quantizing the input dataset (xi), the model (w), the interme-
diate gradient values, or the inter-worker communications.
These ways can be combined arbitrarily in a particular im-
plementation of SGD, and the best-performing system of-
ten uses different levels of precision for the different cate-
gories. The DMGC model serves as both a taxonomy of
existing low-precision implementations, and a way of rea-
soning about the trade-off space that exists when designing
new systems. Additionally, it gives us predictive power, as
with a roofline model [53], to estimate the performance of an
algorithm by classifying it as being either bandwidth-bound
or communication-bound.

Leveraging insight from the DMGC model, we analyze
four software techniques that can be used to produce highly
efficient BUCKWILD! implementations on modern CPUs:
(1) hand-optimizing the SIMD code, (2) using fast random
number generation, (3) disabling prefetching, and (4) com-
bining multiple iterations into a single mini-batch update. To
improve the performance of this algorithm beyond what is
possible in software, we also suggest two hardware enhance-
ments: introducing new compute instructions, and relaxing
cache coherence by randomly ignoring invalidate requests, a
strategy we call an obstinate cache. To further study how ar-
chitecture relates to SGD performance, we test BUCKWILD!

3This nomenclature follows previous work [15, 55] which exam-
ined this trade-off in a different setting.

on the FPGA, which is a promising alternative to the CPU
for next-generation SGD implementations.

In this paper, we study asynchronous, low-precision SGD,
making the following contributions:

• We introduce the DMGC model, and show how it can
be used to estimate the throughput of a BUCKWILD!
implementation with a roofline-like model.

• We describe four software optimizations that can be
used to improve the performance of BUCKWILD! SGD
on current-generation CPUs by up to 11×.

• We suggest two hardware enhancements, including a
new strategy for cache coherency we call an obstinate
cache, that can improve the performance of this algo-
rithm beyond what is possible in software. We also
illustrate the benefits of low-precision computation on
the FPGA, and present useful design techniques.

• We evaluate our methods in several real settings, in-
cluding deep learning. We show that, with our sug-
gested optimizations, using low-precision can produce
near-linear speedups (up to 4×) over full-precision.

2. BACKGROUND AND RELATED WORK
In this section, we will describe asynchronous low-precision

SGD in detail, and discuss prior work related to this algo-
rithm. SGD is used for minimizing a function that can be
written as a sum of many components, specifically

minimize:
m

∑
i=1

f (w;xi) subject to: w ∈ Rn. (1)

To simplify our analysis throughout this paper, we will fo-
cus on a particular version of this problem, logistic regres-
sion [52]: given data examples (xi,yi) ∈ Rn×{−1,1}, we
want to solve

minimize:
m

∑
i=1

log(1+ e−yixT
i w) over: w ∈ Rn.

For this problem, the SGD updates are of the form

w← w+η yixi
(
1+ exp(yi

DOT

xT
i w)

)−1

AXPY

.

From a hardware perspective, the cost of this step will be
dominated by the two vector operations, a dot product and
an AXPY (a-x-plus-y operation); the remainder of the work
is in negligible scalar computations. Many other problems
can be solved using SGD with a single dot-and-AXPY pair
(in addition to negligible scalar computation), including lin-
ear regression and support vector machines (SVM). Because
of this, SGD on logistic regression has a hardware efficiency
that is representative of SGD on any problem in this class.
Even problems with more complicated updates will typically
have performance similar to logistic regression, since more
complicated SGD steps typically consist of similar linear al-
gebra operations (such as matrix multiply).

The computational structure of SGD can also vary based
on whether the input dataset is dense or sparse. Dense
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1 void sgd_worker(float* w, float eta , bool& running) {
while(running) {

3 struct { float* x; float y; } ex=get_example ();
// compute the dot product of ex.x and w

5 float xi_dot_w =0.0;
for(long k=0; k<N; k++) xi_dot_w +=ex.x[k]*w[k];

7 // do the logistic regression scalar computation
float scale_a=eta*ex.y/(1.0+ exp(ex.y*xi_dot_w));

9 // update the model with an AXPY
for(long k=0; k<N; k++) w[k]+=ex.x[k]*scale_a;

11 } }

Figure 1: C++ code for SGD on logistic regression.

datasets have examples xi that are represented simply as a
array of n numbers, while sparse datasets have examples xi
with mostly zero entries, so it is cheaper to instead store a
list of only the nonzero entries. Since dot and AXPY al-
gorithms on dense and sparse vectors differ substantially in
terms of their memory access patterns, it is natural that the
overall performance of SGD for these two cases will also
differ. Throughout this paper we will consider dense and
sparse datasets separately.

Next, we will describe asynchronous execution and low-
precision computation individually, using a simple imple-
mentation of SGD. For dense logistic regression, sequential,
full-precision SGD might be implemented as in Figure 1.

Asynchronous execution. Asynchronous execution is a
widely-used technique also known as HOGWILD! [36] (on
which the BUCKWILD! name was based). HOGWILD! SGD
could use the same code as in Figure 1; it differs from se-
quential SGD in that multiple threads each run sgd_worker
in parallel, sharing a single copy of the model vector w. Be-
cause the model is accessed without locking, race condi-
tions can occur if one thread writes the model w while an-
other thread is computing its own update. On well-behaved
problems, HOGWILD! is known to both “achieve a nearly
optimal rate of convergence” (statistical efficiency) and run
“an order of magnitude” faster than methods that use locking
(hardware efficiency) [10, 31, 36]. This impressive speedup
has inspired a flurry of research into asynchronous SGD across
problem domains, including deep learning [37], PageRank
approximations [34], and recommender systems [54]. Fast
asynchronous variants of other algorithms have also been
proposed, such as coordinate descent [27, 28] and Gibbs
sampling [11, 19]. HOGWILD! has been successfully ap-
plied in industry, such as in Microsoft’s Project Adam [7].

Low-precision computation. Reduced-precision SGD can
be implemented using the code in Figure 1 by simply chang-
ing each bold float data type to a low-precision, fixed-point
type, such as int8_t. Additionally, casts would need to be
added to lines 6 and 10 to convert the low-precision num-
bers safely to and from float. Because the conversion in
the AXPY operation decreases the number of bits used to
represent the numbers, it introduces round-off error, which
is especially significant when the precision of the model is
small. Additional round-off error can occur implicitly at
the start of the algorithm, when the dataset is rounded to a
low-precision type. While low-precision SGD has received
somewhat less research attention than asynchronous SGD,
basic results that characterize its statistical efficiency are still

known [10]. Additionally, several systems have been sug-
gested for using low-precision arithmetic for deep learning
and other problems [9, 14, 45, 46, 48]. Later, we will ex-
amine these systems in more detail in terms of our DMGC
model.

Other settings. While we focus here on the performance
of SGD on a single CPU or FPGA, much previous work ex-
ists that analyzes (full-precision) SGD in other settings. For
example, Zhang and Ré [55] analyzed the trade-offs that ex-
ist when running asynchronous SGD on non-uniform mem-
ory access (NUMA) machines. Similar work exists for al-
gorithms running on clusters [15] and on GPUs [20, 57].
When designing a system that uses SGD, it is important to
understand both how the large-scale structure of the avail-
able compute resources affect the performance, as well as
how optimizations can improve the performance of individ-
ual chips. For this reason, we believe that our contributions
in this paper, especially when combined with previous work,
will be useful to system designers.

3. THE DMGC MODEL
In this section, we describe our main conceptual contri-

bution, the DMGC model, and describe how low-precision
systems described in previous work can be classified thereby.
The main idea behind the DMGC model is that the real num-
bers4 used by a parallel SGD algorithm can be separated into
four distinct groups: numbers used to store the dataset, num-
bers used to represent the model, numbers used as intermedi-
ate values while computing the gradients, and numbers used
to communicate among the several worker threads. This cat-
egorization is natural because these numbers are both used
differently by the algorithm and stored differently within
the memory system, and so making them low-precision will
have different effects on performance.

Dataset numbers. Dataset numbers are those used to store
the input dataset, the xi in (1) or the examples ex from Fig-
ure 1. As inputs to the algorithm, they are constant, and they
compose the vast majority of data in the process’s live data
at any given time. Since there are so many of them and they
are reused only infrequently, dataset numbers are typically
stored in DRAM, and we focus our analysis on problems
for which this is the case5—such as those targeted by popu-
lar in-memory ML frameworks, including SciKit Learn [39].
Because dataset numbers are constant inputs, if we want to
make them low-precision, we need to quantize them only
once: either at the beginning of the algorithm, if the input
is stored on disk as full-precision floats; or before the algo-
rithm runs, if we are given a low-precision version of the
input dataset to load. For some applications, such as rec-
ommender systems and compressed sensing where the input
dataset is naturally quantized, this can be done without any
loss of fidelity; however, in general quantizing the dataset
4Throughout this section, we use the word “numbers” to refer
specifically to values that represent real numbers in the algorithm,
and not to values that represent indexes or counters.
5For very small problems, the dataset could be stored in the last-
level cache, and for very large problems it would not fit in DRAM
and so need to be stored on disk, but since the trade-off space is
very different in these rare cases we do not address them here.
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can affect the statistical efficiency of the algorithm. We call
the precision of the dataset numbers, measured in bits, the
dataset precision.

When solving a dense problem, the input dataset consists
only of dataset numbers; however, when solving a sparse
problem, the dataset also contains values that encode the in-
dexes of the nonzero entries of the example vectors. These
integer values also can be made low-precision6, and since
this does not change the semantics of the input dataset, do-
ing so incurs no loss of statistical efficiency. We call the
precision of these values the index precision.

Using low-precision for the dataset is advantageous from
a hardware efficiency perspective. Since most numbers read
from DRAM are dataset numbers, representing them in low-
precision both decreases the amount of DRAM bandwidth
needed to execute the algorithm, and decreases the amount
of pressure on the entire cache hierarchy. This will improve
performance when SGD is memory bound.

Model numbers. Model numbers are those used to store
the model, the w in (1) and Figure 1. In general, model num-
bers include any mutable state that persists across iterations.
Unlike dataset numbers, model numbers are modified con-
tinuously throughout the algorithm, and while they make up
only a small fraction of the process’s live data, they repre-
sent a significant part of its working set since every model
number is frequently reused. Because of this, being able to
effectively cache the model is important for achieving fast
execution, and the model numbers are typically all stored in
the last-level cache; we focus on problems for which this is
possible. We call the precision of the model numbers the
model precision.

In order to make the model numbers low-precision, it is
necessary to quantize by rounding every time the model is
written, i.e., every time the AXPY on line 4 of Algorithm 1 is
executed. There are two different ways we can do this round-
ing. The first is standard rounding, also known as nearest-
neighbor or biased rounding, which rounds to the closest
number that is representable in the low-precision model type.
The second, unbiased rounding, randomly rounds up or down
in such a way that the expected value of the quantized output
is equal to the input. Unbiased rounding, which has been
used in some [14] previous work on low-precision SGD,
must be implemented using a pseudorandom number gener-
ator (PRNG), which decreases its hardware efficiency; how-
ever, it typically yields more accurate solutions (higher sta-
tistical efficiency) than biased rounding.

Using a low-precision model has similar advantages to us-
ing a low-precision dataset. Having smaller model numbers
puts less pressure on the cache hierarchy, and may allow
a model to fit in cache when it otherwise would not. Ad-
ditionally, computing the gradient updates on the CPU can
be cheaper with a lower-precision model, since more SIMD
parallelism can be extracted for operations producing 8-bit
or 16-bit numbers.

Gradient numbers. Gradient numbers are those used as in-
6For model sizes too large to be indexed by the low-precision type,
this can be achieved by storing the difference between successive
nonzero entries. Since this part of the implementation did not sig-
nificantly impact throughput in our experiments, we do not discuss
it further in this paper.

termediate values while computing the update step, such as
xi_dot_w and scale_a in Figure 1. Unlike with the dataset
or the model, which typically have a single precision, it often
makes sense to use different precisions for different gradient
numbers in an algorithm. Depending on how they are used,
making these numbers low-precision may or may not have
an effect on statistical efficiency, and their effect on hard-
ware efficiency is similarly context-dependent.

Communication numbers. Communication numbers are
those used to communicate among worker threads in a par-
allel algorithm. Sometimes, this communication is done ex-
plicitly, in which case we call its precision the communi-
cation precision. However, in many implementations, such
as in Figure 1 and in standard HOGWILD!, communication
is not explicit; instead, the coherence protocol of the CPU
cache hierarchy is employed to communicate asynchronously
between cores. In this case, there are no communication
numbers—and inasmuch as they exist, they will have the
same precision as the model, since they are just model num-
bers communicated by the cache coherence protocol.

DMGC signatures. Using the four classes of numbers
outlined above, we can classify a particular implementation
of SGD in terms of the precision of its numbers within each
class. This classification, which we call a simplified DMGC
signature, is written as

Ddataset prec [iindex prec]Mmodel precGgradient precCcomm prec.

The i term is included only if the problem is sparse, and the
[i] notation means the problem could possibly be sparse. For
example, a dense implementation that uses an 8-bit dataset,
a 16-bit model, and explicitly computes and communicates
with 32-bit floats would have signature D8M16G32C32.

As it is a simplified model, this type of signature does not
encode everything we want to represent about an algorithm.
To address this, we augment the simplified signature with
rules that capture more information about precision:

• Since floating-point and fixed-point numbers differ, we
suffix an f to the size of floating-point numbers.

• When any explicit synchronization is done among work-
ers, we add a s subscript to the C; absence of an s im-
plies asynchronous execution. We can omit the C en-
tirely if, as in HOGWILD!, the algorithm relies entirely
on the cache hierarchy for implicit communication.

• For simplicity, we omit the G term entirely if the gra-
dient computation is equivalent to using full-precision
numbers (i.e. no fidelity is lost in intermediate values).
Similarly, we can leave out the D and M terms when
they use full-precision arithmetic.

Using these rules, we can assign any implementation a DMGC
signature. For example, standard sparse HOGWILD! has sig-
nature D32 f i32M32 f and a dense BUCKWILD! implementa-
tion using 8-bits for the dataset and the model and unbiased
rounding has signature D8M8.

3.1 Classifying previous implementations
In this subsection, we will briefly discuss some low-precision

systems implemented in previous work, and how they can be
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Paper DMGC Signature

Savich and Moussa [45], 18-bit G18

Seide et al. [46] G1C1
s

Courbariaux et al. [9], 10-bit G10

Gupta et al. [14] D8M16

De Sa et al. [10], 8-bit D8M8

Table 1: DMGC signatures of previous algorithms.

understood under the DMGC model. First, we analyze Seide
et al. [46], in which the gradients are “quantized...to but one
bit per value” and these gradient values, rather than model
values, are used to communicate synchronously among the
workers. Since it maintains a full-precision dataset and model,
which includes a full-precision representation of the quan-
tization error that is carried forward across iterations, this
algorithm has DMGC signature G1C1

s . Note that this signa-
ture gives us a clearer understanding of the precision used
in this algorithm than the title of the paper, which only calls
it “1-Bit” SGD—but does not specify which numbers are so
quantized.

Another implementation from previous work is SGD us-
ing low-precision multiplications, suggested in Courbariaux
et al. [9]. The most successful implementation analyzed by
the authors uses 10-bit multipliers, but full-precision accu-
mulators; since the inputs and outputs to the multipliers are
intermediate numbers, its DMGC signature is just G10.

In Table 1, we list the DMGC signatures of several al-
gorithms from previous work. While most of these papers
considered several ways to set the precision, none highlight
the full trade-off space described by the DMGC model.

4. MODELING PERFORMANCE
In this section, we describe how the DMGC model can

be used to approximate the performance of well-optimized
SGD on parallel hardware. Throughout the rest of this paper,
we will represent hardware efficiency in terms of the dataset
throughput, the rate at which data numbers are processed by
the algorithm, measured in giga-numbers-per-second (GNPS).
For logistic regression where the sizes of the dataset vectors
and the model vector are the same, the dataset throughput is
equal to the rate at which iterations can be performed multi-
plied by the model size.

In order to explore the trade-offs generated by varying the
precision of SGD, we tested our best general implementa-
tions7, using the precisions listed in Table 2, for both dense
and sparse (3% density8) artificially-generated datasets9 of
model sizes n (i.e. w ∈ Rn) ranging from 28 to 226.

7From the optimizations we will discuss in Section 5, we used only
hand-optimized SIMD and XORSHIFT rounding; these are the op-
timizations that are generally applicable, regardless of the problem
or model size.
8Our choice of density is arbitrary, and similar effects would be
observed across a range of densities.
9We generated the datasets by sampling from the generative
model [35] for logistic regression, using a true model vector w∗
and example vectors xi all sampled uniformly from [−1,1]n.

DMGC Signature dense T1 (GNPS) sparse T1 (GNPS)

D32 f [i32]M8 0.203 0.103
D32 f [i32]M16 0.208 0.080
D32 f [i32]M32 f 0.936 0.101
D8[i8]M32 f 0.999 0.089
D16[i16]M32 f 1.183 0.089
D16[i16]M16 1.739 0.106
D8[i8]M16 2.238 0.105
D16[i16]M8 2.526 0.172
D8[i8]M8 3.339 0.166

Table 2: Base sequential throughputs used for simplified
model, in units of giga-numbers-per-second (GNPS), mea-
sured on Xeon E7-8890 (throughputs vary by CPU).
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Figure 2: Bounds for throughput as model size changes.
Dashed line represents the setting where the model is too
large to fit in the L3 cache.

Changing the model size has a non-uniform effect on through-
put, which we have illustrated in Figure 2. For large models
(roughly those larger than 256K in our experiments) chang-
ing the model size has little effect on performance. In this
regime, the throughput is bandwidth-bound, since its perfor-
mance is limited by the memory bandwidth of the individ-
ual cores. On the other hand, for small models, decreas-
ing the model size causes a degradation in performance. In
this regime, the throughput is communication-bound; its per-
formance is limited by the latency at which updates, which
happen more frequently for smaller model sizes, can be sent
between the cores.

We can use this intuition to model the throughput of BUCK-
WILD! as parameters are changed. Our performance model
has the following properties: (1) varying the thread count
results in a throughput that follows Amdahl’s law [3], that is

Tt = T1/((1− p)+ p/t), (2)

where T denotes the throughput, t is the number of threads,
and p is the parallelizable fraction of the task; (2) the base
throughput T1 is solely a function of the DMGC signature;
and (3) the parallelizable fraction p is solely a function of the
model size. For the hardware we used, a Xeon R© E7-8890 v3
with 18 physical cores running at 2.50 GHz, we found that a
good approximation for p was

p = min(0.98,0.15 · (log(model size/256))) . (3)

The first term here describes the fixed bandwidth bound,
which is independent of the model size. The second term de-
scribes the communication bound, which manifests as a de-
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Figure 3: Comparison of real measured dataset throughput (giga-numbers-per-second) with throughput predicted by the per-
formance model, for multiple threads and precisions, and for sparse and dense data.

crease in the parallelizable fraction of the algorithm because
increasing the thread count makes communication more fre-
quent. This assignment of p, together with the base through-
puts T1 listed as a function of the DMGC signature in Ta-
ble 2, seems to yield valid predictions for both dense and
sparse problems, across all well-optimized SIMD implemen-
tations we tried.

Figure 3 compares the measured throughputs of our BUCK-
WILD! implementations with the predictions of the perfor-
mance model, for a selection of thread counts. More broadly,
for both dense and sparse datasets, for 90% of the tested al-
gorithm parameters, the prediction was within 50% of the
observed throughput. It is perhaps surprising that a model
with so few parameters manages to track the measured per-
formance reasonably accurately. However, this makes sense
when we consider that lowering the precision is done with
the goal of extracting SIMD parallelism—that is, parallelism
within a single core—and so effects that operate across many
cores, such as the thread count and the model size (which
affects performance primarily through cache coherence ef-
fects), should not interact strongly with the precision.

Because of this, we can roughly evaluate the effect of
changing the precision, even across a variety of model sizes
and thread counts, by just looking at the base throughput
number in Table 2. In particular, we can gauge the per-
formance against the best-case theoretical speedup, wherein
the throughput is inversely proportional to the number of
bits; we call this linear speedup. The data in Table 2 show
that linear speedup is achieved for dense BUCKWILD!, and
that while sparse SGD shows less than linear speedup as
the precision is decreased, D8i8M8 BUCKWILD! is still the
fastest scheme. Since these base throughputs are directly
proportional to the throughputs predicted by (2), the illus-
trated speedups are valid across all model sizes.

5. SOFTWARE OPTIMIZATIONS
While there are known techniques for writing efficient

HOGWILD! implementations [55], there are additional non-
obvious optimizations that increase throughput in the low-
precision case. In this section, we present two low-precision-
specific optimizations that are generally applicable, and which
were necessary to achieve the performance described in Sec-
tion 4. We also introduce two additional techniques that
can further improve the performance when the model size
is small (and cache-effect dominated).

5.1 Efficient SIMD computations

A major goal of using low-precision computation is to
leverage the ever-widening SIMD capabilities of modern CPUs.
In this subsection, we discuss optimizations that improve
performance on CPUs that use the AVX2 SIMD instruc-
tion set extensions, the newest SIMD extension available
on Xeon processors. Unfortunately, on AVX2, a straightfor-
ward C++ implementation doesn’t fully utilize the capabil-
ities of the processor for lower precisions even when com-
piled by gcc with -Ofast, the highest optimization level.
Worse, other compilers (we tested icc and clang) and frame-
works (we tested OpenMP) do not seem to significantly im-
prove the quality of the generated code. A hand-optimized
implementation that implements the dot and AXPY oper-
ations using AVX2 intrinsics—effectively programming in
assembly—is necessary to achieve the performance reported
in Section 4.

Figure 4a compares the performance of our hand-optimized
implementation with GCC’s compilation of generic code.
As can be seen, GCC consistently underperforms by an sig-
nificant factor. Since the AVX2 optimizations used in the
hand-optimized version don’t change the semantics of the al-
gorithm, its speedup is essentially free: it doesn’t involve any
trade-off with statistical efficiency. The DMGC signatures
for which it was effective to hand-optimize the implementa-
tion are listed in Figure 4c, along with the average (across
models and thread counts) speedups that resulted.

To understand this performance gap, we will analyze how
the dot operation is implemented in both the GCC and the
hand-optimized versions of 8-bit BUCKWILD! In the hand-
optimized version, the numerical computations are done us-
ing a fused multiply-add, instruction, vpmaddubsw. This in-
struction multiplies two pairs of 8-bit numbers, and accumu-
lates the results—with no loss of precision—into a single 16-
bit number. The GCC version does not use a fused multiply-
add; instead, to dot two 8-bit SIMD vectors, it: (1) converts
the 8-bit numbers into 32-bit floats, in the process quadru-
pling the size of each input and thus expanding it into four
vector registers, (2) multiplies the floating point vectors, and
(3) sums the resulting floating point numbers. Since each of
these steps requires multiple instructions, the GCC version
takes almost a dozen instructions to accomplish what the
hand-optimized version does in a single instruction. Similar
differences in instruction usage occur throughout the code
emitted by GCC, which explains the nearly 10× speedup
achieved by hand-optimizing the SIMD instructions.

This difference in performance is not simply incidental to
the implementation of GCC, but rather can be attributed to
the language semantics of C++. This is because in C++, di-
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Figure 4: Hand-optimized AVX2 code outperforms GCC -Ofast across multiple precisions by up to 11× (as seen in Figure 4a).

rectly multiplying two 8-bit integers (for example) can lead
to a loss in fidelity, since it produces an 8-bit result that could
possibly overflow. To prevent this, it is necessary to first cast
the 8-bit numbers to 16-bit numbers, and then do the mul-
tiply. This makes it impossible to write a fused multiply-
add with basic C++ constructs. Furthermore, GCC does not
optimize aggressively enough to transform the code to use
the vpmaddubsw instruction. It would be unreasonable to
expect GCC, or a similar general-purpose compiler, to per-
form this transformation, since sometimes (for example, the
small-model-size sparse problems in Figure 4b) it can actu-
ally lower the performance of the code. Because of the above
concerns, we recommend hand-writing the SIMD code of
the core operations of any BUCKWILD! implementation.

5.2 Fast random number generation
In Section 3, we described how choosing between biased

and unbiased rounding can trade-off between statistical and
hardware efficiency. While biased rounding always maxi-
mizes hardware efficiency with no regard for statistical ef-
ficiency, unbiased rounding offers additional design deci-
sions that determine how the randomness used for rounding
is generated. In this subsection, we discuss these decisions,
which allow for finer-grained trade-offs between statistical
and hardware efficiency. The simplest way of implementing
unbiased rounding is by using the formula

Q(x) = to_low_precision(floor(x+ rand())), (4)

where x is the full-precision number to round, Q(x) is the
low-precision output, floor(z) returns the largest integer smaller
than z, and rand() returns an independent random variable
uniformly distributed on [0,1].10

The hardware efficiency of an implementation of (4) de-
pends primarily on how the rand function is implemented.
The easiest way to implement this in C++ is to use a pseu-
dorandom number generator (PRNG) available in the pop-
ular Boost library [1]. In this implementation, a fresh ran-
dom number is generated by a call to Boost’s default PRNG
(Mersenne twister [33]) every time we write a model num-
ber: n times per iteration, where n is the model size. Even
though Mersenne twister is a fast PRNG, if it runs once ev-
ery write, it dominates the computation cost of the algorithm.

10For simplicity, we are here assuming that we are quantizing to
integer precision; rounding to fixed-point numbers with different
quanta is a straightforward extension.

Worse, there is no obvious way to transform the Boost im-
plementation of the PRNG into a hand-optimized AVX2 im-
plementation, and, as described in Subsection 5.1, the C++
compiler is unlikely to do it efficiently.

To improve the performance of the quantizer, we used a
hand-written AXV2 implementation of XORSHIFT [32], a
very fast, but not very statistically reliable [38] PRNG. This
very lightweight generator has similar statistical efficiency
to the Mersenne twister, as shown in Figure 5a, while signif-
icantly improving upon its hardware efficiency, as shown in
Figure 5b. Unfortunately, since the rest of the computations
required by low-precision SGD are so cheap, running even
a very lightweight generator like XORSHIFT on every write
still makes up a significant fraction of the compute instruc-
tions of the algorithm. This means that this strategy still has
much lower hardware efficiency than biased rounding.

A third strategy that further improves the performance of
the quantizer is to share randomness among multiple rounded
numbers. In this design, the calls to the rand function in
(4) are no longer independent; rather, it will return the same
number some number of times before eventually running the
XORSHIFT PRNG to generate a fresh number.11 Despite
the lack of independence, the quantized output for each el-
ement remains unbiased, and the method has surprisingly
good statistical efficiency; as shown in Figure 5a it can be
close to the other two strategies. Furthermore, since the
PRNG is no longer called at each write, its cost is amortized,
allowing us to match the hardware efficiency of the unbiased
version in some cases, as shown in Figure 5b. This strategy
is used to achieve the performance numbers reported in Sec-
tion 4. One benefit of this approach is that we can expose a
smooth trade-off between statistical and hardware efficiency
by changing the frequency at which the PRNG is run.

5.3 Turning off prefetching
So far, the optimizations we have discussed in this sec-

tion have been focused on improving the memory bandwidth
and SIMD parallelism, and thereby the base throughput, of
the algorithm. However, as Figure 3 illustrates, when the
program is communication-bound, the throughput is almost
an order of magnitude less than when the model is large.
This decrease in performance is attributable to cache effects:

11In our tests, we ran the vectorized XORSHIFT PRNG once every
iteration to produce 256 fresh bits of randomness, which we shared
for rounding throughout the AXPY operation.
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when the model is small, lines in the L2 caches that store
model numbers are more frequently invalidated, leading to
processor stalls as the cores must wait for data from the
shared L3. For the remainder of this section, we will dis-
cuss two techniques that can improve the throughput when
the algorithm is communication-bound.

One way to improve throughput that requires minimal pro-
grammer effort is to simply turn off the hardware prefetcher.
For processors using recent Intel microarchitectures, this can
be achieved by setting bits in the model specific register
(MSR) 0x1A4 [50].12 While this effect may seem surpris-
ing, it has been known to happen for some applications [26].
Since the hardware prefetcher typically increases the through-
put of the memory subsystem, it is understandable when we
consider the facts that: (1) the additional memory operations
inserted by the prefetcher consume a significant amount of
bandwidth; and (2) the cache lines loaded by the prefetcher
are often invalidated before they can be used.

Figures 6a and 6b report the throughput that can be achieved
by turning off hardware prefetching for dense and sparse
problems, respectively. As can be seen, significant speedups
of up to 150% can occur. Furthermore, our experiments
showed that turning off the prefetcher does not have a signif-
icant effect on statistical efficiency—in fact, the distributions
of the quality of the output were indistinguishable from one
another. Note that we did not need to change any of our code
to do this: they were measured using the same executable
and differing only in the assigned value of the prefetch con-
trol MSR. This means that this technique improves hardware
efficiency essentially for free (requiring no programmer ef-
fort), and so we recommend that SGD implementers always
try disabling the prefetcher when model sizes are small.

5.4 Increase the mini-batch size
Mini-batch stochastic gradient descent is a straightforward

variant of SGD in which gradients from multiple dataset ex-
amples are summed, resulting in an update rule like

w← w−α (∇ f (w;xi)+∇ f (w;xi+1)+ · · ·+∇ f (w;xi+B−1))

Here, B, the mini-batch size, is a hyperparameter that de-
12Note that while this MSR provides more fine-grained control of
which features of the prefetcher to turn on and off, for all model
sizes we tried it was optimal to either turn all the features off (no
prefetching at all) or keep them all on (the default setting).

termines how many examples will be used to compute each
model update (for standard SGD, the mini-batch size is just
B = 1). Since more compute work is done for each time the
model is written, increasing the mini-batch size will amor-
tize the cache effects caused by writing to a small model.
Specifically, the model is written less frequently, and so L2
cache lines will be invalidated correspondingly less frequently.

Figure 6d illustrates the speedups that can result from us-
ing a larger mini-batch size. For very large mini-batch sizes,
the throughput for smaller models approaches that of larger
models; this scheme effectively increases the parallelizable
fraction p of the algorithm.

Unlike some other optimizations, increasing the mini-batch
size can effect the statistical efficiency. This relationship is
often problem dependent and difficult to capture. For lo-
gistic regression, Figure 6e shows the measured statistical
efficiency as the mini-batch size is changed. These results
suggest that an empirical or theoretical analysis of the accu-
racy is needed to decide how large the mini-batch size can
be set before statistical efficiency degrades.

6. HARDWARE OPTIMIZATIONS
In this section, we discuss two hardware changes that can

improve the throughput beyond that which is achievable via
the software optimization techniques presented in Section 5.
The first proposed change affects compute by adding new
ALU instructions, while the second affects memory by re-
laxing the cache coherence protocol. In contrast to previous
work on new ISAs for neural network accelerators [29] and
relaxed consistency shared memory [51], our changes are
simple and could be added to any existing architecture. It is
our hope that these or similar hardware changes may actu-
ally be implemented in future CPU generations.

6.1 New vector ALU instructions
The performance improvements resulting from hand-optimized

SIMD code in depend on the existence of efficient instruc-
tions like the fused-multiply add described in Section 5.1.
Were this and similar instructions not to exist in AVX2, it
would be impossible to improve over the code generated by
GCC, which means that fully-optimized BUCKWILD! sys-
tems would run significantly slower. In this subsection, we
ask the opposite question: can we add compute instructions
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Figure 6: Effects of turning off prefetching, changing mini-batch size, using and obstinate cache, and running on an FPGA.

that will improve the throughput of low-precision SGD?
The most obvious new ALU instructions to add would be

ones that allow the inner loops of the dot and AXPY op-
erations to be be computed using fewer instructions. Here,
we focus on the D8M8 case—the one for which instructions
are most lacking on current architectures—and propose two
specific instructions to do this: one, for dot, which verti-
cally multiplies signed 8-bit integer vectors, producing 16-
bit intermediate values, which it then horizontally adds in
groups of four to produce 32-bit floating point numbers; and
another, for AXPY, which multiplies an 8-bit vector by an
8-bit scalar, producing 16-bit intermediate values, which it
then adds to a hardware-generated pseudorandom 8-bit vec-
tor, before truncating to produce an 8-bit output. These in-
structions are sufficient to compute the inner loop bodies of
dot and AXPY with one and two instructions, respectively,
so they represent an upper bound on the speedup that can
result from new ALU instructions.

In order to evaluate these instructions, we ran test pro-
grams on our Xeon processor by using an existing ALU in-
struction (vpmaddwd for the new dot instruction, vpmullw
for the AXPY instruction) as a proxy in place of the new in-
struction in our code. While the resulting program produces
invalid output, it lets us accurately measure the runtime of
the program, assuming that the new instruction will have the
same latency as the proxy. In our experiments, these new in-
structions consistently improved throughput by 5%−15%.

We can also consider another type of new ALU instruc-
tion: those which enable us to run at different precisions than
we could otherwise use. Specifically, we are interested in
running 4-bit SGD, that is, D4M4. This choice is infeasible

on current-generation CPUs because AVX2 does not support
any kind of 4-bit arithmetic. We used the same methodol-
ogy as before to test the performance of a hypothetical 4-
bit BUCKWILD! implementation, assuming the existence of
4-bit multiply, add, and fused-multiply-add instructions, all
of which have the same latency characteristics as their 8-bit
equivalents (which we used as proxies for our experiments).
Figure 5c compares the throughput of this dense D4M4 im-
plementation to D8M8; across most settings, it is about 2×
faster (although it often affects statistical efficiency).

6.2 Relaxing coherence: the obstinate cache
In Sections 5.3 and 5.4, we explored software techniques

that can address the deleterious cache effects that occur when
the algorithm is communication-bound. It is natural to con-
sider hardware changes that can further ameliorate these harm-
ful cache effects. Here, we propose a simple change that re-
laxes the coherence of the cache hierarchy—for only those
cache lines used to store model numbers13—by just ran-
domly ignoring some fraction of invalidates. Under this strat-
egy, which we call an obstinate cache because it obstinately
refuses to respond to invalidate requests, whenever a cache
receives a signal that would normally cause it to change a
model cache line to the invalid (I) state, with some probabil-
ity q (the obstinacy parameter), using a hardware PRNG, it
instead retains that cache line in the shared (S) state. While
this technique makes the caches incoherent, the same logic
that shows that asynchronous execution only marginally af-

13The obstinate cache behavior could be enabled per-page based on
whether the user sets a flag in the page table.
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layers (the bottleneck for most systems) and kernels SVM.

fects statistical efficiency can be applied to show that cache
incoherence has a similarly negligible effect.

In order to evaluate this technique of relaxed coherence,
we ran experiments using the ZSim architectural simula-
tor [44], a popular simulator that excels at modeling memory
hierarchies. Using ZSim, we simulated an 18-core proces-
sor with approximately the same cache characteristics as our
2.5 GHz Xeon processor: a 32 KB 4-cycle latency L1 cache,
256 KB 12-cycle latency L2 cache, and a 45 MB 36-cycle
latency shared L3 cache. We tested using the same code
used in Section 4, except that since ZSim does not model a
hardware prefetcher, we manually added software prefetch-
ing. While the simulation can not capture all the conges-
tion effects that occur when the algorithm is compute-bound,
throughput does decrease as the model becomes smaller, as
shown in Figure 6c. The same figure illustrates how using
an obstinate cache can improve throughput: for values of q
around 50%, the cost of running with a small model disap-
pears. On real hardware, which experiences many negative
effects from invalidates that are not modeled by the simu-
lator, we expect the effect of the obstinate cache will be
even more dramatic. Furthermore, as shown in Figure 6f,
we observed that the obstinate cache has no detectable ef-
fect on statistical efficiency, even when q is as high as 95%.
These results suggest that hardware that allows for software-
controlled relaxation of the cache coherence, even in such a

course-grained way as the obstinate cache, could be a useful
tool for achieving good performance for low-precision SGD.

7. EVALUATION
In this section we will display the effects of our ideas

on some popular problems. First, we will demonstrate that
BUCKWILD! can make deep learning more efficient. Al-
most all deep learning systems, including CNNs [23] and
ResNets [16], are bottlenecked by the training of convolu-
tion layers; this has been verified experimentally [8]. For
this reason, we use the throughput of a convolution layer as
a proxy for the hardware efficiency of the system. We mea-
sured this throughput for a convolution layer14 running on
images of size 227×227×3 from the ImageNet dataset [43].
We expect that low-precision would yield a linear increase in
throughput. Figure 7a shows that this is in fact the case, and
that our optimizations are necessary to achieve this speedup.

Next, we evaluate the effect of low precision on statisti-
cal efficiency for neural networks. We study this effect by
measuring the test error for LeNet, a successful CNN archi-
tecture [25]. To do this, we modified Mocha [56], a deep
learning library, to simulate low-precision arithmetic of ar-
bitrary bit widths. Since this simulation was too slow to use

14The layer we studied is structured identically to the first convolu-
tion layer from Caffe’s AlexNet example [18].
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ImageNet, we tested on the smaller MNIST [12] and CI-
FAR10 [22] digit classification tasks. Convolution layers for
these datasets have speedups similar to those in Figure 7a:
for both MNIST and CIFAR10, we observed D16M16 and
D8M8 having 2.0× and 3.0× speedup, respectively, over
full-precision. We expect that that using a 16-bit model (for
all the layers) will result in quality indistinguishable from
full-precision. Our experiments show that this is the case,
and we show in Figure 7b that it is possible to train accu-
rately even below 8-bits, using unbiased rounding. This is a
surprising result, as some previous work has suggested that
training at 8-bit precision is too inaccurate [9, 14].

One common alternative to deep learning for classifica-
tion tasks is the kernel support vector machine (SVM). We
hypothesized that, as with logistic regression, BUCKWILD!
would have little effect on statistical efficiency in this setting.
We evaluated our techniques by running kernel SVMs15 on
MNIST using the random Fourier features technique [41],
a standard proxy for Gaussian kernels. To study the statis-
tical efficiency, we measured both the average training loss
and the test error when using all our software optimizations
(and 18 threads). Our results, which are displayed in Fig-
ure 7d (training loss) and Figure 7e (test error), show that
16-bit (D16M16) BUCKWILD! achieves accuracy that essen-
tially matches full-precision computation, and 8-bit (D8M8)
produces results that are within a percent of full-precision.
We also observed runtimes similar to those in Figure 3; com-
pared to the 32-bit floating point version, the 16-bit and 8-bit
versions ran 3.3× and 5.9× faster, respectively.

8. BUCKWILD BEYOND THE CPU
To see how BUCKWILD! could be implemented if we

were free of the architectural constraints of a modern CPU,
we studied its performance on an FPGA. On the FPGA, we
can: (1) perform arithmetic operations at any precision and
reclaim resources when doing so; (2) use SIMD operations
that are effectively any length; and (3) compress memory
usage directly with precision without any overhead.

We started by creating a high-level, parameterized descrip-
tion of linear regression SGD (which has the same com-
pute structure as logistic regression), focusing on the case
where the model can fit in on-chip block RAM.16 We then
compiled this description down to VHDL using the DHDL
framework [21, 40], which uses heuristic search to choose
optimal parameters for a particular design.

Before we converged on a high-level design, we had to
consider a few issues that differ from the CPU implementa-
tion. First, we had to decide whether to use standard SGD or
mini-batch SGD (as in §5.4). In hardware, these two imple-
mentations generate very different designs due to the way
memory is managed and control signals are generated. In
regular SGD, we only need to perform one dot product and
one AXPY per model update. This is only acceptable if the
model size is large enough to amortize the cost of issuing a
new memory command for sequential bursts for every itera-
tion. If the model is small, then we can combine multiple
iterations into a single memory request. This means that

15We ran ten such SVM classifiers, one for each digit, in a standard
one-versus-all system.

16This is analogous to the model fitting in the L3 cache on the CPU.

Optimization Beneficial when? Stat. eff. loss

Optimized SIMD Always None
Fast PRNG Using unbiased rounding Negligible
No prefetching Communication-bound Negligible
Mini-batch Communication-bound Possible

New instructions Always None
Obstinate cache Communication-bound Negligible

Table 3: Summary of optimizations discussed in this paper.

mini-batch SGD will have more throughput, as an individ-
ual worker can work on multiple examples in between each
model update. We empirically found that for our FPGA,
mini-batch SGD has the highest throughput unless a single
data vector spans at least 100 DRAM bursts.

Second, with either of the two implementations, we must
match the volume of data being read with the volume of data
being processed. Every data element we load from main
memory must be read twice per update: once to compute
the error of the current model and then again to compute the
update. The second step depends on the result of the first
step. Therefore, we can either choose to divide the design
into two stages, data-load and data-process, where the data-
process stage must consume data twice as fast as the off-
chip load, or three stages, off-chip-load, error-compute, and
update-compute, where the three stages must consume data
at the same rate and asynchronously communicate to each
other when they are finished. The designs are illustrated in
Figure 7c. The three-stage design requires the second stage
to copy data from the BRAM it reads from to the BRAM that
the third stage reads from so that the third stage can compute
the correct update given the error that stage two passes along.
Thus, it is a better design when compute logic is scarce but
BRAM is abundant. However, since the two-stage design
does not need to make a redundant copy of the data, it is a
better candidate when BRAM is scarce.

Figure 7f shows that our optimized designs have higher
throughput (by up to 2.5×), but use less FPGA resources, as
the precision decreases. Similarly, when keeping the model
precision fixed, halving the dataset precision improves both
throughput and area. This illustrates the benefits of setting
precision using the DMGC model on the FPGA.

9. CONCLUSION
In this paper, we studied the performance of the asyn-

chronous, low-precision variant of stochastic gradient de-
scent. Understanding this technique is becoming increas-
ingly important for system architects as SGD becomes in-
creasingly dominant within machine learning and other do-
mains. We introduced a new conceptual framework for clas-
sifying precision, the DMGC model, and showed how it
can be used to both clarify existing techniques, and model
the throughput of new implementations. With insight from
this model, we proposed several software optimizations and
hardware changes (summarized in Table 3) that can improve
the performance of a BUCKWILD! implementation by up to
11×. We also showed that low-precision computation can be
useful for SGD beyond the CPU, and described techniques

11



that were useful to achieve good performance on an FPGA.
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