

ADVANCE

S34ML08G2

**8 Gb, 4-bit ECC, x8 I/O and 3 V V_{CC}
NAND Flash Memory for Embedded**

Distinctive Characteristics

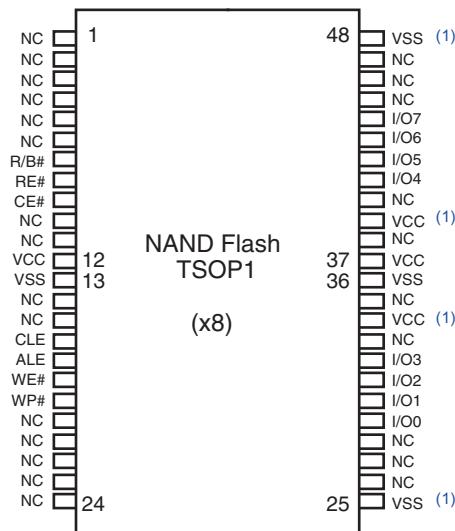
- Density
 - 8 Gb (4 Gb x 2)
- Architecture (For each 4 Gb device)
 - Input / Output Bus Width: 8-bits
 - Page Size: (2048 + 128) bytes; 128-byte spare area
 - Block Size: 64 Pages or (128k + 8k) bytes
 - Plane Size
 - 2048 Blocks per Plane or (256M + 16M) bytes
 - Device Size
 - 2 Planes per Device or 512 Mbyte
- NAND Flash Interface
 - Open NAND Flash Interface (ONFI) 1.0 compliant
 - Address, Data and Commands multiplexed
- Supply Voltage
 - 3.3V device: Vcc = 2.7V ~ 3.6V

Performance

- Page Read / Program
 - Random access: 30 μ s (Max)
 - Sequential access: 25 ns (Min)
 - Program time / Multiplane Program time: 300 μ s (Typ)
- Block Erase / Multiplane Erase
 - Block Erase time: 3.5 ms (Typ)

- Security
 - One Time Programmable (OTP) area
 - Serial number (unique ID)
 - Hardware program/erase disabled during power transition
- Additional Features
 - Supports Multiplane Program and Erase commands
 - Supports Copy Back Program
 - Supports Multiplane Copy Back Program
 - Supports Read Cache
- Electronic Signature
 - Manufacturer ID: 01h
- Operating Temperature
 - Industrial: -40°C to 85°C
 - Industrial Plus: -40°C to 105°C
- Reliability
 - 100,000 Program / Erase cycles (Typ)
(with 4-bit ECC per 528 bytes)
 - 10 Year Data retention (Typ)
 - Blocks zero and one are valid and will be valid for at least 1000 program-erase cycles with ECC
- Package Options
 - Lead Free and Low Halogen
 - 48-Pin TSOP 12 x 20 x 1.2 mm
 - 63-Ball BGA 11 x 9 x 1 mm

Contents


Distinctive Characteristics	2	8. Electrical Characteristics	11
Performance	2	8.1 Valid Blocks	11
1. General Description	4	8.2 DC Characteristics	11
2. Connection Diagram	4	8.3 Pin Capacitance	12
3. Pin Description	5	8.4 Power Consumptions and Pin Capacitance for Allowed Stacking Configurations	12
4. Block Diagrams	6	9. Physical Interface	13
5. Addressing	7	9.1 Physical Diagram	13
6. Read Status Enhanced	8	10. Ordering Information	15
7. Read ID	8	11. Revision History	16
7.1 Read Parameter Page	9		

1. General Description

The Cypress® S34ML08G2 8-Gb NAND is offered in 3.3 V_{CC} with x8 I/O interface. This document contains information for the S34ML08G2 device, which is a dual-die stack of two S34ML04G2 die. For detailed specifications, please refer to the discrete die data sheet: [S34ML01G2_04G2](#).

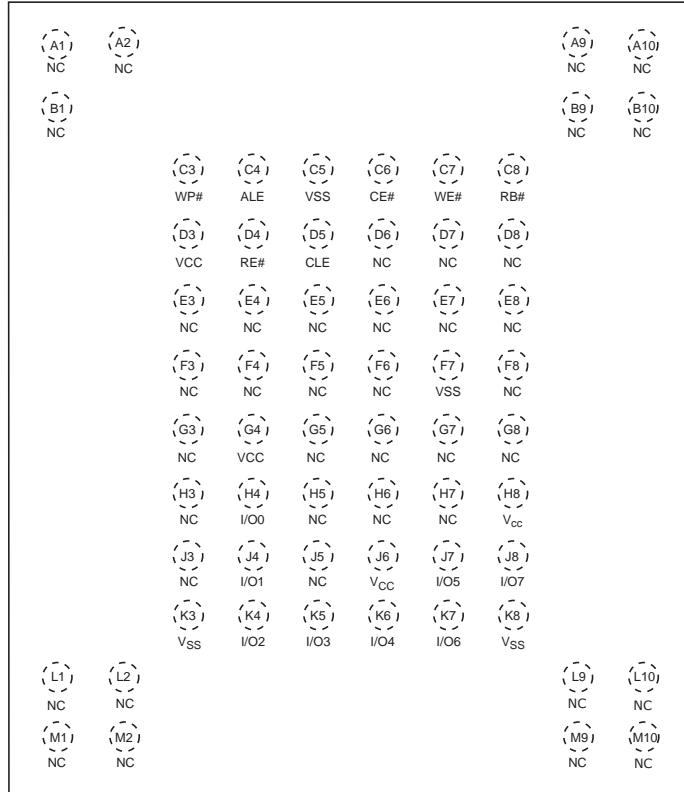

2. Connection Diagram

Figure 2.1 48-Pin TSOP1 Contact x8 Device (1 CE 8 Gb)

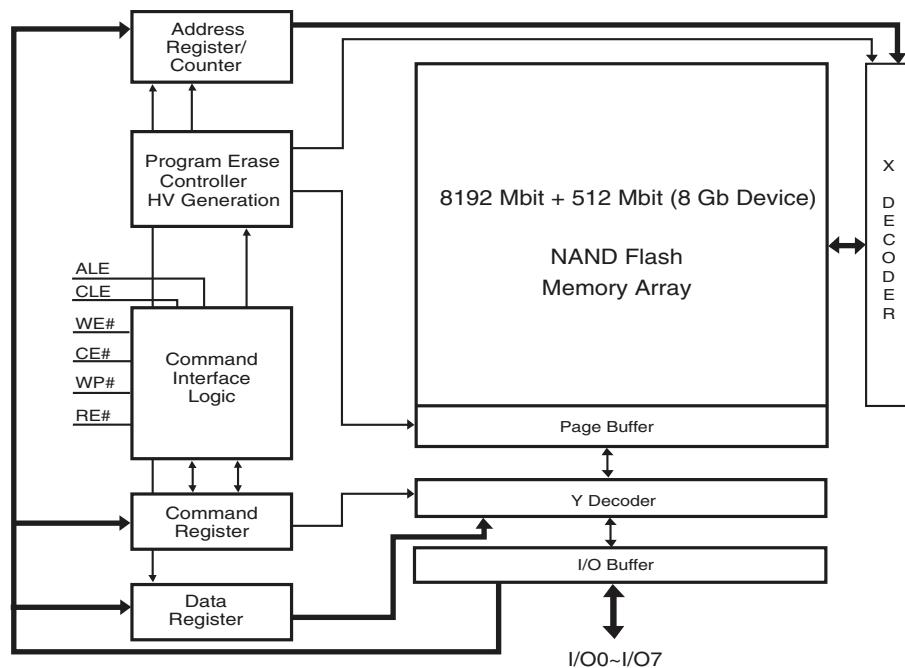
Note:

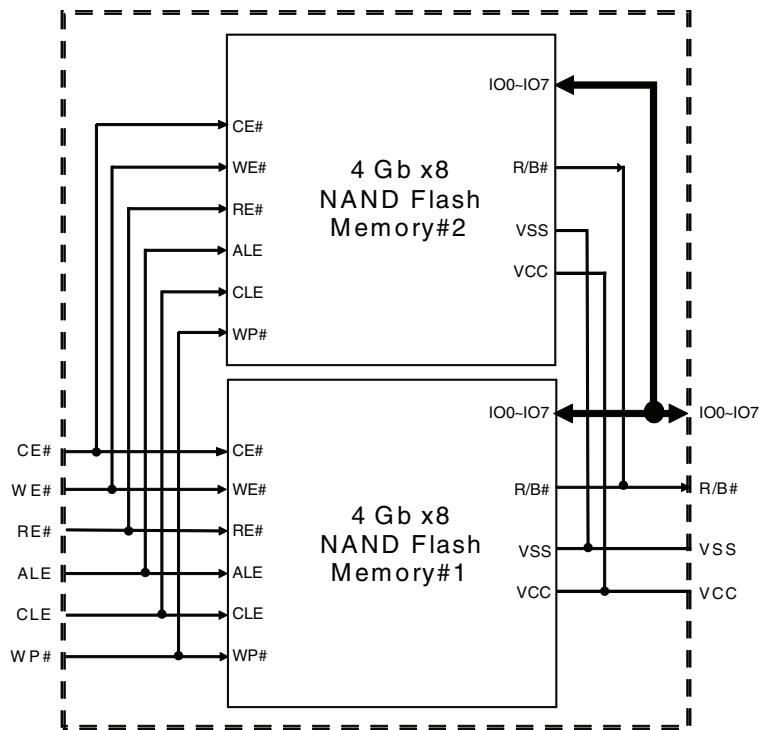
1. These pins should be connected to power supply or ground (as designated) following the ONFI specification, however they might not be bonded internally.

Figure 2.2 63-BGA Contact, x8 Device, Single CE (Top View)

3. Pin Description

Table 3.1 Pin Description


Pin Name	Description
I/O0 - I/O7	Inputs/Outputs. The I/O pins are used for command input, address input, data input, and data output. The I/O pins float to High-Z when the device is deselected or the outputs are disabled.
CLE	Command Latch Enable. This input activates the latching of the I/O inputs inside the Command Register on the rising edge of Write Enable (WE#).
ALE	Address Latch Enable. This input activates the latching of the I/O inputs inside the Address Register on the rising edge of Write Enable (WE#).
CE#	Chip Enable. This input controls the selection of the device. When the device is not busy CE# low selects the memory.
WE#	Write Enable. This input latches Command, Address and Data. The I/O inputs are latched on the rising edge of WE#.
RE#	Read Enable. The RE# input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid t_{REA} after the falling edge of RE# which also increments the internal column address counter by one.
WP#	Write Protect. The WP# pin, when low, provides hardware protection against undesired data modification (program / erase).
R/B#	Ready Busy. The Ready/Busy output is an Open Drain pin that signals the state of the memory.
VCC	Supply Voltage. The V _{CC} supplies the power for all the operations (Read, Program, Erase). An internal lock circuit prevents the insertion of Commands when V _{CC} is less than V _{LKO} .
VSS	Ground.
NC	Not Connected.


Notes:

1. A 0.1 μ F capacitor should be connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations.
2. An internal voltage detector disables all functions whenever V_{CC} is below 1.8V to protect the device from any involuntary program/erase during power transitions.

4. Block Diagrams

Figure 4.1 Functional Block Diagram — 8 Gb

Figure 4.2 Block Diagram — 1 CE (4 Gb x 8)

5. Addressing

Table 5.1 Address Cycle Map

Bus Cycle	I/O0	I/O1	I/O2	I/O3	I/O4	I/O5	I/O6	I/O7
1st / Col. Add. 1	A0 (CA0)	A1 (CA1)	A2 (CA2)	A3 (CA3)	A4 (CA4)	A5 (CA5)	A6 (CA6)	A7 (CA7)
2nd / Col. Add. 2	A8 (CA8)	A9 (CA9)	A10 (CA10)	A11 (CA11)	Low	Low	Low	Low
3rd / Row Add. 1	A12 (PA0)	A13 (PA1)	A14 (PA2)	A15 (PA3)	A16 (PA4)	A17 (PA5)	A18 (PA0)	A19 (BA0)
4th / Row Add. 2	A20 (BA1)	A21 (BA2)	A22 (BA3)	A23 (BA4)	A24 (BA5)	A25 (BA6)	A26 (BA7)	A27 (BA8)
5th / Row Add. 3 (6)	A28 (BA9)	A29 (BA10)	A30 (BA11)	Low	Low	Low	Low	Low

Notes:

1. CAx = Column Address bit.
2. PAx = Page Address bit.
3. PLA0 = Plane Address bit zero.
4. BAx = Block Address bit.
5. Block address concatenated with page address and plane address = actual page address, also known as the row address.
6. A30 for 8 Gb (4 Gb x 2 – DDP) (1CE).

For the address bits, the following rules apply:

- A0 - A11: column address in the page
- A12 - A17: page address in the block
- A18: plane address (for multiplane operations) / block address (for normal operations)
- A19 - A30: block address

6. Read Status Enhanced

Read Status Enhanced is used to retrieve the status value for a previous operation in the following cases:

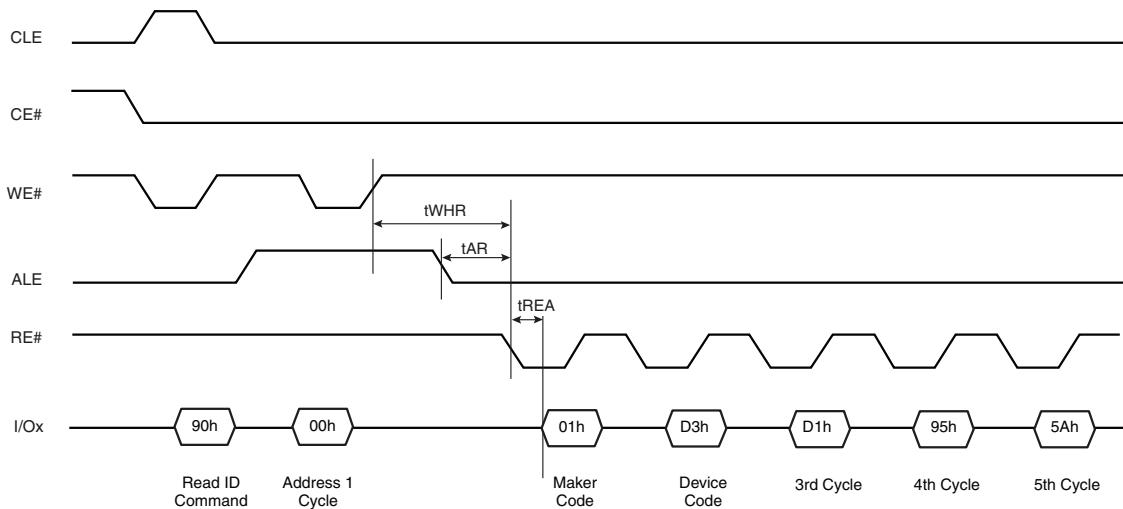
- In the case of concurrent operations on a multi-die stack.

When two dies are stacked to form a dual-die package (DDP), it is possible to run one operation on the first die, then activate a different operation on the second die, for example: Erase while Read, Read while Program, etc.

- In the case of multiplane operations in the same die.

7. Read ID

The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of 00h.


Note: If you want to execute Read Status command (0x70) after Read ID sequence, you should input dummy command (0x00) before Read Status command (0x70).

For the S34ML08G2 device, five read cycles sequentially output the manufacturer code (01h), and the device code and 3rd, 4th, and 5th cycle ID, respectively. The command register remains in Read ID mode until further commands are issued to it.

Table 7.1 Read ID for Supported Configurations

Density	Org	V _{CC}	1st	2nd	3rd	4th	5th
4 Gb	x8	3.3V	01h	DCh	90h	95h	56h
8 Gb (4 Gb x 2 – DDP with one CE#)	x8	3.3V	01h	D3h	D1h	95h	5Ah

Figure 7.1 Read ID Operation Timing — 8 Gb

5th ID Data
Table 7.2 Read ID Byte 5 Description

	Description	I/O7	I/O6 I/O5 I/O4	I/O3 I/O2	I/O1 I/O0
ECC Level	1 bit / 512 bytes				0 0
	2 bit / 512 bytes				0 1
	4 bit / 512 bytes				1 0
	8 bit / 512 bytes				1 1
Plane Number	1			0 0	
	2			0 1	
	4			1 0	
	8			1 1	
Plane Size (without spare area)	64 Mb		0 0 0		
	128 Mb		0 0 1		
	256 Mb		0 1 0		
	512 Mb		0 1 1		
	1 Gb		1 0 0		
	2 Gb		1 0 1		
	4 Gb		1 1 0		
Reserved		0			

7.1 Read Parameter Page

The device supports the ONFI Read Parameter Page operation, initiated by writing ECh to the command register, followed by an address input of 00h. The command register remains in Parameter Page mode until further commands are issued to it. [Table 7.3](#) explains the parameter fields.

Table 7.3 Parameter Page Description (Sheet 1 of 3)

Byte	O/M	Description	Values
Revision Information and Features Block			
0-3	M	Parameter page signature Byte 0: 4Fh, "O" Byte 1: 4Eh, "N" Byte 2: 46h, "F" Byte 3: 49h, "I"	4Fh, 4Eh, 46h, 49h
4-5	M	Revision number 2-15 Reserved (0) 1 1 = supports ONFI version 1.0 0 Reserved (0)	02h, 00h
6-7	M	Features supported 5-15 Reserved (0) 4 1 = supports odd to even page Copyback 3 1 = supports interleaved operations 2 1 = supports non-sequential page programming 1 1 = supports multiple LUN operations 0 1 = supports 16-bit data bus width	1Eh, 00h
8-9	M	Optional commands supported 6-15 Reserved (0) 5 1 = supports Read Unique ID 4 1 = supports Copyback 3 1 = supports Read Status Enhanced 2 1 = supports Get Features and Set Features 1 1 = supports Read Cache commands 0 1 = supports Page Cache Program command	3Bh, 00h
10-31		Reserved (0)	00h

Table 7.3 Parameter Page Description (Sheet 2 of 3)

Byte	O/M	Description	Values
Manufacturer Information Block			
32-43	M	Device manufacturer (12 ASCII characters)	53h, 50h, 41h, 4Eh, 53h, 49h, 4Fh, 4Eh, 20h, 20h, 20h, 20h
44-63	M	Device model (20 ASCII characters)	53h, 33h, 34h, 4Dh, 4Ch, 30h, 38h, 47h, 32h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h
64	M	JEDEC manufacturer ID	01h
65-66	O	Date code	00h
67-79		Reserved (0)	00h
Memory Organization Block			
80-83	M	Number of data bytes per page	00h, 08h, 00h, 00h
84-85	M	Number of spare bytes per page	80h, 00h
86-89	M	Number of data bytes per partial page	00h, 00h, 00h, 00h
90-91	M	Number of spare bytes per partial page	00h, 00h
92-95	M	Number of pages per block	40h, 00h, 00h, 00h
96-99	M	Number of blocks per logical unit (LUN)	00h, 10h, 00h, 00h
100	M	Number of logical units (LUNs)	02h
101	M	Number of address cycles 4-7 Column address cycles 0-3 Row address cycles	23h
102	M	Number of bits per cell	01h
103-104	M	Bad blocks maximum per LUN	50h, 00h
105-106	M	Block endurance	01h, 05h
107	M	Guaranteed valid blocks at beginning of target	01h
108-109	M	Block endurance for guaranteed valid blocks	01h, 03h
110	M	Number of programs per page	04h
111	M	Partial programming attributes 5-7 Reserved 4 1 = partial page layout is partial page data followed by partial page spare 1-3 Reserved 0 1 = partial page programming has constraints	00h
112	M	Number of bits ECC correctability	04h
113	M	Number of interleaved address bits 4-7 Reserved (0) 0-3 Number of interleaved address bits	01h
114	O	Interleaved operation attributes 4-7 Reserved (0) 3 Address restrictions for program cache 2 1 = program cache supported 1 1 = no block address restrictions 0 Overlapped / concurrent interleaving support	04h
115-127		Reserved (0)	00h
Electrical Parameters Block			
128	M	I/O pin capacitance	0Ah
129-130	M	Timing mode support 6-15 Reserved (0) 5 1 = supports timing mode 5 4 1 = supports timing mode 4 3 1 = supports timing mode 3 2 1 = supports timing mode 2 1 1 = supports timing mode 1 0 1 = supports timing mode 0, shall be 1	1Fh, 00h

Table 7.3 Parameter Page Description (Sheet 3 of 3)

Byte	O/M	Description	Values
131-132	O	Program cache timing mode support 6-15 Reserved (0) 5 1 = supports timing mode 5 4 1 = supports timing mode 4 3 1 = supports timing mode 3 2 1 = supports timing mode 2 1 1 = supports timing mode 1 0 1 = supports timing mode 0	1Fh, 00h
133-134	M	t_{PROG} Maximum page program time (μs)	BCh, 02h
135-136	M	t_{BERS} Maximum block erase time (μs)	10h, 27h
137-138	M	t_R Maximum page read time (μs)	1Eh, 00h
139-140	M	t_{CCS} Minimum Change Column setup time (ns)	C8h, 00h
141-163		Reserved (0)	00h
Vendor Block			
164-165	M	Vendor specific Revision number	00h
166-253		Vendor specific	00h
254-255	M	Integrity CRC	16h, 26h
Redundant Parameter Pages			
256-511	M	Value of bytes 0-255	Repeat Value of bytes 0-255
512-767	M	Value of bytes 0-255	Repeat Value of bytes 0-255
768+	O	Additional redundant parameter pages	FFh

Note:

 1. "O" Stands for Optional, "M" for Mandatory.

8. Electrical Characteristics

8.1 Valid Blocks

Table 8.1 Valid Blocks

Device	Symbol	Min	Typ	Max	Unit
S34ML04G2	N_{VB}	4016	—	4096	Blocks
S34ML08G2	N_{VB}	8032 (1)	—	8192	Blocks

Note:

 1. Each 4 Gb has maximum 80 bad blocks.

8.2 DC Characteristics

Table 8.2 DC Characteristics and Operating Conditions

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units	
Power On Current	I_{CC0}	FFh command input after power on	—	—	50 per device	mA	
Operating Current	Sequential Read	I_{CC1}	$t_{RC} = t_{RC}$ (min) $CE\# = V_{IL}$, $I_{out} = 0$ mA	—	15	30	mA
	Program	I_{CC2}	Normal	—	15	30	mA
			Cache	—	15	30	mA
	Erase	I_{CC3}	—	—	15	30	mA

Table 8.2 DC Characteristics and Operating Conditions

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Standby Current, (TTL)	I_{CC4}	$CE\# = V_{IH}$, $WP\# = 0V/V_{CC}$	—	—	1	mA
Standby Current, (CMOS)	I_{CC5}	$CE\# = V_{CC}-0.2$, $WP\# = 0V/V_{CC}$	—	10	50	μA
Input Leakage Current	I_{LI}	$V_{IN} = 0$ to $V_{CC}(\max)$	—	—	± 10	μA
Output Leakage Current	I_{LO}	$V_{OUT} = 0$ to $V_{CC}(\max)$	—	—	± 10	μA
Input High Voltage	V_{IH}	—	$V_{CC} \times 0.8$	—	$V_{CC} + 0.3$	V
Input Low Voltage	V_{IL}	—	-0.3	—	$V_{CC} \times 0.2$	V
Output High Voltage	V_{OH}	$I_{OH} = -400 \mu A$	2.4	—	—	V
Output Low Voltage	V_{OL}	$I_{OL} = 2.1 \text{ mA}$	—	—	0.4	V
Output Low Current (R/B#)	$I_{OL(R/B)}$	$V_{OL} = 0.4V$	8	10	—	mA
V_{CC} Supply Voltage (erase and program lockout)	V_{LKO}	—	—	1.8	—	V

Notes:

1. All V_{CCQ} and V_{CC} pins, and V_{SS} and V_{SSQ} pins respectively are shorted together.
2. Values listed in this table refer to the complete voltage range for V_{CC} and V_{CCQ} and to a single device in case of device stacking.
3. All current measurements are performed with a $0.1 \mu F$ capacitor connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin.
4. Standby current measurement can be performed after the device has completed the initialization process at power up.

8.3 Pin Capacitance

Table 8.3 Pin Capacitance (TA = 25°C, f=1.0 MHz)

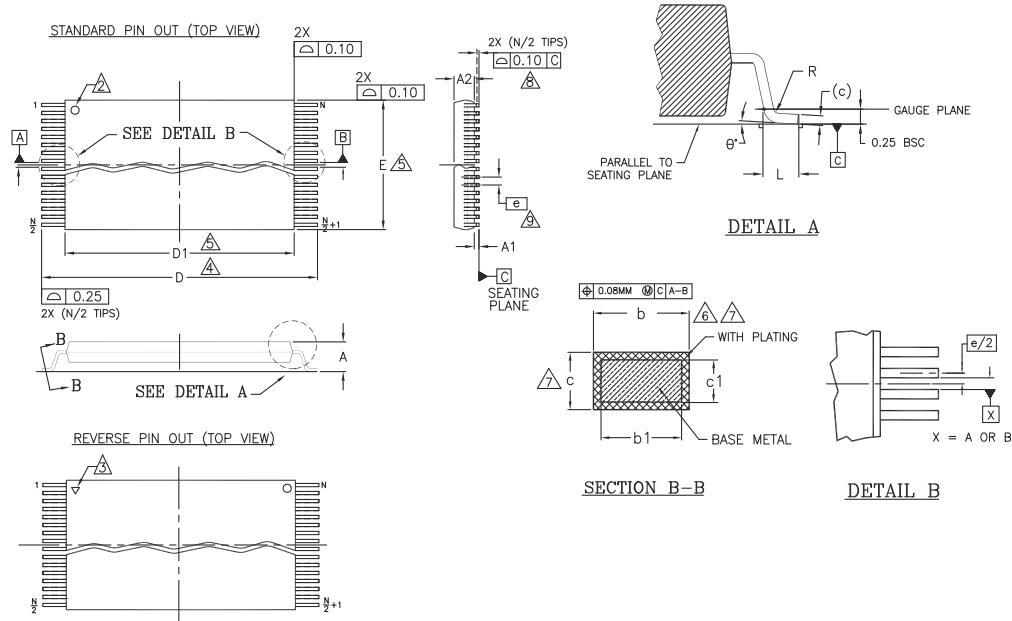
Parameter	Symbol	Test Condition	Min	Max	Unit
Input	C_{IN}	$V_{IN} = 0V$	—	10	pF
Input / Output	C_{IO}	$V_{IL} = 0V$	—	10	pF

Note:

1. For the stacked devices version the Input is $10 \text{ pF} \times [\text{number of stacked chips}]$ and the Input/Output is $10 \text{ pF} \times [\text{number of stacked chips}]$.

8.4 Power Consumptions and Pin Capacitance for Allowed Stacking Configurations

When multiple dies are stacked in the same package, the power consumption of the stack will increase according to the number of chips. As an example, the standby current is the sum of the standby currents of all the chips, while the active power consumption depends on the number of chips concurrently executing different operations.

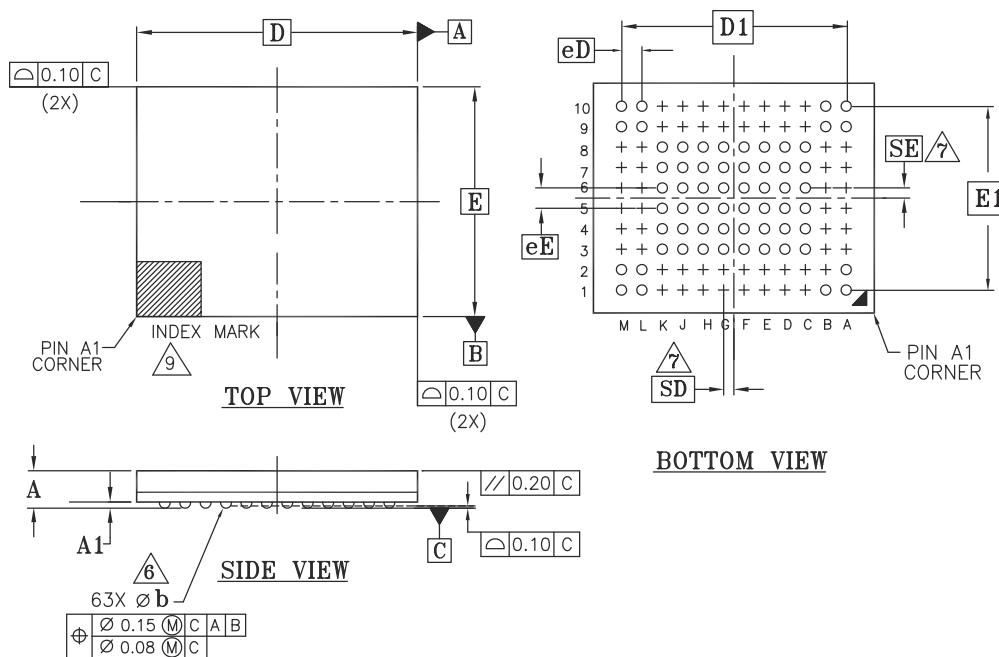

When multiple dies are stacked in the same package the pin-ball capacitance for the single input and the single input/output of the combo package must be calculated based on the number of chips sharing that input or that pin-ball.

9. Physical Interface

9.1 Physical Diagram

9.1.1 48-Pin Thin Small Outline Package (TSOP1)

Figure 9.1 TS2 48 — 48-lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline


PACKAGE	TS2 48		
JEDEC	MO-142 (D) DD		
SYMBOL	MIN	NOM	MAX
A	---	---	1.20
A1	0.05	---	0.15
A2	0.95	1.00	1.05
b1	0.17	0.20	0.23
b	0.17	0.22	0.27
c1	0.10	---	0.16
c	0.10	---	0.21
D	19.80	20.00	20.20

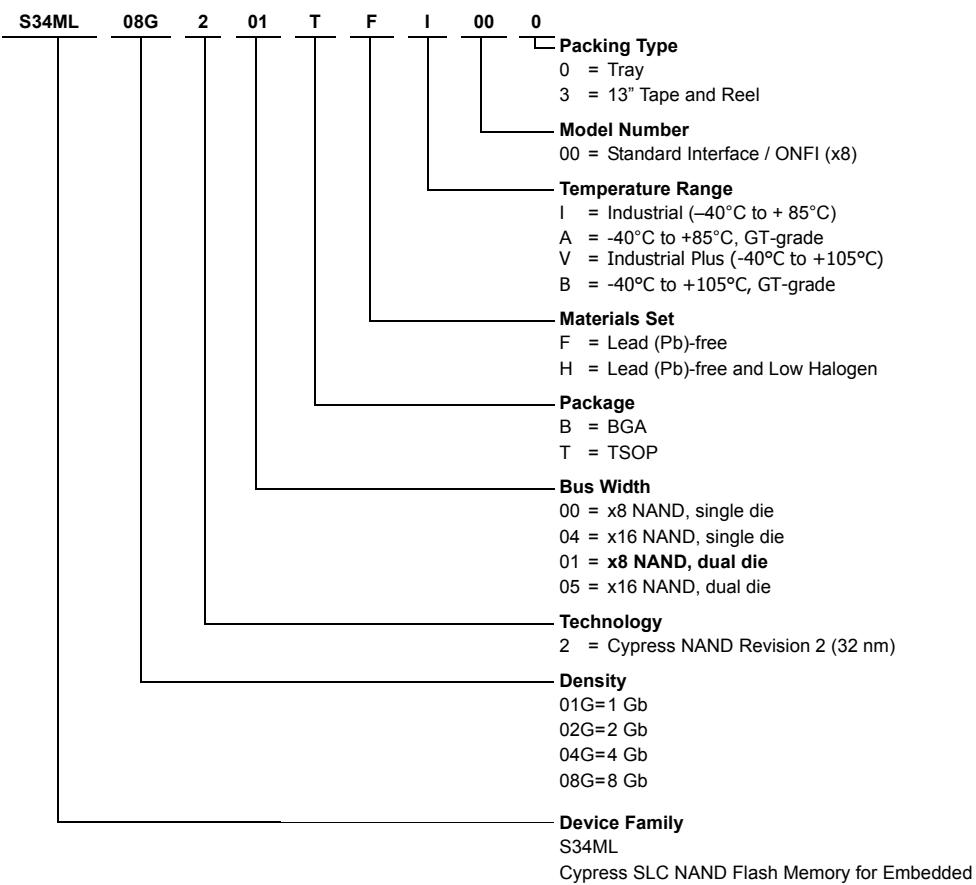
NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS (mm). (DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1994).
- 2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).
- 3. PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.
- 4. TO BE DETERMINED AT THE SEATING PLANE [C]. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.
- 5. DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- 6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION: DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE

9.1.2 63-Pin Ball Grid Array (BGA)

Figure 9.2 VLD063 — 63-Pin BGA, 11 mm x 9 mm Package

PACKAGE	VLD 063			NOTE	
JEDEC	M0-207(M)				
11.00 mm x 9.00 mm PACKAGE					
SYMBOL	MIN	NOM	MAX	NOTE	
A	--	--	1.00	PROFILE	
A1	0.25	--	--	BALL HEIGHT	
D	11.00 BSC.			BODY SIZE	
E	9.00 BSC.			BODY SIZE	
D1	8.80 BSC.			MATRIX FOOTPRINT	
E1	7.20 BSC.			MATRIX FOOTPRINT	
MD	12			MATRIX SIZE D DIRECTION	
ME	10			MATRIX SIZE E DIRECTION	
n	63			BALL COUNT	
ϕb	0.40	0.45	0.50	BALL DIAMETER	
eE	0.80 BSC.			BALL PITCH	
eD	0.80 BSC.			BALL PITCH	
SD	0.40 BSC.			SOLDER BALL PLACEMENT	
SE	0.40 BSC.			SOLDER BALL PLACEMENT	
	A3-A8,B2-B8,C1,C2,C9,C10 D1,D2,D9,D10,E1,E2,E9,E10 F1,F2,F9,F10,G1,G2,G9,G10 H1,H2,H9,H10,J1,J2,J9,J10 K1,K2,K9,K10 L3-L8,M3-M8			DEPOPULATED SOLDER BALLS	


NOTES:

1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS.
3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
4. \square REPRESENTS THE SOLDER BALL GRID PITCH.
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
6. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
- n IS THE TOTAL NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD x ME.
7. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
8. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
9. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.
10. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = $eD/2$ AND "SE" = $eE/2$.
11. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
12. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

g5013 \ 16-038.28 \ 6.5.13

10. Ordering Information

The ordering part number is formed by a valid combination of the following:

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Valid Combinations								
Device Family	Density	Technology	Bus Width	Package Type	Temperature Range	Additional Ordering Options	Packing Type	Package Description
S34ML	08G	2	01	BH, TF	I, A, V, B	00	0, 3	BGA, TSOP

11. Document History Page

Document Title: S34ML08G2 8 Gb, 4-bit ECC, x8 I/O and 3 V V_{CC} NAND Flash Memory for Embedded
 Document Number: 002-00484

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	-	XILA	04/11/2013	Initial release. Spansion Publication Number: S34ML08G2
*A	-	XILA	05/17/2013	Performance: Reliability - updated Addressing: Address Cycle Map table - updated Bus Cycle data Read ID: Read ID for Supported Configurations table - updated 8 Gb Density for 2nd, 3rd, 4th, and 5th Read Parameter Page: Parameter Page Description table: corrected values for Bytes 8-9 and 254-255
*B	-	XILA	08/09/2013	Read ID: Read ID Operation Timing - 8 Gb figure: added values to I/Ox Physical Interface: Updated TS2 48 - 48-lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline figure
*C	-	XILA	01/08/2015	Performance: Package Options - added 63-Ball BGA 11 x 9 x 1 mm Connection Diagram: Added figure - 63-BGA Contact, x8 Device, Single CE Physical Interface: Added 63-Pin Ball Grid Array (BGA) Ordering Information: Valid Combinations table - added BH to Package Type and BGA to Package Description
*D	4955117	XILA	10/15/2015	Updated to Cypress template
*E	5017336	XILA	11/19/2015	Fixed formatting issues Removed Cover page and Spansion Revision History Distinctive Characteristics: Added industrial Plus temperature range Ordering Information: Added A, V, B temperature ranges

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at [Cypress Locations](#).

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions
[PSoC 1](#) | [PSoC 3](#) | [PSoC 4](#) | [PSoC 5LP](#)

Cypress Developer Community

[Community](#) | [Forums](#) | [Blogs](#) | [Video](#) | [Training](#)

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2013-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.