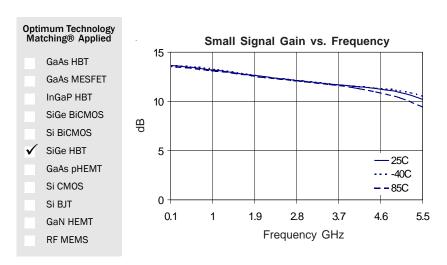


DC to 4500MHz, Silicon Germanium Cascadable Gain Block


Package: SOT-363

Product Description

The SGA5263Z is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring one-micron emitters provides high F_T and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.

Features

- DC to 4500MHz Operation
- Single Voltage Supply
- Low Current Draw: 60mA at 3.4V Typ.
- High Output Intercept: 29dBm Typ. at 1950MHz

Applications

- Oscillator Amplifiers
- Broadband Gain Block
- IF/RF Buffer Amplifiers

Parameter	Specification			Hoit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Small Signal Gain	12.0	13.3	14.6	dB	850MHz	
		12.6		dB	1950MHz	
		12.3		dB	2400MHz	
Output Power at 1dB Compression		16.3		dBm	850MHz	
		15.0		dBm	1950MHz	
		14.0		dBm	2400MHz	
Third Order Intercept Point		32.5		dBm	850MHz, P _{OUT} per tone = -10dBm	
		29.3		dBm	1950MHz, P _{OUT} per tone = -10dBm	
		27.3		dBm	2400MHz, P _{OUT} per tone = -10dBm	
S ₁₁ , S ₂₂		4500		MHz	Minimum 10dB Return Loss (typ.)	
Input VSWR		1.2:1			1950MHz	
Output VSWR		1.4:1			1950MHz	
Reverse Isolation		18.3		dB	850MHz	
		19.2		dB	1950MHz	
		19.5		dB	2400MHz	
Noise Figure		4.0		dB	1950MHz	
Device Operating Voltage		3.4		V		
Device Operating Current	54	60	66	mA		
Thermal Resistance (Junction - Lead)		255		°C/W		

Test Conditions: $Z_0 = 50\Omega$, $I_D = 60\text{mA}$, $T = 25^{\circ}\text{C}$

SGA5263Z

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	120	mA
Max Device Voltage (V _D)	6	V
Max RF Input Power	+16	dBm
Max Junction Temp (T _J)	+150	°C
Operating Temp Range (T _L)	-40 to +85	°C
Max Storage Temp	+150	°C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L)/R_{TH}, j \cdot I$

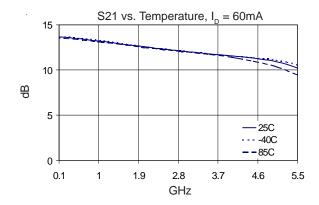
Caution! ESD sensitive device.

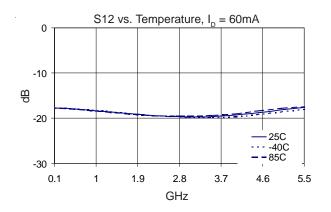
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

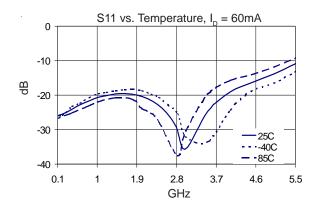
tions is not implied.

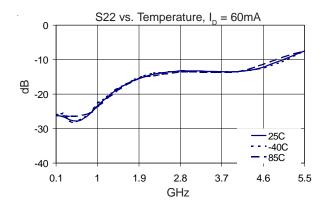
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

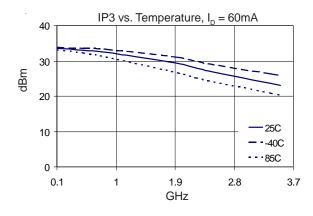
RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

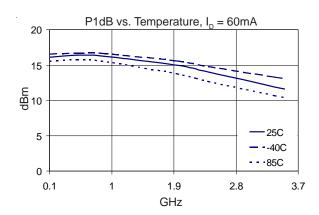

Parameter Gain	Min.				Condition	
Gain		Тур.	Max.	Unit	Collation	
		13.6		dB	100MHz	
		13.5		dB	500MHz	
		13.3		dB	850MHz	
		12.6		dB	1950MHz	
		12.3		dB	2400MHz	
		11.8		dB	3500MHz	
Output IIP3		33.6		dBm	100MHz, Tone spacing = 1MHz, P _{OUT} per tone = -10dBm	
		33.0		dBm	500MHz, Tone spacing = 1MHz, P _{OUT} per tone = -10dBm	
-		32.5		dBm	850MHz, Tone spacing = 1MHz, P _{OUT} per tone = -10dBm	
		29.3		dBm	1950MHz, Tone spacing = 1MHz, P _{OUT} per tone = -10dBm	
		27.3		dBm	2400MHz, Tone spacing = 1MHz, P _{OUT} per tone = -10dBm	
		23.1		dBm	3500MHz, Tone spacing = 1MHz, P _{OUT} per tone = -10dBm	
Output P1dB		16.1		dBm	100MHz	
		16.4		dBm	500MHz	
		16.3		dBm	850MHz	
		15.0		dBm	1950MHz	
		14.0		dBm	2400MHz	
		11.6		dBm	3500MHz	
Input Return Loss		26.0		dB	100MHz	
		23.5		dB	500MHz	
		21.4		dB	850MHz	
		20.2		dB	1950MHz	
		23.0		dB	2400MHz	
		24.6		dB	3500MHz	
Reverse Isolation		17.7		dB	100MHz	
		18.0		dB	500MHz	
		18.3		dB	850MHz	
		19.2		dB	1950MHz	
†		19.5		dB	2400MHz	
		19.6		dB	3500MHz	
Noise Figure		3.9		dB	100MHz, $Z_S = 50Ω$	
		3.9		dB	500 MHz, $Z_S = 50Ω$	
		4.0		dB	850MHz, Z _S = 50Ω	
		4.0		dB	1950MHz, $Z_S = 50\Omega$	

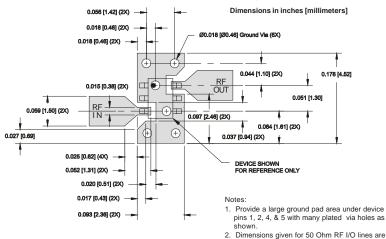

Test Conditions: $Z_0 = 50\Omega$, $I_D = 60\text{mA}$, $T = 25^{\circ}\text{C}$







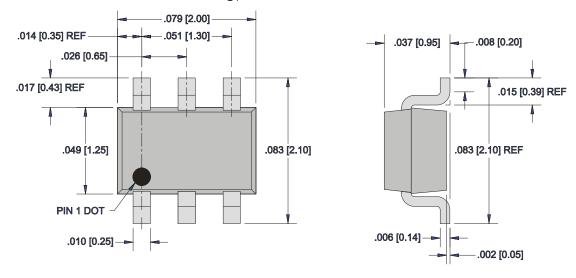




Pin Names and Descriptions

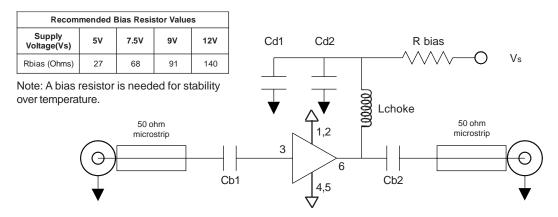
Pin	Name	Description
1, 2, 4, 5	GND	Connection to ground. For best performance use via holes as close to ground leads as possible to reduce lead inductance.
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
6	RF OUT	RF output and bias pin. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC-blocking capacitor should be used in most applications. (See application schematic.) The supply side of this bias network should be well bypassed.

SOT-363 PCB Pad Layout

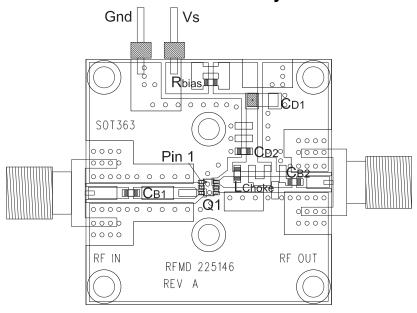

- 2. Dimensions given for 50 Ohm RF I/O lines are for 31 mil thick Getek. Scale accordingly for different board thicknesses and dielectric contants.

 3. We recommend 1 or 2 ounce copper. Measure-
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.

Package Drawing


Dimensions in inches (millimeters)

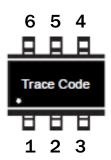
Refer to drawing posted at www.rfmd.com for tolerances.



Application Schematic

Reference Designator	Function	500 MHz	850 MHz	1950 MHz	2400 MHz
Cb1	DC Blocking	220 pF	100 pF	68 pF	56 pF
Cb2	DC Blocking	220 pF	100 pF	68 pF	56 pF
Cd1	Decoupling	1 uF	1 uF	1 uF	1 uF
Cd2	Decoupling	100 pF	68 pF	22 pF	22 pF
Lchoke	AC Blocking	68 nH	33 nH	22 nH	18 nH

Evaluation Board Layout



Mounting Instructions:

- 1. Use a large droung pad area near device pins 1, 2, 4, and 5 with plated through-holes as shown.
- 2. We recommend 1 or 2 ounces copper. Measurements for this data sheet were made on a 31mil thick FR-4 board with 1 ounce copper on both sides.

Part Identification Marking

Ordering Information

Ordering Code	Description
SGA5263Z	7" Reel with 3000 pieces
SGA5263ZSQ	Sample bag with 25 pieces
SGA5263ZSR	7" Reel with 100 pieces
SGA5263ZPCK1	850MHz, 8V Operation PCBA with 5-piece sample bag