

STGW40H120F2

Trench gate field-stop IGBT, H series 1200 V, 40 A high speed

Datasheet - production data

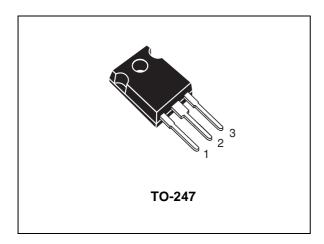
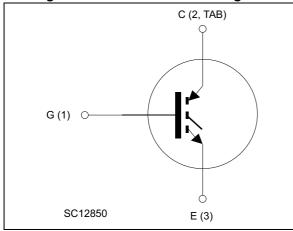



Figure 1. Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- · High speed switching series
- Minimized tail current
- $V_{CE(sat)} = 2.1 \text{ V (typ.)} @ I_C = 40 \text{ A}$
- 5 μs minimum short circuit withstand time at T_J=150 °C
- Tight parameters distribution
- Safe paralleling
- Low thermal resistance
- · Lead free package

Applications

- Uninterruptible power supply
- Welding machines
- Photovoltaic inverters
- Power factor correction
- High frequency converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the improved H series of IGBTs, which represent an optimum compromise between conduction and switching losses to maximize the efficiency of high frequency converters. Furthermore, a slightly positive $V_{\text{CE}(\text{sat})}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STGW40H120F2	GW40H120F2	TO-247	Tube

Contents STGW40H120F2

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuits	11
4	Package mechanical data	12
5	Revision history	14

STGW40H120F2 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	1200	V
I _C	Continuous collector current at T _C = 25 °C	80	Α
I _C	Continuous collector current at T _C = 100 °C	40	Α
I _{CP} ⁽¹⁾	Pulsed collector current	160	Α
V _{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total dissipation at T _C = 25 °C	468	W
T _{STG}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature	-55 to 175	°C

^{1.} Pulse width limited by maximum junction temperature

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R_{thJC}	Thermal resistance junction-case	0.32	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

2 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Table 4. Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 2 mA	1200			٧
		V _{GE} = 15 V, I _C = 40 A		2.1	2.6	
V05(0	V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 40 A T _J = 125 °C		2.4		V
		$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}$ $T_{J} = 175 \text{ °C}$		2.5		
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 2 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 1200 V			25	μΑ
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			250	nA

Table 5. Dynamic characteristics

Table of Dynamic characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	3200	-	pF
C _{oes}	Output capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$	-	202	-	pF
C _{res}	Reverse transfer capacitance	V _{GE} = 0	-	88	-	pF
Q_g	Total gate charge		-	187	-	nC
Q _{ge}	Gate-emitter charge	$V_{CC} = 520 \text{ V, } I_{C} = 40 \text{ A,}$ $V_{GE} = 15 \text{ V, see } Figure 23$	-	17	-	nC
Q _{gc}	Gate-collector charge	GL 1, 110 1 gm 2	-	115	-	nC

Table 6. IGBT switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	18	-	ns
t _r	Current rise time		-	37	-	ns
(di/dt) _{on}	Turn-on current slope		-	1755	-	A/µs
t _{d(off)}	Turn-off delay time	$V_{CE} = 600 \text{ V}, I_{C} = 40 \text{ A},$		152	-	ns
t _f	Current fall time	$R_G = 10 \Omega$, $V_{GE} = 15 V$, see <i>Figure</i> 22	-	83	-	ns
E _{on} ⁽¹⁾	Turn-on switching losses	3	-	1.0	-	mJ
E _{off} ⁽²⁾	Turn-off switching losses		-	1.32	-	mJ
E _{ts}	Total switching losses		-	2.32	-	mJ
t _{d(on)}	Turn-on delay time		-	36	-	ns
t _r	Current rise time		-	20	-	ns
(di/dt) _{on}	Turn-on current slope		-	1580	-	A/µs
t _{d(off)}	Turn-off delay time	$V_{CE} = 600 \text{ V}, I_{C} = 40 \text{ A},$	-	161	-	ns
t _f	Current fall time	$R_G = 10 \Omega$, $V_{GE} = 15 V$, $T_J = 175 °C$, see <i>Figure 22</i>	-	190	-	ns
E _{on} ⁽¹⁾	Turn-on switching losses		-	1.81	-	mJ
E _{off} ⁽²⁾	Turn-off switching losses		-	2.46	-	mJ
E _{ts}	Total switching losses		-	4.27	-	mJ
t _{sc}	Short-circuit withstand time	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V},$ $T_{J} = 150 ^{\circ}\text{C},$	5		-	μJ

Energy losses include reverse recovery of the external diode. The diode is the same of the co-packed STGW40H120DF2

^{2.} Turn-off losses include also the tail of the collector current.

2.1 Electrical characteristics (curves)

Figure 2. Power dissipation vs. case temperature

Figure 3. Collector current vs. case temperature

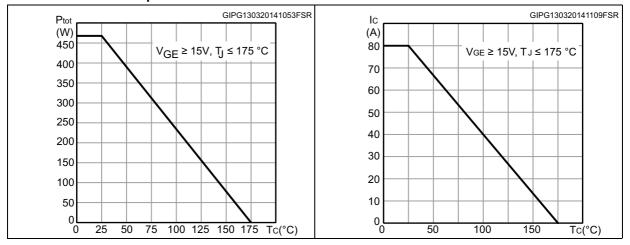


Figure 4. Output characteristics $(T_J = 25^{\circ}C)$

Figure 5. Output characteristics $(T_J = 175^{\circ}C)$

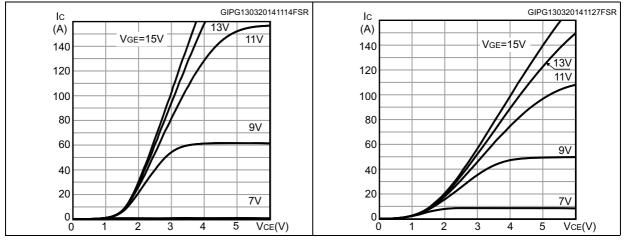


Figure 6. V_{CE(sat)} vs. junction temperature

VCE(sat)
VGE(sat)
VGE=15V

3.4

3.0

2.6

1c=80A

1c=40A

1.8

1.4

-50

0

50

100

150

TJ(°C)

Figure 7. V_{CE(sat)} vs. collector current

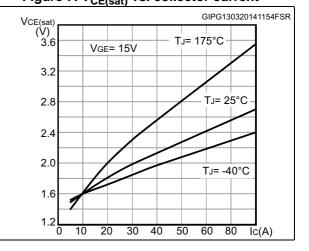
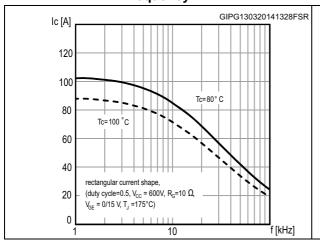



Figure 8. Collector current vs. switching frequency

Figure 9. Forward bias safe operating area

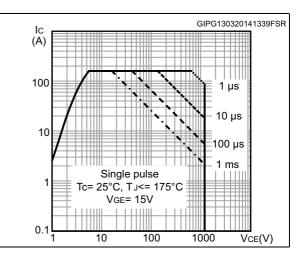
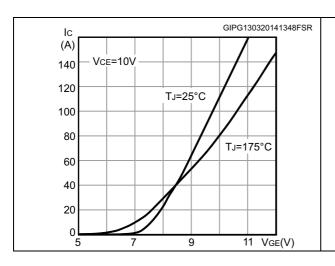



Figure 10. Transfer characteristics

Figure 11. Normalized V_{GE(th)} vs junction temperature

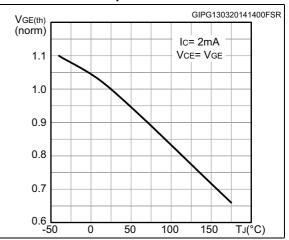
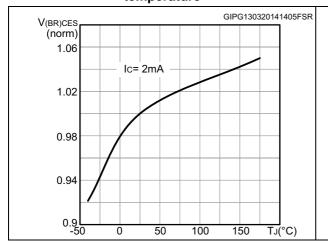



Figure 12. Normalized $V_{(BR)CES}$ vs. junction temperature

Figure 13. Capacitance variation

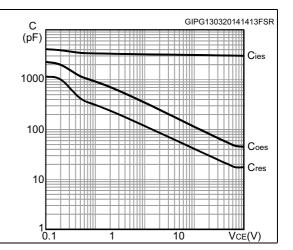


Figure 14. Gate charge vs. gate-emitter voltage Figure 15. Switching loss vs collector current

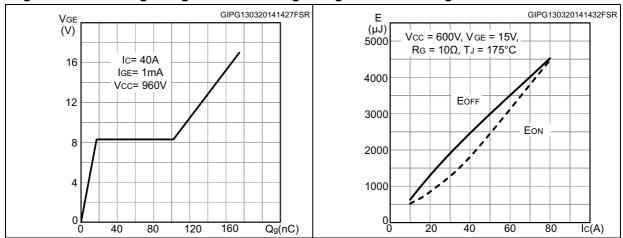


Figure 16. Switching loss vs gate resistance

Figure 17. Switching loss vs temperature

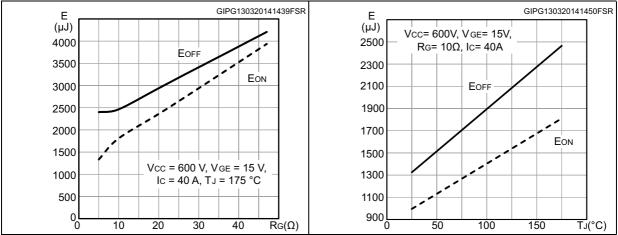


Figure 18. Switching loss vs collector-emitter Figure 19. Switching times vs. collector current voltage

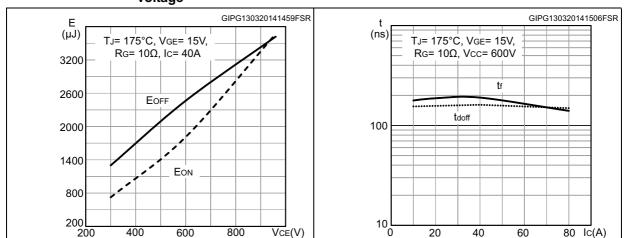
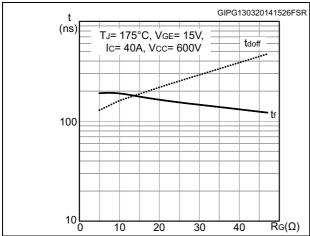



Figure 20. Switching times vs. gate resistance

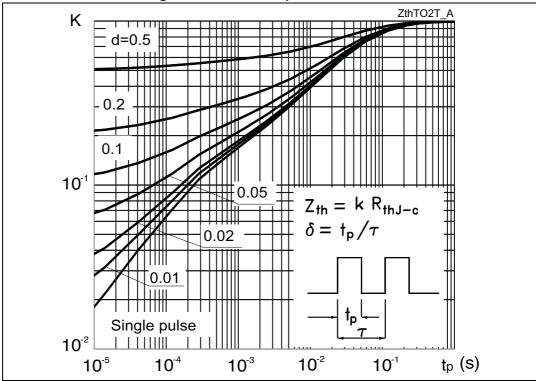


Figure 21. Thermal impedance for IGBT

STGW40H120F2 Test circuits

3 Test circuits

Figure 22. Test circuit for inductive load switching

Figure 23. Gate charge test circuit

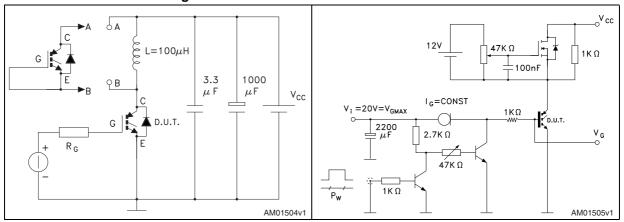
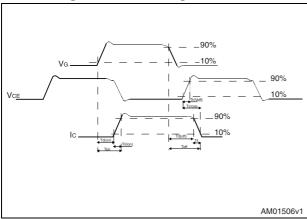



Figure 24. Switching waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

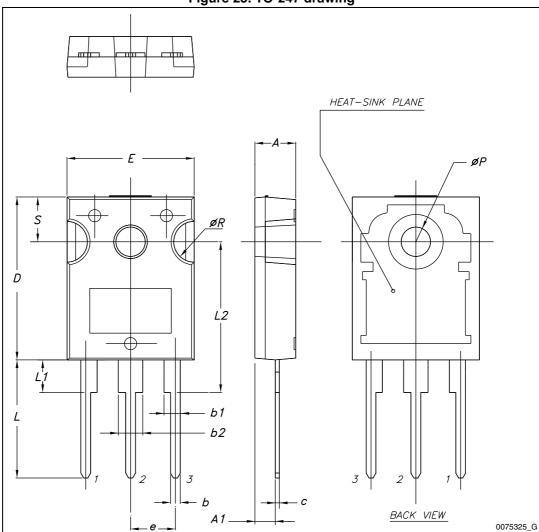


Figure 25. TO-247 drawing

Table 7. TO-247 mechanical data

	mm.				
Dim.					
	Min.	Тур.	Max.		
А	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
Е	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		

Revision history STGW40H120F2

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
29-Jan-2014	1	Initial release.
14-Mar-2014	2	Updated Table 4: Static characteristics and Table 5: Dynamic characteristics. Added Section 2.1: Electrical characteristics (curves). Updated title in cover page. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STGW40H120F2