The Advantages

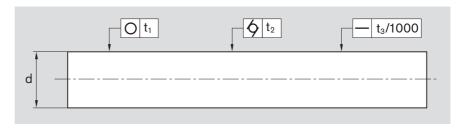
- Induction hardened and ground
- Solid or tubular shafts
- Available in various tolerances
- Available in heat-treated steel, corrosion-resistant steel or hard chromium plated steel
- Cut to customer specified lengths
- With chamfers to protect the Linear Bushing seal
- Completed per customer design
- As a guidance shaft for Linear Bushings
- As rollers, pistons and axles

Overview

Measurements

Shaft Ø d			Part nu Solid	shafts	Y200	W 140		
[]		ated steel	X460		X90CrMoV18			
[mm]	h6 R1000 003 00	h7	h6	h7	h6 R1000 003 20	h7		
3	R1000 003 00	R1000 004 01	R1000 004 30	R1000 004 31	K1000 003 20			
	R1000 004 00	R1000 004 01	R1000 004 30	R1000 004 31				
6	R1000 005 00	R1000 005 01	R1000 005 30	R1000 005 31				
8	R1000 008 00	R1000 008 01	R1000 008 30	R1000 008 31				
10	R1000 000 00	R1000 000 01	R1000 000 30	R1000 000 31				
12	R1000 010 00	R1000 010 01	R1000 010 30	R1000 010 31	R1000 012 20	R1000 012 21		
14	R1000 014 00	R1000 014 01	R1000 012 30	R1000 014 31	111000 012 20	111000 012 21		
15	R1000 015 00	R1000 015 01	111000 011 00	111000 011 01				
16	R1000 016 00	R1000 016 01	R1000 016 30	R1000 016 31	R1000 016 20	R1000 016 21		
18	R1000 018 00	R1000 018 01						
20	R1000 020 00	R1000 020 01	R1000 020 30	R1000 020 31	R1000 020 20	R1000 020 21		
22	R1000 022 00	R1000 022 01						
24	R1000 024 00	R1000 024 01						
25	R1000 025 00	R1000 025 01	R1000 025 30	R1000 025 31	R1000 025 20	R1000 025 21		
30	R1000 030 00	R1000 030 01	R1000 030 30	R1000 030 31	R1000 030 20	R1000 030 21		
32	R1000 032 00	R1000 032 01						
35	R1000 035 00	R1000 035 01						
38	R1000 038 00	R1000 038 01						
40	R1000 040 00	R1000 040 01	R1000 040 30	R1000 040 31	R1000 040 20	R1000 040 21		
45	R1000 045 00	R1000 045 01						
50	R1000 050 00	R1000 050 01	R1000 050 30	R1000 050 31	R1000 050 20	R1000 050 21		
55	R1000 055 00	R1000 055 01						
60	R1000 060 00	R1000 060 01	R1000 060 30	R1000 060 31	R1000 060 20	R1000 060 21		
70	R1000 070 00	R1000 070 01						
80	R1000 080 00	R1000 080 01	R1000 080 30	R1000 080 31	R1000 080 20	R1000 080 21		
100	R1000 100 00	R1000 100 01						
110	R1000 110 00	R1000 110 01						

Shaft					
Ød	Solid	Shaft		Tubula	rshaft
	Hard chron	nium plating	Heat-trea	ted steel	Hard chromium plating
[mm]	h6	h7	h6	h7	h7
3					
4					
5					
6					
8			R1001 008 10		
10			R1001 010 10		
12	R1000 012 60	R1000 012 61	R1001 012 10	R1001 012 11	
14					
15					
16	R1000 016 60	R1000 016 61	R1001 016 10		
18					
20	R1000 020 60	R1000 020 61	R1001 020 10	R1001 020 11	
22					
24					
25	R1000 025 60	R1000 025 61	R1001 025 10	R1001 025 11	R1001 025 41
30	R1000 030 60	R1000 030 61	R1001 030 10	R1001 030 11	R1001 030 41
32					
35					
38					
40	R1000 040 60	R1000 040 61	R1001 040 10	R1001 040 11	R1001 040 41
45					
50	R1000 050 60	R1000 050 61	R1001 050 10	R1001 050 11	R1001 050 41
55					
60	R1000 060 60	R1000 060 61	R1001 060 10	R1001 060 11	R1001 060 41
70				·	
80	R1000 080 60	R1000 080 61	R1001 080 10	R1001 080 11	R1001 080 41
100			R1001 100 10	R1001 100 11	
110					

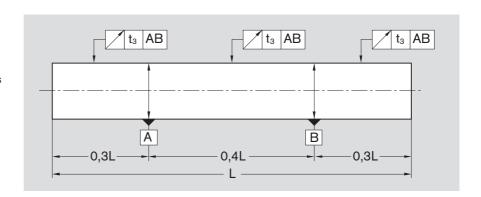


Technical Data

Dimensional accuracy and tolerance zones

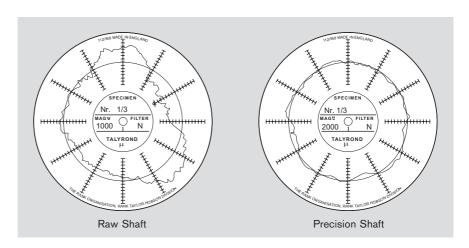
The diameters of Precision Steel Shafts are accurate to within the tolerance zones h6 and h7. Details on the dimensional accuracy of the shafts are compiled in the tables on the right. The tolerance for the diameter of softannealed shaft sections may go slightly beyond the tolerance zones quoted.

By request: Precision Steel Shafts may also be supplied in tolerance zone h5 (standard diameters 30 to 80 only). For special diameter tolerances,please consult us.



Nominal diameter d [mm]	over	1	3	6	10	18	30	50	80
	to	3	6	10	18	30	50	80	120
Diameter tolerance [μm]	h6	0	0	0	0	0	0	0	0
		-6	-8	-9	-11	-13	-16	-19	-22
	h7	0	0	0	0	0	0	0	0
		-10	-12	-15	-18	-21	-25	-30	-35
Roundness t ₁ [μm]	h6	3	4	4	5	6	7	8	10
	h7	4	5	6	8	9	11	13	15
Taper t ₂ 1)[μm]	h6	4	5	6	8	9	11	13	15
	h7	6	8	9	11	13	16	19	22
Straightnesst ₃ ²⁾ [µm/m]	150	150	120	100	100	100	100	100	
Surface roughness (Ra) ³⁾ [μι	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	

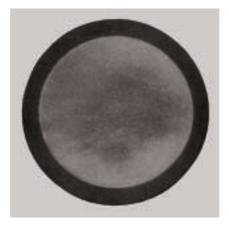
¹⁾ Dial gauge reading during straightness measurement. For lengths of less than 1 m the lowest possible value is 40 μm. This corresponds to a straightness tolerance of 20 μm.


Measurement of straightness per ISO 13012

Measurements are performed at points equidistant between the support points and the overhanging ends of the shaft. The measured values are half the gage measurement when the shaft is rotated by 360°.

Measurement of roundness

The drawing shows the roundness of a raw shaft in comparision to a precision steel shaft.


²⁾ Applies to shafts made of heat-treatable or anti-friction bearing steel only.
Please contact us for surface finish and surface roughness (R_a) tolerances for hard chrome plated and corrosion-resistant steel shafts.

Shafthardness

The surface of the shaft is inductionhardened to a depth of at least 0.4 up to 3.2 mm. depending on the shaft diameter. Surface hardness and depth of hardness are extremely uniform. both in the axial and in the circumferential direction. This is the reason for the excellent dimensional consistency and the long service life of Precision Steel Shafts.

The photographs opposite show a longitudinal and a transverse section through a hardened and ground Precision Steel Shaft.

The hardened surface zone has been made visible by caustic etching.

Shaft Ød [mm]	over	1	3	10	18	30	50	80
	to	3	10	18	30	50	80	120
Hardness depth1) [mm]	min.	0.4	0.4	0.6	0.9	1.5	2.2	3.2

¹⁾ Please contact us to obtain the depth of hardness for corrosion-resistant steel shafts.

Minimum hardness

Solid and tubular shafts \rightarrow HRC 60

Corrosion-resistant steel shafts to \rightarrow HRC 54 ISO 683-17/ EN 10088

The graphic shows the micro-structure in the surface zone of a shaft cross section (magnification approx. 10x). The hardened outer layer of martensite and the smooth transition to the tough inner core structure are clearly visible.

Induction hardened surface zone

Structure: Martensite

hardness ≥ HRC 60 (Rockwell C)

Transitional structure: Martensite Troostite

Troostite Pearlite

Core structure: Pearlite and ferrite

Technical Data

Shaft deflection

When steel shafts are used as linear motion guideways for linear bushings it is important that the shaft deflection occurring ander load is kept within certain limits, as otherwise the proper functioning and the service life of the assembly could be impaired¹⁾.

To facilitate the determination of shaft deflection by calculation, we have compiled the most common load cases together with the associated deflection equations in the table below.

The equations for calculation of the inclination of the shaft in the linear bushing (tan a) can also be taken from this table.

Case No.	Loading conditions	Deflection equation	Shaft inclination in linear bushings
1		$f_1 = \frac{F \cdot a^3}{6 \cdot E \cdot J} \cdot \left(2 - \frac{3 \cdot a}{I}\right)$ $f_{m1} = \frac{F \cdot a^2}{24 \cdot E \cdot J} \cdot \left(3I - 4a\right)$	$\tan \alpha_{(x=a)} = \frac{F \cdot a^2 \cdot b}{2 \cdot E \cdot J \cdot I}$
2	A B	$f_2 = \frac{F \cdot I^3}{2 \cdot E \cdot J} \cdot \frac{a^2}{I^2} \cdot \left(1 - \frac{4}{3} \cdot \frac{a}{I}\right)$ $f_{m2} = \frac{F \cdot I^3}{8 \cdot E \cdot J} \cdot \frac{a}{I} \cdot \left(1 - \frac{4}{3} \cdot \frac{a^2}{I^2}\right)$	$\tan \alpha_{(x=a)} = \frac{F \cdot a \cdot b}{2 \cdot E \cdot J}$
3		$f_{3} = \frac{F \cdot I^{3}}{3 \cdot E \cdot J} \cdot \frac{a^{3} \cdot b^{3}}{I^{3} \cdot I^{3}}$ $f_{m3} = \frac{2 \cdot F \cdot I^{3}}{3 \cdot E \cdot J} \cdot \frac{a^{3}}{I^{3}} \cdot \frac{b^{2}}{I^{2}} \cdot \left(\frac{I}{I + 2a}\right)^{2}$	$\tan \alpha_{(x=b)} = \frac{F \cdot a^2 \cdot b^2}{2 \cdot E \cdot J \cdot l^2} \cdot \left(1 - \frac{2 \cdot b}{l}\right)$
4	A B	$f_4 = \frac{F \cdot I^3}{3 \cdot E \cdot J} \cdot \frac{a^2 \cdot b^2}{I^2 \cdot I^2}$ $f_{m4} = f_4 \cdot \frac{I + b}{3 \cdot b} \cdot \sqrt{\frac{I + b}{3 \cdot a}}$	$\tan \alpha_{(x=b)} = \frac{F \cdot a}{6 \cdot E \cdot J \cdot I} \cdot (3b^2 - I^2 + a^2)$
5	A B	$f_5 = \frac{5 \cdot F \cdot I^3}{384 \cdot E \cdot J}$	$\tan \alpha_{(x=0)} = \frac{F \cdot I^2}{24 \cdot E \cdot J}$

¹⁾ There will be no loss of load-carrying capacity or service life in Super Linear Bushings a, h and H provided the shaft deflection does not exceed 30' (tan 30' = 0.0087).

The table gives the values for the maximum permissible shaft inclination (tan a_{max}) for each size of Standard Linear Bushing.

At $\tan a = \tan a_{\max}$ the permissible static load capacity is approx. 0.4 $\ensuremath{C_{\text{O}}}$.

Shaft Ø d [mm]	tan α _{max}
5	12.3 · 10 ⁻⁴
8	10.0 · 10 ⁻⁴
12	10.1 · 10 ⁻⁴
16	8.5 · 10 ⁻⁴
20	8.5 · 10 ⁻⁴
25	7.2 · 10 ⁻⁴

Shaft Ø d [mm]	$ anlpha_{\sf max}$
30	$6.4 \cdot 10^{-4}$
40	7.3 · 10 ⁻⁴
50	6.3 · 10 ⁻⁴
60	5.7 · 10 ⁻⁴
80	5.7 · 10 ⁻⁴

Values for E x J and mass for steel shafts

Solid Shafts							
Ød	ExJ	Mass					
[mm]	[Nxmm²]	[kg/m]					
3	8.35 · 10 ⁵	0.06					
4	2.64 · 10 ⁶	0.10					
5	6.44 · 10 ⁶	0.15					
8	4.22 · 10 ⁷	0.39					
10	1.03 · 10 ⁸	0.61					
12	2.14 · 10 ⁸	0.88					
14	3.96 · 10 ⁸	1.20					
16	6.76 · 10 ⁸	1.57					
20	1.65 · 10 ⁹	2.45					
25	4.03 · 10 ⁹	3.83					
30	8.35 · 10 ⁹	5.51					
40	2.64 · 10 ¹⁰	9.80					
50	6.44 · 10 ¹⁰	15.32					
60	1.34 · 10 ¹¹	22.05					
80	4.22 · 10 ¹¹	39.21					

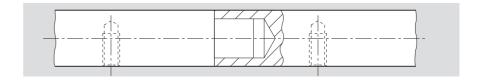
Tubularshafts								
Shaft of	diameter	ExJ	Mass					
outer	Inner							
[mm]	[mm]	[Nxmm ²]	[kg/m]					
8	3	$4.14 \cdot 10^7$	0.34					
10	4	1.00 · 10 ⁸	0.51					
12	3.4	2.12 · 10 ⁸	0.81					
16	8	6.33 · 10 ⁸	1.18					
20	14	1.25 · 10 ⁹	1.25					
25	14	3.63 · 10 ⁹	2.63					
30	19	7.01 · 10 ⁹	3.30					
40	26.5	$2.13 \cdot 10^{10}$	5.50					
50	29.6	$5.65 \cdot 10^{10}$	9.95					
60	36.5	1.15 · 10 ¹¹	13.89					
80	57.4	$3.10 \cdot 10^{11}$	19.02					

Calculation values: Modulus of elasticity = $2.1 \cdot 10^5 \,\text{N/mm}^2$

Seals

7.8 g/cm³

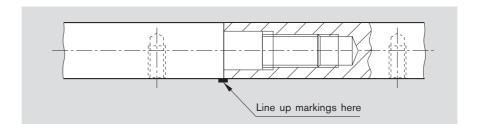
Technical Data


Mill-cut lengths

Type of shafts	Diameter [mm]	Mill-cut length ¹⁾ [m]
Solid Shafts ²⁾	3	0.4
	4 to 8	3.6
	ab 10	6.1
Tubular shafts	8 and 10	1
	16	2
	20	5.7
	12 and up to 25	6.1
Corrosion-resistant	3	0.4
steel shafts	4 to 10	3.6
	up to 12	6.1

¹⁾ The first 50 mm at each end of mill-cut lengths may deviate slightly from the nominal diameter

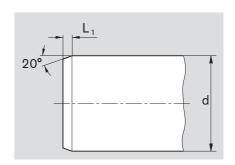
Composite shafts Plug-and-socket joints


We can supply composite shafts for applications requiring a shaft longer than the mill-cut lengths available. The shaft sections are joined together by a spigot-and-recess arrangement, one section having a locating plug and the other a mating hole (see figure below). The joined shaft must rest on a full-length, continuous support rail or must at least be supported at regular intervals with one of the supports located at the joint between the shaft sections (see "Shaft Support Rails").

Shafts with threaded joints (does not apply to corrosion-resistant steel shafts)

At the customer's request, the plug can be threaded and the mating hole tapped (see figure below). Line-up markings are then provided at the ends of the mating shaft sections to facilitate vertical alignment of the radial holes for attachment of the coupled shaft assembly to the shaft support rail.

All machining and marking operations are carried out on the shaft sections after they have been hardened and groand. Since it will not be possible to re-grind the finished joint, extreme care is taken in the machining of the centering arrangement to ensure precision mating of the shaft sections.


²⁾ Solid shafts of lenghts up to 8 m and Ø 20 and over are available upon request.

Shaft Machining

Chamfers

Steel shafts intended for use as linear motion guideways for Linear Bushings must be chamfered at the ends to prevent damage to the ball retainers or wipers when the linear bushing is being pushed onto the shaft.

The figure and the table give the dimensions of the chamfers required. Linear bushings with seals must not be pushed over sharp edges in the shaft (e.g. retaining ring grooves), as this would damage the seal lips.

Shaft Ø d	[mm]	3	4	5	8	10	12	14	16	20	25	30	40	50	60	80
Length of	[mm]	1	1	1.5	1.5	1.5	2	2	2	2	2	2	3	3	3	3
Chamfer L₁																

Machining

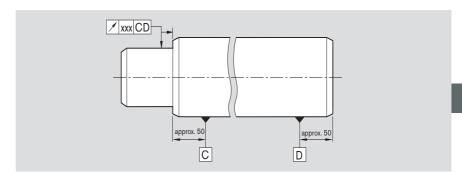
Hardened and gound steel shafts in mill-cut lengths are always in stock. These can be cut to any desired length and machined to have any of the following characteristics:

- · Reduced diameter ends
- Male or female threads
- Countersinks

- · Radial or axial holes
- Recesses
- · or other specialily machined features.

Annealing of machined sections

Machined shafts may have to be annealed due to the hardened outer zone (slight measurement change possible)


Length tolerances for cut-to-size shafts

Dimensions[mm]								
Length	Tolerance							
to 400	±0.5							
over 400	±0.8							
to 1000								
over 1000	±1.2							
to 2000								
over 2000	±2.0							
to 4000								
over 4000	±3.0							
to 6000								
over 6000	±3.5							
to 8000								

Steel shafts with closer length tolerance can also be supplied at a surcharge.

Round and flat run of the reduced diameter end

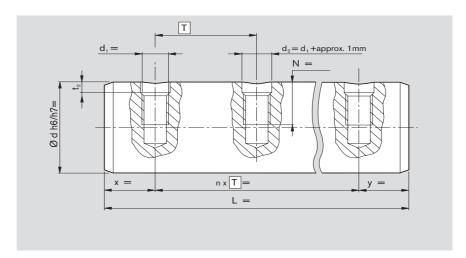
Customers can request a trial to accomplish these values as shown. Values xxx < 0.02 upon request.

Shaft Machining

Advantages

- · Many processing options
- Shorter delivery times
- · Lower cost

Shafts with radial holes, drilled or drilled and tapped

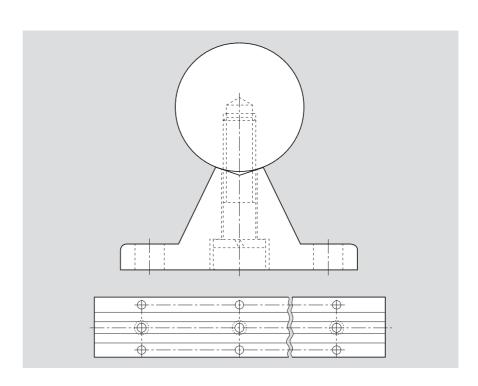

Shafts that have to be supported require radial holes for attachment of the shaft supports. The radial holes are drilled into the steel shafts after hardening and grinding.

The diameter, depth and spacing of the holes depend on the diameter of the shaft. Refer to the table in the sections "Shaft Support Rails for Standard and Super Linear Bushings" and "Shaft Support Rails for Radial Linear Bushings" for standard dimensions.

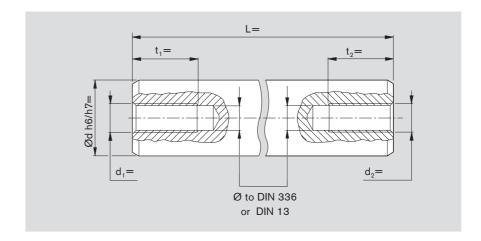
Recommended values for boring of clearing holes in the hardened surface zone

Ordering

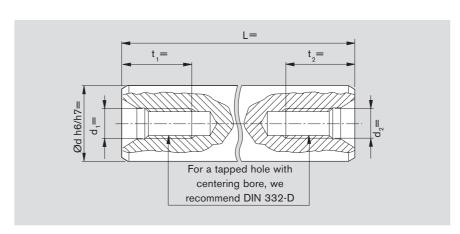
- Inquiries with customer design or template
- Registered dimensions and tolerances
- Avoid oversizing
- Machining on one or both sides



	Dimensions[mm]			
Ød	d₁	t_2		
12	M4	2.5		
16	M5	2.5		
20	M6	3.0		
25	M8	3.0		
30	M10	3.5		
40	M10	4.0		
40	M12	4.5		

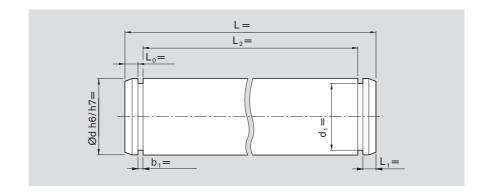

Dimensions [mm]		
Ød	d₁	t ₂
50	M12	4.0
50	M14	4.5
50	M16	5.0
60	M14	5.5
60	M20	6.5
80	M16	5.5
80	M24	6.5

Values for corrosion-resistant steel shafts upon request.

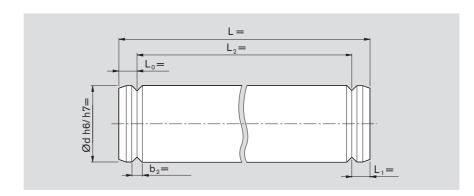

For matching Shaft Support Rails, see the related chapter.

Shaft ends with tapped hole

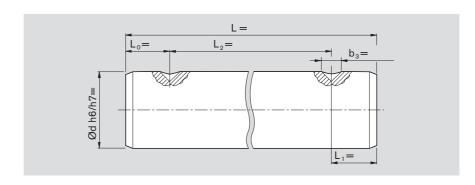
Shaft ends with tapped hole and centering bore to DIN 332-D


Recommended dimension for shaft ends with tapped hole and centering bore.

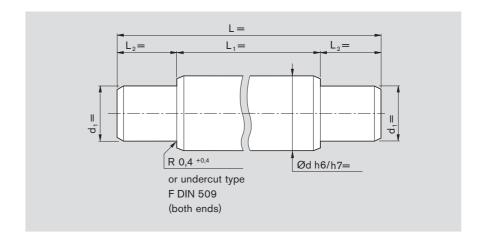
Shaft	Thread	Depth
Ød	d_1/d_2	t ₁ /t ₂
[mm]		[mm]
8	M4	10
10	M4	10
12	M5	12.5
14	M5	12.5
16	M6	16
20	M8	19
25	M10	22
30	M12	28
40	M12	28
50	M16	36
60	M20	42
80	M24	50

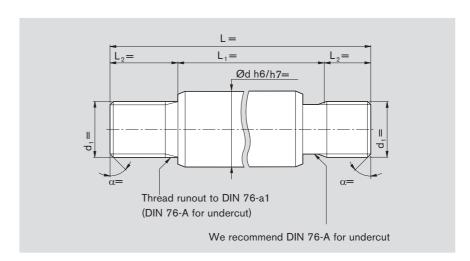


Shaft Machining

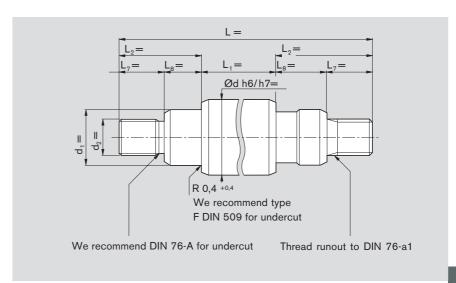

Shaft ends for retaining ring groove to DIN 471

Shaft ends with 90° cutout

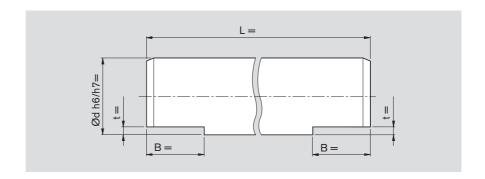

Shaft ends with 90° countersink

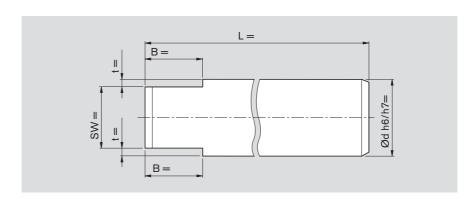

Dimensional recommendation for shaft ends for retaining ring, 90° shaft ends, 90° countersink:

Dimension[mm]		Retaining	ring DIN 471-			
Ød	b ₁	d_1	b_2	b_3	Dimension[mm]	Partnumber
	+0.1					
4	0.5	3.8 -0.04	-	-	4x0.4	R3410 765 00
5	0.7	4.8 -0.04	2	3	5x0.6	R3410 742 00
8	0.9	7.6 -0.06	2	4	8x0.8	R3410 737 00
10	1.1	9.6 -0.11	2	5	10x1	R3410 745 00
12	1.1	11.5 -0.11	2.5	5	12x1	R3410 712 00
14	1.1	13.4 -0.11	2.5	5	14x1	R3410 747 00
16	1.1	15.2 -0.11	3	5	16x1	R3410 713 00
20	1.3	19 -0.13	3	5	20x1.2	R3410 735 00
25	1.3	23.9 -0.21	4	6	25x1.2	R3410 750 00
30	1.6	28.6 -0.21	4	6	30x1.5	R3410 724 00
40	1.85	37.5 -0.25	5	8	40x1.75	R3410 726 00
50	2.15	47 -0.25	5	8	50x2	R3410 727 00
60	2.15	57 -0.3	6	8	60x2	R3410 764 00
80	2.65	76.5 -0.3	6	10	80x2.5	_

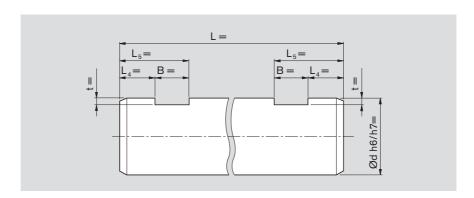

Shaft ends with spigot both ends

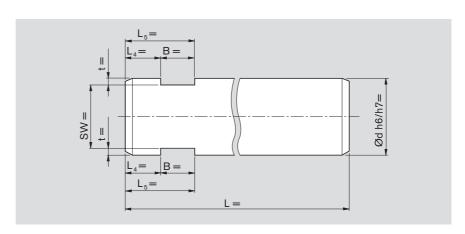
Shaft ends with threaded spigot (both ends)

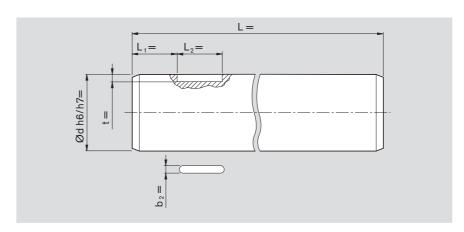

Shaft ends with spigot and threaded spigot (both ends)



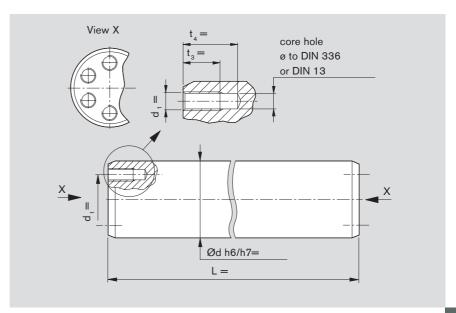
Shaft Machining


Shaft ends with single flat (both ends)


Shaft ends with outer flats (one end)


Shaft ends with grooves (both ends)

Shaft ends with inner flats (one end)


Spring groove to DIN 6885-1

Dimensional recommendation:

Dimensions[mm]			
Ød	b ₂ P9	t	
8	2	1.2 +0.1	
10	3	1.8 +0.1	
12	4	2.5 +0.1	
14	5	3 +0.1	
16	5	3 +0.1	
20	6	3.5 +0.1	
25	8	4 +0.2	
30	8	4 +0.2	
40	12	5 +0.2	
50	14	5.5 +0.2	
60	18	7 +0.2	
80	22	9 +0.2	

Shaft ends with holes tapped to pitch circle (both ends)

Ordering data

Solid shafts made of heat-treated steel

When a shaft forms an integral part of an anti-friction bearing system, the materials used have to satisfy exacting requirements.

Rexroth offers the optimum shaft material for each diameter range. The materials we use have a much higher carbon content compared to frequently used mass-produced steels, which has a very positive influence on the achievable surface hardness and provides better resistance to aging.

The exceptionally uniform surface hardness and hardening depth of Rexroth shafts, combined with an excellent degree of purity, homogeneous microstructure and defined grain sizes, ensure particularly long service life ander rolling loads.

Available diameters [mm]		
3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22,		
24, 25, 30, 32, 35, 38, 40, 45, 50, 55, 60,		
70, 80, 100, 110		

Ød[mm]	Lengths [m]
3	0.4
4 - 8	3.6
10 - 110	6.1

Solid shafts from 20 mm in diameter and up to 8 m in length are available upon request. Greater overall lengths are composed of sections joined end-to-end. Linear Bushing can roll over joints without any problems.

Materials	Hardness	
Cf 53, Cf 60, Ck 67	min. 60 HRC	
·		
Part numbers		

Ordering example:

Solid Shaft Ø 25 h7 out of heat-treated steel

Length: 460 mm Part number:

R1000 025 01, 460 mm

Corrosion-resistant solid steel shafts to ISO 683-17 / EN 10088

The correct choice for applications requiring high corrosion resistance in a clean environment, e.g. in the food industry, semiconductor manufacturing and medical engineering.

X 90 CrMoV 18 differs from X 46 Cr 13 in that it is additionally resistant to lactic acid.

Materials	Available diameters [mm]
X 46 Cr 13	4, 5, 6, 8, 10, 12, 14, 16, 20, 25, 30, 40, 50, 60, 80
X 90 CrMoV 18	3, 12, 16, 20, 25, 30, 40, 50, 60, 80

Ød[mm]	Lengths [m]
3	0.4
4-10	3.6
12-80	6.1

Greater overall lengths are composed
of sections joined end-to-end. Linear
Bushing can roll over joints without any
problems.

Materials	Hardness
X 46 Cr 13	min. 54 HRC
X 90 CrMoV 18	min. 55 HRC

Part numbers	X 46 Cr 13
Tolerance h6	R1000 0xx 30
Tolerance h7	R1000 0xx 31

Part numbers X 90 CrMoV 18		
Tolerance h6	R1000 0xx 20	
Tolerance h7	R1000 0xx 21	

xx = Diameter in mm

Ordering example:

Solid shaft Ø 16 h6 our of corrosion-resistant steel X 46 Cr 13.

Length: 350 mm Part number:

R1000 016 30, 350 mm

Solid steel shafts with hardchromium plating

Optimum anti-corrosion protection for applications in chemically aggressive environments.

Available diameter [mm]		
12, 16, 20, 25, 30, 40, 50, 60, 80		

Ød[mm]	Lengths[m]
12	5.5
16, 20	6.5
25 - 80	7

Greater overall lengths are composed of sections joined end-to-end. Rexroth Linear Bushings can roll over joints without any problems.

Materials	Hardness
Cf 53, Cf 60, Ck 67	min. 60 HRC (approx. 700 HV)
Chrome plating (Thickness approx. 10 μm)	approx. 1000 HV

Partnumbers	
Tolerance h6	R1000 0xx 60
Tolerance h7	R1000 0xx 61

xx = Diameter in mm

Ordering example:

Solidshaft Ø 30 Hard chromium plating h7,

Length 480 mm

Ød[mm]

12 and 25 - 100

8. 10 16

20

Part number: R1000 030 61, 480 mm

Lengths max.[m]

5.7

6.1

Hardness

min. 60 HRC

Heat-treated tubular steel shafts

Tubular shafts are conductive and can transport liquids and gasses. Tubular shafts are also often used for weight reduction. The material is smoothly rolled. The interior diameters are rough.

Available diameter [mm]		
outer	inner (approx.)	
8	3	
10	4	
12	3.4	
16	8	
20	14	
25	14	
30	19	
40	26.5	
50	29.6	
60	36.5	
80	57.4	
100	65	

Ordering example:		
Tubular shaft Ø 80 h7.		

Materials

Ck 60

Length 3600 mm

Part number:

R1001 080 11. 3600 mm

Partnumbers		
Tolerance h6	R1001 xxx 10	
Tolerance h7	R1001 xxx 11	

xxx = Outer diameter in mm

Tubular shafts, hard chromium plating

The outer diameter of tubular shafts are hard-chromium plated.

Available diameter [mm]		
inner		
14		
19		
26.5		
29.6		
36.5		
57.4		

Partnumbers		
Tolerance h7	R1001 0xx 41	

xx = Outer diameter mm

Length: max 6.1 m		
	Materials	Hardness
	Ck 60	min. 60 HRC
		(approx. 700 HV)
	Chrome plating	approx. 1000 HV
	(Thickness approx.10 μm)	

Ordering example:

Tubular shaft Ø 40. Hard chromium plating h7. Length 2000 mm

Part number:

R1001 040 41, 2000 mm

