

Sxx40x Series RoHS

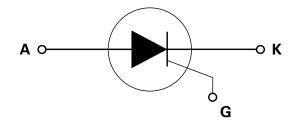
Symbol	Value	Unit
I _{T(RMS)}	40	А
V_{DRM}/V_{RRM}	400 to 1000	V
I _{GT}	40	mA

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Features & Benefits


- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 520 A

Applications

Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Schematic Symbol

Absolute Maximum Ratings

Main Features

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	RMS on-state current	MS on-state current $T_c = 100^{\circ}C$		А	
	Peak non-repetitive surge current	single half cycle; f = 50Hz; T _J (initial) = 25°C	430	A	
^I TSM	Teak norriepetitive Surge Current	single half cycle; f = 60Hz; T _J (initial) = 25°C	520	A	
l²t	I²t Value for fusing	t _p = 8.3 ms	1122	A ² s	
di/dt	Critical rate of rise of on-state current	f = 60Hz ; T _J = 125°C	175	A/µs	
I _{GM}	Peak gate current	Peak gate current $T_J = 125$ °C		А	
P _{G(AV)}	Average gate power dissipation	T _J = 125°C	0.8	W	
T _{stg}	Storage temperature range		-40 to 150	°C	
T _J	Operating junction temperature range		-40 to 125	°C	

Teccor® brand Thyristors 40 Amp Standard SCRs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit		
			MAX.	40	mA
I _{GT}	$V_D = 12V; R_L = 60 \Omega$		MIN.	5	mA
V _{GT}			MAX.	1.5	V
		400V		650	
	$V_D = V_{DRM}$; gate open; $T_J = 100$ °C	600V	MIN.	600	V/µs
		800V		500	
dv/dt		1000V		250	
		400V		550	
	$V_D = V_{DRM}$; gate open; $T_J = 125$ °C	600V		500	
		800V		475	
V _{GD}	$V_{D} = V_{DRM}$; $R_{L} = 3.3 \text{ k}\Omega$; $T_{J} = 125^{\circ}\text{C}$		MIN.	0.2	V
I _H	I _T = 200mA (initial)		MAX.	60	mA
t _q	(1)		MAX.	35	μs
t _{gt}	$I_{G} = 2 \times I_{GT}$ PW = 15 μ s; $I_{T} = 80A$		TYP.	2.5	μs

Note:

(1) $I_T=2A$; $t_p=50\mu s$; $dv/dt=5V/\mu s$; $di/dt=-30A/\mu s$

Static Characteristics

Symbol		Value	Unit			
V _{TM}		$I_{T} = 80A; t_{p} = 380 \mu s$	$I_{_{T}} = 80A; t_{_{D}} = 380 \mu s$ MAX.			V
			400 – 600V		10	
I _{DRM} / I _{RRM} V _{DRM} / Y		T _J = 25°C	800 V		20	
			1000 V		30	
	V_{DRM}/V_{RRM}	T _J = 100°C	400 – 600V		1000	
			800V	MAX.	1500	μΑ
			1000V		5000	
		T 40500	400 – 600V		2000	
		T _J = 125°C	800V		3000	

Thermal Resistances

Symbol	Parameter	Value	Unit	
R _{e(J-C)}	Junction to case (AC)	Sxx40R / Sxx40N	0.6	°C/W
$R_{\theta(J-A)}$	Junction to ambient	Sxx40R	40	°C/W

Note: xx = voltage

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

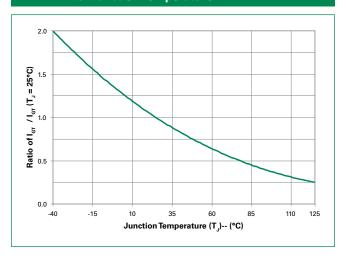


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

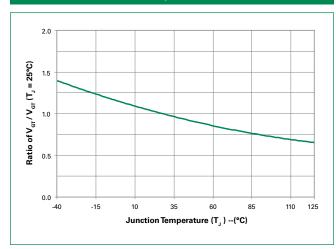


Figure 3: Normalized DC Holding Current vs. Junction Temperature

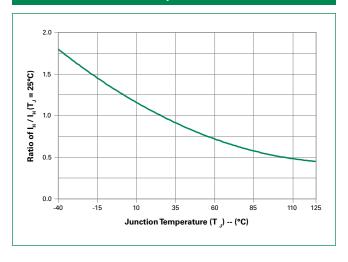


Figure 4: On-State Current vs. On-State Voltage (Typical)

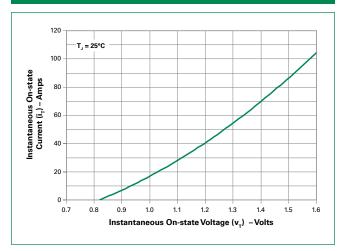


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

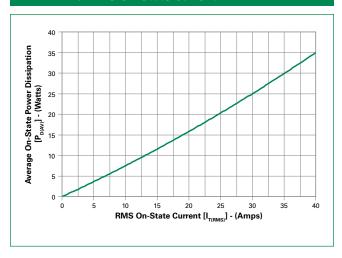


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

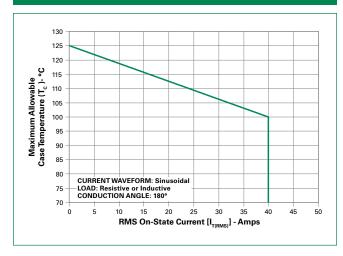


Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

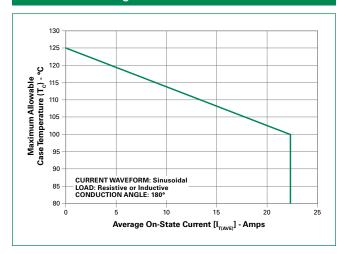
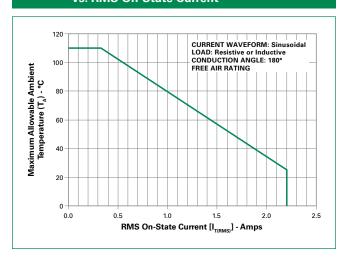
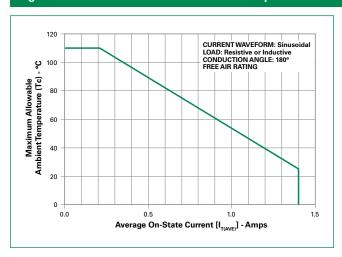
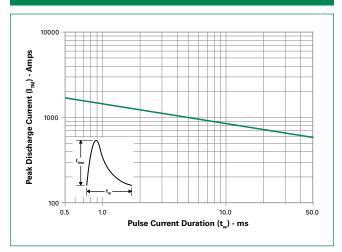


Figure 8: Maximum Allowable Ambient Temperature vs. RMS On-State Current

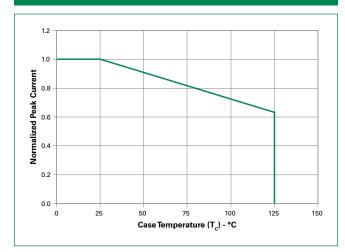

Figure 9: Maximum Allowable Ambient Temperature vs. Average On-State Current

Figure 10: Peak Capacitor Discharge Current

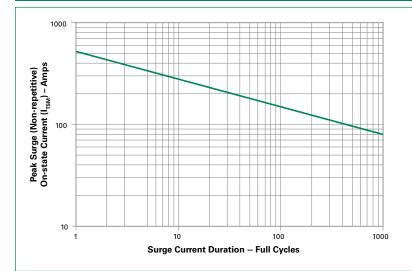
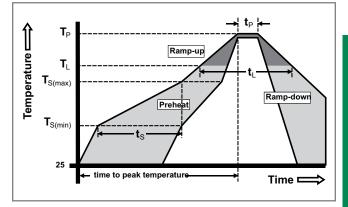


Figure 11: Peak Capacitor Discharge Current Derating

Figure 12: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal

LOAD: Resistive


RMS On-State Current: [I_{T(RMS)}]: Maximum Rated Value at Specified Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

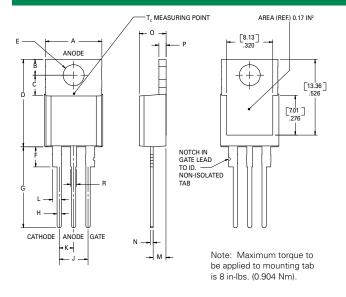
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 190 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _o)		20 – 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C to peakTemperature (T _p)		8 minutes Max.	
Do not exc	ceed	280°C	

Teccor® brand Thyristors 40 Amp Standard SCRs

Physical Specifications

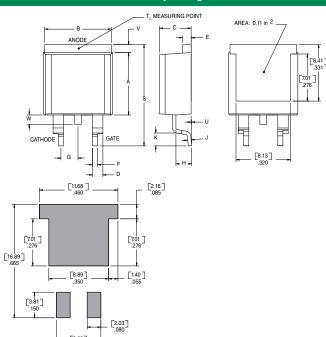
Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy


Design Considerations

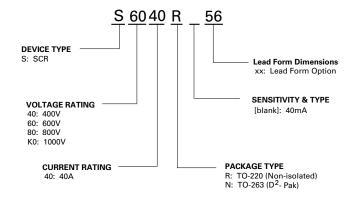
Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

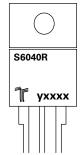
Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwelltime at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E


Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead

Dimension	Inc	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
Е	0.142	0.147	3.61	3.73
F	0.110	0.130	2.79	3.30
G	0.540	0.575	13.72	14.61
Н	0.025	0.035	0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22



Dimensions - TO- 263AB (N-package) - D2-Pak Surface Mount


Dimension	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
А	0.360	0.370	9.14	9.40	
В	0.380	0.420	9.65	10.67	
С	0.178	0.188	4.52	4.78	
D	0.025	0.035	0.63	0.89	
Е	0.045	0.060	1.14	1.52	
F	0.060	0.075	1.52	1.91	
G	0.095	0.105	2.41	2.67	
Н	0.092	0.102	2.34	2.59	
J	0.018	0.024	0.46	0.61	
K	0.090	0.110	2.29	2.79	
S	0.590	0.625	14.99	15.87	
V	0.035	0.045	0.89	1.14	
U	0.002	0.010	0.05	0.25	
W	0.040	0.070	1.02	1.78	

Part Numbering System

Part Marking System

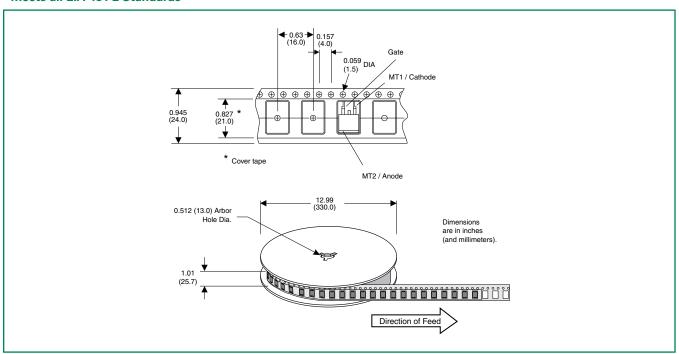
TO-220 AB (R Package) TO-263 (N Package)

Teccor® brand Thyristors 40 Amp Standard SCRs

Product Selector

Part Number		Volt	age		Gate Sensitivity	Timo	Poekogo
rait ivuilibei	400V	600V	800V	1000V	Gate Sensitivity	Туре	Package
Sxx40R	X	X	X	X	40mA	Standard SCR	TO-220R
Sxx40N	X	X	X	X	40mA	Standard SCR	TO-263

Note: xx = Voltage


Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Sxx40R	Sxx40R	2.2g	Bulk	500
Sxx40RTP	Sxx40R	2.2g	Tube	500
Sxx40NTP	Sxx40N	1.6g	Tube	500
Sxx40NRP	Sxx40N	1.6g	Embossed Carrier	500

Note: xx = Voltage

Reel Pack (RP) for TO-263 Embossed Carrier Specifications

Meets all EIA-481-2 Standards

