

Technical Specification

PKM 4000E PI series

DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

EN/LZT 146 358 R2A Aug 2007

© Ericsson Power Modules AB

Key Features

- Industry standard Quarter-brick
 57.9 x 36.8 x 8.5 mm (2.28 x 1.45 x 0.33 in.)
- Low profile, max 8.5 mm (0.33 in.)
- High efficiency, typ. 91 % at 3.3 Vout half load
- 1500 Vdc input to output isolation
- Meets isolation requirements equivalent to basic insulation according to IEC/EN/UL 60950
- · More than 1.5 million hours MTBF

General Characteristics

- Suited for narrow board pitch applications (15 mm/0.6 in)
- Output over voltage protection
- Input under voltage shutdown
- Over temperature protection
- Monotonic start-up
- Output short-circuit protection
- Remote sense
- Remote control
- Output voltage adjust function
- · Highly automated manufacturing ensures quality
- ISO 9001/14001 certified supplier

Safety Approvals

Design for Environment

Meets requirements in hightemperature lead-free soldering processes.

Contents

General Information		
Safety Specification		3
Absolute Maximum Ratings		4
•		
Product Program	Ordering No.	
2.5V, 25A / 62.5W Electrical Specification	PKM 4619E PI	5
3.3V, 25A / 82.5W Electrical Specification	PKM 4810E PI	
5.0V, 15A / 75W Electrical Specification	PKM 4711E PI	
•		
EMC Specification		14
Operating Information		15
Thermal Consideration		16
Connections		17
Mechanical Information		18
Soldering Information		
Delivery Information		20
Product Qualification Specification		

PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

General Information

Ordering Information

See Contents for individual product ordering numbers.

Option	Suffix	Ordering No.
Positive Remote Control Logic	Р	PKM 4810E PIP
Heatsink	HS	PKM 4810E PIHS
Lead length 3.69 mm (0.145 in)	LA	PKM 4810E PILA

Note: As an example a positive logic, heatsink, short pin product would be PKM 4810E PIPHSLA.

Reliability

The Mean Time Between Failure (MTBF) is calculated at full output power and an operating ambient temperature (T_A) of +40°C, which is a typical condition in Information and Communication Technology (ICT) equipment. Different methods could be used to calculate the predicted MTBF and failure rate which may give different results. Ericsson Power Modules currently uses Telcordia SR332.

Predicted MTBF for the series is:

1.5 million hours according to Telcordia SR332, issue
 1, Black box technique.

Telcordia SR332 is a commonly used standard method intended for reliability calculations in ICT equipment. The parts count procedure used in this method was originally modelled on the methods from MIL-HDBK-217F, Reliability Predictions of Electronic Equipment. It assumes that no reliability data is available on the actual units and devices for which the predictions are to be made, i.e. all predictions are based on generic reliability parameters.

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2002/95/EC and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Ericsson Power Modules products include:

- Lead in high melting temperature type solder (used to solder the die in semiconductor packages)
- Lead in glass of electronics components and in electronic ceramic parts (e.g. fill material in chip resistors)
- Lead as an alloying element in copper alloy containing up to 4% lead by weight (used in connection pins made of Brass)

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, 6σ (sigma), and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of our products.

Warranty

Warranty period and conditions are defined in Ericsson Power Modules General Terms and Conditions of Sale.

Limitation of Liability

Ericsson Power Modules does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

Safety Specification

General information

Ericsson Power Modules DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL60950, *Safety of Information Technology Equipment*.

IEC/EN/UL60950 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC-DC converters are defined as component power supplies. As components they cannot fully comply with the provisions of any Safety requirements without "Conditions of Acceptability". It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable Safety standards and Directives for the final product.

Component power supplies for general use should comply with the requirements in IEC60950, EN60950 and UL60950 "Safety of information technology equipment".

There are other more product related standards, e.g. IEEE802.3af "Ethernet LAN/MAN Data terminal equipment power", and ETS300132-2 "Power supply interface at the input to telecommunications equipment; part 2: DC", but all of these standards are based on IEC/EN/UL60950 with regards to safety.

Ericsson Power Modules DC/DC converters and DC/DC regulators are UL60950 recognized and certified in accordance with EN60950.

The flammability rating for all construction parts of the products meets requirements for V-0 class material according to IEC 60695-11-10.

The products should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. Normally the output of the DC/DC converter is considered as SELV (Safety Extra Low Voltage) and the input source must be isolated by minimum Double or Reinforced Insulation from the primary circuit (AC mains) in accordance with IEC/EN/UL60950.

Isolated DC/DC converters

It is recommended that a slow blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter.

In the rare event of a component problem in the input filter or in the DC/DC converter that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the faulty DC/DC converter from the input power source so as not to affect the operation of other parts of the system.
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating.

The galvanic isolation is verified in an electric strength test. The test voltage ($V_{\rm iso}$) between input and output is 1500 Vdc or 2250 Vdc for 60 seconds (refer to product specification).

Leakage current is less than 1 μA at nominal input voltage.

24 V DC systems

The input voltage to the DC/DC converter is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.

48 and 60 V DC systems

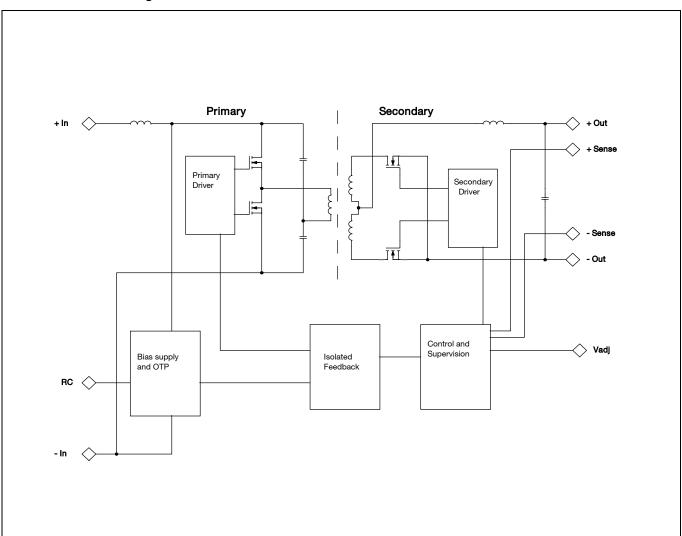
If the input voltage to Ericsson Power Modules DC/DC converter is 75 Vdc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions.

Single fault testing in the input power supply circuit should be performed with the DC/DC converter connected to demonstrate that the input voltage does not exceed 75 Vdc.

If the input power source circuit is a DC power system, the source may be treated as a TNV2 circuit and testing has demonstrated compliance with SELV limits and isolation requirements equivalent to Basic Insulation in accordance with IEC/EN/UL60950.

Non-isolated DC/DC regulators

The input voltage to the DC/DC regulator is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.


PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

Absolute Maximum Ratings

Char	Characteristics		min	typ	max	Unit
T_{ref}	T _{ref} Operating Temperature (see Thermal Consideration section)		-40		+120	°C
Ts	T _S Storage temperature		-55		+125	°C
V_{l}	V _I Input voltage		-0.5		+80	V
V _{iso}	V _{iso} Isolation voltage (input to output test voltage)				1500	Vdc
V _{tr}	V _{tr} Input voltage transient (Tp 100 ms)				100	V
V_{RC}	Remote Control pin voltage	Positive logic option	0		6	V
V RC	(see Operating Information section)	Negative logic option	0		18	V
V_{adj}	V _{adj} Adjust pin voltage (see Operating Information section)		-0.5		2xV _{oi}	V

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Fundamental Circuit Diagram

PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

2.5 V, 25 A / 62.5W Electrical Specification

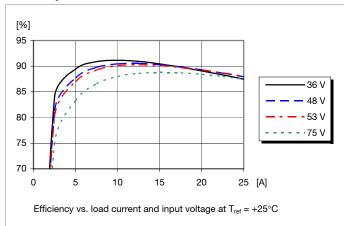
PKM 4619E PI

 T_{ref} = -40 to +90°C, V_{I} = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{ref} = +25°C, V_{I} = 53 V, max I_{O} , unless otherwise specified under Conditions.

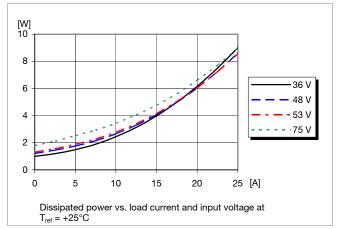
Charac	teristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		36		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	28	31	33	V
V_{lon}	Turn-on input voltage	Increasing input voltage	32	34	36	V
Cı	Internal input capacitance			1		μF
Po	Output power		0		62.5	W
SVR	Supply voltage rejection (ac)	f = 100 Hz sinewave, 1 Vp-p		70		dB
		50 % of max I _O		90		
n	Efficiency	max I ₀		88		%
η	Linciency	50 % of max I_0 , $V_1 = 48 \text{ V}$		90		70
		$max I_O$, $V_I = 48 V$		88		
P _d	Power Dissipation	max I _O		8.6	12	W
Pli	Input idling power	I _O = 0 A, V _I = 53 V		1.3		W
P _{RC}	Input standby power	V _I = 53 V (turned off with RC)		0.1		W
fs	Switching frequency	0-100 % of max I ₀		175		kHz
V _{Oi}	Output voltage initial setting and accuracy	$T_{ref} = +25^{\circ}C, V_{I} = 53 \text{ V}, I_{O} = 25 \text{ A}$	2.45	2.50	2.55	V
	Output adjust range	See operating information	2.25		2.75	V
	Output voltage tolerance band	10-100% of max I _O	2.42		2.58	V
V_{O}	Idling voltage	I _O = 0 A	2.42		2.58	V
	Line regulation	max I _O		0	10	mV
	Load regulation	$V_{I} = 53 \text{ V}, 1-100\% \text{ of max } I_{O}$		2	10	mV
V _{tr}	Load transient voltage deviation	V _I = 53 V, Load step 25-75-25 % of max I _O , di/dt = 0.5 A/μs,		±350		mV
t _{tr}	Load transient recovery time	see Note 1		50		μs
t _r	Ramp-up time (from 10-90 % of Voi)	10-100% of max I _{O,}		6	10	ms
ts	Start-up time (from V _I connection to 90% of V _{Oi})	$T_{ref} = 25^{\circ}C, V_{I} = 53 \text{ V}$		8	15	ms
t _f	Vin shutdown fall time	max I ₀		0.1		ms
	(from V _I off to 10% of V _O)	I _O = 0 A		20		S
	RC start-up time	max I ₀		8		ms
t _{RC}	RC shutdown fall time (from RC off to 10% of V _o)	max I ₀		0.1		ms
		I _O = 0 A		20		S
I _O	Output current		0		25	A
I _{lim}	Current limit threshold	$V_0 = 2.4V$, $T_{ref} < max T_{ref}$	26	29	34	A
I _{sc}	Short circuit current	$T_{ref} = 25^{\circ}C, V_{O} < 0.2V$		34	38	Α
V _{Oac}	Output ripple & noise	See ripple & noise section, max I _O , V _{Oi}		40	100	mVp-p
OVP	Over voltage protection	T_{ref} = +25°C, V_I = 53 V, 10-100% of max I_O	3.5		5.0	V

Note 1: Output filter according to Ripple & Noise section

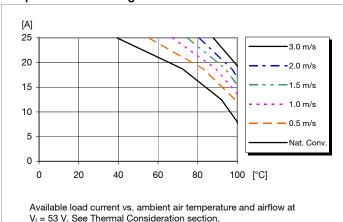
PKM 4000E PI series DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

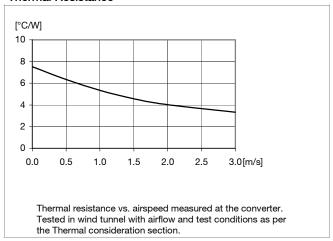

EN/LZT 146 358 R2A Aug 2007

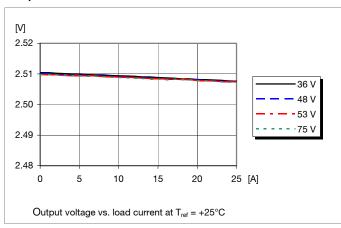
© Ericsson Power Modules AB

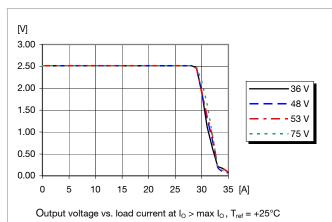

2.5 V, 25 A / 62.5W Typical Characteristics

PKM 4619E PI


Efficiency


Power Dissipation


Output Current Derating


Thermal Resistance

Output Characteristics

Current Limit Characteristics

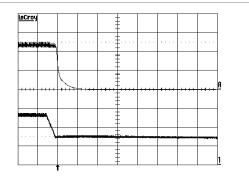
Technical Specification

PKM 4000E PI series EN/LZT 146 358 R2A Aug 2007

DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W © Ericsson Power Modules AB

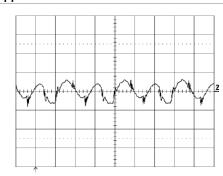
2.5 V, 25 A / 62.5W Typical Characteristics

PKM 4619E PI


Start-up

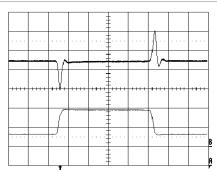
Start-up enabled by connecting $V_{\scriptscriptstyle I}$ at: $T_{ref} = +25^{\circ}C, V_{I} = 53 V,$ I_O = 25 A resistive load

Top trace: output voltage (1 V/div.). Bottom trace: input voltage (20 V/div.). Time scale: (2 ms/div.).


Shut-down

Shut-down enabled by disconnecting $V_{\scriptscriptstyle I}$ at: T_{ref} = +25°C, V_I = 53 V, I_O = 25 A resistive load.

Top trace: output voltage (1 V/div.). Bottom trace: input voltage (20 V/div.). Time scale: (0.1 ms/div.).


Output Ripple & Noise

Output voltage ripple at: $T_{ref} = +25^{\circ}C, V_{I} = 53 V,$ Io = 25 A resistive load

Trace: output voltage (20mV/div.). Time scale: (5 µs/div.).

Output Load Transient Response

Output voltage response to load current step- Top trace: output voltage (200mV/div.). change (6.25-18.75-6.25 A) at: $T_{rof} = +25^{\circ}C$. $V_1 = 53 \text{ V}$.

Bottom trace: load current (10 A/div.). Time scale: (0.1 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:
$$Radj = 5.11 \times \left(\frac{2.5 \left(100 + \Delta\%\right)}{1.225 \times \Delta\%} - \frac{\left(100 + 2 \times \Delta\%\right)}{\Delta\%}\right) \text{ k}\Omega$$

Example: Increase $4\% => V_{out} = 2.6 \text{ Vdc}$

$$5.11 \times \left(\frac{2.5(100+4)}{1.225 \times 4} - \frac{(100+2 \times 4)}{4}\right) \text{ k}\Omega = 133 \text{ k}\Omega$$

Output Voltage Adjust Downwards, Decrease:

$$Radj = 5.11 \times \left(\frac{100}{\Delta\%} - 2\right) \text{ k}\Omega$$

Example: Decrease 2% =>Vout = 2.45 Vdc

$$5.11 \times \left(\frac{100}{2} - 2\right) \text{ k}\Omega = 245 \text{ k}\Omega$$

PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

3.3 V, 25 A / 82.5W Electrical Specification

PKM 4810E PI

 T_{ref} = -40 to +90°C, V_{I} = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{ref} = +25°C, V_{I} = 53 V, max I_{O} , unless otherwise specified under Conditions.

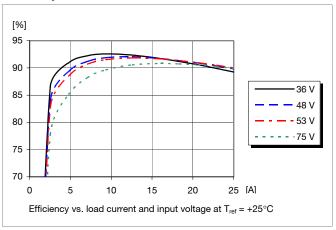
Charac	teristics	Conditions	min	typ	max	Unit
V_{l}	Input voltage range		36		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	28	31	33	V
V_{lon}	Turn-on input voltage	Increasing input voltage	32	34	36	V
Cı	Internal input capacitance			1		μF
Po	Output power		0		82.5	W
SVR	Supply voltage rejection (ac)	f = 100 Hz sinewave, 1 Vp-p		74		dB
		50 % of max I ₀		92		
<u></u>	Efficiency	max I ₀		90		%
η	Efficiency	50 % of max I_0 , $V_1 = 48 \text{ V}$		92		70
		$max I_O$, $V_I = 48 V$		90		
P_d	Power Dissipation	max I ₀		9.2	14	W
Pii	Input idling power	I _O = 0 A, V _I = 53 V		1.5		W
P _{RC}	Input standby power	V _I = 53 V (turned off with RC)		0.1		W
fs	Switching frequency	0-100 % of max I ₀		200		kHz
V _{Oi}	Output voltage initial setting and accuracy	$T_{ref} = +25^{\circ}C, V_{I} = 53 \text{ V}, I_{O} = 25 \text{ A}$	3.23	3.3	3.37	V
	Output adjust range	See operating info and Note 2	2.97		3.63	V
	Output voltage tolerance band	10-100% of max I ₀	3.2		3.4	V
Vo	Idling voltage	I _O = 0 A	3.2		3.4	V
	Line regulation	max I _O		4	10	mV
	Load regulation	$V_{I} = 53 \text{ V}, 1-100\% \text{ of max } I_{O}$		1	10	mV
V _{tr}	Load transient voltage deviation	V _I = 53 V, Load step 25-75-25 % of max I _O , di/dt = 1 A/μs,		±400		mV
t _{tr}	Load transient recovery time	see Note 1		50		μs
t _r	Ramp-up time (from 10-90 % of Voi)	10-100% of max I _{O,}		5.8	10	ms
ts	Start-up time (from V _I connection to 90% of V _{Oi})	$T_{ref} = 25^{\circ}C, V_1 = 53 V$		7.9	15	ms
t _f	Vin shutdown fall time	max I ₀		0.2		ms
	(from V _I off to 10% of V _O)	I _O = 0 A		25		S
	RC start-up time	max I ₀		7.7		ms
t _{RC}	RC shutdown fall time	max I ₀		0.2		ms
_	(from RC off to 10% of V _o)	I _O = 0 A		25		S
I _O	Output current		0		25	Α
I _{lim}	Current limit threshold	$V_0 = 3.2V$, $T_{ref} < max T_{ref}$	26	30	36	Α
I _{sc}	Short circuit current	$T_{ref} = 25^{\circ}C, V_{O} < 0.2V$		33	38	Α
V_{Oac}	Output ripple & noise	See ripple & noise section, max I _o , V _{oi}		40	100	mVp-p
OVP	Over voltage protection	$T_{ref} = +25^{\circ}C$, $V_{I} = 53$ V, 10-100% of max I_{O}	3.9		6.0	V

Note 1: Output filter according to Ripple & Noise section

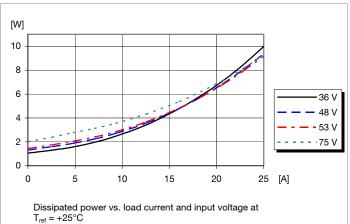
Note 2: Output current is limited to 15A to obtain V_0 = 3.63V at V_1 = 36V.

PKM 4000E PI series

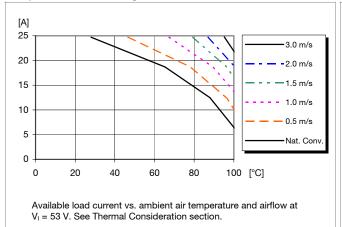
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

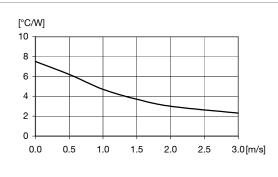

EN/LZT 146 358 R2A Aug 2007

© Ericsson Power Modules AB

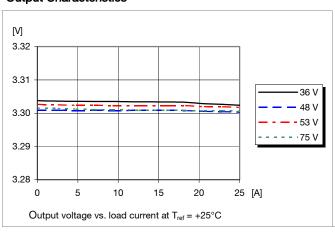

3.3 V, 25 A /82.5W Typical Characteristics

PKM 4810E PI

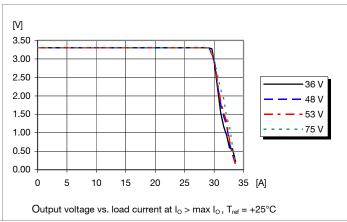

Efficiency


Power Dissipation

Output Current Derating



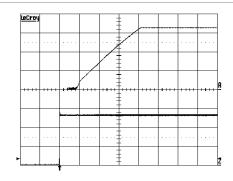
Thermal Resistance



Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section.

Output Characteristics

Current Limit Characteristics



PKM 4000E PI series EN/LZT 146 358 R2A Aug 2007 DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W © Ericsson Power Modules AB

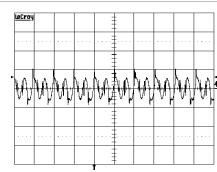
3.3 V, 25 A /82.5W Typical Characteristics

PKM 4810E PI

Start-up

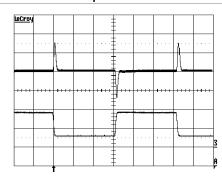
Start-up enabled by connecting $V_{\scriptscriptstyle I}$ at: $T_{ref} = +25^{\circ}C$, $V_1 = 53 \text{ V}$. $I_0 = 25$ A resistive load.

Top trace: output voltage (1 V/div.). Bottom trace: input voltage (20 V/div.). Time scale: (2 ms/div.).


Shut-down

Shut-down enabled by disconnecting $V_{\scriptscriptstyle I}$ at: T_{ref} = +25°C, V_I = 53 V, I_O = 25 A resistive load.

Top trace: output voltage (1 V/div.). Bottom trace: input voltage (20 V/div.). Time scale: (0.2 ms/div.).


Output Ripple & Noise

Output voltage ripple at: $T_{ref} = +25^{\circ}C, V_{I} = 53 V,$ Io = 25 A resistive load

Trace: output voltage (20mV/div.). Time scale: (5 µs/div.).

Output Load Transient Response

Output voltage response to load current step-Top trace: output voltage (200mV/div.). change (6.25-18.75-6.25 A) at: Bottom trace: load current (10 A/div.). $T_{rof} = +25^{\circ}C$, $V_1 = 53 \text{ V}$. Time scale: (0.2 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:
$$Radj = 5.11 \times \left(\frac{3.30 (100 + \Delta\%)}{1.225 \times \Delta\%} - \frac{\left(100 + 2 \times \Delta\%\right)}{\Delta\%}\right) \text{ k}\Omega$$

$$\begin{split} \text{Example: Increase 4\% =>V}_{\text{out}} &= 3.432 \text{ Vdc} \\ &5.11 \times \left(\frac{3.30 \big(100 + 4 \big)}{1.225 \times 4} - \frac{\big(100 + 2 \times 4 \big)}{4} \right) \text{ k}\Omega \text{ = 220 k}\Omega \end{split}$$

Output Voltage Adjust Downwards, Decrease:

$$Radj = 5.11 \times \left(\frac{100}{\Delta\%} - 2\right) k\Omega$$

Example: Decrease 2% =>Vout = 3.234 Vdc

$$5.11 \times \left(\frac{100}{2} - 2\right) \text{ k}\Omega = 245 \text{ k}\Omega$$

PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

5.0V, 15 A / 75W Electrical Specification

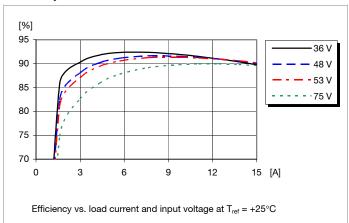
PKM 4711E PI

 T_{ref} = -40 to +90°C, V_{I} = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{ref} = +25°C, V_{I} = 53 V, max I_{O} , unless otherwise specified under Conditions.

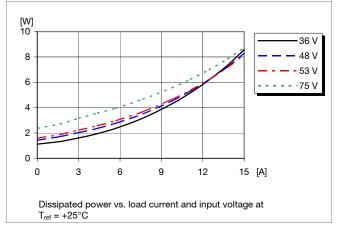
Vı	Input voltage range		36		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	28	31	33	V
V_{lon}	Turn-on input voltage	Increasing input voltage	32	34	36	V
Cı	Internal input capacitance			1		μF
Po	Output power	Output voltage initial setting	0		75	W
		50 % of max I ₀		91		
n	Efficiency	max I _O		90		%
η	Linciency	50 % of max I _O , V _I = 48 V		91		70
		$max I_O, V_I = 48 V$		90		
P_d	Power Dissipation	max I _O		8.2	12	W
P _{li}	Input idling power	I _O = 0 A, V _I = 53 V		1.6		W
P _{RC}	Input standby power	V _I = 53 V (turned off with RC)		0.1		W
fs	Switching frequency	0-100 % of max I ₀		200		kHz
						•
V_{Oi}	Output voltage initial setting and accuracy	$T_{ref} = +25^{\circ}C, V_{I} = 53 \text{ V}, I_{O} = 15 \text{ A}$	4.9	5.0	5.1	V
	Output adjust range	See operating information and Note 1	4.5		5.5	V
	Output voltage tolerance band	10-100 % of max I ₀	4.85		5.15	V
V_{O}	Idling voltage	I _O = 0 A	4.85		5.15	V
	Line regulation	max I _O		2	10	mV
	Load regulation	$V_{I} = 53 \text{ V}, 0-100 \text{ % of max } I_{O}$		2	10	mV
V_{tr}	Load transient voltage deviation	V _I = 53 V, Load step 25-75-25 % of		±400		mV
t _{tr}	Load transient recovery time	max I ₀ , di/dt = 1 A/μs		50		μs
t _r	Ramp-up time (from 10–90 % of Voi)	10-100 % of max I _o		6	10	ms
ts	Start-up time (from V _i connection to 90 % of V _{Oi})	$T_{ref} = +25^{\circ}C, V_{I} = 53 V$		8	15	ms
t _f	V _I shut-down fall time	max I _O		0.3		ms
·	(from V _I off to 10 % of V _O)	I _O = 0 A		15		S
	RC start-up time	max I ₀		6		ms
t _{RC}	RC shut-down fall time (from RC off to 10 % of V _o)	max I _O		0.3		ms
		I _O = 0 A	0	15	15	S
l _o	Output current	T		10	15	A
I _{lim}	Current limit threshold	$T_{ref} < max T_{ref}, V_0=4.9V$	16	19	23	A
I _{sc}	Short circuit current	$T_{ref} = 25^{\circ}C$, $V_{O} < 0.5V$ See ripple & noise section,		22	26	A
V_{Oac}	Output ripple & noise	max I _o , V _{oi}		40	100	mVp-p
OVP	Over voltage protection	$T_{ref} = +25^{\circ}C$, $V_{I} = 53$ V, 10-100 % of	6.5		10	V

Note 1: Output current is limited to 12A to obtain V_0 =5.5V at V_1 = 36V

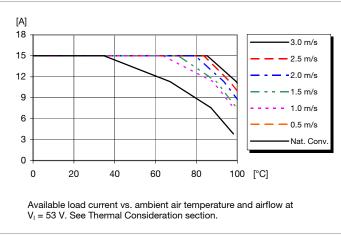
PKM 4000E PI series

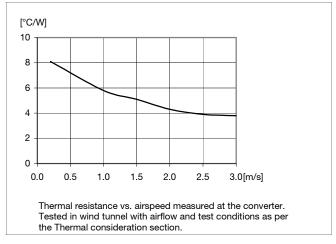

DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

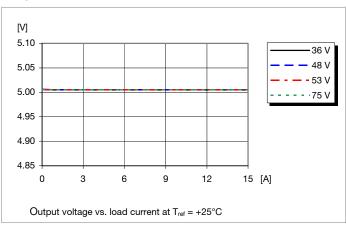
EN/LZT 146 358 R2A Aug 2007 © Ericsson Power Modules AB

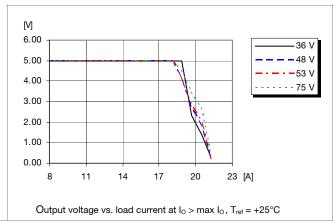

5.0V, 15A / 75W Typical Characteristics

PKM 4711E PI


Efficiency


Power Dissipation


Output Current Derating

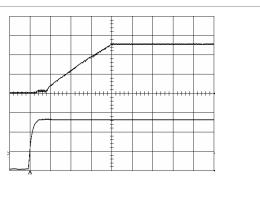

Thermal Resistance

Output Characteristics

Current Limit Characteristics

Technical Specification

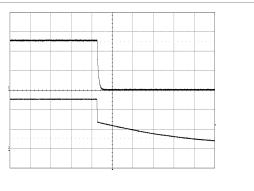
PKM 4000E PI series EN/LZT 146 358 R2A Aug 2007


© Ericsson Power Modules AB

5.0V, 15 A / 75W Typical Characteristics

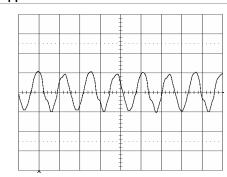
PKM 4711E PI

13


Start-up

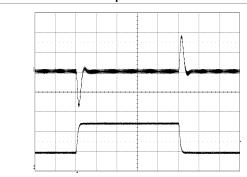
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

Start-up enabled by connecting V_I at: $T_{ref} = +25^{\circ}C$, V_I = 53 V, I_O = 15 A resistive load.


Top trace: output voltage (2 V/div.). Bottom trace: input voltage (20 V/div.). Time scale: (2 ms/div.). Shut-down

Shut-down enabled by disconnecting $V_{\scriptscriptstyle I}$ at: $T_{ref} = +25^{\circ}C, V_{I} = 53 V,$ lo = 15 A resistive load.

Top trace: output voltage (2 V/div.). Bottom trace: input voltage (20 V/div.). Time scale: (2 ms/div.).


Output Ripple & Noise

Output voltage ripple at: $T_{ref} = +25$ °C, $V_I = 53$ V, $I_O = 15$ A resistive load.

Trace: output voltage (20 mV/div.). Time scale: (2 µs/div.).

Output Load Transient Response

change (3.75-11.25-3.75 A) at: $T_{ref} = +25^{\circ}C$, $V_{I} = 53 \text{ V}$.

Output voltage response to load current step- Top trace: output voltage (200 mV/div.). Bottom trace: load current (5 A/div.). Time scale: (0.1 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:

$$Radj = 5.11 \times \left(\frac{5(100 + \Delta\%)}{1.225 \times \Delta\%} - \frac{(100 + 2 \times \Delta\%)}{\Delta\%} \right) k\Omega$$

Example: Increase 4% =>Vout = 5.2 Vdc

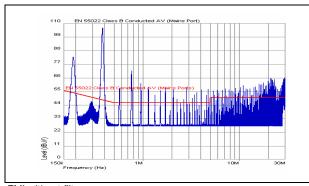
$$5.11 \times \left(\frac{5(100+4)}{1.225 \times 4} - \frac{(100+2 \times 4)}{4}\right) \text{ k}\Omega = 404 \text{ k}\Omega$$

Output Voltage Adjust Downwards, Decrease:

$$Radj = 5.11 \times \left(\frac{100}{\Delta\%} - 2\right) k\Omega$$

Example: Decrease 2% =>Vout = 4.9 Vdc

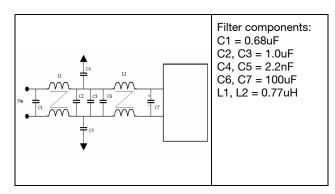
$$5.11 \times \left(\frac{100}{2} - 2\right) \text{ k}\Omega = 245 \text{ k}\Omega$$

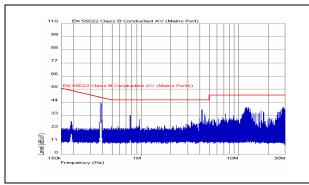


	· · · · · · · · · · · · · · · · · · ·
PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

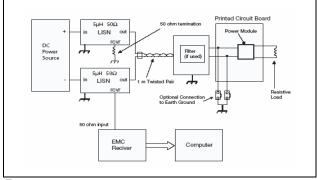
EMC Specification

Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental switching frequency is 200 kHz for PKM 4810E PI @ $V_I = 53 \text{ V}$, max I_O .


Conducted EMI Input terminal value (typ)



EMI without filter

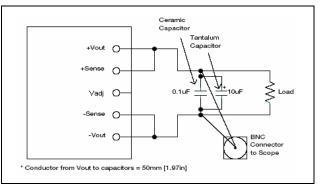

External filter (class B)

Required external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

EMI with filter

Test set-up

Layout recommendation


The radiated EMI performance of the DC/DC converter will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the DC/DC converter.

If a ground layer is used, it should be connected to the output of the DC/DC converter and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.

Output ripple and noise

Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.

Output ripple and noise test setup

PKM 4000E PI series

DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

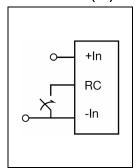
EN/LZT 146 358 R2A Aug 2007

© Ericsson Power Modules AB

Operating information

Input Voltage

The input voltage range 36 to 75Vdc meets the requirements (of the European Telecom Standard ETS 300 132-2 for normal input voltage range in -48 and -60 Vdc systems, -40.5 to -57.0 V and -50.0 to -72 V respectively.


At input voltages exceeding 75 V, the power loss will be higher than at normal input voltage and $T_{\rm ref}$ must be limited to absolute max +90°C. The absolute maximum continuous input voltage is 80 Vdc.

Turn-off Input Voltage

The DC/DC converters monitor the input voltage and will turn on and turn off at predetermined levels.

The minimum hysteresis between turn on and turn off input voltage is 2V.

Remote Control (RC)

The products are fitted with a remote control function referenced to the primary negative input connection (- In), with negative and positive logic options available. The RC function allows the converter to be turned on/off by an external device like a semiconductor or mechanical switch. When the RC pin is left open, the voltage generated on the RC pin is 7-8 V.

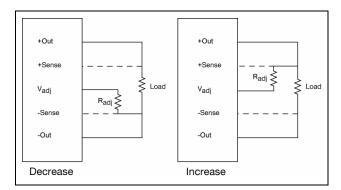
The standard converter is provided with "negative logic" remote control and will be off until the RC pin is connected to the minus input. To turn on the converter the voltage between RC pin and minus input should be less than 1V. To turn off the converter the RC pin should be left open, or connected to a voltage higher than 4V referenced to minus input. In situations where it is desired to have the converter power up automatically without the need for control signals or a switch, the RC pin can be wired directly to the –Input circuit on the application board.

The second option is "positive logic" remote control, which can be ordered by adding the suffix "P" to the end of the part number. The converter will turn on when the input voltage is applied with the RC pin open. Turn off is achieved by connecting the RC pin to the - In. To ensure safe turn off the voltage difference between RC pin and the - In pin shall be less than 1V. The converter will restart automatically when this connection is opened.

and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. Ceramic capacitors will also reduce any high frequency noise at the load.

It is equally important to use low resistance and low inductance PCB layouts and cabling.

External decoupling capacitors will become part of the control loop of the DC/DC converter and may affect the stability margins. As a "rule of thumb", 100 $\mu\text{F/A}$ of output current can be added without any additional analysis. The ESR of the capacitors is a very important parameter. Power Modules guarantee stable operation with a verified ESR value of >10 $m\Omega$ across the output connections.


For further information please contact your local Ericsson Power Modules representative.

Output Voltage Adjust (Vadi)

The DC/DC converters have an Output Voltage Adjust pin (V_{adj}) . This pin can be used to adjust the output voltage above or below Output voltage initial setting.

When increasing the output voltage, the voltage at the output pins (including any remote sense compensation) must be kept below the threshold of the over voltage protection, (OVP) to prevent the converter from shutting down. At increased output voltages the maximum power rating of the converter remains the same, and the max output current must be decreased correspondingly.

To increase the voltage the resistor should be connected between the V_{adj} pin and +Sense pin. The resistor value of the Output voltage adjust function is according to information given under the Output section for the respective product. To decrease the output voltage, the resistor should be connected between the V_{adj} pin and –Sense pin.

External Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic

PKM 4000E PI series

DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

EN/LZT 146 358 R2A Aug 2007

© Ericsson Power Modules AB

Operating information continued

Parallel Operation

Two converters may be paralleled for redundancy if external o-ring diodes are used in series with the output. It is not recommended to parallel the converters without using external current sharing circuits.

Remote Sense

The DC/DC converters have remote sense that can be used to compensate for moderate amounts of resistance in the distribution system and allow for voltage regulation at the load or other selected point. The remote sense lines will carry very little current and do not need a large cross sectional area. However, the sense lines on PCB should be located close to a ground trace or ground plane. In a discrete wiring situation, the use of twisted pair wires or other technique to reduce noise susceptibility is highly recommended. The remote sense circuitry will compensate for up to 10% voltage drop between the sense voltage and the voltage at the output pins. The output voltage and the remote sense voltage offset must be less than the minimum over voltage trip point. If the remote sense is not needed the –Sense should be connected to –Out and +Sense should be connected to +Out.

Over Temperature Protection (OTP)

The converters are protected from thermal overload by an internal over temperature shutdown circuit. When the PCB temperature close to the PWM control circuit exceeds 130°C the converter will shut down immediately. The converter will restart when the temperature drops below 120°C.

Over Voltage Protection (OVP)

The converters have output over voltage protection that will shut down the converter in over voltage conditions. The converter will make continuous attempts to start up (non-latching mode) and resume normal operation automatically after removal of the over voltage condition.

Over Current Protection (OCP)

The converters include current limiting circuitry for protection at continuous overload.

The output voltage will decrease towards zero for output currents in excess of max output current (max I_0). The converter will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output short circuit current specified.

Input and Output Impedance

The impedance of both the input source and the load will interact with the impedance of the DC/DC converter. It is important that the input source has low characteristic impedance. The converters are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors. If the input voltage source contains

significant inductance, the addition of a 100 μF capacitor across the input of the converter will ensure stable operation. The capacitor is not required when powering the DC/DC converter from an input source with an inductance below 10 μH .

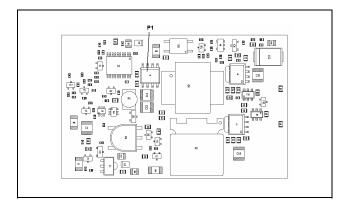
Thermal Consideration

General

The converters are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

Cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the converter. Increased airflow enhances the cooling of the converter.

The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at $V_{in} = 53 \text{ V}$.


The DC/DC converter is tested on a 254 x 254 mm, $35 \mu m$ (1 oz), 8-layer test board mounted vertically in a wind tunnel with a cross-section of 305 x 305 mm.

Proper cooling of the DC/DC converter can be verified by measuring the temperature at positions P1. The temperature at this position should not exceed the max values provided in the table below.

Note that the max value is the absolute maximum rating (non destruction) and that the electrical Output data is guaranteed up to $T_{\rm ref}$ +90°C.

See Design Note 019 for further information.

Position	Device	Designation	max value
P ₁	Mosfet	T _{ref}	120° C

PKM 4000E PI series

DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W

EN/LZT 146 358 R2A Aug 2007

© Ericsson Power Modules AB

Thermal Consideration continued

The PKM4000E series DC/DC converters can be ordered with a heatsink (HS) option. The heatsink option have approximately 5 °C improved derating compared with the PKM4000E without heatsink. The HS option is intended to be mounted on a cold wall or heatsink to transfer heat away from the converter and further improve the cooling of the converter.

Definition of reference temperature (Tref)

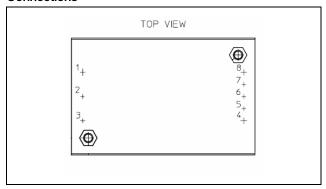
The reference temperature is used to monitor the temperature limits of the product. Temperatures above maximum $T_{\rm ref}$ are not allowed and may cause degradation or permanent damage to the product. $T_{\rm ref}$ is also used to define the temperature range for normal operating conditions. $T_{\rm ref}$ is defined by the design and used to guarantee safety margins, proper operation and high reliability of the module.

Ambient Temperature Calculation

By using the thermal resistance the maximum allowed ambient temperature can be calculated.

- 1. The power loss is calculated by using the formula $((1/\eta) 1) \times$ output power = power losses (Pd). $\eta =$ efficiency of converter. E.g 90 % = 0.90
- 2. Find the thermal resistance (Rth) in the Thermal Resistance graph found in the Output section for each model. Calculate the temperature increase (ΔT). $\Delta T = Rth \times Pd$
- 3. Max allowed ambient temperature is: Max Tref ΔT .

E.g PKM 4810E PI at 1m/s:

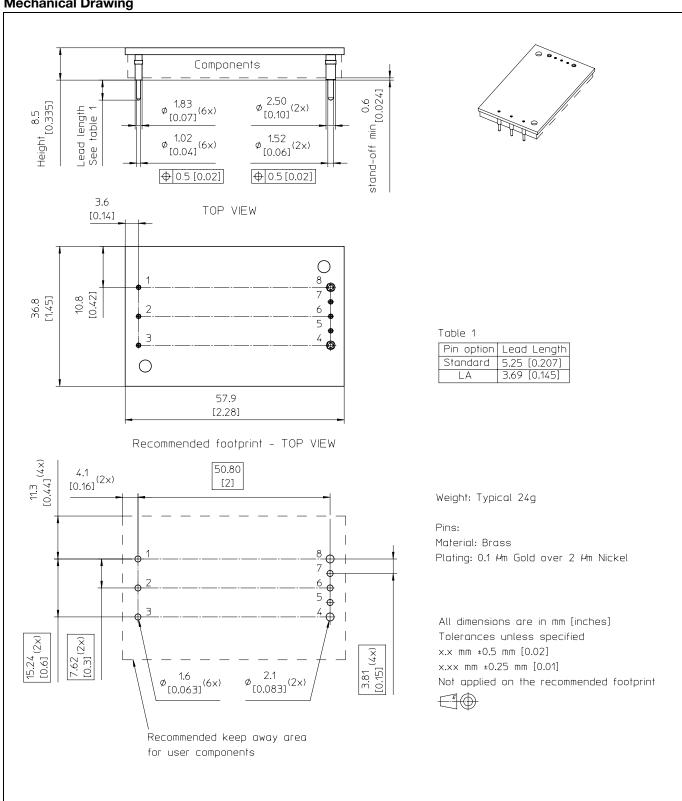

1.
$$((\frac{1}{0.90}) - 1) \times 82.5 \text{ W} = 9.17 \text{ W}$$

$$2.9.17 \text{ W} \times 4.7^{\circ}\text{C/W} = 43.1^{\circ}\text{C}$$

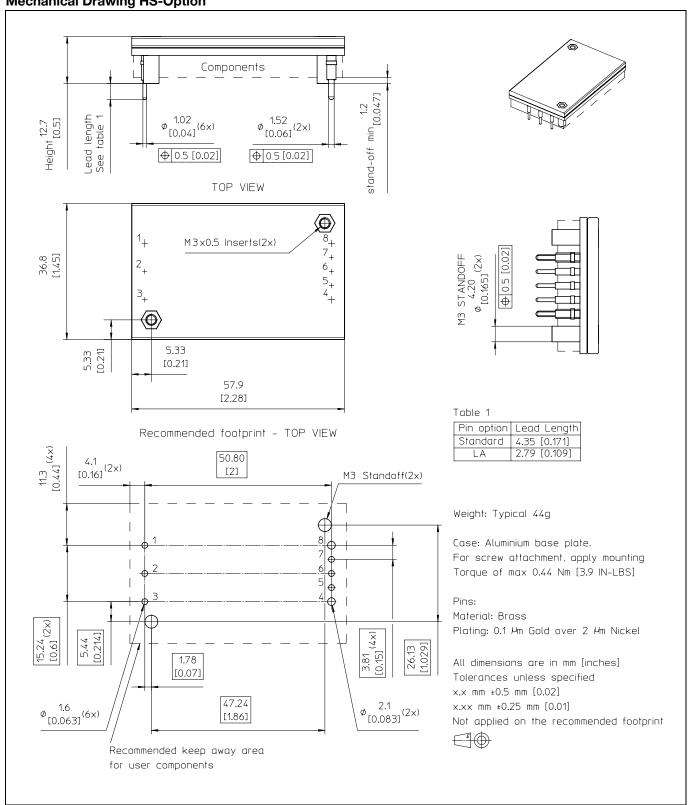
3. 120 °C - 43.1°C = max ambient temperature is 76.9°C

The actual temperature will be dependent on several factors such as the PCB size, number of layers and direction of airflow.

Connections


Pin	Designation	Function
1	+In	Positive input
2	RC	Remote Control
3	-In	Negative input
4	- Out	Negative output
5	- Sense	Negative sense
6	Vadj	Output voltage adjust
7	+ Sense	Positive sense
8	+ Out	Positive output

EN/LZT 146 358 R2A Aug 2007 PKM 4000E PI series DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W © Ericsson Power Modules AB


Mechanical Drawing

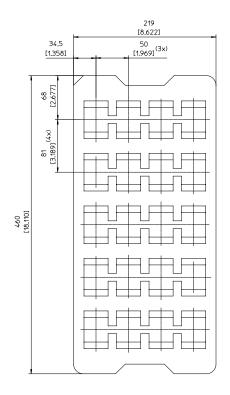
EN/LZT 146 358 R2A Aug 2007 PKM 4000E PI series DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W © Ericsson Power Modules AB

Mechanical Drawing HS-Option

	·
PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

Soldering Information - Through hole mounting

The product is intended for through hole mounting in a PCB. When wave soldering is used, the temperature on the pins is specified to maximum 260 °C for maximum 10 seconds.


Maximum preheat rate of 4 $^{\circ}$ C/s and temperature of max 150 $^{\circ}$ C is suggested. When hands soldering care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean (NC) flux is recommended to avoid entrapment of cleaning fluids in cavities inside of the DC/DC power module. The residues may affect long time reliability and isolation voltage.

Delivery package information

The products are delivered in antistatic trays.

Tray specifications		
Material	Polyethylene foam, dissipative	
Surface resistance	$10^5 < \Omega/\text{square} < 10^{12}$	
Bake ability	The trays are not bakeable	
Tray capacity	20 products/tray	
Tray height	25.4 mm [1.0 inch]	
Box capacity	60 products (3 full trays/box)	
Tray weight	80 g empty, 960 g full (Base plated products) 560 g full (Open frame products)	

PKM 4000E PI series	EN/LZT 146 358 R2A Aug 2007
DC/DC converters, Input 36-75 V, Output up to 25 A/82.5 W	© Ericsson Power Modules AB

Product Qualification Specification

Characteristics			
External visual inspection	IPC-A-610		
Change of temperature (Temperature cycling)	IEC 60068-2-14 Na	Temperature range Number of cycles Dwell/transfer time	-40 to +100 °C 1000 15 min/0-1 min
Cold (in operation)	IEC 60068-2-1 Ad	Temperature T _A Duration	-45°C 72 h
Damp heat	IEC 60068-2-67 Cy	Temperature Humidity Duration	+85 °C 85 % RH 1000 hours
Dry heat	IEC 60068-2-2 Bd	Temperature Duration	+125 °C 1000 h
Electrostatic discharge susceptibility	IEC 61340-3-1, JESD 22-A114 IEC 61340-3-2, JESD 22-A115	Human body model (HBM) Machine model (MM)	Class 2, 2000 V Class 3, 200 V
Immersion in cleaning solvents	IEC 60068-2-45 XA Method 2	Water Glycol ether Isopropanol	+55 ±5 °C +35 ±5 °C +35 ±5 °C
Mechanical shock	IEC 60068-2-27 Ea	Peak acceleration Duration Pulse shape Directions Number of pulses	100 g 6 ms Half sine 6 18 (3 + 3 in each perpendicular direction)
Moisture reflow sensitivity	J-STD-020C	Level 1 (SnPb-eutectic) Level 3 (Pb Free)	225 +0 -5 °C 260 +0 -45 °C
Operational life test	MIL-STD-202G method 108A	Duration	1000 h
Resistance to soldering heat	IEC 60068-2-20 Tb Method 1A	Solder temperature Duration	270 °C 10-13 s
Robustness of terminations	IEC 60068-2-21 Test Ua1		All leads
Solderability	IEC 60068-2-20 Test Ta	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	Steam ageing for 1 h 235 °C 260 °C
Vibration, broad band random	IEC 60068-2-64 Fh method 1	Frequency Spectral density Duration	10 to 500 Hz 0.07 g ² /Hz 10 min in each 3 perpendicular directions