Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2015. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that TAIYO YUDEN CO., LTD. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact TAIYO YUDEN CO., LTD. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components listed in this catalogue are intended for use in general electronic equipment such as AV/OA equipment, home electrical appliances, office equipment, information-communication equipment, general medical equipment, industrial equipment, and automotive applications.
 Please be sure to contact TAIYO YUDEN CO., LTD. for further information before using the components for any equipment which might have a negative impact directly on human life, such as specially controlled medical equip-

ment, transportation equipment (automotive powertrain/train/ship control systems, etc.) and traffic signal system.

Please do not incorporate the components into any equipment requiring a high degree of safety and reliability, such as aerospace equipment, avionics, nuclear control equipment, submarine system, and military equipment.

For use in high safety and reliability-required devices/circuits of general electronic equipment, thorough safety evaluation prior to use is strongly recommended, and a protective circuit should be designed and installed as necessary.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel").

 It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that TAIYO YUDEN CO., LTD. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. TAIYO YUDEN CO., LTD. grants no license for such rights.
- Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations", and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

MULTILAYER CERAMIC CAPACITORS

■PART NUMBER

J M K	3 1	6 🛆	ВЈ	1 0 6	М	L	Н	Т	Δ
<u>(1)</u> <u>(2)</u> <u>(3)</u>	(4)	(5)	6	(7)	8	9	(10)	(11)	(12)

 Δ =Blank space

1)Rated v	olta	ge
-----------	------	----

Code	Rated voltage[VDC]
Α	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

3End termination

Code	End termination				
K	Plated				
J	Soft Termination				
S	Cu Internal Electrodes				
R	High Reliability Application				
(4) Dimension (L×W)					

②Series name	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	I W reverse type multilayer capacitor

4)Dilliension(E × W)						
Туре	Dimensions (L×W)[mm]	EIA (inch)				
063	0.6 × 0.3	0201				
105	1.0 × 0.5	0402				
103	0.52 × 1.0 💥	0204				
107	1.6 × 0.8	0603				
107	0.8 × 1.6 💥	0306				
212	2.0 × 1.25	0805				
	1.25 × 2.0 💥	0508				
316	3.2 × 1.6	1206				
325	3.2 × 2.5	1210				
432	4.5 × 3.2	1812				

Note: ※LW reverse type(□WK) only

Code	Type	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
Α	212	2.0+0.15/-0.05	1.25+0.15/-0.05	0.85±0.10
		2.0 1 0.10, 0.00	1120 1 01107 0100	1.25+0.15/-0.05
	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2 ± 0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В	010	001000/ 0	105 1000/ 0	0.85±0.10
	212	2.0+0.20/-0	1.25 + 0.20 / -0	1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85±0.15
K	316	22+020	16+020	1.15±0.20
ĸ	310	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30

Note: P.22 Standard external dimensions

Δ= Blank space

6Temperature characteristics code

■ High dielectric type

Code	Code Applicable standard		Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
			-55~+ 85	0.5	±150/	±10%	K
BJ	EIA	X5R	-55 ~ + 85	25	25 ±15%	±20%	М
В7	EIA	X7R	-55 ~ +125	~+125 25 ±15%	±10%	K	
	LIA	X/IX	00 - 1 120		= 1370	±20%	М
C6	EIA	EIA X6S -55~+105 25 ±22%	±10%	K			
00	LIA	703	33 - 1 103	23	±22 /0	±20%	М
C7	EIA	X7S -55~+125 25 ±22%	±10%	K			
	LIA	7/3	33.4 1 123	23	±20%	±20%	М
D7	EIA	X7T	-55 ~ +125	25	+22%/-33%	±10%	K
	LIA	^/1	35.3 T 125	20	1 22 70/ - 33 70	±20%	М

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

■Temperature compensating type

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code																				
	JIS			20	0±30ppm/°C	±0.1pF	В																				
CG		CG	55~+125			±0.25pF	С																				
						±0.5pF	D																				
	EIA CO	EIA COG																					-55° + 125		о±зоррпі/ С	±1pF	F
					25		±2%	G																			
						±5%	J																				

7 Nominal capacitance

Code (example)	Nominal cpacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	0.01 <i>μ</i> F
104	0.1 μ F
105	1.0 <i>μ</i> F
106	10 μ F
107	100 μ F

Note : R=Decimal point

8 Capacitance tolerance

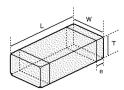
Code	Capacitance tolerance
В	±0.1pF
С	±0.25pF
D	±0.5pF
G	±2%
J	±5%
K	±10%
М	±20%

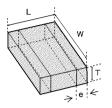
Thickness

Code	Thickness[mm]
Р	0.3
Т	0.3
V	0.5
С	0.7(107type or more)
Α	0.8
D	0.85(212type or more)
F	1.15
G	1.25
Н	1.5
L	1.6
N	1.9
М	2.5

®Special code

Code	Special code
Н	MLCC for Industrial and Automotive


(1)Packaging


Or dorraging							
Code	Packaging						
F	φ178mm Taping (2mm pitch)						
R	ϕ 178mm Embossed Taping (4mm pitch)						
Т	ϕ 178mm Taping (4mm pitch)						
P	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)						
Р	325 type (Thickness code M)						

12Internal code

Code	Internal code
Δ	Standard

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

★ LW reverse type

Type(EIA)		Dime	nsion [mm] (inch)			
Type(EIA)	L	W	Т	*1	е	
□MK063(0201)	0.6±0.03	0.3±0.03	0.3±0.03	Т	0.15±0.05	
□WK003 (0201)	(0.024 ± 0.001)	(0.012±0.001)	(0.012±0.001)	'	(0.006 ± 0.002)	
□MK105(0402)	1.0±0.05	0.5±0.05	0.5±0.05	V	0.25±0.10	
□MK103(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	V	(0.010 ± 0.004)	
□WK105(0204)※	0.52±0.05	1.0±0.05	0.3±0.05	Р	0.18±0.08	
□WK103(0204)%	(0.020 ± 0.002)	(0.039 ± 0.002)	(0.012 ± 0.002)	F	(0.007 ± 0.003)	
□MK107(0603)	1.6±0.10	0.8±0.10	0.8±0.10	Α	0.35±0.25	
□WIK107 (0003)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	^	(0.014±0.010)	
□MJ107 (0603)	1.6±0.10	0.8±0.10	0.8±0.10	Α	0.35±0.25	
□W0107(0003)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	^	(0.014±0.010)	
□VS107(0603)	1.6±0.10	0.8±0.10	0.7±0.10	С	0.35±0.25	
□ 1 0107 (0000)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	Ŭ	(0.014±0.010)	
□MR107(0603)	1.6±0.10	0.8±0.10	0.8±0.10	Α	0.1~0.6	
MIN(107 (0000)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)		(0.004~0.024)	
□WK107(0306)※	0.8±0.10	1.6±0.10	0.5 ± 0.05	V	0.25±0.15	
□ W(107 (00007)X	(0.031 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	•	(0.010±0.006)	
			0.85±0.10	D		
□MK212(0805)	2.0±0.10	1.25±0.10	(0.033 ± 0.004)		0.5±0.25	
	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25±0.10	G	(0.020 ± 0.010)	
			(0.049 ± 0.004)	u		
			0.85±0.10	D		
□MJ212(0805)	2.0±0.10	1.25±0.10	(0.033 ± 0.004)	D	0.5 ± 0.25	
□IVIJZ12(0003)	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25±0.10	G	(0.020 ± 0.010)	
			(0.049 ± 0.004)	G		
□\/C010(000E)	2.0±0.10	1.25±0.10	0.85±0.10	_	0.5±0.25	
□VS212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	(0.033 ± 0.004)	D	(0.020 ± 0.010)	
□MR212(0805)	2.0±0.10	1.25±0.10	1.25±0.10	G	0.25~0.75	
□IVIR212(0003)	(0.079 ± 0.004)	(0.049 ± 0.004)	(0.049 ± 0.004)	G	(0.010~0.029)	
□WK212(0508)※	1.25±0.15	2.0±0.15	0.85±0.10	D	0.3±0.2	
□WK212(0506)※	(0.049 ± 0.006)	(0.079 ± 0.006)	(0.033 ± 0.004)	U	(0.012 ± 0.008)	
			1.15±0.10	_		
	3.2±0.15	1.6±0.15	(0.045 ± 0.004)	F	0.5 + 0.35 / -0.25	
□MK316(1206)	(0.126 ± 0.006)	(0.063±0.006)	1.6±0.20		(0.020 + 0.014 / -0.010)	
			(0.063±0.008)	L		
			1.15±0.10			
	001015	101015	(0.045±0.004)	F	051005/ 005	
□MJ316(1206)	3.2±0.15 (0.126±0.006)	1.6±0.15 (0.063±0.006)			0.5 + 0.35 / -0.25 (0.020 + 0.014 / -0.010)	
	(0.120 ± 0.000)	(0.003 ± 0.000)	1.6±0.20	L	(0.020+0.014/-0.010)	
	001015	101015	(0.063±0.008)		0.05	
□MR316(1206)	3.2±0.15	1.6±0.15	1.6±0.20	L	0.25~0.85	
	(0.126±0.006)	(0.063±0.006)	(0.063±0.008)		(0.010~0.033)	
			1.15±0.10	F		
			(0.045±0.004)			
			1.5±0.10	Н		
□MK325(1210)	3.2±0.30	2.5±0.20	(0.059±0.004)		0.6±0.3	
	(0.126±0.012)	(0.098±0.008)	1.9±0.20	N	(0.024 ± 0.012)	
			(0.075±0.008)			
			2.5±0.20	М		
			(0.098±0.008)			
			1.9±0.20	N		
□MJ325(1210)	3.2±0.30	2.5±0.20	(0.075±0.008)		0.6±0.3	
•	(0.126±0.012)	(0.098±0.008)	2.5±0.20	М	(0.024±0.012)	
			(0.098±0.008)			
	00100	0.5 / 0.00	1.9±0.20	N	00.00	
□MR325(1210)	3.2±0.30	2.5±0.20	(0.075±0.008)	-	0.3~0.9	
•	(0.126±0.012)	(0.098±0.008)	2.5±0.20	М	(0.012~0.035)	
	45.000	00/00	(0.098±0.008)	-	00:00	
□MK432(1812)	4.5±0.40	3.2±0.30	2.5±0.20	М	0.9±0.6	
	(0.177±0.016)	(0.126 ± 0.012)	(0.098 ± 0.008)	ı	(0.035 ± 0.024)	

Note: ※. LW reverse type, *1.Thickness code

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

Tuna	EIA (inch)	Dime	ension	Standard qu	uantity[pcs]
Туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	_
105	0402	0.5	V	10000	
105	0204 ※	0.30	Р	10000	_
		0.7	С	4000	
		0.8	A 4000 A - 4 A 3000 (Soft Termination) V - 4	_	
107	0603	0.8		4000	
107		0.8	А		_
	0306 ※	0.50	V	_	4000
		0.85	D	4000	_
	0805	1.25	G	_	3000
212	0803	1.25	G	_	2000 (Soft Termination
	0508 ※	0.85	D	4000	_
316	1206	1.15	F	_	3000
310	1200	1.6	L	_	2000
		1.15	F		
005	1210	1.5	Н	_	2000
325	1210	1.9	N		
		2.5	М	_	500(T), 1000(P
432	1812	2.5	M	_	500

Note : ※.LW Reverse type(□WK)

STANDARD QUANTITY

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

Soft Termination Multilayer Ceramic Capacitors

●107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603)

[Temperature Characteristic B7 : X7R] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage [V]	Temperature characteristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HALT Rated voltage x %	Thickness*3 [mm]	Note
TMJ107BB7473[AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
TMJ107BB7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 .*2
TMJ107BB7224[]AHT		25	X7R	0.22 μ	±10, ±20	10	150	0.8+0.2/-0	*1 ,*2
TMJ107BB7474[]AHT			X7R	0.47 μ	±10, ±20	10	150	0.8+0.2/-0	*1 ,*2
TMJ107CB7105 AHR			X7R	1 μ	±10, ±20	10	150	0.8+0.25/-0	*1 ,*2
GMJ107BB7473[]AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
GMJ107BB7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
GMJ107BB7224 AHT		35	X7R	0.22 μ	±10, ±20	10	150	0.8+0.2/-0	*1 ,*2
GMJ107BB7474 AHT			X7R	0.47 μ	±10, ±20	10	150	0.8+0.2/-0	*1 ,*2
GMJ107CB7105∏AHR			X7R	1 μ	±10, ±20	10	150	0.8+0.25/-0	*1 ,*2
UMJ107AB7102□AHT			X7R	1000 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1 ,*2
UMJ107AB7222 AHT			X7R	2200 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1 ,*2
UMJ107BB7472 AHT			X7R	4700 p	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
UMJ107BB7103[]AHT		50	X7R	0.01 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
UMJ107BB7223[]AHT			X7R	0.022 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
UMJ107BB7473[AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
UMJ107BB7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
HMJ107AB7102□AHT			X7R	1000 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1 ,*2
HMJ107AB7222[]AHT			X7R	2200 p	±10, ±20	3.5	200	0.8+0.15/-0.05	*1 ,*2
HMJ107BB7472∏AHT			X7R	4700 p	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
HMJ107BB7103[]AHT		100	X7R	0.01 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
HMJ107BB7223[]AHT			X7R	0.022 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
HMJ107BB7473∏AHT			X7R	0.047 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2
HMJ107BB7104[]AHT			X7R	0.1 μ	±10, ±20	3.5	200	0.8+0.2/-0	*1 ,*2

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

[Temperature Characteristic B7 : X7R] 0.85mm thickness(D), 1.25mm thickness(G)

David muse have 1	Part number 2	Datad valtage IVI	Temperature	Capacitance	Capacitance	$ an\delta$	HALT	Thickness*3 [mm]	Nete
Part number 1	Part number 2	Rated voltage [V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Triickriess [mm]	Note
JMJ212CB7106 GHT		6.3	X7R	10 μ	±10, ±20	10	150	1.25+0.25/-0	*1 ,*2
EMJ212CB7225 GHT		16	X7R	2.2 μ	±10, ±20	10	150	1.25+0.25/-0	*1 ,*2
EMJ212CB7475 GHT		10	X7R	4.7 μ	±10, ±20	10	150	1.25+0.25/-0	*1 ,*2
TMJ212CB7225 GHT		25	X7R	2.2 μ	±10, ±20	10	150	1.25+0.25/-0	*1 ,*2
GMJ212CB7105∏GHT		35	X7R	1 μ	±10, ±20	10	150	1.25+0.25/-0	*1 ,*2
UMJ212BB7103 GHT			X7R	0.01 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
UMJ212BB7223∏GHT		50	X7R	0.022 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
UMJ212BB7473∏GHT		30	X7R	0.047 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
UMJ212CB7105 GHT			X7R	1 μ	±10, ±20	10	150	1.25+0.25/-0	*1 ,*2
HMJ212KB7102 DHT			X7R	1000 p	±10, ±20	3.5	200	0.85 ± 0.15	*1 ,*2
HMJ212KB7222 DHT			X7R	2200 p	±10, ±20	3.5	200	0.85 ± 0.15	*1 ,*2
HMJ212BB7472∏GHT			X7R	4700 p	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
HMJ212BB7103∏GHT		100	X7R	0.01 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
HMJ212BB7223∏GHT		100	X7R	0.022 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
HMJ212BB7473∏GHT			X7R	0.047 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
HMJ212BB7104∏GHT			X7R	0.1 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
HMJ212BB7224[]GHT			X7R	0.22 μ	±10, ±20	3.5	200	1.25+0.20/-0	*1 ,*2
QMJ212KB7102 DHT			X7R	1000 p	±10, ±20	2.5	150	0.85±0.15	*1 ,*2
QMJ212KB7222 DHT			X7R	2200 p	±10, ±20	2.5	150	0.85 ± 0.15	*1 ,*2
QMJ212BB7472 GHT		250	X7R	4700 p	±10, ±20	2.5	150	1.25+0.20/-0	*1 ,*2
QMJ212BB7103 GHT			X7R	0.01 μ	±10, ±20	2.5	150	1.25+0.20/-0	*1 ,*2
QMJ212BB7223 GHT			X7R	0.022 μ	±10, ±20	2.5	150	1.25+0.20/-0	*1 ,*2

316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

[Temperature Characteristic B7 : X7R] 1.15mm thickness(F), 1.6mm thickness(L)

Lemperature Characterist			Tomporatura	Capacitance	Capacitance	tan δ	HALT		
Part number 1	Part number 2	Rated voltage [V]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness*3 [mm]	Note
LMJ316BB7226[]LHT		10	X7R	22 μ	±10, ±20	10	150	1.6±0.30	*1 ,*2
EMJ316BB7475[]LHT		16	X7R	4.7 μ	±10, ±20	10	150	1.6±0.30	*1 ,*2
EMJ316BB7106[]LHT		10	X7R	10 μ	±10, ±20	10	150	1.6±0.30	*1 ,*2
TMJ316BB7474[]LHT			X7R	0.47 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
TMJ316BB7475[]LHT		25	X7R	4.7 μ	±10, ±20	10	150	1.6±0.30	*1 ,*2
TMJ316BB7106[]LHT			X7R	10 μ	±10, ±20	10	150	1.6±0.30	*1 ,*2
GMJ316BB7474[]LHT			X7R	0.47 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
GMJ316AB7225□LHT		35	X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1 ,*2
GMJ316BB7475 LHT		33	X7R	4.7 μ	±10, ±20	10	150	1.6±0.30	*1 ,*2
GMJ316BB7106 LHT			X7R	10 μ	±10, ±20	10	150	1.6±0.30	*1 ,*2
UMJ316BB7473 LHT			X7R	0.047 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
UMJ316BB7104□LHT			X7R	0.1 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
UMJ316BB7224 LHT		50	X7R	0.22 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
UMJ316BB7474[]LHT		30	X7R	0.47 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
UMJ316BB7105[]LHT			X7R	1 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
UMJ316AB7225 LHT			X7R	2.2 μ	±10, ±20	10	150	1.6±0.20	*1 ,*2
HMJ316 B7102∏FHT			X7R	1000 p	±10, ±20	3.5	200	1.15±0.10	*1 ,*2
HMJ316 B7222∏FHT			X7R	2200 p	±10, ±20	3.5	200	1.15±0.10	*1 ,*2
HMJ316 B7472∏FHT			X7R	4700 p	±10, ±20	3.5	200	1.15±0.10	*1 ,*2
HMJ316KB7103[FHT			X7R	0.01 μ	±10, ±20	3.5	200	1.15±0.20	*1 ,*2
HMJ316BB7223[]LHT		100	X7R	0.022 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
HMJ316BB7473[]LHT		100	X7R	0.047 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
HMJ316BB7104[]LHT			X7R	0.1 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
HMJ316BB7224[]LHT			X7R	0.22 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
HMJ316BB7474 LHT			X7R	0.47 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2
HMJ316BB7105[]LHT			X7R	1 μ	±10, ±20	3.5	200	1.6±0.30	*1 ,*2

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

Part number 1	Part number 2	Rated voltage [V]	Temperature	Capacitance	Capacitance	tan δ	HALT	Thickness*3 [mm]	Note
rart number i	Fart Hulliber 2		characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
QMJ316 B7102[FHT			X7R	1000 p	±10, ±20	2.5	150	1.15±0.10	*1 ,*2
QMJ316 B7222[FHT			X7R	2200 p	±10, ±20	2.5	150	1.15±0.10	*1 ,*2
QMJ316 B7472[FHT			X7R	4700 p	±10, ±20	2.5	150	1.15±0.10	*1 ,*2
QMJ316KB7103[]FHT		250	X7R	0.01 μ	±10, ±20	2.5	150	1.15±0.20	*1 ,*2
QMJ316BB7223[]LHT			X7R	0.022 μ	±10, ±20	2.5	150	1.6±0.30	*1 ,*2
QMJ316BB7473[]LHT			X7R	0.047 μ	±10, ±20	2.5	150	1.6±0.30	*1 ,*2
QMJ316BB7104[]LHT			X7R	0.1 μ	±10, ±20	2.5	150	1.6±0.30	*1 ,*2
SMJ316 B7102[]FHT			X7R	1000 p	±10, ±20	2.5	120	1.15±0.10	*1 ,*2
SMJ316 B7222[]FHT			X7R	2200 p	±10, ±20	2.5	120	1.15±0.10	*1 ,*2
SMJ316 B7472[]FHT		630	X7R	4700 p	±10, ±20	2.5	120	1.15±0.10	*1 ,*2
SMJ316KB7103[FHT			X7R	0.01 μ	±10, ±20	2.5	120	1.15±0.20	*1 ,*2
SMJ316BB7223[]LHT			X7R	0.022 μ	±10, ±20	2.5	120	1.6±0.30	*1 ,*2

325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

 $\label{eq:characteristic B7: X7R} \textbf{[} 1.9 \text{mm thickness(N), 2.5} \text{mm thickness(M)}$

Part number 1	Part number 2	Rated voltage [V]	Temperature	Capacitance	Capacitance	$ an\delta$	HALT	Thickness*3 [mm]	Note
Part number 1	Part number 2	Rated voltage [v]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
JMJ325KB7476[]MHP	JMJ325KB7476∏MHT	6.3	X7R	47 μ	±10, ±20	10	150	2.5±0.30	*1 ,*2
EMJ325KB7226[]MHP	EMJ325KB7226□MHT	16	X7R	22 μ	±10, ±20	10	150	2.5±0.30	*1 ,*2
TMJ325AB7475∏MHP	TMJ325AB7475[MHT	25	X7R	4.7 μ	±10, ±20	5	150	2.5±0.30	*1 ,*2
TMJ325KB7106[]MHP	TMJ325KB7106☐MHT	23	X7R	10 μ	±10, ±20	10	150	2.5 ± 0.30	*1 ,*2
GMJ325AB7475[]MHP	GMJ325AB7475[MHT	35	X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1 ,*2
GMJ325KB7106□MHP	GMJ325KB7106□MHT	33	X7R	10 μ	±10, ±20	10	150	2.5 ± 0.30	*1 ,*2
UMJ325AB7225□MHP	UMJ325AB7225∏MHT		X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.30	*1 ,*2
UMJ325AB7475∏MHP	UMJ325AB7475∏MHT	50	X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.30	*1 ,*2
UMJ325KB7106∏MHP	UMJ325KB7106☐MHT		X7R	10 μ	±10, ±20	10	150	2.5 ± 0.30	*1 ,*2
HMJ325 B7223□NHT			X7R	0.022 μ	±10, ±20	3.5	200	1.9 ± 0.20	*1 ,*2
HMJ325 B7473□NHT			X7R	0.047 μ	±10, ±20	3.5	200	1.9±0.20	*1 ,*2
HMJ325 B7104□NHT			X7R	0.1 μ	±10, ±20	3.5	200	1.9±0.20	*1 ,*2
HMJ325 B7224□NHT		100	X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1 ,*2
HMJ325 B7474□NHT			X7R	0.47 μ	±10, ±20	3.5	200	1.9±0.20	*1 ,*2
HMJ325 B7105□NHT			X7R	1 μ	±10, ±20	3.5	200	1.9±0.20	*1 ,*2
HMJ325AB7225∏MHP	HMJ325AB7225∏MHT		X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.30	*1 ,*2
QMJ325 B7223[NHT			X7R	0.022 μ	±10, ±20	2.5	150	1.9±0.20	*1 ,*2
QMJ325 B7473[NHT		250	X7R	0.047 μ	±10, ±20	2.5	150	1.9±0.20	*1 ,*2
QMJ325 B7104[NHT		230	X7R	0.1 μ	±10, ±20	2.5	150	1.9±0.20	*1 ,*2
QMJ325 B7224[NHT			X7R	0.22 μ	±10, ±20	2.5	150	1.9±0.20	*1 ,*2
SMJ325 B7223 NHT		630	X7R	0.022 μ	±10, ±20	2.5	120	1.9±0.20	*1 ,*2
SMJ325 B7473∏NHT		030	X7R	0.047 μ	±10, ±20	2.5	120	1.9±0.20	*1 ,*2

LW Reversal Decoupling Capacitors (LWDCTM)

●105TYPE (Dimension:0.52 × 1.0mm JIS:0510 EIA:0204)

[Temperature Characteristic BJ : X5R] 0.3mm thickness(P)

	Part number 1	Part number 2	Rated voltage [V]	rature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HALT Rated voltage x %	Thickness*3 [mm]	Note
				 	2. 3		22	Rated Voltage x %		
TW	K105 BJ104MPHF		25	X5R	0.1 μ	±20	5	150	0.3 ± 0.05	*1 ,*2
EW	K105 BJ224MPHF		16	X5R	0.22 μ	±20	10	150	0.3 ± 0.05	*1 ,*2
LW	K105 BJ474MPHF		10	X5R	0.47 μ	±20	10	150	0.3 ± 0.05	*1 ,*2
AW	K105 BJ105MPHF		4	X5R	1 μ	±20	10	150	0.3 ± 0.05	*1 ,*2

Part number 1	Part number 2	Rated voltage [V]	Temperature	Capacitance	Capacitance	tan δ	HALT	Thickness*3 [mm]	Note
			characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	THICKIESS [IIIII]	
EWK105 C6104MPHF		16	X6S	0.1 μ	±20	5	150	0.3 ± 0.05	*1 ,*2
LWK105 C7104MPHF		10	X7S	0.1 μ	±20	5	150	0.3 ± 0.05	*1 ,*2
LWK105 C6224MPHF		10	X6S	0.22 μ	±20	10	150	0.3 ± 0.05	*1 ,*2
JWK105 C7104MPHF			X7S	0.1 μ	±20	5	150	0.3 ± 0.05	*1 ,*2
JWK105 C7224MPHF		6.3	X7S	0.22 μ	±20	10	150	0.3 ± 0.05	*1 ,*2
JWK105 C6474MPHF			X6S	0.47 μ	±20	10	150	0.3 ± 0.05	*1 ,*2
AWK105 C7224MPHF		4	X7S	0.22 μ	±20	10	150	0.3 ± 0.05	*1 ,*2
AWK105 C6474MPHF		4	X6S	0.47 μ	±20	10	150	0.3 ± 0.05	*1 ,*2

●107TYPE (Dimension:0.8 × 1.6mm JIS:0816 EIA:0306)

 $\begin{tabular}{ll} \hline \textbf{[Temperature Characteristic BJ: X5R] 0.5mm thickness(V)} \\ \hline \end{tabular}$

Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HALT Rated voltage x %	Thickness*3 [mm]	Note
LWK107 BJ105MVHT		10		X5R	1 μ	±20	10	150	0.5 ± 0.05	*1 ,*2
JWK107 BJ225MVHT		6.3		X5R	2.2 μ	±20	10	150	0.5 ± 0.05	*1 ,*2
JWK107 BJ475MVHT		0.3		X5R	4.7 μ	±20	10	150	0.5±0.05	*1 ,*2

 $\begin{tabular}{ll} \textbf{[Temperature Characteristic B7: X7R, C6: X6S, C7: X7S]} & 0.5mm & thickness (V) \\ \end{tabular}$

Part number 1	Part number 2	Rated voltage [V]	Temperature	Capacitance	Capacitance	tan δ	HALT	Thickness*3 [mm]	Note
Part number 1	Part number 2	Rated voitage [v]	characteristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
TWK107 B7104MVHT		25	X7R	0.1 μ	±20	5	150	0.5 ± 0.05	*1 ,*2
EWK107 B7224MVHT		16	X7R	0.22 μ	±20	5	150	0.5±0.05	*1 ,*2
EWK107 B7474MVHT		10	X7R	0.47 μ	±20	5	150	0.5±0.05	*1 ,*2
LWK107 B7474MVHT		10	X7R	0.47 μ	±20	5	150	0.5±0.05	*1 ,*2
JWK107 C7105MVHT		6.3	X7S	1 μ	±20	10	150	0.5 ± 0.05	*1 ,*2
AWK107 C6225MVHT		4	X6S	2.2 μ	±20	10	150	0.5 ± 0.05	*1 ,*2
AWK107 C6475MVHT]	X6S	4.7 μ	±20	10	150	0.5±0.05	*1 ,*2

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

Multilayer Ceramic Capacitors

■PACKAGING

1)Minimum Quantity

Τ (ΓΙΔ)	Thick	ness	Standard q	uantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004)	0.125	К	_	50000
☐MK042(01005)	0.2	C, D		40000
□VS042(01005)	0.2	С	–	40000
□MK063(0201)	0.3	P, T	15000	
□WK105(0204) ※	0.3	Р	10000] _
	0.13	Н	_	20000
	0.18	E	_	15000
☐MK105(0402)	0.2	С	20000	
	0.3	Р	15000	
	0.5	V	10000	_
□VK105(0402) ※	0.5	W	10000	
□MK107(0603)	0.45	K	4000	
□WK107(0306) ※	0.5	V	_	4000
☐MR107(0603)	0.8	Α		
□MK212(0805)	0.45	К	4000	_
□WK212(0508) ※	0.85	D		
□MR212(0805)	125	G	_	3000
	0.85	D	4000	_
□MK316(1206)	1.15	F		0000
□MR316(1206)	125	G	_	3000
	1.6	L	_	2000
	0.85	D		
	1.15	F		0000
□MK325(1210)	1.9	N	_	2000
□MR325(1210)	2 Omay	V		

М

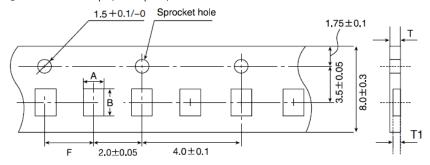
Note: * LW Reverse type.

Chip

□MK432(1812)

2.0max. 2.5

© Top tape Card board carrier tape Base tape Sprocket hole Chip cavity Chip filled Chip filled

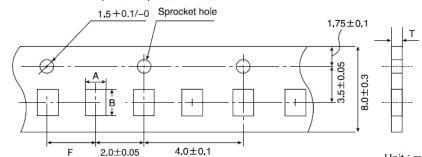

1000

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

3 Representative taping dimensions

Paper Tape (8mm wide)

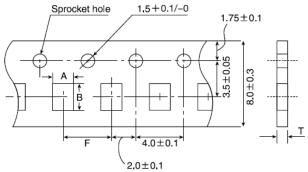
● Pressed carrier tape (2mm pitch)



			Onit : mm		
Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Ti	nickness
Type(EIA)	Α	В	F	Т	T1
☐MK063(0201)	0.37	0.67		0.45max.	0.42max.
□WK105(0204) ※			2.0±0.05	0.45max.	0.42max.
☐MK105(0402) (*1 C)	0.65	1.15	2.0±0.03	0.4max.	0.3max.
□MK105(0402) (*1 P)				0.45max.	0.42max.

Note *1 Thickness, C:0.2mm ,P:0.3mm. * LW Reverse type.

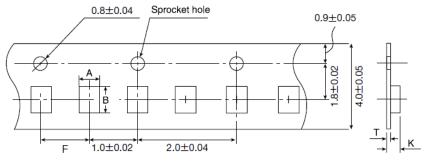
Unit:mm


●Punched carrier tape (2mm pitch)

			Unit · mm	
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
□MK105 (0402) □VK105 (0402)	0.65	1.15	2.0±0.05	0.8max.

Unit:mm

●Punched carrier tape (4mm pitch)

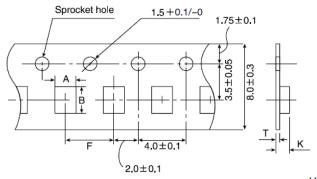

	2.0±0.1	Unit	: mm	
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
☐MK107(0603)				
□WK107(0306) ※	1.0	1.8		1.1max.
□MR107(0603)			4.0±0.1	
☐MK212(0805)	1.65	2.4	4.0 ± 0.1	
□WK212(0508) ※	1.00	2.4		1.1max.
□MK316(1206)	2.0	3.6		

Note: Taping size might be different depending on the size of the product. 💥 LW Reverse type.

Unit:mm

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Embossed tape (4mm wide)



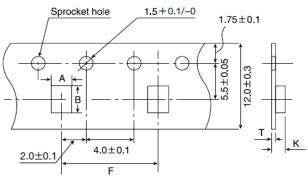
Unit: mm

Tura/EIA)	Chip (Cavity	Insertion Pitch	Tape Th	nickness
Type(EIA)	Α	В	F	K	Т
☐MK021(008004)	0.135	0.27			
☐MK042(01005)	0.00	0.40	1.0 ± 0.02	0.5max.	0.25max.
□VS042(01005)	0.23	0.43			

Unit:mm

Embossed tape (8mm wide)

Unit: mm

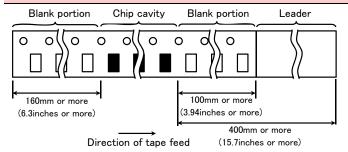

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Ti	nickness
Type(EIA)	Α	В	F	K	Т
☐MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25±0.1
□MK212(0805) □MR212(0805)	1.65	2.4			
□MK316(1206) □MR316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.
□MK325(1210) □MR325(1210)	2.8	3.6			

Note:

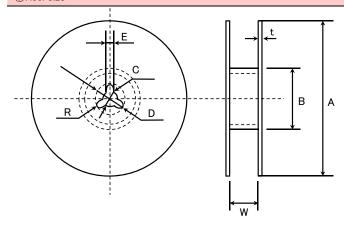
LW Reverse type.

Unit:mm

Embossed tape (12mm wide)


Unit: mm

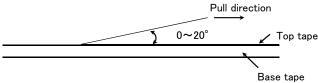
Type(EIA)	Chip Cavity		Insertion Pitch	Tape Thickness	
Type(EIA)	Α	В	F	K	Т
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.


Unit:mm

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4 Trailer and Leader

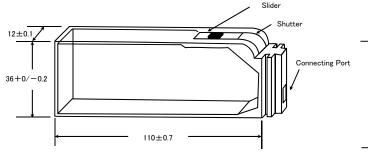
5Reel size

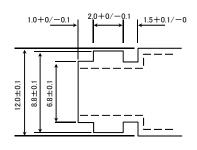

A	В	С	D	E	R
ϕ 178 ± 2.0	<i>ф</i> 50min.	ϕ 13.0 \pm 0.2	ϕ 21.0 ± 0.8	2.0±0.5	1.0

	Т	W
4mm wide tape	1.5max.	5±1.0
8mm wide tape	2.5max.	10±1.5
12mm wide tape	2.5max.	14±1.5

Unit:mm

6 Top Tape Strength


The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.


7Bulk Cassette

The exchange of individual specification is necessary.

Please contact Taiyo Yuden sales channels.

Unit:mm

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Multilayer Ceramic Capacitors

■ RELIABILITY DATA

Remarks

Charge/discharge current

INCLIABILITI								
1.Operating Te	mperature Range							
	Temperature	Standard						
	Compensating(Class1)	High Frequency Type	-55 to +	125°C				
				Specification	Temperature	Range		
					-25 to +			
Specified		BJ	X5R	-55 to +				
/alue			В7	X7R	-55 to +			
value	High Permittivity (Class2)	C6	X6S	−55 to +	105°C		
			C7	X7S	-55 to +	125°C		
			D7	X7T	-55 to +	125°C		
			LD(※)	X5R	−55 to +	·85°C		
			Note: 💥	LD Low distortion h	igh value multilayei	ceramic capa		
	,							
. Storage Con	ditions	T						
	Temperature Standard		-55 to +	125°C				
	Compensating(Class1)	High Frequency Type	33 to 1	123 0				
				Specification	Temperature	Range		
				В	-25 to +	_		
Specified			BJ	X5R	-55 to +			
/alue		В7	X7R	-55 to +	125℃			
alac	High Permittivity (Class2	High Permittivity (Class2)			−55 to +	105℃		
		C7	X7S	-55 to +				
		D7	X7T	-55 to +				
			LD(※)	X5R	-55 to +	·85°C		
				LD Low distortion h				
8. Rated Voltag	ge							
	Temperature	Standard	50VDC, 25	VDC				
Specified	Compensating(Class1)	High Frequency Type	50VDC, 25	VDC				
Value	High Permittivity (Class2		· ·	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC				
	g.r r or miccivity (Olassz	,	1 33 7 2 3, 33	. 20, 20100, 10100	2, 10120, 0.0420,	. , 2 3, 2.3 , 20		
Withstanding	Voltage (Between termina	ls)						
	1	Standard						
Specified	Temperature Compensating(Class1)		Na kiisis	au dan				
alue		High Frequency Type	INO preakdo	own or damage				
	High Permittivity (Class2					<u> </u>		
est	Applied valtage		lass 1		lass 2	-		
Methods and	Applied voltage	Kated	l volta × 3	· · · · · · · · · · · · · · · · · · ·	oltage × 2.5	-		
Remarks	Duration Charge/discharge curren	nt		1 to 5 sec.		-		
	Onarge/ discharge curre	iii.	-	50mA max.		J		
. Insulation Re	esistance							
		Standard						
יר י	Temperature Compensating(Class1)		10000 MΩ	min.				
Specified	Compensating (Class I)	High Frequency Type	1					
Value	High Permittivity (Class2) Note 1		F: 10000 MΩ min.				
	Collinearity (Olussia	,	$C > 0.047 \mu$. F : 500M Ω • μ F				
est	Applied voltage	: Rated voltage						
Methods and	Duration	: 60±5 sec.						
	1 01 / 12 1	FO 4						

: 50mA max.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Capacitance	(Tolerance)							
	Temperature Componenting (Close1)		ard	C U SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%		
Specified Value	Compensating (Class1)	High Frequency Type		СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%		
	High Permittivity (Class2)			BJ, B7, C6, C7, D7, LD(※): ±10% or ±20% Note: ※LD Low distortion high value multilayer ceramic capacitor				
			Class 1			Cla	ass 2	
- .		Standa		High Frequency Type		C≦10 μ F	C>10 µ F	
Test	Preconditioning			None		Thermal treatment (at	t 150°C for 1hr) Note 2	
Methods and	Measuring frequency		1MHz±10%		:±10%	1kHz±10%	120±10Hz	
Remarks	Measuring voltage Note		0.5 to 5Vrms			1±0.2Vrms	0.5±0.1rms	
	Bias application					one		

Specified	Temperature		Standard	$C < 30pF : Q \ge 400 + 20C$ $C \ge 30pF : Q \ge 1000$ (C:Nominal capacitance)				
Value	Compensating(Class1)	High F	requency Type	Refer	to detailed specification			
	High Permittivity (Class2) Note 1			BJ, B	7, C6, C7, D7:2.5% max.			
				Cla	ss 1	Class 2		
			Standard		High Frequency Type	C≦10 μ F	C>10 μ F	
	Preconditioning		None		Thermal treatment (at 150°C for 1hr) Note 2			
Test	Measuring frequey		1MHz±10%		1GHz	1kHz±10%	120±10Hz	
Methods and	Measuring voltage Note 1		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1Vrms		
Remarks	Bias application	s application			None			
	High Frequency Type							
	Measuring equipment : HP4291A							
	Measuring jig : HP16192A							

			Temperature Characteristic [ppm/°C]				Tolerance [ppm/°C]	
			C□:	0	CG,CH, CJ,	СК	G: ±30 H: ±60	
	Temperature Compensating(Class1)	Standard	U□:	— 750	UJ, UK		J: ±120 K: ±250	
			SL :	+350 to −100	00			
		High Frequency Type	Tem	perature Charac	cteristic [ppm/°	C] To	Tolerance [ppm/°C]	
			C□:	0	CH		H: ±60	
Specified				Specification	Capacitance	Reference	Temperature Range	
Value				Opecinication	change	temperature	Temperature range	
			BJ	В	±10%	20°C	-25 to +85°C	
			В	X5R	±15%	25°C	-55 to +85°C	
	Hint Damaiani in (Olara)	,	B7	X7R	±15%	25°C	−55 to +125°C	
	High Permittivity (Class2)		C6	X6S	±22%	25°C	-55 to +105°C	
			C7	X7S	±22%	25°C	−55 to +125°C	
			D7	X7S	+22/-33%	25°C	−55 to +125°C	
			LD(※)	X5R	±15%	25°C	−55 to +85°C	
			Note:	VID 1 1 4 4 4 4 4 -	rtion high value		and a community and	

Class 1

Capacitance at 20° C and 85° C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

$$\frac{(C_{85}-C_{20})}{C_{20}\times\Delta T} \times 10^{6} (ppm/^{\circ}C) \qquad \Delta T = 65$$

Test Methods and Remarks

Class 2

Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

Step	В	X5R, X7R, X6S, X7S, X7T				
1	Minimum operat	ing temperature				
2	20°C	25°C				
3	Maximum operating temperature					

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

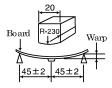
 $\frac{(C-C_2)}{C_2}$ × 100(%)

C : Capacitance in Step 1 or Step 3

C2 : Capacitance in Step 2

9. Deflection				
Temperature Compensating(Class1) Value	Standard	Appearance Capacitance change	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.	
	Compensating(Class1)	High Frequency Type	Appearance Cpaitance change	: No abnormality : Within±0.5 pF
1 4140			Appearance	: No abnormality

High Permittivity (Class2)


Capacitance change : Within ±12.5%(BJ, B7, C6, C7, D7, LD(X))

Note: $\mbox{\ensuremath{\mbox{$\times$}}} LD$ Low distortion high value multilayer ceramic capacitor

Test Methods and Remarks

	Multilayer Cera	mic Capacitors					
	042, 063, ^{※1} 105 Type	The other types					
Board	Glass epoxy-r	Glass epoxy-resin substrate					
Thickness	0.8mm	1.6mm					
Warp	1mm (Soft Termination type:3mm)						
Duration	10 sec.						

(Unit: mm)

Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength						
	Temperature	Standard	1				
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.				
Value	High Permittivity (Class2))	1				
Test Methods and Remarks	High Frequency Type Applied force : 5N uration : 10 sec.	Pres ← A →	R0.5 Pressing Jig Chip				

11. Adhesive St	11. Adhesive Strength of Terminal Electrodes								
0 15 1	Temperature	Standard							
Specified Value	Compensating(Class1)	High Frequency Type	No terminal separati	No terminal separation or its indication.					
	High Permittivity (Class	2)							
	Multilayer Ceramic		c Capacitors	Hooked jig					
Test		042, 063 Type	105 Type or more						
Methods and	Applied force	2N	5N	R=05					
Remarks	Duration	30±5 s	ec.						
				Chip Chip					

12. Solderability	/					
	Temperature	Standard				
Specified Value	Compensating(Class1)	High Frequency Type At least 95		least 95% of terminal electrode is covered by new solder.		
Value	High Permittivity (Class2))				
T4		Eutectic so	older	Lead-free solder		
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu		
Remarks	Solder temperature	230±5°	С	245±3°C		
i verriai KS	Duration		4±1 sec.			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

3. Resistance	to Soldering					
Specified Value	Temperature	Standard	Appearance Capacitance Q Insulation re Withstanding	sistance	: No abnormlty : Within ±2.5% or ±0 : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality
	Compensating (Class1)	High Frequency Type	Appearance Capacitancecange Q Insulation resistance Withstanding voltage		: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)	: No abnormality
	High Permittivity (Clas	Appearance Capactace of Dissipation f Insulation re Withstanding Note: **LD	actor sistance y voltage	: No abormality : Within ±7.5%(BJ, B : Initial value : Initial value (between terminals): tion high value multilayd	•	
			lss 1			
		042, 063 Type	105 Type		105 Type	
	Preconditioning		None			
	Preheating	150°C, 1 to 2 min.		80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5 min.		
	Solder temp.		270±5℃	270±5°C		
	Duration		3±0.5 sec	э.		
Γest	Recovery	6 to 24 hrs	s(Standard co	ondition) I	Noe 5	
Methods and Remarks					Class 2	
		042、063 Type		105,	107, 212 Type	316, 325 Type
	Preconditioning	•	Thermal t	treatment	(at 150°C for 1 hr) No	ote 2
	Preheating	150°C, 1 to 2 min.			00°C, 2 to 5 min. 00°C, 2 to 5 min.	80 to 100°C, 5 to 10 min. 150 to 200°C, 5 to 10 min.
	Solder temp.		1		270±5°C	
	Duration			3	±0.5 sec.	
	Recovery		24+2	hrs (Sta	ndard condition)Note!	5

14. Temperatur	re Cycle (Thermal Shock)						
	Temperature	Standard High Frequency Type		Capacitance change : V Q : In Insulation resistance : In	Capacitance change : Within $\pm 2.5\%$ or ± 0.25 pF, whichever is larger. : Initial value : Initial value		
Specified Value	Compensating(Class1)			Capacitance change : V Q : In Insulation resistance : In	apacitance change : Within ±0.25pF : Initial value sulation resistance : Initial value		
	High Permittivity(Class2) Note 1		Capacitance change : W Dissipation factor : Ir Insulation resistance : Ir	o abnormality /ithin ±7.5% (BJ, B7, nitial value nitial value etween terminals) : No high value multilayer c	o abnormality	
			C	lass 1	Class 2		
	Preconditioning			None	Thermal treatment (at 150°C for 1 hr) Note 2		
Test Methods and Remarks	1 cycle		Step 1 2 3 4	Temperatur Minimum operating Normal temp Maximum operating Normal temp	temperature erature temperature	Time (min.) 30±3 2 to 3 30±3 2 to 3	
	Number of cycles			5 1	times		
	Recovery	6 to 24 hrs	(Stan	dard condition)Note 5	24±2 hrs (Standard condition) Note 5		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Humidity (Steady State)			
	Temperature Compensating(Class1	Standard)	Capacitance change Q	: No abnormality : Within $\pm 5\%$ or $\pm 0.5 pF$, whichever is larger. : $C < 10 pF$: $Q \ge 200 + 10 C$ $10 \le C < 30 pF$: $Q \ge 275 + 2.5 C$ $C \ge 30 pF$: $Q \ge 350 (C$: Nominal capacitance) : $1000 \ M\Omega$ min.
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within $\pm 0.5 \text{pF},$: 1000 M Ω min.
	High Permittivity (Cla	ss2) Note 1	Appearance : No abnormality Capacitance change : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$)) Dissipation factor : 5.0% max.(BJ, B7, C6, C7, D7, LD($\%$)) Insulation resistance : $50 \text{ M}\Omega \mu \text{ F}$ or $1000 \text{ M}\Omega$ whichever is smaller. Note: $\%$ LD Low distortion high value multilayer ceramic capacitor	
			ass 1	Class 2
Test	Preconditioning	Standard N	High Frequency Type	All items Thermal treatment(at 150°C for 1 hr) Note 2
Methods and	Temperature	40±2°C	60±2°C	40±2°C
Remarks	Humidity	90 to	95%RH	90 to 95%RH
	Duration	500+2	4/-0 hrs	500 + 24 / - 0 hrs
	Recovery	6 to 24 hrs (Stand	ard condition)Note 5	24±2 hrs (Standard condition) Note 5

16. Humidity Lo	pading					
Specified Value	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance	: With : C< C≧	abnormality nin ±7.5% or ±0.75pF, whichever is larger. 30pF:Q≧100+10C/3 30pF:Q≧200 (C:Nominal capacitance) MΩ min.	
		High Frequency Type	Appearance Capacitance change Insulation resistance	nnce change : C≦2pF:Within ±0.4 pF C>2pF:Within ±0.75 pF (C:Nominal capacitance)		
	High Permittivity (Class2) Note 1		$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
		C	Class 1		Class 2	
		Standard	High Frequency Typ	ре	All items	
	Preconditioning	None			Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3	
Test	Temperature	40±2°C	60±2°C		40±2°C	
Methods and	Humidity	90 t	to 95%RH		90 to 95%RH	
Remarks	Duration	500+	24/-0 hrs		500+24/-0 hrs	
	Applied voltage	Rate	ed voltage		Rated voltage	
	Charge/discharge current	50r	mA max.		50mA max.	
	Recovery	6 to 24 hrs (Standard condition) Note 5			24±2 hrs (Standard condition) Note 5	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

17. High Tempe	erature Loading						
	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance	: $C < 10pF$: $Q \ge 200 + 10C$ $10 \le C < 30pF$: $Q \ge 275 + 2.5C$ $C \ge 30pF$: $Q \ge 350(C$: Nominal capacitance)			
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	· '			
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: **LD Low dis	: 5.0% max.(BJ, B7, C6, C7, D7, LD(※))			
		Clas	s 1	Class 2			
		Standard H	High Frequency Type	BJ, LD(※)	C6	B7, C7, D7	
	Preconditioning	None		Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4			
Test	Temperature	Maximum operating temperature		Maximum operating temperature			
Methods and	Duration	1000+48	/-0 hrs	1000+48/-0 hrs			
Remarks	Applied voltage	Rated vol	tage × 2	Rated voltage × 2 Note 4			
I CIII II NS	Charge/discharge current	50mA	max.	50mA max.			
	Recovery	6 to 24hr (Standard	Condition) Note 5	24±2 h	24±2 hrs(Standard condition)Note 5		
			Note	※LD Low distortion	on high value multil	ayer ceramic capacitor	

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

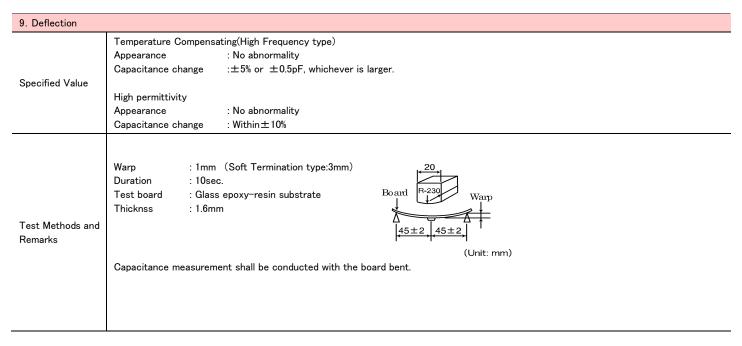
- Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150 + 0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.
- Note 3 Voltage treatment: Initial value shall be measured after test sample is voltage—treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.
- Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.
- Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.
 - Temperature: $20\pm2^{\circ}$ C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Medium-High Voltage Multilayer Ceramic Capacitor

■RELIABILITY DATA

	Temperature Compensating(High Frequency type) CG(COG) : −55 to +125°C					
	Ga(Gaa)33 to +123 C					
Specified Value	High permittivity					
	X7R, X7S : −55 to +125°C					
	X5 : −55 to +85°C					
	B : -25 to +85°C					
2. Storage Tempera	ature Range					
	Temperature Compensating(High Frequency type)					
	CG(C0G) : -55 to +125°C					
Specified Value	High permittivity					
	X7R, X7S : −55 to +125°C					
	X5R : −55 to +85°C					
	B : -25 to +85°C					
3. Rated Voltage						
Specified Value	100VDC(HMK,HMJ), 250VDC(QMK,QMJ,QVS), 630VDC(SMK,SMJ)					
4. Withstanding Vol	tage (Between terminals)					
Specified Value	No breakdown or damage					
Test Methods and	Applied voltage : Rated voltage × 2.5 (HMK,HMJ), Rated voltage × 2 (QMK,QMJ,QVS), Rated voltage × 1.2 (SMK,SMJ)					
Remarks	Duration : 1 to 5sec.					
	Carge/discharge current : 50mA max.					


O. Insulation (CSISE	ance	
0 15 111	Temperature Compensating(10000M Ω min	High Frequency type)
Specified Value	High permittivity 100M Ω μ F or 10G Ω , which	never is smaller.
Test Methods and Remarks	Applied voltage Duration Charge/discharge current	: Rated voltage(HMK,HMJ, QMK,QMJ,QVS), 500V(SMK,SMJ) : 60±5sec. : 50mA max.

6. Capacitance (To	olerance)			
Specified Value	Temperature Compensating(High Frequency type) ± 0.1 pF (C <5 pF) ± 0.25 pF (C <10 pF) ± 0.5 pF (5pF \leq C <10 pF) ± 2 %(C=10pF) ± 5 %(C ≥ 10 pF)			
	High permittivity			
	±10%, ±20%			
	Temperature Compensation	g(High Frequency type)		
	Measuring frequency	: 1MHz±10%		
	Measuring voltage	: 0.5 to 5Vrms		
Test Methods and	Bias application	: None		
Remarks	High permittivity			
	Measuring frequency	: 1kHz±10%		
	Measuring voltage	: 1 ± 0.2 Vrms		
	Bias application	: None		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

7. Q or Dissipation	Factor		
	Temperature Compensa	ting(High Frequency type)	
	C<30pF: Q≧800+20		
	C≧30pF: Q≧1400	C:Normal Capacitance(/pF)	
Specified Value			
	High permittivity		
	3.5%max (HMK,HMJ)		
	2.5%max(QMK,QMJ, SMK,SMJ)		
	Temperature Compensa	ting(High Frequency type)	
	Measuring frequency	: 1MHz±10%	
	Measuring voltage	: 0.5 to 5Vrms	
Test Methods and	Bas application	: None	
Remarks	High permittivity		
	Measuring frequency	: 1kHz±10%	
	Measuring voltage	: 1±0.2Vrms	
	Bas application	: None	

8. Temperature Cha	aracteristic of Capacitance
	Temperature Compensating(High Frequency type) COG :±30ppm(25 to +125°C)
Specified Value	High permittivity B : ±10%(-25 to +85°C) X5R : ±15%(-55 to +85°C) X7R : ±15%(-55 to +125°C) X7S : ±22%(-55 to +125°C)
Test Methods and Remarks	Temperature Compensating(High Frequency type) Capacitance at 25° C and 85° C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. $\frac{(C_{85}-C_{25})}{C_{25}\times\Delta T}\times 10^{6}\times[\text{ppm}/^{\circ}\text{C}]$ High permittivity Capacitance value at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. $\frac{\text{Step} B}{1} X5R, X7R, X7S$ $\frac{1}{1} \text{Minimum operating tempeature}$ $\frac{2}{2} 20^{\circ}\text{C} 25^{\circ}\text{C}$ $\frac{3}{3} \text{Maximum operating temperature}$ $\frac{(C-C_{2})}{C_{2}} \times 100(\%)$
	C : Capacitance value in Step 1 or Step 3 C2 : Capacitance value in Step 2

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

10. Adhesive Strength of Terminal Electrodes Specified Value No terminal separation or its indication. Temperature Compensating(High Frequency type) Applied force : 2N Hooked jig Duration : 10±5sec. Board Test Methods and Remarks High permittivity Applied force : 5N Hooked jig Duration : 30±5sec. Board

11. Solderability					
Specified Value	At least 95% of terminal electrode is covered by new solder				
		Eutectic solder	Lead-free solder		
Test Methods and	Solder type	H60A or H63A	Sn-3.0Ag-0.5Cu		
Remarks	Solder temperature	230±5°C	245±3°C		
	Duration	4±1	sec.		

12. Resistance to Soldering					
	Temperature Compensating(High Frequency type)				
	Appearance : No abnormality				
	Capacitance change	: C※≦10pF :±0.25pF C※>10pF :±2.5% ※Normal capacitance			
	Insulation resistance	: Initial value			
	Withstanding voltage	(between terminals): No abnormality			
Specified Value High permittivity					
	Appearance	: No abnormality			
	Capacitance change	: Within±15%(HMK,HMJ), ±10%(QMK,QMJ, SMK,SMJ)			
	Dissipation factor	: Inital value			
	Insulation resistance	: Initial value			
	Withstanding voltage	(between terminals): No abnormality			
	Preconditioning	: Thermal treatment (at 150°C for 1hr) Note1 (Only High permittivity)			
Test Methods and	Solder temperature	: 270±5℃			
Remarks	Duration	: 3±0.5sec.			
riciliai no	Preheating conditions	: 80 to 100°C, 2 to 5 min. 150 to 200°C, 2 to 5min.			
	Recovery	: 24±2hrs under the stadard condition Note3			

13. Temperature C	ycle(Thermal Shock)			
	Temperature Comp	ensating(High Frequency type)			
	Appearance	: No abnormality			
	Capacitance change	: C※≦10pF :±0.25% C※>10pF :±2.5%			
	Insulation resistance	e : Initial value	: Initial value		
	Withstanding voltag	e (between terminals) : No abnormality			
Specified Value	High permittivity				
	Appearance	: No abnormality			
	Capacitance change	: Within±15%(HMK,HMJ), ±7.5%(QMK,QMJ, SMK,SMJ)			
	Dissipation factor	: Initial value			
	Insulation resistance : Initial value				
	Withstanding voltage (between terminals): No abnormality				
	Preconditioning : Th	ermal treatment (at 150°C for 1hr) Note1			
	Conditions for 1 cy			<u></u>	
	Step	temperature (°C)	Time (min.)		
Test Methods and	1	Minimum operating temperature	30±3min.		
Remarks	2	Normal temperature	2 to 3min.		
Nomai No	3	Maximum operating temperature	30±3min.		
	4	Normal temperature	2 to 3min.		
	Number of cycles:	5 times			
	Recovery : 24±2hr	s under the standard condition Note3			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

14. Humidity (Stea		
	Temperature Compensating	(High Frequency type)
	Appearance	: No abnormality
	Capacitance change	: C※≦10pF :±0.5pF C※>10pF :±5% ※Normal capacitance
	Insulation resistance	: $1000M\Omega$ min
Specified Value		
specified value	High permittivity	
	Appearance	: No abnormality
	Capacitance change	: Within±15%
	Dissipation factor	: 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).
	Insulation resistance	: 25M Ω μ F or 1000M Ω , whichever is smaller.
	Preconditioning	: Thermal treatment (at 150°C for 1hr) Note1 (Only High permittivity)
	Temperature	: 40±2°C
est Methods and	Humidity	: 90 to 95%RH
Remarks	Duration	: 500 +24/-0 hrs
	Recovery	: 24±2hrs under the standard condition Note3
	recovery	. 24 ± 21113 under the standard condition Notes
5. Humidity Loadin	ng .	
	Temperature Compensating	(High Frequency type)
	Appearance	: No abnormality
	Capacitance change	: C $\frac{5}{2}$ 0.0pF : ± 0.4 pF 2.0pF < C $\frac{5}{2}$ 10pF : ± 0.75 pF C $\frac{5}{2}$ 10pF : ± 7.5 %
		: ※Normal capacitance
	Insulation resistance	: $500M\Omega$ min
Specified Value		
	High permittivity	
	Appearance	: No abnormality
	Capacitance change	: Within±15%
	Dissipation factor	: 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).
	Insulation resistance	: $10 \text{M}\Omega~\mu$ F or $500 \text{M}\Omega$, whichever is smaller.
	According to JIS 5102 claus	ne 9 9
	Preconditioning	: Voltage treatment Note2 (Only High permittivity)
	Temperature	: 40±2°C
Test Methods and	Humidity	: 90 to 95%RH
Remarks	Applied voltage	: Rated voltage
Ciliai KS	Charge/discharge current	: 50mA max.
	Duration	: 500 +24/-0 hrs
	Recovery	: 24±2hrs under the standard condition Note3
	recovery	. 24 = 2113 diladi die standard condition Notes
6 III-l- T	1	
6. High Temperatu		40=
	Temperature Compensating	
	Appearance	: No abnormality
	Capacitance change	: C※≦10pF:±0.3pF C※>10pF:±3%
	Insulation resistance	:1000M Ω min
Specified Value		
,	High permittivity	
	Appearance	: No abnormality
	Capacitance change	: Within ± 15%
	Dissipation factor	: 7%max(HMK,HMJ), 5%max(QMK,QMJ, SMK,SMJ).
	Insulation resistance	: $50M\Omega \mu F$ or $1000M\Omega$, whichever is smaller.
	According to JIS 5102 claus	se 9.10.
	Preconditioning	: Voltage treatment Note2 (Only High permittivity)
	Temperature	: Maximum operating temperature
est Methods and	Applied voltage	: Rated voltage × 2 (HMK,HMJ,QVS) Rated voltage × 1.5 (QMK,QMJ) Rated voltage × 1.2 (SMK,SMJ)
Remarks	Charge/discharge current	: 50mA max.
	Duration	1000 + 24/-0 hrs
	Recovery	: 24±2hrs under the standard condition Note3
lote1 Thermal tracture	-	d after test sample is heat—treated at 150+0/-10°C for an hour and kept at room temperature
iote i i nermai treatm	ent : Initial value shall be measure for 24±2hours.	u alter test sample is neat-treated at 130 ±0/ = 10 € for an nour and kept at room temperature
lote2 Voltage treatme		ed after test sample is voltage-treated for an hour at both the temperature and voltage specified in
		I kept at room temperature for 24±2hours.
lote3 Standard condit	tion : Temperature: 5 to 35°C, Re	elative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa
	When there are questions of	oncerning measurement results, in order to provide correlation data, the test shall be conducted
	and the second s	

Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

under the following condition.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Precautions on the use of Multilayer Ceramic Capacitors

■PRECAUTIONS

1. Circuit Design

- ◆Verification of operating environment, electrical rating and performance
 - 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.

Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.

Precautions

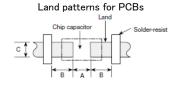
- ◆Operating Voltage (Verification of Rated voltage)
 - 1. The operating voltage for capacitors must always be their rated voltage or less.
 - If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
 - For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
 - 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

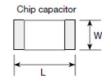
2. PCB Design

Precautions

- ◆Pattern configurations (Design of Land-patterns)
- 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns:
 - (1) Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder.
 - (2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist.
- ◆Pattern configurations (Capacitor layout on PCBs)

After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses.


◆Pattern configurations (Design of Land-patterns)


The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts.

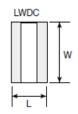
- (1) Recommended land dimensions for typical chip capacitors
- Multilayer Ceramic Capacitors : Recommended land dimensions (unit: mm)

Wave-soldering

		U			
Type		107	212	316	325
Size	┙	1.6	2.0	3.2	3.2
	W	0.8	1.25	1.6	2.5
Ä		0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5
В		0.5 to 0.8	0.8 0.8 to 1.5 0.8 to 1.7		0.8 to 1.7
С		0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5

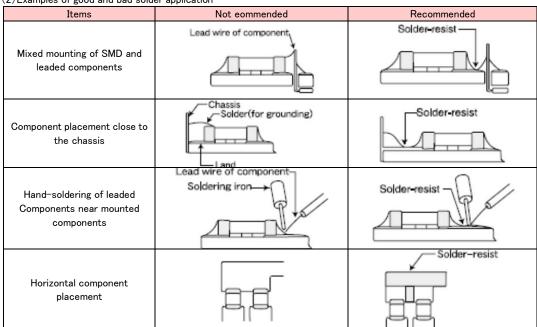
Reflow-soldering

Technical considerations


Ту	ре	042	063	105	107	212	316	325	432
Size	┙	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
Size	W	0.2	0.3	0.5	8.0	1.25	1.6	2.5	3.2
-	4	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
E	3	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
()	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5

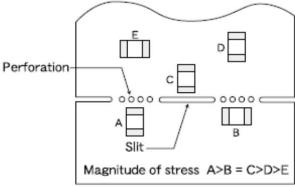
Note: Recommended land size might be different according to the allowance of the size of the product.

●LWDC: Recommended land dimensions for reflow-soldering


(unit: mm)

,					
Туре		105 107		212	
Size	L	0.52	0.8	1.25	
	W	1.0	1.6	2.0	
Α		0.18 to 0.22	0.25 to 0.3	0.5 to 0.7	
В		0.2 to 0.25	0.3 to 0.4	0.4 to 0.5	
С		0.9 to 1.1	1.5 to 1.7	1.9 to 2.1	

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

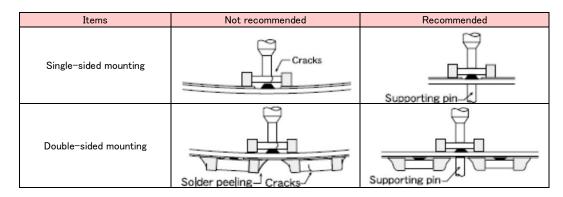

(2) Examples of good and bad solder application

- ◆Pattern configurations (Capacitor layout on PCBs)
 - 1-1. The following is examples of good and bad capacitor layouts; capacitors shall be located to minimize any possible mechanical stresses from board warp or deflection.

Items	Not recommended	Recommended			
Deflection of board			Place the product at a right angle to the direction of the anticipated mechanical stress.		

1-2. The amount of mechanical stresses given will vary depending on capacitor layout. Please refer to diagram below.

3. Mounting


considerations

1-3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location.

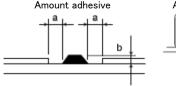
◆Adjustment of mounting machine 1. When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. 2. Maintenance and inspection of mounting machines shall be conducted periodically. Precautions ◆Selection of Adhesives 1. When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked: size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information. ◆Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. Technical

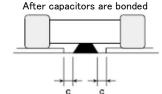
- - (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection.
 - (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

2. As the alignment pin is worn out, adjustment of the nozzle height can cause chipping or cracking of capacitors because of mechanical impact on the capacitors.

To avoid this, the monitoring of the width between the alignment pins in the stopped position, maintenance, check and replacement of the pin shall be conducted periodically.


Selection of Adhesives


Some adhesives may cause IR deterioration. The different shrinkage percentage of between the adhesive and the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect components. Therefore, the following precautions shall be noted in the application of adhesives.

- (1) Required adhesive characteristics
 - a. The adhesive shall be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive shall have sufficient strength at high temperatures.
 - c. The adhesive shall have good coating and thickness consistency.
 - d. The adhesive shall be used during its prescribed shelf life.
 - e. The adhesive shall harden rapidly.
 - f. The adhesive shall have corrosion resistance.
 - g. The adhesive shall have excellent insulation characteristics.
 - h. The adhesive shall have no emission of toxic gasses and no effect on the human body.
- (2) The recommended amount of adhesives is as follows;

[Recommended condition]

Figure	212/316 case sizes as examples
а	0.3mm min
b	100 to 120 μ m
С	Adhesives shall not contact land

4. Soldering

Precautions

◆Selection of Flux

Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;

- (1) Flux used shall be less than or equal to 0.1 wt%(in Cl equivalent) of halogenated content. Flux having a strong acidity content shall not be applied.
- (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
- (3) When water-soluble flux is used, special care shall be taken to properly clean the boards.

◆ Solderin

Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.

Sn-Zn solder paste can adversely affect MLCC reliability.

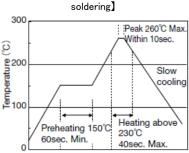
Please contact us prior to usage of Sn-Zn solder.

◆Selection of Flux

- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.
- 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

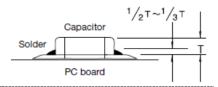
Technical considerations

◆ Soldering

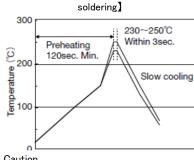

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- · Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal
- Preheating: Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 100 to 130°C.
- Cooling: The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.
- This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

[Reflow soldering]

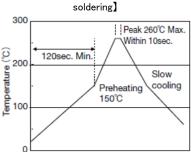
[Recommended conditions for eutectic


soldering Preheating 230°C Within 10 sec. 60sed 60sec Femperature (°C) 200 Min. Min. Slow cooling 100

Recommended condition for Pb-free


Caution

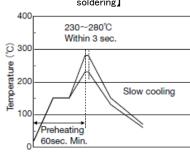
- \bigcirc The ideal condition is to have solder mass(fillet) controlled to 1/2 to 1/3 of the thickness of a capacitor.
- ②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible.
- 3 Allowable number of reflow soldering: 2 times max.



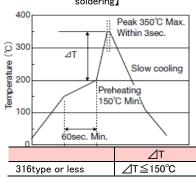
[Wave soldering]

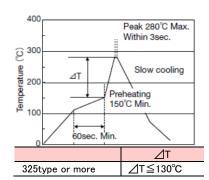
[Recommended conditions for eutectic

[Recommended condition for Pb-free



Caution


- ①Wave soldering must not be applied to capacitors designated as for reflow soldering only.
- 2 Allowable number of wave soldering: 1 times max.


[Hand soldering]

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free soldering]

- ①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
- 2The soldering iron shall not directly touch capacitors.
- 3 Allowable number of hand soldering: 1 times max.

5. Cleaning

Precautions

◆Cleaning conditions

- 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.)
- 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.

Technical considerations

- 1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance).
- 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked;

Ultrasonic output: 20~W/l or less Ultrasonic frequency: 40 kHz or less

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/)

	Ultrasonic washing period : 5 min. or less
6. Resin coating	and mold
Precautions	 With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period of while left under normal storage conditions resulting in the deterioration of the capacitor's performance. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive hear
	may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended.

7. Handling	
	◆Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	 ◆Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage condi	tions		
Precautions	 ◆Storage 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. •Recommended conditions Ambient temperature: Below 30°C Humidity: Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. •Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour. 		
Technical considerations	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.		

**RCR-2335B (Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA. Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).