

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

Jameco Part Number 1072487

8A, 1000V Ultrafast Diodes

The MUR8100E and RUR8100 are ultrafast diodes ($t_{rr} < 75\text{ns}$) with soft recovery characteristics. They have a low forward voltage drop and are of planar, silicon nitride passivated, ion-implanted, epitaxial construction.

These devices are intended for use as energy steering/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and ultrafast recovery with soft recovery characteristics minimize ringing and electrical noise in many power switching circuits, thus reducing power loss in the switching transistor.

Formerly developmental type TA09617.

Ordering Information

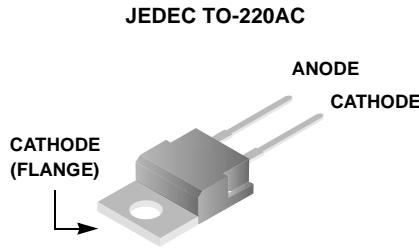
PART NUMBER	PACKAGE	BRAND
MUR8100E	TO-220AC	MU8100
RURP8100	TO-220AC	RURP8100

NOTE: When ordering, use entire part number.

Symbol

Absolute Maximum Ratings $T_C = 25^\circ\text{C}$, Unless Otherwise Specified

	MUR8100E RURP8100	UNITS
Peak Repetitive Reverse Voltage	V_{RRM}	1000
Working Peak Reverse Voltage	V_{RWM}	1000
DC Blocking Voltage	V_R	1000
Average Rectified Forward Current ($T_C = 155^\circ\text{C}$)	$I_{F(AV)}$	8
Repetitive Peak Surge Current	I_{FRM}	16
(Square Wave 20kHz)		
Nonrepetitive Peak Surge Current	I_{FSM}	100
(Halfwave 1 Phase 60Hz)		
Maximum Power Dissipation	P_D	75
Avalanche Energy (See Figures 10 and 11)	E_{AVL}	20
Operating and Storage Temperature	T_{STG}, T_J	${}^\circ\text{C}$
	-55 to 175	


Features

- Ultrafast with Soft Recovery <75ns
- Operating Temperature 175°C
- Reverse Voltage 1000V
- Avalanche Energy Rated
- Planar Construction

Applications

- Switching Power Supply
- Power Switching Circuits
- General Purpose

Packaging

Electrical Specifications $T_C = 25^\circ\text{C}$, Unless Otherwise Specified.

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V_F	$I_F = 8\text{A}$	-	-	1.8	V
	$I_F = 8\text{A}, T_C = 150^\circ\text{C}$	-	-	1.5	V
I_R	$V_R = 1000\text{V}$	-	-	100	μA
	$V_R = 1000\text{V}, T_C = 150^\circ\text{C}$	-	-	500	μA
t_{rr}	$I_F = 1\text{A}$	-	-	85	ns
	$I_F = 8\text{A}, dI_F/dt = 200\text{A}/\mu\text{s}$	-	-	100	ns
t_a	$I_F = 8\text{A}, dI_F/dt = 200\text{A}/\mu\text{s}$	-	50	-	ns
t_b	$I_F = 8\text{A}, dI_F/dt = 200\text{A}/\mu\text{s}$	-	30	-	ns
Q_{RR}	$I_F = 8\text{A}, dI_F/dt = 200\text{A}/\mu\text{s}$	-	500	-	nC
C_J	$V_R = 10\text{V}, I_F = 0\text{A}$	-	30	-	pF
$R_{\theta JC}$		-	-	2.0	$^\circ\text{C}/\text{W}$

DEFINITIONS

V_F = Instantaneous forward voltage ($pw = 300\mu\text{s}$, $D = 2\%$).

I_R = Instantaneous reverse current.

t_{rr} = Reverse recovery time at $dI_F/dt = 100\text{A}/\mu\text{s}$ (See Figure 9), summation of $t_a + t_b$.

t_a = Time to reach peak reverse current at $dI_F/dt = 100\text{A}/\mu\text{s}$ (See Figure 9).

t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

Q_{RR} = Reverse recovery charge.

C_J = Junction Capacitance.

$R_{\theta JC}$ = Thermal resistance junction to case.

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

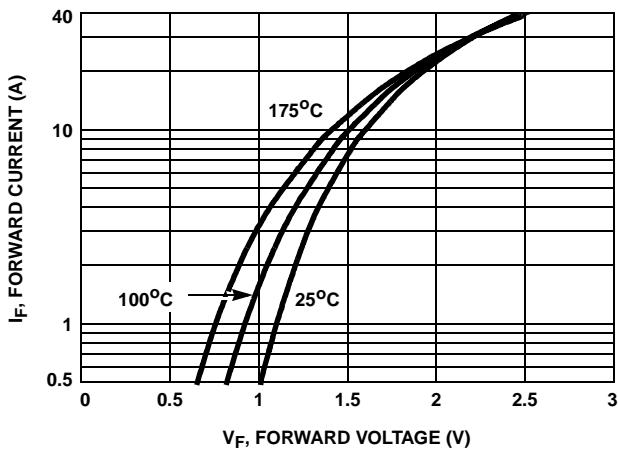


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

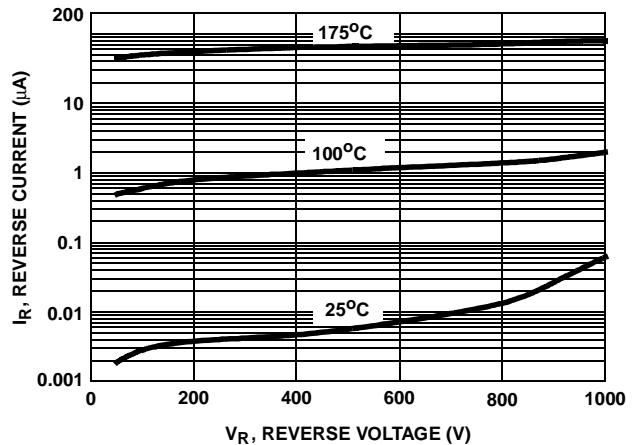


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

Typical Performance Curves (Continued)

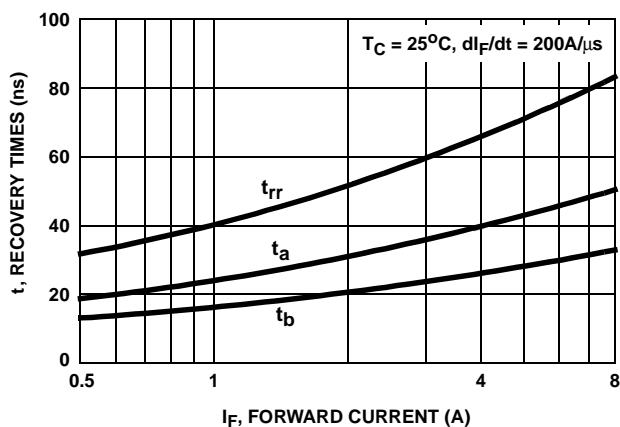


FIGURE 3. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

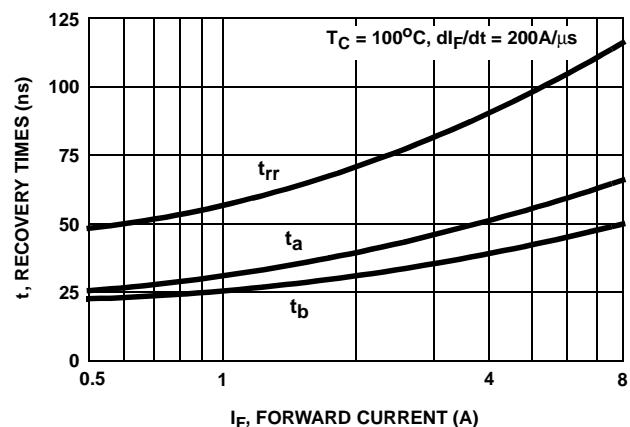


FIGURE 4. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

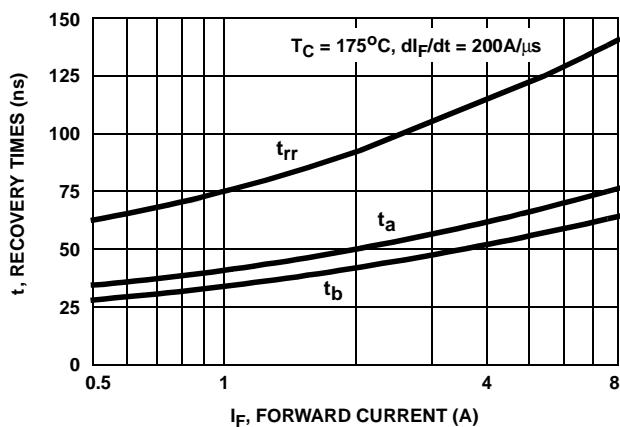


FIGURE 5. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

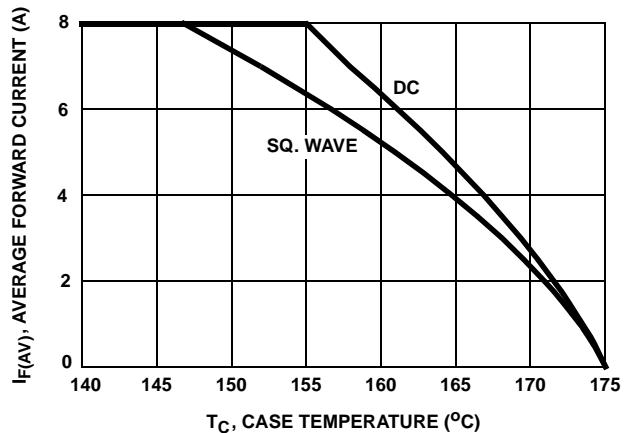


FIGURE 6. CURRENT DERATING CURVE

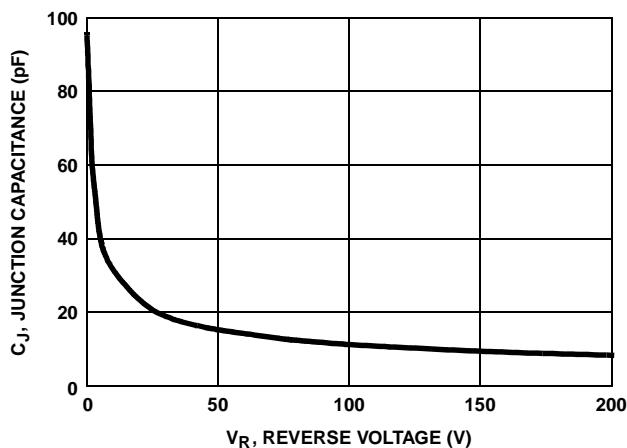


FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

Test Circuits and Waveforms

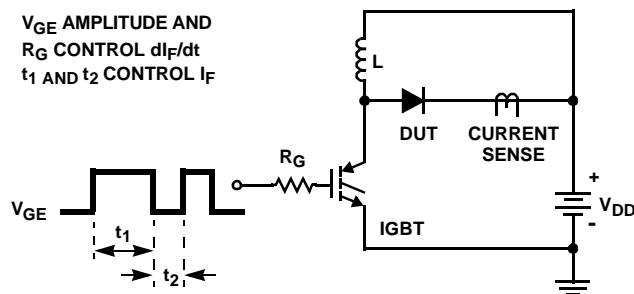


FIGURE 8. t_{rr} TEST CIRCUIT

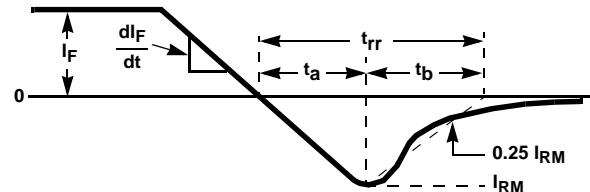


FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS

I = 1A
L = 40mH
R < 0.1Ω
E_{AVL} = 1/2LI² [V_{R(AVL)}/(V_{R(AVL)} - V_{DD})]
Q₁ = IGBT (BV_{CES} > DUT V_{R(AVL)})

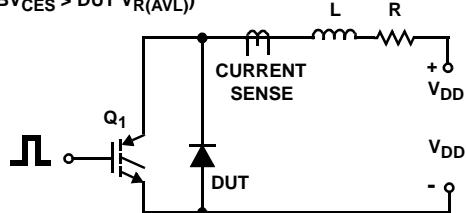


FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

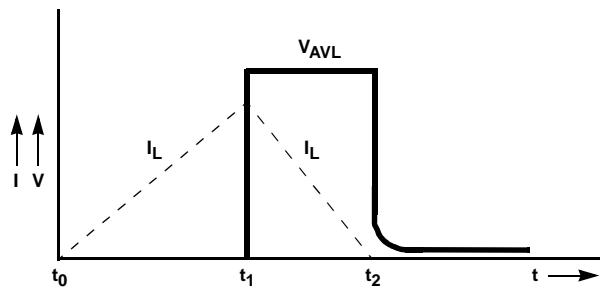


FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACE TM	FACT TM	ImpliedDisconnect TM	PACMAN TM	SPM TM
ActiveArray TM	FACT Quiet Series TM	ISOPLANAR TM	POP TM	Stealth TM
Bottomless TM	FAST [®]	LittleFET TM	Power247 TM	SuperSOT ^{TM-3}
CoolFET TM	FASTr TM	MicroFET TM	PowerTrench [®]	SuperSOT ^{TM-6}
CROSSVOLT TM	FRFET TM	MicroPak TM	QFET TM	SuperSOT ^{TM-8}
DOME TM	GlobalOptoisolator TM	MICROWIRE TM	QS TM	SyncFET TM
EcoSPARK TM	GTO TM	MSX TM	QT Optoelectronics TM	TinyLogic TM
E ² CMOS TM	HiSeC TM	MSXPro TM	Quiet Series TM	TruTranslation TM
EnSigna TM	I ² C TM	OCX TM	RapidConfigure TM	UHC TM
Across the board. Around the world. TM		OCXPro TM	RapidConnect TM	UltraFET [®]
The Power Franchise TM		OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX TM
Programmable Active Droop TM		OPTOPLANAR TM	SMART START TM	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.