NJM2244M

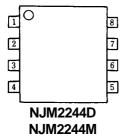
3-INPUT VIDEO SWITCH WITH 75Ω DRIVER

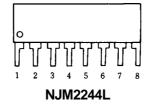
■ GENERAL DESCRIPTION

The **NJM2244** is a three input integrated video switch, which selects one video signal from three input signals.

It contains driver circuit for 75Ω load and is able to connect to TV monitor. Its operating supply voltage range is 5 to 12v and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz).

NJM2244 contains clamp function and it can be operated while setting DC level fixed in position of the video signal.


■ FEATURES

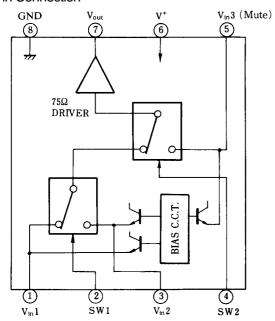

- Operating Voltage 4.75 to 13V
- 3 input 1 Output
- Internal Driver Circuit for 75Ω Impedance
- Muting Function available
- Internal Clamp Function
- Low power Dissipation
 16.5mA
- Cross-talk
 Wide Frequency Range
 Package Outline
 70dB (at 4.43MHz)
 10MHz (2V_{P-P} Input)
 DIP8, DMP8, SIP8
- Bipolar Technology

■ APPLICATION

• VCR Video Camera AV-TV Video Disc Player

■ PIN CONFIGURATION

NJM2244L


■ PACKAGE OUTLINE

NJM2244D

- PIN FUNCTION $\begin{array}{cc} 1 \; . \; V_{ln} \hat{1} \\ 2 \; . \; SW1 \end{array}$
 - 3 . V_{in}2 4 . SW2
 - 5 . V_{in}3
 - 7. V_{out} 8. GND

■ BLOCK DIAGRAM

Pin Connection

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW1	SW2	OUTPUT SIGNAL				
L	L	V _{IN} 1				
Н	L	V _{IN} 2				
L/H	Н	V _{IN} 3				

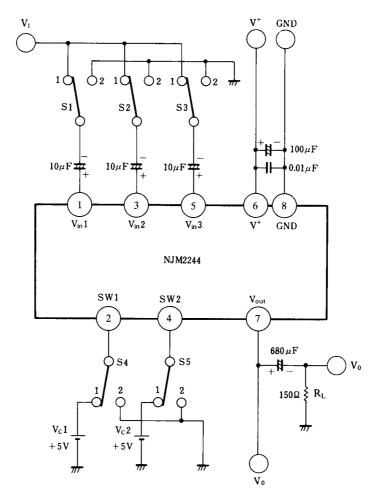
note): Input clamp Voltage is about 2/5 of Supply Voltage

■ ABSOLUTE MAXIMUM RATINGS

 $(Ta = 25^{\circ}C)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	15	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300 (SIP8) 800	mW mW mW
Operating Temperature Range	T _{opr}	-20 to +75	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C

■ ELECTRICAL CHARACTERISTICS

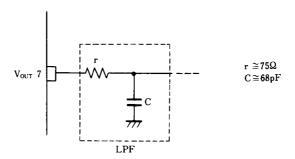

 $(V^+ = 5V, Ta = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Recommended Supply Voltage	V ⁺			-	13.0	V
Operating Current	Icc	S1 = S2 = S3 = S4 = S5 = 2	11.5	16.5	22.0	mA
Voltage Gain	G _V	$Vin = 2.0V_{P-P}, 100kHz, VO / Vi, R_L = 150\Omega$	-0.8	-0.3	+0.2	dB
Frequency Characteristics	G _f	$Vin = 2.0V_{P-P}, V_O(10MHz) / V_O(100kHz), R_L = 150\Omega$	-1.0	-	+1.0	dB
Differential Gain	DG	Vin = $2.0V_{P-P}$, staircase, $R_L = 150\Omega$	-	0.3	-	%
Differential Phase	DP	Vin = $2.0V_{P-P}$, staircase, $R_L = 150\Omega$		0.3	-	deg.
Output Offset Voltage	V _{off}	$S1 = S2 = S3 = 2$, $S5 = 1 \rightarrow 2Vo$: Voltage change	1	0	±30	mV
Crosstalk	СТ	$Vin = 2V_{P-P}$, 4.43MHz, Vo / Vi		-70		dB
Cuitab Changa Valtaga	V _{CH}	All inside Sw : ON	2.4	-	-	V
Switch Change Voltage	V _{CL}	All inside Sw : OFF	-	-	0.8	V

(note) Unless specified, tested with three mode below.

a)
$$S1 = 1$$
, $S2 = S3 = S4 = S5 = 2$ b) $S2 = S4 = 1$, $S1 = S3 = S5 = 2$ c) $S1 = S2 = 2$, $S3 = S5 = 1$, $S4 = 1$ or 2

■ TEST CIRCUIT


DC Voltage Each Terminal

Typ. on Test Circuit Ta = 25°C

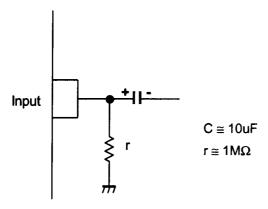
Terminal Name	V _{IN} 1	SW1	V _{IN} 2	SW2	V _{IN} 3	V ⁺	V_{OUT}	GND
DC Voltage	$\frac{2}{5} V^{+}$	1	$\frac{2}{5}$ V ⁺	-	$\frac{2}{5} V^{+}$	1	$\frac{2}{5}$ V ⁺ -0.7	-

■ APPLICATION

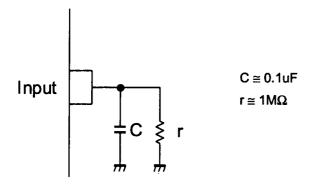
Oscillation Prevention on light loading conditions Recommended under circuit

■ MUTE

Use pin5 as mute terminal.


Pin5: connect to GND via a capacitor (0.1uF), and SW2 to high.

■ EQUIVALENT CIRCUIT


PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V _{1N} 1	5	V _{IN} 3 (Mute)	V _{1N3} 200Ω 200Ω
2	SW1	2 kΩ \$13	6	V ⁺	
3	V _{IN} 2	V _{1N} 2 ≥ 200Ω	7	Vouт	200Ω V _{OUT}
4	SW2	SW2 2kΩ 313kΩ 200Ω 9kΩ	8	GND	

■ APPLICATION

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires 0.1 uF capacitor between INPUT and GND, $1 M\Omega$ resistance between INPUT and GND for clamp type input at mute mode.

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NJR:

NJM2244D