

General Description

The MX7845 is a 12-bit, voltage-output, 4-quadrant, multiplying digital-to-analog converter (DAC). A precision internal output amplifier and thin-film resistors, lasertrimmed at the wafer level, maintain accuracy over the full operating temperature range. The output amplifier is internally compensated and drives $\pm 10V$ into a $2k\Omega$ load.

The MX7845 has buffered latches that are easily interfaced with microprocessors. Data is transferred into the input register from a 12-bit-wide data path. The input registers are controlled by standard CHIP SELECT (CS) and WRITE (WR) signals. For stand-alone operation, the CS and WR inputs are grounded, making all latches transparent. All logic inputs are level-triggered and compatible with TTL and +5V CMOS logic levels. For a detailed description of MX7845 operation, refer to the MAX501/MAX502 data sheet.

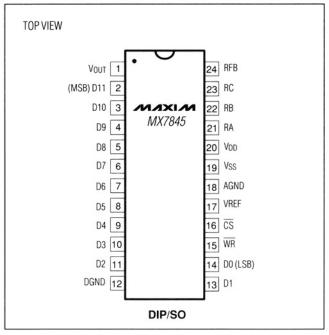
Applications

Automatic Test Equipment Digital Attenuators Programmable Power Supplies Programmable-Gain Amplifiers Digital to 4-20mA Converters

Features

- Complete MDAC with Output Amplifier
- 4-Quadrant Multiplication
- ◆ Guaranteed Monotonic (T_{MIN} to T_{MAX})
- Matched Application Resistors
- ♦ Small 0.3" 24-Pin DIP Package

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
MX7845JN	0°C to +70°C	24 Narrow Plastic DIP
MX7845KN	0°C to +70°C	24 Narrow Plastic DIP
MX7845JR	0°C to +70°C	24 Wide SO
MX7845KR	0°C to +70°C	24 Wide SO
MX7845JP	0°C to +70°C	28 PLCC
MX7845KP	0°C to +70°C	28 PLCC
MX7845J/D	0°C to +70°C	Dice*
MX7845AEWG	-40°C to +85°C	24 Wide SO
MX7845BEWG	-40°C to +85°C	24 Wide SO
MX7845AQ	-40°C to +85°C	24 Narrow CERDIP
MX7845BQ	-40°C to +85°C	24 Narrow CERDIP
MX7845SE	-55°C to +125°C	28 LCC**
MX7845SQ	-55°C to +125°C	24 Narrow CERDIP**
MX7845TQ	-55°C to +125°C	24 Narrow CERDIP**

- Contact factory for dice specifications.
- Contact factory for availability and processing to MIL-STD-883.

Functional Diagram

	Functi	onai Diagram
VREF R R 2R 2R 2R	R RA 2R 2R	
D11 (MSB)	DO (LSB)	AGND
MX7845 SIMP	LIFIED DAC AND A	MPLIFIER CIRCUIT

Pin Configuration

/VI/IXI/VI is a registered trademark of Maxim Integrated Products.

/U/IXI/U

ABSOLUTE MAXIMUM RATINGS

VDD to DGND -0.3V, +17V VSS to DGND +0.3V, -17V VREF to AGND ±25V VRFB to AGND ±25V VRA to AGND ±25V VRB to AGND ±25V VRC to AGND ±25V VOUT to AGND (Note 1) VDD + 0.3V, VSS - 0.3V VDD to AGND -0.3V, +17V AGND to DGND -0.3V, VDD	Digital Input Voltage to DGND -0.3V, VDD + 0.3V Continous Power Dissipation (any package) 650mW to +75°C 650mW derate above +75°C 10mW/°C Operating Temperature Ranges: 0°C to +70°C MX7845J_/K_ -40°C to +85°C MX7845S_/T_ -55°C to +125°C Storage Temperature Range -65°C to +150°C Lead Temperature (soldering, 10 sec) +300°C
AGND to DGND0.3V, V _{DD}	Lead Temperature (soldering, 10 sec) +300°C

Note 1: Vout may be shorted to AGND, VDD, or Vss if the package power dissipation is not exceeded.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +15V \pm 5\%, V_{SS} = -15V \pm 5\%, V_{REF} = +10V, AGND = DGND = 0V, V_{OUT} connected to RFB, R_L = 2k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , all grades, unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS
ACCURACY							
Resolution	N			12			Bits
		T _A = +25°C	MX7845K/B/T			±1/2	
		1A = +25 C	MX7845J/A/S			±1	
Relative Accuracy (Note 2)	INT		MX7845K			±3/4	LSB
			MX7845J/B/T			±1.	
			MX7845A			±3/2	
			MX7845S			±2	
Differential Nonlinearity	DNL					±1	LSB
		T +25°C	MX7845K/B/T			±1	mV
		T _A = +25°C	MX7845J/A/S			±2	
Zero-Code Offset Error (Note 3)			MX7845K/B			±3	
			MX7845J/A/T		V. (1889)	±4	
			MX7845S			±5	
Offset Temperature Coefficient	ΔVOS/ ΔTemp				±5		μV/°C
		RFB, Vout	MX7845K/B/T			±3	LSB
		connected	MX7845J/A/S			±6	
Gain Error		RC or RB, Vout con-	MX7845K/B/T			±6	
danteno		nected; VREF = 5V	MX7845J/A/S			±9	
		RA, Vout	MX7845K/B/T			±8	
		connected; VREF = 2.5V	MX7845J/A/S			±10	
Gain Temperature Coefficient	ΔGain/ ΔTemp	RFB, V _{OUT} connected			±2		ppm of
Reference Input Resistance				8	12	16	kΩ
Application Resistor Ratio Matching		RA to RB to RC matchin	ng			0.5	%

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD}=+15V\pm5\%, V_{SS}=-15V\pm5\%, V_{REF}=+10V, AGND=DGND=0V, V_{OUT}$ connected to RFB, R_L = 2k Ω , C_L = 100pF, T_A = T_{MIN} to T_{MAX}, all grades, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DIGITAL INPUTS							
Input Current	I _{IN}	$V_{IN} = 0V$ and V_{DD}			±1	μА	
Input Low Voltage	VIL				0.8	V	
Input High Voltage	VIH		2.4			V	
Input Capacitance	CIN			5		pF	
POWER REQUIREMENTS							
	V _{DD}		14.25		15.75	V	
Supply Voltage (Note 4)	Vss		-14.25		-15.75		
Supply Current	IDD	Vout unloaded			10	mA	
Supply Current	Iss	V _{OUT} unloaded			4	IIIA	
Davier Cumply Dejection	PSR	V _{DD} only, VREF = -10V	±0.2		%/%		
Power-Supply Rejection	PSR	V _{SS} only			±0.2	/0/ /0	

Note 2: Guaranteed monotonic over temperature.

Note 3: DAC register loaded with all 0s.

Note 4: The MX7845 can operate from ±12V supplies.

TIMING CHARACTERISTICS

(VDD = +15V æ5%, VSS = -15V æ5%, VREF = +10V, AGND = DGND = 0V, TA = TMIN to TMAX, all grades, unless otherwise noted.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS	
		$T_A = +25^{\circ}C$	100		
Chip Select to Write-Setup Time	tcs	MX7845J/K/A/B	135	ns	
		MX7845S/T	140		
		$T_A = +25^{\circ}C$	0		
Chip Select to Write-Hold Time	tсн	MX7845J/K/A/B	0	ns	
		MX7845S/T	0		
		$T_A = +25^{\circ}C$	100	ns	
Write Pulse Width	twR	MX7845J/K/A/B	135		
		MX7845S/T	140		
		$T_A = +25^{\circ}C$	100		
Data-Setup Time	tps	MX7845J/K/A/B	100	ns	
		MX7845S/T	120		
Data-Hold Time	tou	$T_A = +25^{\circ}C$	20	ne	
Data-Hold Hille	tDH		20	ns	

Note 5: All input signal rise and fall times measured from 10% to 90% of +5V; $t_r = t_f = 20$ ns. Timing measurement reference is (VIH + VIL) /2.

AC PERFORMANCE CHARACTERISTICS

(TA = TMIN to TMAX, all grades, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
DYNAMIC PERFORMANCE							
Output-Voltage Settling Time (Note 7)	ts	Vout LOAD = 2	kΩ, 100pF		2.5	5.0	μs
Slew Rate	SR	Vout LOAD = 2	kΩ, 100pF		7		V/µs
DAC Glitch Impulse (Note 8)					450		(nV)(s)
Multiplying Feedthrough Error (Note 9)					5		mV _{p-p}
Unity-Gain Small-Signal Bandwidth (Note 10)		Vout, RFB conr	nected		600		kHz
Full-Power Bandwidth (Note 11)		Vout, RFB conr	nected, $R_L = 2k\Omega$		250		kHz
Total Harmonic Distortion (Note 12)	THD				-90		dB
OUTPUT CHARACTERISTICS (Note 13)							
Open-Loop Gain	Avo	$V_{OUT} = \pm 10V, R$	_ = 2kΩ	85			dB
Output Voltage Swing	VO	$R_L = 2k\Omega$, $C_L =$	100pF	±10			V
Output Resistance	Ro	RFB, Vout conr	nected		0.2		Ω
Short-Circuit Current		VOUT, AGND co	nnected; T _A = +25°C		15		mA
			0.1Hz to 10Hz		2		μV _{RMS}
			f = 10Hz		250		
Output Noise Voltage (Note 14)		$T_A = +25^{\circ}C$	f = 100Hz		100		
			f = 1kHz		50		nV√Hz
			f = 10kHz		50		
			f = 100kHz		50]

AC PERFORMANCE CHARACTERISTICS are included for design guidance and are not subject to test.

Settling to 0.01% of full-scale range. DAC register alternately loaded with all 0s and all 1s. Note 7:

Note 7: Settling to 0.01% of full-scale range. DAC register afternately loaded with all 0s a Note 8: Measured with VREF = 0V. DAC register alternately loaded with all 1s and all 0s. Note 9: VREF = ±10V, 10kHz sine wave. DAC register loaded with all 0s. Note 10: DAC register loaded with all 1s. VREF = 100mV_{p-p} sine wave. Note 11: DAC register loaded with all 1s. VREF = 20V_{p-p} sine wave. Note 12: VREF = 6V_{RMS}, 1kHz sine wave.

Note 13: $2k\Omega$ minimum specified load resistance.

Note 14: Includes output amplifier noise and Johnson Noise of RFB.

Pin Description

DIP/SO	PLCC/ LCC	NAME	FUNCTION
PIN	PIN	PIN	
1	2	Vout	Voltage Output
2-11	3-7, 9-13	D11-D2	Data Bits 2 to 11 (MSB)
12	14	DGND	Digital Ground
13, 14	16, 17	D1, D0	Data Bits 0 to 1 (LSB)
15	18	WR	Write Input. Active Low.
16	19	CS	Chip-Select Input. Active Low.
17	20	VREF	Reference Input to DAC
18	21	AGND	Analog Ground

DIP/SO	PLCC/ LCC	NAME	FUNCTION
PIN	PIN		
19	23	Vss	-12V to -15V Supply Voltage Input
20	24	V_{DD}	+12V to +15V Supply Voltage Input
21	25	RA	Scaling Resistor: RA = 4RFB
22	26	RB	Scaling Resistor: RB = 2RFB
23	27	RC	Scaling Resistor: RC = 2RFB
24	28	RFB	Feedback Resistor
	1, 8, 15, 22	N.C.	No Connect

For application information, refer to the MAX501/MAX502 data sheet.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

<u>MX7845JN+</u> <u>MX7845JP+</u> <u>MX7845JP+T</u> <u>MX7845JR+</u> <u>MX7845JR+T</u> <u>MX7845KN+</u> <u>MX7845KP+</u> <u>MX7845KP+T</u>