S34MS16G2 NAND Flash Memory for Embedded

16 Gb, 4-Bit ECC, x8 I/O, and 1.8V V_{CC}

Data Sheet (Advance Information)

Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Each product described herein may be designated as Advance Information, Preliminary, or Full Production. See *Notice On Data Sheet Designations* for definitions.

Notice On Data Sheet Designations

Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions.

Advance Information

The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content:

"This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice."

Preliminary

The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content:

"This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications."

Combination

Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page.

Full Production (No Designation on Document)

When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or V_{IO} range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category:

"This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur."

Questions regarding these document designations may be directed to your local sales office.

S34MS16G2 NAND Flash Memory for Embedded

16 Gb, 4-Bit ECC, x8 I/O, and 1.8V V_{CC}

Data Sheet (Advance Information)

General Description

The Spansion® S34MS16G2 16-Gb NAND is offered in 1.8V V_{CC} with x8 I/O interface. This document contains information for the S34MS16G2 device, which is a quad-die stack of four S34MS04G2 die. For detailed specifications, please refer to the discrete die data sheet: S34MS01G2 04G2.

Distinctive Characteristics

■ Density

- 16 Gb (4 Gb x 4)

■ Architecture (For each 4 Gb device)

- Input / Output Bus Width: 8-bits
- Page Size: (2048 + 128) bytes; 128-byte spare area
- Block Size: 64 Pages or (128k + 8k) bytes
- Plane Size
 - 2048 Blocks per Plane or (256M + 16M) bytes
- Device Size
 - 2 Planes per Device or 512 Mbyte

■ NAND Flash Interface

- Open NAND Flash Interface (ONFI) 1.0 compliant
- Address, Data and Commands multiplexed

■ Supply Voltage

- 1.8V device: $V_{CC} = 1.7V \sim 1.95V$

■ Security

- One Time Programmable (OTP) area
- Serial number (unique ID)
- Hardware program/erase disabled during power transition

■ Additional Features

- Supports Multiplane Program and Erase commands
- Supports Copy Back Program
- Supports Multiplane Copy Back Program
- Supports Read Cache

■ Electronic Signature

- Manufacturer ID: 01h

■ Operating Temperature

- Industrial: -40°C to 85°C

Performance

■ Page Read / Program

- Random access: 30 µs (Max)
- Sequential access: 45 ns (Min)
- Program time / Multiplane Program time: 300 µs (Typ)

■ Block Erase / Multiplane Erase

- Block Erase time: 3.5 ms (Typ)

■ Reliability

- 100,000 Program / Erase cycles (Typ) (with 4-bit ECC per 528 bytes)
- 10 Year Data retention (Typ)
- Blocks zero and one are valid and will be valid for at least 1000 program-erase cycles with ECC

■ Package Options

- Lead Free and Low Halogen
- 63-Ball BGA 9 x 11 x 1 mm

Table of Contents

Gen	eral Description
Dist	inctive Characteristics
Perf	ormance
1.	Connection Diagram
2.	Pin Description
3.	Block Diagrams
4.	Addressing
5.	Read Status Enhanced 8
6.	Read ID 8 6.1 Read Parameter Page 10
7.	Electrical Characteristics127.1Valid Blocks127.2DC Characteristics127.3Pin Capacitance127.4Power Consumptions and Pin Capacitance for Allowed Stacking Configurations13
8.	Physical Interface 14 8.1 63-Ball BGA Package 14
9.	Ordering Information
10.	Revision History

1. Connection Diagram

(A2) NC (A1) NC (B1) NC (B10) NC (C7) WE# (D7) NC (E5) NC (E7) NC (E4) (F3) NC (F4) NC (F6) (F7) VSS (1) (F5) NC (F8) (G6) NC (H3) (G4) VCC (1) (G5) NC (G7) (G8) V_{CC} (K6) (K7) (K8) V_{SS} NC (M1) NC (M2) (M9) NC (M10) NC

Figure 1.1 63-BGA Contact, x8 Device (Balls Down, Top View)

2. Pin Description

Table 2.1 Pin Description

Pin Name	Description
1/00 - 1/07	Inputs/Outputs. The I/O pins are used for command input, address input, data input, and data output. The I/O pins float to High-Z when the device is deselected or the outputs are disabled.
CLE	Command Latch Enable. This input activates the latching of the I/O inputs inside the Command Register on the rising edge of Write Enable (WE#).
ALE	Address Latch Enable. This input activates the latching of the I/O inputs inside the Address Register on the rising edge of Write Enable (WE#).
CE#	Chip Enable. This input controls the selection of the device. When the device is not busy CE# low selects the memory.
WE#	Write Enable. This input latches Command, Address and Data. The I/O inputs are latched on the rising edge of WE#.
RE#	Read Enable. The RE# input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid t _{REA} after the falling edge of RE# which also increments the internal column address counter by one.
WP#	Write Protect. The WP# pin, when low, provides hardware protection against undesired data modification (program / erase).
R/B#	Ready Busy. The Ready/Busy output is an Open Drain pin that signals the state of the memory.
VCC	Supply Voltage . The V_{CC} supplies the power for all the operations (Read, Program, Erase). An internal lock circuit prevents the insertion of Commands when V_{CC} is less than V_{LKO} .
VSS	Ground.
NC	Not Connected.

Notes

- 1. A 0.1 μ F capacitor should be connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations.
- 2. An internal voltage detector disables all functions whenever V_{CC} is below 1.8V to protect the device from any involuntary program/erase during power transitions.

3. Block Diagrams

Register/ Counter Program Erase Controller HV Generation 16 Gb Device (4 Gb x 4) DECODER NAND Flash ALE Memory Array CLE WE# CE# Command Interface Logic WP# RE# Page Buffer Y Decoder Command Register I/O Buffer Data Register

I/O0~I/O7

Figure 3.1 Functional Block Diagram

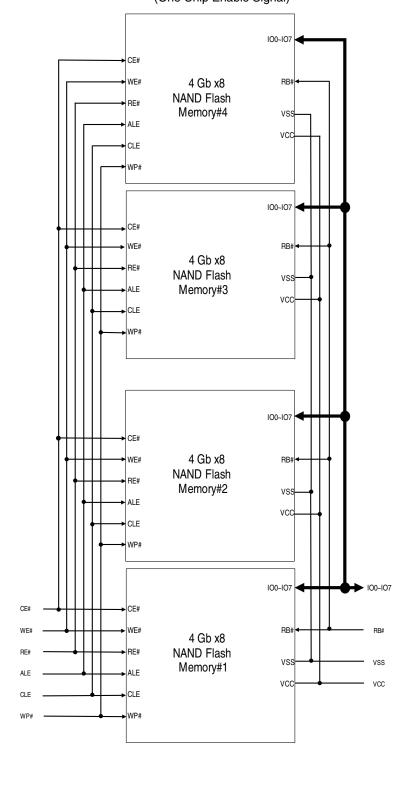


Figure 3.2 Block Diagram — 16 Gb (4 Gb x 4) 63-Ball BGA with 1 CE# (One Chip Enable Signal)

4. Addressing

Table 4.1 Address Cycle Map

Bus Cycle	I/O0	I/O1	1/02	I/O3	1/04	I/O5	I/O6	1/07
1st / Col. Add. 1	A0 (CA0)	A1 (CA1)	A2 (CA2)	A3 (CA3)	A4 (CA4)	A5 (CA5)	A6 (CA6)	A7 (CA7)
2nd / Col. Add. 2	A8 (CA8)	A9 (CA9)	A10 (CA10)	A11 (CA11)	Low	Low	Low	Low
3rd / Row Add. 1	A12 (PA0)	A13 (PA1)	A14 (PA2)	A15 (PA3)	A16 (PA4)	A17 (PA5)	A18 (PLA0)	A19 (BA0)
4th / Row Add. 2	A20 (BA1)	A21 (BA2)	A22 (BA3)	A23 (BA4)	A24 (BA5)	A25 (BA6)	A26 (BA7)	A27 (BA8)
5th / Row Add. 3 (6)	A28 (BA9)	A29 (BA10)	A30 (BA11)	A31 (BA12)	Low	Low	Low	Low

Notes:

- 1. CAx = Column Address bit.
- 2. PAx = Page Address bit.
- 3. PLA0 = Plane Address bit zero.
- 4. BAx = Block Address bit.
- 5. Block address concatenated with page address and plane address = actual page address, also known as the row address.
- 6. A31 for 16 Gb (4 Gb x 4 QDP)

For the address bits, the following rules apply:

- A0 A11: column address in the page
- A12 A17: page address in the block
- A18: plane address (for multiplane operations) / block address (for normal operations)
- A19 A31: block address

5. Read Status Enhanced

Read Status Enhanced is used to retrieve the status value for a previous operation in the following cases:

- In the case of concurrent operations on a multi-die stack.
 - When four dies are stacked to form a quad-die package (QDP), it is possible to run one operation on the first die, then activate a different operation on the second die, for example: Erase while Read, Read while Program, etc.
- In the case of multiplane operations in the same die.

6. Read ID

The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of 00h.

Note: If you want to execute Read Status command (0x70) after Read ID sequence, you should input dummy command (0x00) before Read Status command (0x70).

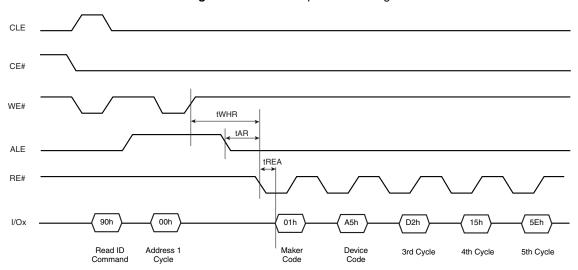

For the S34MS16G2 device, five read cycles sequentially output the manufacturer code (01h), and the device code and 3rd, 4th, and 5th cycle ID, respectively. The command register remains in Read ID mode until further commands are issued to it.

Table 6.1 Read ID for Supported Configurations

Density	Org	V _{CC}	1st	2nd	3rd	4th	5th
4 Gb	x8	1.8V	01h	ACh	90h	15h	56h
16 Gb (4 Gb x 4 – QDP with one CE#)	x8	1.8V	01h	A5h	D2h	15h	5Eh

Figure 6.1 Read ID Operation Timing

5th ID Data

Table 6.2 Read ID Byte 5 Description

	Description	1/07	1/06 1/05 1/04	1/03 1/02	I/O1 I/O0
ECC Level	1 bit / 512 bytes				0 0
	2 bit / 512 bytes				0 1
ECC Level	4 bit / 512 bytes				1 0
	8 bit / 512 bytes				1 1
	1			0 0	
Diana Number	2			0 1	
Plane Number	4			1 0	
	8			11	
	64 Mb		000		
	128 Mb		0 0 1		
DI O	256 Mb		0 1 0		
Plane Size (without spare area)	512 Mb		0 1 1		
(without spare area)	1 Gb		100		
	2 Gb		1 0 1		
	4 Gb		1 1 0		
Reserved		0			

6.1 Read Parameter Page

The device supports the ONFI Read Parameter Page operation, initiated by writing ECh to the command register, followed by an address input of 00h. The command register remains in Parameter Page mode until further commands are issued to it. Table 6.3 explains the parameter fields.

Table 6.3 Parameter Page Description (Sheet 1 of 2)

Byte	O/M	Description	Values
		Revision Information and Features Block	
0-3	М	Parameter page signature Byte 0: 4Fh, "O" Byte 1: 4Eh, "N" Byte 2: 46h, "F" Byte 3: 49h, "I"	4Fh, 4Eh, 46h, 49h
4-5	М	Revision number 2-15 Reserved (0) 1 1 = supports ONFI version 1.0 0 Reserved (0)	02h, 00h
6-7	М	Features supported 5-15 Reserved (0) 4 1 = supports odd to even page Copyback 3 1 = supports interleaved operations 2 1 = supports non-sequential page programming 1 1 = supports multiple LUN operations 0 1 = supports 16-bit data bus width	1Eh, 00h
8-9	М	Optional commands supported 6-15 Reserved (0) 5 1 = supports Read Unique ID 4 1 = supports Copyback 3 1 = supports Read Status Enhanced 2 1 = supports Get Features and Set Features 1 1 = supports Read Cache commands 0 1 = supports Page Cache Program command	3Bh, 00h
10-31		Reserved (0)	00h
		Manufacturer Information Block	
32-43	М	Device manufacturer (12 ASCII characters)	53h, 50h, 41h, 4Eh, 53h, 49h, 4Fh, 4Eh, 20h, 20h, 20h, 20h
44-63	М	Device model (20 ASCII characters)	53h, 33h, 34h, 4Dh, 53h, 31h, 36h, 47h, 32h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h
64	М	JEDEC manufacturer ID	01h
65-66	0	Date code	00h
67-79		Reserved (0)	00h
		Memory Organization Block	
80-83	М	Number of data bytes per page	00h, 08h, 00h, 00h
84-85	М	Number of spare bytes per page	80h, 00h
86-89	М	Number of data bytes per partial page	00h, 00h, 00h
90-91	М	Number of spare bytes per partial page	00h, 00h
92-95	М	Number of pages per block	40h, 00h, 00h, 00h
96-99	М	Number of blocks per logical unit (LUN)	00h, 40h, 00h, 00h (1 CE#)
100	М	Number of logical units (LUNs)	01h (1 CE#)
101	М	Number of address cycles 4-7 Column address cycles 0-3 Row address cycles	23h
102	М	Number of bits per cell	01h
103-104	М	Bad blocks maximum per LUN	47h, 01h (1 CE#)
105-106	М	Block endurance	01h, 05h
107	М	Guaranteed valid blocks at beginning of target	01h
108-109	М	Block endurance for guaranteed valid blocks	01h, 03h

Table 6.3 Parameter Page Description (Sheet 2 of 2)

· · · · · · · · · · · · · · · · · · ·
)
bytes 0-255
bytes 0-255

Note

^{1. &}quot;O" Stands for Optional, "M" for Mandatory.

7. Electrical Characteristics

7.1 Valid Blocks

Table 7.1 Valid Blocks

Device	Symbol	Min	Тур	Max	Unit
S34MS04G2	N _{VB}	4016	_	4096	Blocks
S34MS16G2	N _{VB}	16057 (1)	_	16384	Blocks

Note:

7.2 DC Characteristics

Table 7.2 DC Characteristics and Operating Conditions (Values listed are for each 4 Gb NAND, 16 Gb (4 Gb x 4) will differ accordingly)

Paramete	er	Symbol	Test Conditions	Min	Тур	Max	Units
Power On Current		I _{CC0}	FFh command input after power on	_	_	50 per device	mA
	Sequential Read	I _{CC1}	$t_{RC} = t_{RC} \text{ (min)}$ CE# = V _{IL} , lout = 0 mA	-	15	30	mA
Operating Current	Program	_	Normal	_	15	30	mA
	Flogram	I _{CC2}	Cache	_	15	30	mA
	Erase	I _{CC3}	_	_	15	30	mA
Standby Current, (TTL)		I _{CC4}	CE# = V _{IH} , WP# = 0V/Vcc	-	_	1	mA
Standby Current, (CMOS)		I _{CC5}	$CE\# = V_{CC}-0.2,$ $WP\# = 0/V_{CC}$	_	10	50	μΑ
Input Leakage Current		ILI	V _{IN} = 0 to V _{CC} (max)	_	_	±10	μA
Output Leakage Current		I _{LO}	$V_{OUT} = 0$ to $V_{CC}(max)$	_	_	±10	μA
Input High Voltage		V _{IH}	_	V _{CC} x 0.8	_	V _{CC} + 0.3	V
Input Low Voltage		V _{IL}	_	-0.3	_	V _{CC} x 0.2	V
Output High Voltage		V _{OH}	I _{OH} = -100 μA	V _{CC} -0.1	_		V
Output Low Voltage		V _{OL}	I _{OL} = 100 μA	_	_	0.1	V
Output Low Current (R/B#)		I _{OL(R/B#)}	V _{OL} = 0.1V	3	4	_	mA
V _{CC} Supply Voltage (erase and program lockout	t)	V _{LKO}	_	_	1.1	_	V

Notes:

- 1. All V_{CCQ} and V_{CC} pins, and V_{SS} and V_{SSQ} pins respectively are shorted together.
- 2. Values listed in this table refer to the complete voltage range for V_{CC} and V_{CCQ} and to a single device in case of device stacking.
- 3. All current measurements are performed with a 0.1 μ F capacitor connected between the V_{CC} Supply Voltage pin and the V_{SS} Ground pin.
- 4. Standby current measurement can be performed after the device has completed the initialization process at power up.

7.3 Pin Capacitance

Table 7.3 Pin Capacitance (TA = 25°C, f=1.0 MHz)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input	C _{IN}	$V_{IN} = 0V$	_	10	pF
Input / Output	C _{IO}	$V_{IL} = 0V$	_	10	pF

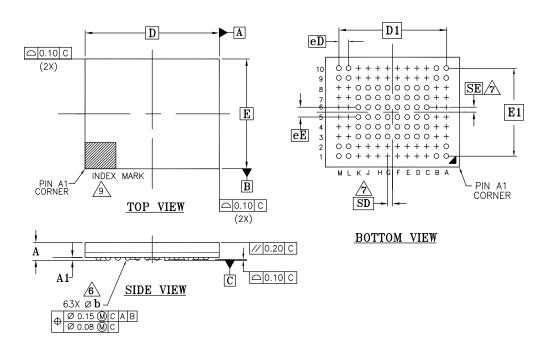
Note:

^{1.} Each 4 Gb can have a maximum 80 bad blocks.

^{1.} For the stacked devices version the Input is 10 pF x [number of stacked chips] and the Input/Output is 10 pF x [number of stacked chips].

7.4 Power Consumptions and Pin Capacitance for Allowed Stacking Configurations

When multiple dies are stacked in the same package, the power consumption of the stack will increase according to the number of chips. As an example, the standby current is the sum of the standby currents of all the chips, while the active power consumption depends on the number of chips concurrently executing different operations.


When multiple dies are stacked in the same package the pin/ball capacitance for the single input and the single input/output of the combo package must be calculated based on the number of chips sharing that input or that pin/ball.

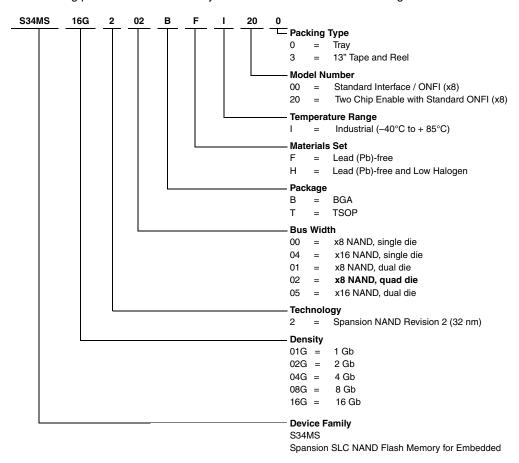
8. Physical Interface

8.1 63-Ball BGA Package

Figure 8.1 63-Ball BGA 9 x 11 x 1 mm

PACKAGE		TNA 063		
JEDEC	MO-207(N)			NOTE
DXE	11.00mi	m X 9.00mm	PACKAGE	NOIL
SYMBOL	MIN.	NOM.	MAX.	
Α			1.20	PROFILE
A1	0.25			BALL HEIGHT
D		11.00 BSC		BODY SIZE
Е		9.00 BSC		BODY SIZE
D1		8.80 BSC		MATRIX FOOTPRINT
E1	7.20 BSC			MATRIX FOOTPRINT
MD	12			MATRIX SIZE D DIRECTION
ME		10		MATRIX SIZE E DIRECTION
n		63		BALL COUNT
ØЬ	0.40	0.45	0.50	BALL DIAMETER
eE		0.80 BSC		BALL PITCH
eD		0.80 BSC		BALL PITCH
SD		0.40 BSC		SOLDER BALL PLACEMENT
SE		0.40 BSC		SOLDER BALL PLACEMENT
	A3-A8,B2-B8,C1,C2,C9,C10,D1, D2,D9,D10,E1,E2,E9,E10,F1,F2, F9,F10,G1,G2,G9,G10,H1,H2,H9, H10,J1,J2,J9,J10,K1,K2,K9,K10, L3-L8,M3-M8			DEPOPULATED SOLDER BALLS

NOTES:


- 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. BALL POSITION DESIGNATION PER JEP 95, SECTION 3, SPP-020.
- 4. e REPRESENTS THE SOLDER BALL GRID PITCH.
- SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
 IN IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX
 SIZE MD X ME.
- ^^?\ "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW
 "SD" OP "SE" -0
 - WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" = eD/2 AND "SE" = eE/2.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
- 41 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

gs5038-tna063-09.05.14

9. Ordering Information

The ordering part number is formed by a valid combination of the following:

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

	Valid Combinations										
Device Family	Density	Technology	Bus Width	Package Type	Temperature Range	Additional Ordering Options	Packing Type	Package Description			
S34MS	16G	2	02	BH	1	BH – 00	0, 3	BGA			

10. Revision History

Section	Description
Revision 01 (December 16, 2014)	
	Initial release

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2014 Spansion LLC. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™, HyperBus™, HyperFlash™ and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.